AS4Client Class

Properties   Methods   Events   Config Settings   Errors  

The AS4Client class connects to a server to send or receive files.

Syntax

class ipworksedi.AS4Client

Remarks

The AS4Client component may be used to send or receive files from a server. The component will connect to a server and either send files (push), or request files to download (pull).

Sending Files

send_files sends the files specified by edi_data to url.

Before calling this method set agreement_ref to the agreement identifier used by both parties. Set as4_from and as4_to. Set edi_data specifies the file(s) to be sent. To encrypt the data set recipient_certs. To sign the data set signing_cert. The signer_cert property should be set to verify the signed receipt.

When this method is called the file(s) will be sent and any returned receipts will be verified.

To indicate a synchronous receipt is expected set receipt_reply_mode to rrmSync. The following properties are applicable when calling this method with an agreement specifying a synchronous receipt (a receipt provided in the response):

SendFiles Example (synchronous receipt): client.Profile = As4clientProfiles.ebpfENTSOG; //Specify the agreement and party information client.AgreementRef = "http://agreements.company.com/sign_and_encrypt"; client.AS4From.Role = "Sender"; client.AS4From.Id = "org:b2b:example:company:A"; client.AS4To.Role = "Receiver"; client.AS4To.Id = "org:b2b:example:company:B"; //Configure the component to expect a synchronous receipt. client.ReceiptReplyMode = As4clientReceiptReplyModes.rrmSync; //Company A's private certificate. Used to sign the outgoing message and files. client.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, "C:\\files\\CompanyA.pfx", "password", "*"); //Company B's public certificate. Used to encrypt the outgoing file. client.RecipientCerts.Add(new Certificate("C:\\files\\as4\\CompanyB.cer")); //Company B's public certificate. Used to verify the signed receipt. client.SignerCert = new Certificate("C:\\files\\as4\\CompanyB.cer"); client.URL = "http://www.company.com:9090/msh"; EBData data = new EBData(); data.EDIType = "application/edi-x12"; data.Filename = "C:\\files\\myfile.x12"; data.Name = "myfile.x12"; client.EDIData.Add(data); //Send file(s) and verify the receipt. client.SendFiles();

The class also supports asynchronous receipts. In this configuration a file is sent from the class to another party, but the receipt is not returned in the response. Instead the other party sends the receipt at a later time. The AS4Server class may be used inside a web page to receive the asynchronous receipt. After receiving the receipt either AS4Server or AS4Client may be used to verify the receipt.

Details about the original message must be stored so that the receipt can be correlated with the message and properly verified. The easiest way to do this is to set async_receipt_info_dir before calling send_files. The class will automatically store the required information.

See the verify_receipt method of AS4Server for details about verifying asynchronous receipts.

To indicate an asynchronous receipt is expected set receipt_reply_mode to rrmAsync. The following properties are applicable when calling this method with an agreement specifying a synchronous receipt (a receipt provided in the response):

SendFiles Example (asynchronous receipt): client.Profile = As4clientProfiles.ebpfENTSOG; //Specify the agreement and party information client.AgreementRef = "http://agreements.company.com/sign_and_encrypt_async"; client.AS4From.Role = "Sender"; client.AS4From.Id = "org:b2b:example:company:A"; client.AS4To.Role = "Receiver"; client.AS4To.Id = "org:b2b:example:company:B"; //Configure the component to expect a synchronous receipt. client.ReceiptReplyMode = As4clientReceiptReplyModes.rrmAsync; client.AsyncReceiptInfoDir = "C:\\async_info"; //Company A's private certificate. Used to sign the outgoing message and files. client.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, "C:\\files\\CompanyA.pfx", "password", "*"); //Company B's public certificate. Used to encrypt the outgoing files. client.RecipientCerts.Add(new Certificate("C:\\files\\as4\\CompanyB.cer")); //Company B's public certificate. Used to verify the signed receipt. client.SignerCert = new Certificate("C:\\files\\as4\\CompanyB.cer"); client.URL = "http://www.company.com:9090/msh"; EBData data = new EBData(); data.EDIType = "application/edi-x12"; data.Filename = "C:\\files\\myfile.x12"; data.Name = "myfile.x12"; client.EDIData.Add(data); //Send file(s). client.SendFiles();

At this point the file(s) have been sent, but a receipt has not yet been received. AS4Server can be used within a web site to listen for the receipt. //**** Inside a web site **** As4server server = new As4server; server.ReadRequest(); if (!String.IsNullOrEmpty(server.IncomingReceipt.Content)) { server.AsyncReceiptInfoDir = "C:\\async_info"; server.VerifyReceipt(); //The receipt is now verified }

Receiving Files

receive_files establishes a connection to the server specified by url and receives files.

The mpc specifies the Message Partition Channel from which messages will be received. The server will reply with files from this channel. If incoming_directory is set before calling this method the files will be written to the specified folder, otherwise inspect edi_data to obtain the received file data. The following properties are applicable when calling this method:

After calling this method the following properties will be populated and may be inspected: The receipt property will be populated with the receipt corresponding to the received message, but it is not yet delivered. The receipt may be delivered by bundling it with another request to receive files, or by calling send_receipt.

To bundle the receipt with a subsequent receive_files call the receipt property must hold the receipt. If the same instance of the class is being used this is already true since receipt is populated automatically after receiving the file. To use another instance of the class for multiple calls to receive_files be sure to save the Receipt's receipt_content and receipt_ref_to_message_id values for later use.

ReceiveFiles Example: client.Profile = As4clientProfiles.ebpfENTSOG; //Company A's private certificate. Used for signing the request. client.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, "C:\\files\\as4\\CompanyA.pfx", "password", "*"); //Company A's private certificate. Used for decrypting the file. client.Certificate = new Certificate(CertStoreTypes.cstPFXFile, "C:\\files\\as4\\CompanyA.pfx", "password", "*"); //Company B's public certificate. Used for signature verification. client.SignerCert = new Certificate("C:\\files\\as4\\CompanyB.cer"); client.URL = "http://www.company.com:9090/msh"; //Message Channel id client.MPC = "mpc_a"; client.IncomingDirectory = "C:\\incoming_dir"; client.ReceiveFiles(); //Inspect client.AgreementRef and other properties for information about the received files Console.WriteLine(client.AgreementRef); Console.WriteLine(client.AS4From.Id); Console.WriteLine(client.AS4To.Id); Console.WriteLine(client.ConversationId); //Save the receipt for later use string receiptContent = client.Receipt.Content; string receiptRefId = client.Receipt.RefToMessageId;

At this stage the receipt data is saved. Later when making another call to ReceiveFiles and populate the Receipt property with this receipt data. When ReceiveFiles is called again, the receipt for the previous message will be included with the request. client.Receipt = new EBReceipt(receiptRefId, receiptContent); client.ReceiveFiles(); //This will now include the bundled receipt

Sending Asynchronous Receipts

send_receipt sends an asynchronous receipt to the url.

This method is typically used in conjunction with AS4Server to send an asynchronous receipt after receiving a message. The receipt will be created at the time of the incoming request, then saved for later use. When the receipt is to be sent populate receipt and call this method.

//Send an asynchronous receipt client.URL = ""http://www.company.com:9090/msh""; client.Receipt = new EBReceipt(server.Receipt.RefToMessageId, server.Receipt.Content); client.ReceiptReplyMode = As4clientReceiptReplyModes.rrmAsync; client.SendReceipt();

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

agreement_refThe agreement reference.
as4_from_idThe Id of the party.
as4_from_id_typeThe optional type of the Id.
as4_from_roleThis property specifies the role of the party.
as4_to_idThe Id of the party.
as4_to_id_typeThe optional type of the Id.
as4_to_roleThis property specifies the role of the party.
async_receipt_info_dirA directory to hold information used for asynchronous receipt verification.
cert_encodedThis is the certificate (PEM/base64 encoded).
cert_storeThis is the name of the certificate store for the client certificate.
cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
cert_store_typeThis is the type of certificate store for this certificate.
cert_subjectThis is the subject of the certificate used for client authentication.
compression_formatThe compression format (if any) to use.
conversation_idThe Conversation Id of the message.
cookie_countThe number of records in the Cookie arrays.
cookie_domainThis is the domain of a received cookie.
cookie_expirationThis property contains an expiration time for the cookie (if provided by the server).
cookie_nameThis property, contains the name of the cookie.
cookie_pathThis property contains a path name to limit the cookie to (if provided by the server).
cookie_secureThis property contains the security flag of the received cookie.
cookie_valueThis property contains the value of the cookie.
edi_data_countThe number of records in the EDI arrays.
edi_dataThis property contains the EDI payload of the transmission.
ediedi_typeThe Content-Type of the EDI message.
edi_filenameWhen sending, if Filename is specified, the file specified will be used for the EDI payload of the transmission.
edi_nameName is the final name to be associated with the contents of either the Data or FileName properties.
edi_property_countThe number of properties for this file.
edi_property_indexSelects a property at the specified index.
edi_property_nameThe name of the property.
edi_property_valueThe value of the property.
edi_schema_locationThe SchemaLocation , SchemaNamespace , and SchemaVersion optionally define the schema that applies to this particular file.
edi_schema_namespaceThe namespace of the schema.
edi_schema_versionThe version of the schema.
encryption_algorithmThe algorithm used to encrypt the EDI data.
error_countThe number of records in the Error arrays.
error_categoryThe category of error.
error_codeThe error code.
error_descriptionThe description of the error.
error_detailAdditional details about the error.
error_originThe module within which the error occurred.
error_ref_message_idThe MessageId to which the error applies.
error_severityThe severity of the error.
error_short_descriptionA short description of the error.
firewall_auto_detectThis property tells the class whether or not to automatically detect and use firewall system settings, if available.
firewall_typeThis property determines the type of firewall to connect through.
firewall_hostThis property contains the name or IP address of firewall (optional).
firewall_passwordThis property contains a password if authentication is to be used when connecting through the firewall.
firewall_portThis property contains the transmission control protocol (TCP) port for the firewall Host .
firewall_userThis property contains a user name if authentication is to be used connecting through a firewall.
incoming_directoryThe directory to which incoming files are saved.
local_hostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
log_directoryThe path to a directory for logging.
log_fileThe log file written.
message_idThe unique Id of the message.
message_property_countThe number of records in the MessageProperty arrays.
message_property_nameThis property defines the name of the message property.
message_property_property_typeThe optional type of the message property.
message_property_valueThe value of the message property.
mpcThe MPC (Message Partition Channel) from which to receive files.
original_soap_messageThe original SOAP message used to verify the receipt.
original_soap_message_idThe original SOAP message Id used to verify the receipt.
profileThe AS4 profile.
proxy_auth_schemeThis property is used to tell the class which type of authorization to perform when connecting to the proxy.
proxy_auto_detectThis property tells the class whether or not to automatically detect and use proxy system settings, if available.
proxy_passwordThis property contains a password if authentication is to be used for the proxy.
proxy_portThis property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).
proxy_serverIf a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
proxy_sslThis property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.
proxy_userThis property contains a user name, if authentication is to be used for the proxy.
receipt_contentThe content of the receipt.
receipt_ref_to_message_idThe Message Id to which this receipt applies.
receipt_reply_modeThe expected receipt reply mode.
recipient_cert_countThe number of records in the RecipientCert arrays.
recipient_cert_encodedThis is the certificate (PEM/base64 encoded).
ref_to_message_idSpecifies the RefToMessageId in the message.
serviceThe service which acts on the message.
service_actionThe action within a service that acts on the message.
service_typeThe type of service.
signature_algorithmSignature algorithm to be used in the message.
signer_cert_encodedThis is the certificate (PEM/base64 encoded).
signer_cert_storeThis is the name of the certificate store for the client certificate.
signer_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
signer_cert_store_typeThis is the type of certificate store for this certificate.
signer_cert_subjectThis is the subject of the certificate used for client authentication.
signing_cert_encodedThis is the certificate (PEM/base64 encoded).
signing_cert_storeThis is the name of the certificate store for the client certificate.
signing_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
signing_cert_store_typeThis is the type of certificate store for this certificate.
signing_cert_subjectThis is the subject of the certificate used for client authentication.
ssl_accept_server_cert_encodedThis is the certificate (PEM/base64 encoded).
ssl_cert_encodedThis is the certificate (PEM/base64 encoded).
ssl_cert_storeThis is the name of the certificate store for the client certificate.
ssl_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_cert_store_typeThis is the type of certificate store for this certificate.
ssl_cert_subjectThis is the subject of the certificate used for client authentication.
ssl_providerThis specifies the SSL/TLS implementation to use.
ssl_server_cert_encodedThis is the certificate (PEM/base64 encoded).
timeoutA timeout for the class.
token_passwordThe password used in UsernameToken authentication.
token_password_typeThe password type used in UsernameToken authentication.
token_userThe username used in UsernameToken authentication.
urlThe URL to which the request is made.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

configSets or retrieves a configuration setting.
do_eventsProcesses events from the internal message queue.
interruptInterrupt the current method.
receive_filesConnects to a server to receive files.
resetResets the state of the control.
send_filesSends file(s) to the specified server and verify the receipt (if present).
send_receiptSends an asynchronous receipt.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

on_connectedThis event is fired immediately after a connection completes (or fails).
on_disconnectedThis event is fired when a connection is closed.
on_end_transferThis event is fired when a document finishes transferring.
on_errorInformation about errors during data delivery.
on_headerThis event is fired every time a header line comes in.
on_logFired with log information while processing a message.
on_recipient_infoFired for each recipient certificate of the encrypted message.
on_set_cookieThis event is fired for every cookie set by the server.
on_signer_cert_infoThis event is fired during verification of the signed message.
on_ssl_server_authenticationFired after the server presents its certificate to the client.
on_ssl_statusShows the progress of the secure connection.
on_start_transferThis event is fired when a document starts transferring (after the headers).
on_token_authenticationFired when the server makes use of UsernameToken authentication.
on_transferThis event is fired while a document transfers (delivers document).

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AgreementRefPModeAgreementRef PMode of message.
AgreementRefTypeThe type of AgreementRef.
AllowWarningsWhether warnings are interpreted as fatal errors.
AttachXMLFilesWhether to send XML files as attachments or within the SOAP body.
AuthorizationThe Authorization string to be sent to the server.
AuthSchemeThe authorization scheme to be used when server authorization is to be performed.
CloseStreamAfterProcessingWhether to close the input or output stream after processing.
CompressXMLPayloadsWhether to compress XML data.
ContentTransferEncodingThe content encoding of the payload data.
DetectDuplicatesWhether to detect duplicate messages when receiving.
EBPrefixSpecifies the prefix to use for messaging.
EDIDataPartId[i]Specified the part Id at the given index.
EnableTokenReferenceTokenTypeWhether to include the TokenType attribute in a SecurityTokenReference element.
EncryptionSecurityTokenFormatThe format to use for the security token when encryption.
FilenamePropertyDefines a part property to hold the filename.
ForceSigningCertWhether to force only the SigningCert to be used for signing.
FromId[i]The Id of the party specified by AS4From.
FromIdCountThe number of Ids for the party specified by AS4From.
FromIdType[i]The Id type of the party specified by AS4From.
IdRightA custom Id for the right side of the MessageId.
IncludeHeadersWhether headers are included when posting to a file.
KeyAgreementMethodThe agreement method used for KeyWrap encryption algorithms.
KeyDerivationConcatKDFDigestMethodThe digest method used for the ConcatKDF key derivation method.
KeyDerivationMethodThe key derivation method used for KeyWrap encryption algorithms.
KeyEncryptionAlgorithmThe algorithm used to encrypt the key.
LogLevelThe level of information to log.
LogOptionsThe information to be written to log files.
MessageHeadersReturns the headers of the message.
MessageTypeIndicates the type of message received.
NormalizeIssuerSubjectWhether to normalize the certificate subject within the X509Data element.
OAEPMGF1HashAlgorithmThe MGF1 hash algorithm used when encrypting a key.
OAEPParamsThe hex encoded OAEP parameters to be used when encrypting a key.
OAEPRSAHashAlgorithmThe RSA hash algorithm used when encrypting a key.
PasswordA password if authentication is to be used.
PostToFileCreates the message on disk.
PullActionThe Action to use with selective message pulling.
PullAgreementRefThe AgreementRef to use with selective message pulling.
PullRefToMessageIdThe RefToMessageId to use with selective message pulling.
PullServiceThe Service to use with selective message pulling.
PullServiceTypeThe ServiceType to use with selective message pulling.
ReferenceHashAlgorithmThe hash algorithm used to has the data specified in the reference of a signature.
RequireEncryptionWhether encryption is required when processing received messages.
RequireSignatureWhether a signature is required when processing received messages.
ResponseFileA file from which to read the response.
ResponseHeadersThe headers for the AS4 response message.
SignerCACertThe CA certificates that issued the signer certificate.
SigningSecurityTokenFormatThe format to use for the security token when signing.
TempPathWhere temporary files are optionally written.
ToId[i]The Id of the party specified by AS4To.
ToIdCountThe number of Ids for the party specified by AS4To.
ToIdType[i]The Id type of the party specified by AS4To.
TransformReceiptWhether to canonicalize the received receipt.
UseNonceWhether to use a nonce in UsernameToken authentication.
UserA user name if authentication is to be used.
UseTransformedXMLAttachmentWhether to send the canonicalized XML.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the class.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the class will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the class.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the class.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UsePlatformHTTPClientWhether or not to use the platform HTTP client.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertFilePathsThe paths to CA certificate files on Unix/Linux.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseFIPSCompliantAPITells the class whether or not to use FIPS certified APIs.
UseInternalSecurityAPITells the class whether or not to use the system security libraries or an internal implementation.

agreement_ref Property

The agreement reference.

Syntax

def get_agreement_ref() -> str: ...
def set_agreement_ref(value: str) -> None: ...

agreement_ref = property(get_agreement_ref, set_agreement_ref)

Default Value

""

Remarks

This property holds a value identifying the agreement between the two parties. The agreement is made outside the scope of the request and response and governs details about the interaction including reply mode, signing and encryption options, etc.

The value of this property should be set to a mutually agreed upon identifier. Both parties will use this value know what the expected requirements are for a particular request or response.

The format of this value is typically a URI, such as "http://mycompany.com/agreement_01" but can be any unique string that both parties are configured to accept. Another common format is the concatenation of the as4_from and as4_to values.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:AgreementRef"

as4_from_id Property

The Id of the party.

Syntax

def get_as4_from_id() -> str: ...
def set_as4_from_id(value: str) -> None: ...

as4_from_id = property(get_as4_from_id, set_as4_from_id)

Default Value

""

Remarks

The Id of the party. This value is required.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From/eb:PartyId"

as4_from_id_type Property

The optional type of the Id.

Syntax

def get_as4_from_id_type() -> str: ...
def set_as4_from_id_type(value: str) -> None: ...

as4_from_id_type = property(get_as4_from_id_type, set_as4_from_id_type)

Default Value

""

Remarks

The optional type of the Id. If specified this value should be the domain to which the Id belongs.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From/eb:PartyId@type"

as4_from_role Property

This property specifies the role of the party.

Syntax

def get_as4_from_role() -> str: ...
def set_as4_from_role(value: str) -> None: ...

as4_from_role = property(get_as4_from_role, set_as4_from_role)

Default Value

""

Remarks

This property specifies the role of the party. This may be any value agreed upon by the trading partners.

In as4_from this specified the role of the party sending the document. The default value is "http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator".

In as4_to this specifies the role of the party receiving the document. The default value is "http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder".

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From/eb:Role"

as4_to_id Property

The Id of the party.

Syntax

def get_as4_to_id() -> str: ...
def set_as4_to_id(value: str) -> None: ...

as4_to_id = property(get_as4_to_id, set_as4_to_id)

Default Value

""

Remarks

The Id of the party. This value is required.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From/eb:PartyId"

as4_to_id_type Property

The optional type of the Id.

Syntax

def get_as4_to_id_type() -> str: ...
def set_as4_to_id_type(value: str) -> None: ...

as4_to_id_type = property(get_as4_to_id_type, set_as4_to_id_type)

Default Value

""

Remarks

The optional type of the Id. If specified this value should be the domain to which the Id belongs.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From/eb:PartyId@type"

as4_to_role Property

This property specifies the role of the party.

Syntax

def get_as4_to_role() -> str: ...
def set_as4_to_role(value: str) -> None: ...

as4_to_role = property(get_as4_to_role, set_as4_to_role)

Default Value

""

Remarks

This property specifies the role of the party. This may be any value agreed upon by the trading partners.

In as4_from this specified the role of the party sending the document. The default value is "http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator".

In as4_to this specifies the role of the party receiving the document. The default value is "http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder".

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From/eb:Role"

async_receipt_info_dir Property

A directory to hold information used for asynchronous receipt verification.

Syntax

def get_async_receipt_info_dir() -> str: ...
def set_async_receipt_info_dir(value: str) -> None: ...

async_receipt_info_dir = property(get_async_receipt_info_dir, set_async_receipt_info_dir)

Default Value

""

Remarks

This setting specifies a directory which holds information about the original message that was sent.

When sending files and requesting asynchronous receipts set this directory to a location where data can be stored. When the receipt is later received this property should be set so original message information can be read in order to verify the receipt.

As an alternative the original message information may be manually stored by saving the values of original_soap_message and original_soap_message_id after sending a file. In this case original_soap_message and original_soap_message_id should be populated before verifying the receipt.

See the verify_receipt method of AS4Server for more details about verifying asynchronous receipts.

cert_encoded Property

This is the certificate (PEM/base64 encoded).

Syntax

def get_cert_encoded() -> bytes: ...
def set_cert_encoded(value: bytes) -> None: ...

cert_encoded = property(get_cert_encoded, set_cert_encoded)

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The cert_store and cert_subject properties also may be used to specify a certificate.

When cert_encoded is set, a search is initiated in the current cert_store for the private key of the certificate. If the key is found, cert_subject is updated to reflect the full subject of the selected certificate; otherwise, cert_subject is set to an empty string.

cert_store Property

This is the name of the certificate store for the client certificate.

Syntax

def get_cert_store() -> bytes: ...
def set_cert_store(value: bytes) -> None: ...

cert_store = property(get_cert_store, set_cert_store)

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The cert_store_type property denotes the type of the certificate store specified by cert_store. If the store is password protected, specify the password in cert_store_password.

cert_store is used in conjunction with the cert_subject property to specify client certificates. If cert_store has a value, and cert_subject or cert_encoded is set, a search for a certificate is initiated. Please see the cert_subject property for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_cert_store_password() -> str: ...
def set_cert_store_password(value: str) -> None: ...

cert_store_password = property(get_cert_store_password, set_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

cert_store_type Property

This is the type of certificate store for this certificate.

Syntax

def get_cert_store_type() -> int: ...
def set_cert_store_type(value: int) -> None: ...

cert_store_type = property(get_cert_store_type, set_cert_store_type)

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS11 dll. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the cert_store and set cert_store_password to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

cert_subject Property

This is the subject of the certificate used for client authentication.

Syntax

def get_cert_subject() -> str: ...
def set_cert_subject(value: str) -> None: ...

cert_subject = property(get_cert_subject, set_cert_subject)

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

compression_format Property

The compression format (if any) to use.

Syntax

def get_compression_format() -> int: ...
def set_compression_format(value: int) -> None: ...

compression_format = property(get_compression_format, set_compression_format)

Default Value

0

Remarks

This setting specifies the compression format to be applied to the parts specified by edi_data. When profile is set to Standard the default value is 0 (ebcfNone). When profile is set to ENTSOG or eDelivery the default value is 1 (ebcfGZIP).

Possible values are:

  • 0 (ebcfNone - default for Standard)
  • 1 (ebcfGZIP - default for ENTSOG and eDelivery)

Note: When profile is set to Standard the first edi_data part will be included in the SOAP body if the ediedi_type is "text/xml" or "application/xml". In that case since the data is included in the SOAP body it will not be compressed. When profile is set to ENTSOG all edi_data parts are compressed.

conversation_id Property

The Conversation Id of the message.

Syntax

def get_conversation_id() -> str: ...
def set_conversation_id(value: str) -> None: ...

conversation_id = property(get_conversation_id, set_conversation_id)

Default Value

""

Remarks

This property specifies an Id that may be used to identify a set of related messages. This is required and if a value is not specified one will automatically be created.

Note: When profile is set to ebpfENTSOG this value will always be empty.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:ConversationId"

cookie_count Property

The number of records in the Cookie arrays.

Syntax

def get_cookie_count() -> int: ...
def set_cookie_count(value: int) -> None: ...

cookie_count = property(get_cookie_count, set_cookie_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at cookie_count - 1.

cookie_domain Property

This is the domain of a received cookie.

Syntax

def get_cookie_domain(cookie_index: int) -> str: ...

Default Value

""

Remarks

This is the domain of a received cookie. This property contains a domain name to limit the cookie to (if provided by the server). If the server does not provide a domain name, this property will contain an empty string. The convention in this case is to use the server name specified by url_server as the cookie domain.

The cookie_index parameter specifies the index of the item in the array. The size of the array is controlled by the cookie_count property.

This property is read-only.

cookie_expiration Property

This property contains an expiration time for the cookie (if provided by the server).

Syntax

def get_cookie_expiration(cookie_index: int) -> str: ...

Default Value

""

Remarks

This property contains an expiration time for the cookie (if provided by the server). The time format used is "Weekday, DD-Mon-YY HH:MM:SS GMT". If the server does not provide an expiration time, this property will contain an empty string. The convention is to drop the cookie at the end of the session.

The cookie_index parameter specifies the index of the item in the array. The size of the array is controlled by the cookie_count property.

This property is read-only.

cookie_name Property

This property, contains the name of the cookie.

Syntax

def get_cookie_name(cookie_index: int) -> str: ...
def set_cookie_name(cookie_index: int, value: str) -> None: ...

Default Value

""

Remarks

This property, contains the name of the cookie.

This property, along with cookie_value, stores the cookie that is to be sent to the server. The on_set_cookie event displays the cookies sent by the server and their properties.

The cookie_index parameter specifies the index of the item in the array. The size of the array is controlled by the cookie_count property.

cookie_path Property

This property contains a path name to limit the cookie to (if provided by the server).

Syntax

def get_cookie_path(cookie_index: int) -> str: ...

Default Value

""

Remarks

This property contains a path name to limit the cookie to (if provided by the server). If the server does not provide a cookie path, the path property will be an empty string. The convention in this case is to use the path specified by url_path as the cookie path.

The cookie_index parameter specifies the index of the item in the array. The size of the array is controlled by the cookie_count property.

This property is read-only.

cookie_secure Property

This property contains the security flag of the received cookie.

Syntax

def get_cookie_secure(cookie_index: int) -> bool: ...

Default Value

FALSE

Remarks

This property contains the security flag of the received cookie. This property specifies whether the cookie is secure. If the value of this property is True, the cookie value must be submitted only through a secure (HTTPS) connection.

The cookie_index parameter specifies the index of the item in the array. The size of the array is controlled by the cookie_count property.

This property is read-only.

cookie_value Property

This property contains the value of the cookie.

Syntax

def get_cookie_value(cookie_index: int) -> str: ...
def set_cookie_value(cookie_index: int, value: str) -> None: ...

Default Value

""

Remarks

This property contains the value of the cookie. A corresponding value is associated with the cookie specified by cookie_name. This property holds that value.

The on_set_cookie event provides the cookies set by the server.

The cookie_index parameter specifies the index of the item in the array. The size of the array is controlled by the cookie_count property.

edi_data_count Property

The number of records in the EDI arrays.

Syntax

def get_edi_data_count() -> int: ...
def set_edi_data_count(value: int) -> None: ...

edi_data_count = property(get_edi_data_count, set_edi_data_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at edi_data_count - 1.

edi_data Property

This property contains the EDI payload of the transmission.

Syntax

def get_edi_data(edi_data_index: int) -> bytes: ...
def set_edi_data(edi_data_index: int, value: bytes) -> None: ...

Default Value

""

Remarks

This property contains the EDI payload of the transmission.

When sending files this may be specified to the data to be sent. This can be used as an alternative to setting edi_filename.

When receiving files this will only be populated if incoming_directory and edi_output_stream have not been specified and parse_request finishes without an error. If so, Data will contain the full decrypted text of the EDI message.

This property defines the EDI data to be sent. This may include multiple files.

The edi_data_index parameter specifies the index of the item in the array. The size of the array is controlled by the edi_data_count property.

ediedi_type Property

The Content-Type of the EDI message.

Syntax

def get_ediedi_type(edi_data_index: int) -> str: ...
def set_ediedi_type(edi_data_index: int, value: str) -> None: ...

Default Value

""

Remarks

The Content-Type of the EDI message. Sample values are "application/edi-x12", "application/edifact" or "application/xml".

The edi_data_index parameter specifies the index of the item in the array. The size of the array is controlled by the edi_data_count property.

edi_filename Property

When sending, if Filename is specified, the file specified will be used for the EDI payload of the transmission.

Syntax

def get_edi_filename(edi_data_index: int) -> str: ...
def set_edi_filename(edi_data_index: int, value: str) -> None: ...

Default Value

""

Remarks

When sending, if edi_filename is specified, the file specified will be used for the EDI payload of the transmission. edi_name will be populated with the name of the file.

When receiving, if incoming_directory is set, this will be populated with the name of the file which contains the processed message contents.

Note: When edi_output_stream is set, the data will be written to the stream and this property will not be populated.

The edi_data_index parameter specifies the index of the item in the array. The size of the array is controlled by the edi_data_count property.

edi_name Property

Name is the final name to be associated with the contents of either the Data or FileName properties.

Syntax

def get_edi_name(edi_data_index: int) -> str: ...
def set_edi_name(edi_data_index: int, value: str) -> None: ...

Default Value

"rfc1767.edi"

Remarks

edi_name is the final name to be associated with the contents of either the edi_data or edi_file_name properties. This corresponds to the filename attribute of the Content-Disposition header for the EDI payload.

When constructing EDI data to be sent, edi_name will be set to the same value as edi_file_name, but can be overridden after setting edi_file_name to indicate that another name should be used in the outbound request's Content-Disposition MIME header.

When receiving EDI data, edi_name will be read out of the "filename" attribute of the inbound request's Content-Disposition MIME header.

The edi_data_index parameter specifies the index of the item in the array. The size of the array is controlled by the edi_data_count property.

edi_property_count Property

The number of properties for this file.

Syntax

def get_edi_property_count(edi_data_index: int) -> int: ...
def set_edi_property_count(edi_data_index: int, value: int) -> None: ...

Default Value

0

Remarks

The number of properties for this file.

Each file may contain zero or more properties associated with it. This property, in conjunction with edi_property_index, edi_property_name, and edi_property_value can be used to specify properties when sending and read properties when receiving.

Sending

When sending files to add properties set edi_property_count to specify the number of properties. Then set edi_property_index to select the property. Set edi_property_name and edi_property_value to define the values for the property at edi_property_index. For instance: data = new EBData(); data.EDIType = "image/jpeg"; data.Filename = "..\\1.jpg"; data.Name = "1.jpg"; data.PropertyCount = 2; //Define two properties data.PropertyIndex = 0; //Select the first property data.PropertyName = "name1"; data.PropertyValue = "value1"; data.PropertyIndex = 1; //Select the second property data.PropertyName = "name2"; data.PropertyValue = "value2";

Receiving

When receiving files these properties may be queried to retrieve the values set by the sender. Inspect edi_property_count to obtain the number of properties. Next set edi_property_index to select a property and query edi_property_name and edi_property_value. For instance:

for (int i = 0; i < server.EDIData[0].PropertyCount;i++) { server.EDIData[0].PropertyIndex = i; Console.WriteLine(server.EDIData[0].PropertyName + ": " + server.EDIData[0].PropertyValue); }

The edi_data_index parameter specifies the index of the item in the array. The size of the array is controlled by the edi_data_count property.

edi_property_index Property

Selects a property at the specified index.

Syntax

def get_edi_property_index(edi_data_index: int) -> int: ...
def set_edi_property_index(edi_data_index: int, value: int) -> None: ...

Default Value

0

Remarks

Selects a property at the specified index.

The edi_data_index parameter specifies the index of the item in the array. The size of the array is controlled by the edi_data_count property.

edi_property_name Property

The name of the property.

Syntax

def get_edi_property_name(edi_data_index: int) -> str: ...
def set_edi_property_name(edi_data_index: int, value: str) -> None: ...

Default Value

""

Remarks

The name of the property.

The edi_data_index parameter specifies the index of the item in the array. The size of the array is controlled by the edi_data_count property.

edi_property_value Property

The value of the property.

Syntax

def get_edi_property_value(edi_data_index: int) -> str: ...
def set_edi_property_value(edi_data_index: int, value: str) -> None: ...

Default Value

""

Remarks

The value of the property.

The edi_data_index parameter specifies the index of the item in the array. The size of the array is controlled by the edi_data_count property.

edi_schema_location Property

The SchemaLocation , SchemaNamespace , and SchemaVersion optionally define the schema that applies to this particular file.

Syntax

def get_edi_schema_location(edi_data_index: int) -> str: ...
def set_edi_schema_location(edi_data_index: int, value: str) -> None: ...

Default Value

""

Remarks

The edi_schema_location, edi_schema_namespace, and edi_schema_version optionally define the schema that applies to this particular file. This may be used by the receiving party to properly interpret the file data.

Schema information is not required, but if schema information is included edi_schema_location is required and must be set to the URI of the schema.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PayloadInfo/eb:PartInfo/eb:Schema@location"

The edi_data_index parameter specifies the index of the item in the array. The size of the array is controlled by the edi_data_count property.

edi_schema_namespace Property

The namespace of the schema.

Syntax

def get_edi_schema_namespace(edi_data_index: int) -> str: ...
def set_edi_schema_namespace(edi_data_index: int, value: str) -> None: ...

Default Value

""

Remarks

The namespace of the schema. This property is optional. Refer to edi_schema_location for details.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PayloadInfo/eb:PartInfo/eb:Schema@namespace"

The edi_data_index parameter specifies the index of the item in the array. The size of the array is controlled by the edi_data_count property.

edi_schema_version Property

The version of the schema.

Syntax

def get_edi_schema_version(edi_data_index: int) -> str: ...
def set_edi_schema_version(edi_data_index: int, value: str) -> None: ...

Default Value

""

Remarks

The version of the schema. This property is optional. Refer to edi_schema_location for details.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:PayloadInfo/eb:PartInfo/eb:Schema@namespace"

The edi_data_index parameter specifies the index of the item in the array. The size of the array is controlled by the edi_data_count property.

encryption_algorithm Property

The algorithm used to encrypt the EDI data.

Syntax

def get_encryption_algorithm() -> str: ...
def set_encryption_algorithm(value: str) -> None: ...

encryption_algorithm = property(get_encryption_algorithm, set_encryption_algorithm)

Default Value

"AES128GCM"

Remarks

If recipient_certs contains a valid certificate, the data will be encrypted using this certificate and the algorithm specified in encryption_algorithm. If encryption_algorithm is set to the empty string, the data will not be encrypted.

The class supports "3DES", or industry-standard 168-bit Triple-DES encryption.

The class supports "AES" encryption with a default keysize of 128 bits. You may also set "AESCBC192" or "AESCBC256" for 192- and 256-bit keysizes.

Possible values are:

  • 3DES
  • DES
  • AESCBC128
  • AESCBC192
  • AESCBC256
  • AES128GCM (default)
  • AES192GCM
  • AES256GCM

error_count Property

The number of records in the Error arrays.

Syntax

def get_error_count() -> int: ...
def set_error_count(value: int) -> None: ...

error_count = property(get_error_count, set_error_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at error_count - 1.

error_category Property

The category of error.

Syntax

def get_error_category(error_index: int) -> str: ...
def set_error_category(error_index: int, value: str) -> None: ...

Default Value

""

Remarks

The category of error. Typical values include "Content", "Packaging", "UnPackaging", "Communication", and "InternalProcess". This value is optional.

The error_index parameter specifies the index of the item in the array. The size of the array is controlled by the error_count property.

error_code Property

The error code.

Syntax

def get_error_code(error_index: int) -> str: ...
def set_error_code(error_index: int, value: str) -> None: ...

Default Value

""

Remarks

The error code. This value is required. The standard format is "EBMS:0001", where "0001" is the numeric code portion.

The error_index parameter specifies the index of the item in the array. The size of the array is controlled by the error_count property.

error_description Property

The description of the error.

Syntax

def get_error_description(error_index: int) -> str: ...
def set_error_description(error_index: int, value: str) -> None: ...

Default Value

""

Remarks

The description of the error. This value is optional.

The error_index parameter specifies the index of the item in the array. The size of the array is controlled by the error_count property.

error_detail Property

Additional details about the error.

Syntax

def get_error_detail(error_index: int) -> str: ...
def set_error_detail(error_index: int, value: str) -> None: ...

Default Value

""

Remarks

Additional details about the error. This may include other helpful information such as a stack trace. This value is optional.

The error_index parameter specifies the index of the item in the array. The size of the array is controlled by the error_count property.

error_origin Property

The module within which the error occurred.

Syntax

def get_error_origin(error_index: int) -> str: ...
def set_error_origin(error_index: int, value: str) -> None: ...

Default Value

""

Remarks

The module within which the error occurred. Typical values include "ebMS", "reliability", and "security". This value is optional.

The error_index parameter specifies the index of the item in the array. The size of the array is controlled by the error_count property.

error_ref_message_id Property

The MessageId to which the error applies.

Syntax

def get_error_ref_message_id(error_index: int) -> str: ...
def set_error_ref_message_id(error_index: int, value: str) -> None: ...

Default Value

""

Remarks

The MessageId to which the error applies. This is optional but should be supplied if possible.

The error_index parameter specifies the index of the item in the array. The size of the array is controlled by the error_count property.

error_severity Property

The severity of the error.

Syntax

def get_error_severity(error_index: int) -> int: ...
def set_error_severity(error_index: int, value: int) -> None: ...

Default Value

0

Remarks

The severity of the error. Possible values are:

  • 0 (ebstWarning - default)
  • 1 (ebstFailure)
This value is required.

The error_index parameter specifies the index of the item in the array. The size of the array is controlled by the error_count property.

error_short_description Property

A short description of the error.

Syntax

def get_error_short_description(error_index: int) -> str: ...
def set_error_short_description(error_index: int, value: str) -> None: ...

Default Value

""

Remarks

A short description of the error. This may be helpful for logging or readability. This value is optional.

The error_index parameter specifies the index of the item in the array. The size of the array is controlled by the error_count property.

firewall_auto_detect Property

This property tells the class whether or not to automatically detect and use firewall system settings, if available.

Syntax

def get_firewall_auto_detect() -> bool: ...
def set_firewall_auto_detect(value: bool) -> None: ...

firewall_auto_detect = property(get_firewall_auto_detect, set_firewall_auto_detect)

Default Value

FALSE

Remarks

This property tells the class whether or not to automatically detect and use firewall system settings, if available.

firewall_type Property

This property determines the type of firewall to connect through.

Syntax

def get_firewall_type() -> int: ...
def set_firewall_type(value: int) -> None: ...

firewall_type = property(get_firewall_type, set_firewall_type)

Default Value

0

Remarks

This property determines the type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. firewall_port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. firewall_port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. firewall_port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. firewall_port is set to 1080.

firewall_host Property

This property contains the name or IP address of firewall (optional).

Syntax

def get_firewall_host() -> str: ...
def set_firewall_host(value: str) -> None: ...

firewall_host = property(get_firewall_host, set_firewall_host)

Default Value

""

Remarks

This property contains the name or IP address of firewall (optional). If a firewall_host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.

firewall_password Property

This property contains a password if authentication is to be used when connecting through the firewall.

Syntax

def get_firewall_password() -> str: ...
def set_firewall_password(value: str) -> None: ...

firewall_password = property(get_firewall_password, set_firewall_password)

Default Value

""

Remarks

This property contains a password if authentication is to be used when connecting through the firewall. If firewall_host is specified, the firewall_user and firewall_password properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

firewall_port Property

This property contains the transmission control protocol (TCP) port for the firewall Host .

Syntax

def get_firewall_port() -> int: ...
def set_firewall_port(value: int) -> None: ...

firewall_port = property(get_firewall_port, set_firewall_port)

Default Value

0

Remarks

This property contains the transmission control protocol (TCP) port for the firewall firewall_host. See the description of the firewall_host property for details.

Note: This property is set automatically when firewall_type is set to a valid value. See the description of the firewall_type property for details.

firewall_user Property

This property contains a user name if authentication is to be used connecting through a firewall.

Syntax

def get_firewall_user() -> str: ...
def set_firewall_user(value: str) -> None: ...

firewall_user = property(get_firewall_user, set_firewall_user)

Default Value

""

Remarks

This property contains a user name if authentication is to be used connecting through a firewall. If the firewall_host is specified, this property and firewall_password properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

incoming_directory Property

The directory to which incoming files are saved.

Syntax

def get_incoming_directory() -> str: ...
def set_incoming_directory(value: str) -> None: ...

incoming_directory = property(get_incoming_directory, set_incoming_directory)

Default Value

""

Remarks

If incoming_directory is set, the received files will be stored in the specified directory. If a filename is specified in the EDI message, the component will write to the specified filename, otherwise, a filename will be automatically generated based on a timestamp of the incoming transmission. In either case, if the filename exists on disk, the data will be written to the same name with a "-duplicate?" appended to the filename, where "?" is the number of duplicates.

This property is optional, if not set file data will be stored in edi_data.

local_host Property

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

def get_local_host() -> str: ...
def set_local_host(value: str) -> None: ...

local_host = property(get_local_host, set_local_host)

Default Value

""

Remarks

The local_host property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the local_host property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

NOTE: local_host is not persistent. You must always set it in code, and never in the property window.

log_directory Property

The path to a directory for logging.

Syntax

def get_log_directory() -> str: ...
def set_log_directory(value: str) -> None: ...

log_directory = property(get_log_directory, set_log_directory)

Default Value

""

Remarks

Setting log_directory will instruct the component to log the details of each transmission to unique files in the specified directory. For each request processed, the class will log the complete text of the outgoing request and the incoming response.

The class will write multiple log files for each transmission, with separate extensions for each type of data:

Status (.log)Contains information about the steps taken during processing.
Request (.out)Contains the raw request/response that is sent by the class.
Response (.in)Contains the raw request/response that is received by the class.
Incoming ebXML (.ieb)Contains the incoming ebXML message.
Outgoing ebXML (.oeb)Contains the outgoing ebXML message.

One or more of these log files may be disabled by setting the LogOptions configuration setting. log_directory supports several macros that can be used to specify a unique directory path. If the path specified does not already exist, the class will attempt to create the directory. The following macros are supported:

%AS4From%The AS4From value in the message. Note that invalid filename characters will be replaced with the _ character.
%MessageId%The MessageId of the transmission, after it is generated.
%Date:format%Format is a platform-specific date/time formatting string. For example:

The filenames will be chosen automatically by the class. Each filename will be the system time, in the format YYYY-MM-DD-HH-MM-SS-MMMM, with extensions "-2", "-3", used in case files of those names already exist. After each transaction is processed log_file will contain the name of the files just written, minus the extension.

If logs cannot be written an exception will be thrown.

log_file Property

The log file written.

Syntax

def get_log_file() -> str: ...

log_file = property(get_log_file, None)

Default Value

""

Remarks

If log_directory is specified a log file will be written in the specified directory and log_file will contain the full path and name of the files written, minus the extension.

The class will write multiple log files for each transmission, with separate extensions for each type of data:

Status (.log)Contains information about the steps taken during processing.
Request (.out)Contains the raw request/response that is sent by the class.
Response (.in)Contains the raw request/response that is received by the class.
Incoming ebXML (.ieb)Contains the incoming ebXML message.
Outgoing ebXML (.oeb)Contains the outgoing ebXML message.

One or more of these log files may be disabled by setting the LogOptions configuration setting. log_directory supports several macros that can be used to specify a unique directory path. If the path specified does not already exist, the class will attempt to create the directory. The following macros are supported:

%AS4From%The AS4From value in the message. Note that invalid filename characters will be replaced with the _ character.
%MessageId%The MessageId of the transmission, after it is generated.
%Date:format%Format is a platform-specific date/time formatting string. For example:

The filenames will be chosen automatically by the class. Each filename will be the system time, in the format YYYY-MM-DD-HH-MM-SS-MMMM, with extensions "-2", "-3", used in case files of those names already exist. After each transaction is processed log_file will contain the name of the files just written, minus the extension.

If logs cannot be written an exception will be thrown.

This property is read-only.

message_id Property

The unique Id of the message.

Syntax

def get_message_id() -> str: ...
def set_message_id(value: str) -> None: ...

message_id = property(get_message_id, set_message_id)

Default Value

""

Remarks

This property defines the unique Id of the message. When sending files the class will automatically generate a value in the format "GUID@nsoftware". When receiving files the Id will be populated with the value read from the message.

In most cases there is no need to set this value, however if a file needs to be retransmitted using the same message Id for reliability this may be set. In AS4Client this may be set before calling send_files. In AS4Server this may be set after calling read_request and before calling send_response.

message_property_count Property

The number of records in the MessageProperty arrays.

Syntax

def get_message_property_count() -> int: ...
def set_message_property_count(value: int) -> None: ...

message_property_count = property(get_message_property_count, set_message_property_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at message_property_count - 1.

message_property_name Property

This property defines the name of the message property.

Syntax

def get_message_property_name(message_property_index: int) -> str: ...
def set_message_property_name(message_property_index: int, value: str) -> None: ...

Default Value

""

Remarks

This property defines the name of the message property. This is required.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:MessageProperties/eb:Property/@Name"

The message_property_index parameter specifies the index of the item in the array. The size of the array is controlled by the message_property_count property.

message_property_property_type Property

The optional type of the message property.

Syntax

def get_message_property_property_type(message_property_index: int) -> str: ...
def set_message_property_property_type(message_property_index: int, value: str) -> None: ...

Default Value

""

Remarks

The optional type of the message property.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:MessageProperties/eb:Property/@Type"

The message_property_index parameter specifies the index of the item in the array. The size of the array is controlled by the message_property_count property.

message_property_value Property

The value of the message property.

Syntax

def get_message_property_value(message_property_index: int) -> str: ...
def set_message_property_value(message_property_index: int, value: str) -> None: ...

Default Value

""

Remarks

The value of the message property.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:MessageProperties/eb:Property/"

The message_property_index parameter specifies the index of the item in the array. The size of the array is controlled by the message_property_count property.

mpc Property

The MPC (Message Partition Channel) from which to receive files.

Syntax

def get_mpc() -> str: ...
def set_mpc(value: str) -> None: ...

mpc = property(get_mpc, set_mpc)

Default Value

""

Remarks

This property specifies the MPC (Message Partition Channel) from which to receive files. This must be set before calling receive_files. The value specified here must be known to the other party.

When left unspecified this indicates the default MPC.

This value corresponds to the ebMS element "eb:Messaging/eb:SignalMessage/eb:PullRequest/@mpc"

original_soap_message Property

The original SOAP message used to verify the receipt.

Syntax

def get_original_soap_message() -> str: ...
def set_original_soap_message(value: str) -> None: ...

original_soap_message = property(get_original_soap_message, set_original_soap_message)

Default Value

""

Remarks

original_soap_message and original_soap_message_id may be used as an alternative to async_receipt_info_dir when verifying receipts.

If async_receipt_info_dir is not set when the original message is sent, these values will be populated after the send and the values should be saved.

Before verifying the receipt set these properties to their original values.

original_soap_message_id Property

The original SOAP message Id used to verify the receipt.

Syntax

def get_original_soap_message_id() -> str: ...
def set_original_soap_message_id(value: str) -> None: ...

original_soap_message_id = property(get_original_soap_message_id, set_original_soap_message_id)

Default Value

""

Remarks

original_soap_message and original_soap_message_id may be used as an alternative to async_receipt_info_dir when verifying receipts.

If async_receipt_info_dir is not set when the original message is sent, these values will be populated after the send and the values should be saved.

Before verifying the receipt set these properties to their original values.

profile Property

The AS4 profile.

Syntax

def get_profile() -> int: ...
def set_profile(value: int) -> None: ...

profile = property(get_profile, set_profile)

Default Value

0

Remarks

This property specifies the AS4 profile to use. Different profiles may have different requirements and default options. Setting this property to the correct value ensures that the right options are selected in order to conform to the profile. Possible values are:

0 (ebpfStandard - default) The AS4 Profile of ebMS 3.0 Version 1.0 OASIS Standard
1 (ebpfENTSOG) The ENTSOG AS4 Profile
2 (ebpfEDelivery) The eDelivery AS4 Profile
2 (ebpfBDEW) The BDEW AS4 Profile

When profile is set to ebpfENTSOG the following settings are automatically applied:

Property Value
compression_format ebcfGZIP
encryption_algorithm "AES128GCM"
conversation_id Remains empty
signature_algorithm "SHA256"
OAEPRSAHashAlgorithm "SHA256"
OAEPMGF1HashAlgorithm "SHA256"

When profile is set to ebpfEDelivery the following settings are automatically applied:

When profile is set to ebpfBDEW the following settings are automatically applied: Note: When ebpfBDEW is selected, both the SigningCert and Encryption Cert(recipientCert) MUST use ECDSA with the BrainpoolP256r1 curve.

proxy_auth_scheme Property

This property is used to tell the class which type of authorization to perform when connecting to the proxy.

Syntax

def get_proxy_auth_scheme() -> int: ...
def set_proxy_auth_scheme(value: int) -> None: ...

proxy_auth_scheme = property(get_proxy_auth_scheme, set_proxy_auth_scheme)

Default Value

0

Remarks

This property is used to tell the class which type of authorization to perform when connecting to the proxy. This is used only when the proxy_user and proxy_password properties are set.

proxy_auth_scheme should be set to authNone (3) when no authentication is expected.

By default, proxy_auth_scheme is authBasic (0), and if the proxy_user and proxy_password properties are set, the component will attempt basic authentication.

If proxy_auth_scheme is set to authDigest (1), digest authentication will be attempted instead.

If proxy_auth_scheme is set to authProprietary (2), then the authorization token will not be generated by the class. Look at the configuration file for the class being used to find more information about manually setting this token.

If proxy_auth_scheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this property will clear the values of proxy_user and proxy_password.

proxy_auto_detect Property

This property tells the class whether or not to automatically detect and use proxy system settings, if available.

Syntax

def get_proxy_auto_detect() -> bool: ...
def set_proxy_auto_detect(value: bool) -> None: ...

proxy_auto_detect = property(get_proxy_auto_detect, set_proxy_auto_detect)

Default Value

FALSE

Remarks

This property tells the class whether or not to automatically detect and use proxy system settings, if available. The default value is False.

proxy_password Property

This property contains a password if authentication is to be used for the proxy.

Syntax

def get_proxy_password() -> str: ...
def set_proxy_password(value: str) -> None: ...

proxy_password = property(get_proxy_password, set_proxy_password)

Default Value

""

Remarks

This property contains a password if authentication is to be used for the proxy.

If proxy_auth_scheme is set to Basic Authentication, the proxy_user and proxy_password are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If proxy_auth_scheme is set to Digest Authentication, the proxy_user and proxy_password properties are used to respond to the Digest Authentication challenge from the server.

If proxy_auth_scheme is set to NTLM Authentication, the proxy_user and proxy_password properties are used to authenticate through NTLM negotiation.

proxy_port Property

This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).

Syntax

def get_proxy_port() -> int: ...
def set_proxy_port(value: int) -> None: ...

proxy_port = property(get_proxy_port, set_proxy_port)

Default Value

80

Remarks

This property contains the Transmission Control Protocol (TCP) port for the proxy proxy_server (default 80). See the description of the proxy_server property for details.

proxy_server Property

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

Syntax

def get_proxy_server() -> str: ...
def set_proxy_server(value: str) -> None: ...

proxy_server = property(get_proxy_server, set_proxy_server)

Default Value

""

Remarks

If a proxy proxy_server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the proxy_server property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the proxy_server property is set to the corresponding address. If the search is not successful, an error is returned.

proxy_ssl Property

This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.

Syntax

def get_proxy_ssl() -> int: ...
def set_proxy_ssl(value: int) -> None: ...

proxy_ssl = property(get_proxy_ssl, set_proxy_ssl)

Default Value

0

Remarks

This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the url is an https URL, the class will use the psTunnel option. If the url is an http URL, the class will use the psNever option.
psAlways (1)The connection is always SSL enabled.
psNever (2)The connection is not SSL enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

proxy_user Property

This property contains a user name, if authentication is to be used for the proxy.

Syntax

def get_proxy_user() -> str: ...
def set_proxy_user(value: str) -> None: ...

proxy_user = property(get_proxy_user, set_proxy_user)

Default Value

""

Remarks

This property contains a user name, if authentication is to be used for the proxy.

If proxy_auth_scheme is set to Basic Authentication, the proxy_user and proxy_password are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If proxy_auth_scheme is set to Digest Authentication, the proxy_user and proxy_password properties are used to respond to the Digest Authentication challenge from the server.

If proxy_auth_scheme is set to NTLM Authentication, the proxy_user and proxy_password properties are used to authenticate through NTLM negotiation.

receipt_content Property

The content of the receipt.

Syntax

def get_receipt_content() -> str: ...
def set_receipt_content(value: str) -> None: ...

receipt_content = property(get_receipt_content, set_receipt_content)

Default Value

""

Remarks

The content of the receipt. This is the raw XML of the receipt.

The class will automatically create the receipt, and verify the receipt, depending on the method called. In most cases this is simply informational and may be stored for logging purposes if desired.

receipt_ref_to_message_id Property

The Message Id to which this receipt applies.

Syntax

def get_receipt_ref_to_message_id() -> str: ...
def set_receipt_ref_to_message_id(value: str) -> None: ...

receipt_ref_to_message_id = property(get_receipt_ref_to_message_id, set_receipt_ref_to_message_id)

Default Value

""

Remarks

The Message Id to which this receipt applies. This is the original Message Id from the initial transmission of the file. This allows the receipt to be correlated with the original transmission.

The class will automatically create the receipt, and verify the receipt, depending on the method called. In most cases this is simply informational and may be stored for logging purposes if desired.

receipt_reply_mode Property

The expected receipt reply mode.

Syntax

def get_receipt_reply_mode() -> int: ...
def set_receipt_reply_mode(value: int) -> None: ...

receipt_reply_mode = property(get_receipt_reply_mode, set_receipt_reply_mode)

Default Value

0

Remarks

This setting tells the class how to expect or deliver a receipt. Possible values are:

0 (rrmSync - default) The receipt is expected in the response to the request. This is only valid when sending files from a client to a server (push). This is a synchronous receipt (the receipt is returned in the same HTTP connection).
1 (rrmAsync) The receipt is returned at a later time. The receipt may be returned by itself in a separate connection, or may be bundled with a subsequent request. This is the only available mode when receiving files from a server (pull).
2 (rrmNone) No receipt is expected.

It is important to always set this property to the correct value in both AS4Client and AS4Server, whether sending or receiving, so the class can build a valid message. This should be set to the previously agreed upon value between the parties in the agreement identified by agreement_ref

recipient_cert_count Property

The number of records in the RecipientCert arrays.

Syntax

def get_recipient_cert_count() -> int: ...
def set_recipient_cert_count(value: int) -> None: ...

recipient_cert_count = property(get_recipient_cert_count, set_recipient_cert_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at recipient_cert_count - 1.

recipient_cert_encoded Property

This is the certificate (PEM/base64 encoded).

Syntax

def get_recipient_cert_encoded(recipient_cert_index: int) -> bytes: ...
def set_recipient_cert_encoded(recipient_cert_index: int, value: bytes) -> None: ...

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The recipient_cert_store and recipient_cert_subject properties also may be used to specify a certificate.

When recipient_cert_encoded is set, a search is initiated in the current recipient_cert_store for the private key of the certificate. If the key is found, recipient_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, recipient_cert_subject is set to an empty string.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

ref_to_message_id Property

Specifies the RefToMessageId in the message.

Syntax

def get_ref_to_message_id() -> str: ...
def set_ref_to_message_id(value: str) -> None: ...

ref_to_message_id = property(get_ref_to_message_id, set_ref_to_message_id)

Default Value

""

Remarks

This property specifies the RefToMessageId value in the message being sent.

This property is only applicable when profile is set to ebpfEDelivery. The eDelivery profile supports the Two-Way/Push-and-Push MEP (Message Exchange Pattern), where sending a file can be in reference to a previously received file. In this case ref_to_message_id specifies the Id of the previously received message to which this send is in reference.

When sending with AS4Client this should only be set when using the eDelivery profile and need to explicitly specify the RefToMessageId value as per the Two-Way/Push-And-Push MEP.

When receiving with AS4Server this may be read after receiving a message.

service Property

The service which acts on the message.

Syntax

def get_service() -> str: ...
def set_service(value: str) -> None: ...

service = property(get_service, set_service)

Default Value

"http://docs.oasis-open.org/ebxml-msg/as4/200902/service"

Remarks

This property specifies the service which acts on the message. This should only be changed from the default value if there is a specific reason to do so.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:Service"

service_action Property

The action within a service that acts on the message.

Syntax

def get_service_action() -> str: ...
def set_service_action(value: str) -> None: ...

service_action = property(get_service_action, set_service_action)

Default Value

"http://docs.oasis-open.org/ebxml-msg/as4/200902/action"

Remarks

This property defines the action within a service that acts upon a message. This should only be changed from the default value if there is a specific reason to do so.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:Action".

service_type Property

The type of service.

Syntax

def get_service_type() -> str: ...
def set_service_type(value: str) -> None: ...

service_type = property(get_service_type, set_service_type)

Default Value

""

Remarks

This optionally specifies the type of the service. The semantics of this value should be agreed upon by both parties ahead of time. It may be used to tell the other party how to interpret the service value.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:Service@type"

signature_algorithm Property

Signature algorithm to be used in the message.

Syntax

def get_signature_algorithm() -> str: ...
def set_signature_algorithm(value: str) -> None: ...

signature_algorithm = property(get_signature_algorithm, set_signature_algorithm)

Default Value

"sha-256"

Remarks

Signature Algorithm can be set to indicate the preferred signing algorithm. Possible values are:

  • SHA1
  • MD5
  • SHA-256 (or SHA256) (default)
  • SHA-384 (or SHA384)
  • SHA-512 (or SHA512)
  • SHA-224 (or SHA224)
  • ECDSA-SHA1
  • ECDSA-SHA224
  • ECDSA-SHA256
  • ECDSA-SHA384
  • ECDSA-SHA512

The default value is "SHA-256".

signer_cert_encoded Property

This is the certificate (PEM/base64 encoded).

Syntax

def get_signer_cert_encoded() -> bytes: ...
def set_signer_cert_encoded(value: bytes) -> None: ...

signer_cert_encoded = property(get_signer_cert_encoded, set_signer_cert_encoded)

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The signer_cert_store and signer_cert_subject properties also may be used to specify a certificate.

When signer_cert_encoded is set, a search is initiated in the current signer_cert_store for the private key of the certificate. If the key is found, signer_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, signer_cert_subject is set to an empty string.

signer_cert_store Property

This is the name of the certificate store for the client certificate.

Syntax

def get_signer_cert_store() -> bytes: ...
def set_signer_cert_store(value: bytes) -> None: ...

signer_cert_store = property(get_signer_cert_store, set_signer_cert_store)

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The signer_cert_store_type property denotes the type of the certificate store specified by signer_cert_store. If the store is password protected, specify the password in signer_cert_store_password.

signer_cert_store is used in conjunction with the signer_cert_subject property to specify client certificates. If signer_cert_store has a value, and signer_cert_subject or signer_cert_encoded is set, a search for a certificate is initiated. Please see the signer_cert_subject property for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

signer_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_signer_cert_store_password() -> str: ...
def set_signer_cert_store_password(value: str) -> None: ...

signer_cert_store_password = property(get_signer_cert_store_password, set_signer_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

signer_cert_store_type Property

This is the type of certificate store for this certificate.

Syntax

def get_signer_cert_store_type() -> int: ...
def set_signer_cert_store_type(value: int) -> None: ...

signer_cert_store_type = property(get_signer_cert_store_type, set_signer_cert_store_type)

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS11 dll. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the signer_cert_store and set signer_cert_store_password to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

signer_cert_subject Property

This is the subject of the certificate used for client authentication.

Syntax

def get_signer_cert_subject() -> str: ...
def set_signer_cert_subject(value: str) -> None: ...

signer_cert_subject = property(get_signer_cert_subject, set_signer_cert_subject)

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

signing_cert_encoded Property

This is the certificate (PEM/base64 encoded).

Syntax

def get_signing_cert_encoded() -> bytes: ...
def set_signing_cert_encoded(value: bytes) -> None: ...

signing_cert_encoded = property(get_signing_cert_encoded, set_signing_cert_encoded)

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The signing_cert_store and signing_cert_subject properties also may be used to specify a certificate.

When signing_cert_encoded is set, a search is initiated in the current signing_cert_store for the private key of the certificate. If the key is found, signing_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, signing_cert_subject is set to an empty string.

signing_cert_store Property

This is the name of the certificate store for the client certificate.

Syntax

def get_signing_cert_store() -> bytes: ...
def set_signing_cert_store(value: bytes) -> None: ...

signing_cert_store = property(get_signing_cert_store, set_signing_cert_store)

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The signing_cert_store_type property denotes the type of the certificate store specified by signing_cert_store. If the store is password protected, specify the password in signing_cert_store_password.

signing_cert_store is used in conjunction with the signing_cert_subject property to specify client certificates. If signing_cert_store has a value, and signing_cert_subject or signing_cert_encoded is set, a search for a certificate is initiated. Please see the signing_cert_subject property for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

signing_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_signing_cert_store_password() -> str: ...
def set_signing_cert_store_password(value: str) -> None: ...

signing_cert_store_password = property(get_signing_cert_store_password, set_signing_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

signing_cert_store_type Property

This is the type of certificate store for this certificate.

Syntax

def get_signing_cert_store_type() -> int: ...
def set_signing_cert_store_type(value: int) -> None: ...

signing_cert_store_type = property(get_signing_cert_store_type, set_signing_cert_store_type)

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS11 dll. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the signing_cert_store and set signing_cert_store_password to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

signing_cert_subject Property

This is the subject of the certificate used for client authentication.

Syntax

def get_signing_cert_subject() -> str: ...
def set_signing_cert_subject(value: str) -> None: ...

signing_cert_subject = property(get_signing_cert_subject, set_signing_cert_subject)

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

ssl_accept_server_cert_encoded Property

This is the certificate (PEM/base64 encoded).

Syntax

def get_ssl_accept_server_cert_encoded() -> bytes: ...
def set_ssl_accept_server_cert_encoded(value: bytes) -> None: ...

ssl_accept_server_cert_encoded = property(get_ssl_accept_server_cert_encoded, set_ssl_accept_server_cert_encoded)

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The ssl_accept_server_cert_store and ssl_accept_server_cert_subject properties also may be used to specify a certificate.

When ssl_accept_server_cert_encoded is set, a search is initiated in the current ssl_accept_server_cert_store for the private key of the certificate. If the key is found, ssl_accept_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_accept_server_cert_subject is set to an empty string.

ssl_cert_encoded Property

This is the certificate (PEM/base64 encoded).

Syntax

def get_ssl_cert_encoded() -> bytes: ...
def set_ssl_cert_encoded(value: bytes) -> None: ...

ssl_cert_encoded = property(get_ssl_cert_encoded, set_ssl_cert_encoded)

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The ssl_cert_store and ssl_cert_subject properties also may be used to specify a certificate.

When ssl_cert_encoded is set, a search is initiated in the current ssl_cert_store for the private key of the certificate. If the key is found, ssl_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_cert_subject is set to an empty string.

ssl_cert_store Property

This is the name of the certificate store for the client certificate.

Syntax

def get_ssl_cert_store() -> bytes: ...
def set_ssl_cert_store(value: bytes) -> None: ...

ssl_cert_store = property(get_ssl_cert_store, set_ssl_cert_store)

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The ssl_cert_store_type property denotes the type of the certificate store specified by ssl_cert_store. If the store is password protected, specify the password in ssl_cert_store_password.

ssl_cert_store is used in conjunction with the ssl_cert_subject property to specify client certificates. If ssl_cert_store has a value, and ssl_cert_subject or ssl_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_cert_subject property for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

ssl_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_cert_store_password() -> str: ...
def set_ssl_cert_store_password(value: str) -> None: ...

ssl_cert_store_password = property(get_ssl_cert_store_password, set_ssl_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

ssl_cert_store_type Property

This is the type of certificate store for this certificate.

Syntax

def get_ssl_cert_store_type() -> int: ...
def set_ssl_cert_store_type(value: int) -> None: ...

ssl_cert_store_type = property(get_ssl_cert_store_type, set_ssl_cert_store_type)

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS11 dll. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_cert_store and set ssl_cert_store_password to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

ssl_cert_subject Property

This is the subject of the certificate used for client authentication.

Syntax

def get_ssl_cert_subject() -> str: ...
def set_ssl_cert_subject(value: str) -> None: ...

ssl_cert_subject = property(get_ssl_cert_subject, set_ssl_cert_subject)

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

ssl_provider Property

This specifies the SSL/TLS implementation to use.

Syntax

def get_ssl_provider() -> int: ...
def set_ssl_provider(value: int) -> None: ...

ssl_provider = property(get_ssl_provider, set_ssl_provider)

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, on Windows the class will use the platform implementation. On Linux/macOS the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used on all platforms.

ssl_server_cert_encoded Property

This is the certificate (PEM/base64 encoded).

Syntax

def get_ssl_server_cert_encoded() -> bytes: ...

ssl_server_cert_encoded = property(get_ssl_server_cert_encoded, None)

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The ssl_server_cert_store and ssl_server_cert_subject properties also may be used to specify a certificate.

When ssl_server_cert_encoded is set, a search is initiated in the current ssl_server_cert_store for the private key of the certificate. If the key is found, ssl_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_server_cert_subject is set to an empty string.

This property is read-only.

timeout Property

A timeout for the class.

Syntax

def get_timeout() -> int: ...
def set_timeout(value: int) -> None: ...

timeout = property(get_timeout, set_timeout)

Default Value

60

Remarks

If the timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If timeout is set to a positive value, the class will wait for the operation to complete before returning control.

The class will use do_events to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.

If timeout expires, and the operation is not yet complete, the class fails with an error.

Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by timeout seconds when any amount of data is successfully sent or received.

The default value for the timeout property is 60 seconds.

token_password Property

The password used in UsernameToken authentication.

Syntax

def get_token_password() -> str: ...
def set_token_password(value: str) -> None: ...

token_password = property(get_token_password, set_token_password)

Default Value

""

Remarks

This property specifies the password used in UsernameToken authentication.

UsernameToken Authentication Notes

If token_user and token_password are specified the class will include UsernameToken authentication when receive_files is called. This functionality is only applicable when calling receive_files.

token_password should normally be set to the plaintext password that both the client and server know. The class will automatically use SHA-1 to create a hash of the password when token_password_type is set to tptDigest (default). The hashed password is sent in the request, along with a creation date and nonce. The server will validate these values when receiving the request.

client.TokenUser = "User"; client.TokenPassword = "MyPassword"; client.TokenPasswordType = As4clientTokenPasswordTypes.tptDigest; client.ReceiveFiles();

A creation date element is always sent in the request. A nonce is sent by default but can be disabled by setting UseNonce to False.

If token_password_type is set to tptText the class will transmit value provided in token_password exactly as it is provided. The value will not be hashed. This may be useful in cases where an alternative credential mechanism is used between the client and server.

token_password_type Property

The password type used in UsernameToken authentication.

Syntax

def get_token_password_type() -> int: ...
def set_token_password_type(value: int) -> None: ...

token_password_type = property(get_token_password_type, set_token_password_type)

Default Value

0

Remarks

The type of password to send in the request. Possible values are:

0 (tptDigest - default) token_password holds the plaintext password and the class hashes it.
1 (tptText) token_password is transmitted exactly as provided.

UsernameToken Authentication Notes

If token_user and token_password are specified the class will include UsernameToken authentication when receive_files is called. This functionality is only applicable when calling receive_files.

token_password should normally be set to the plaintext password that both the client and server know. The class will automatically use SHA-1 to create a hash of the password when token_password_type is set to tptDigest (default). The hashed password is sent in the request, along with a creation date and nonce. The server will validate these values when receiving the request.

client.TokenUser = "User"; client.TokenPassword = "MyPassword"; client.TokenPasswordType = As4clientTokenPasswordTypes.tptDigest; client.ReceiveFiles();

A creation date element is always sent in the request. A nonce is sent by default but can be disabled by setting UseNonce to False.

If token_password_type is set to tptText the class will transmit value provided in token_password exactly as it is provided. The value will not be hashed. This may be useful in cases where an alternative credential mechanism is used between the client and server.

token_user Property

The username used in UsernameToken authentication.

Syntax

def get_token_user() -> str: ...
def set_token_user(value: str) -> None: ...

token_user = property(get_token_user, set_token_user)

Default Value

""

Remarks

This property specifies the username to be sent for UsernameToken authentication.

UsernameToken Authentication Notes

If token_user and token_password are specified the class will include UsernameToken authentication when receive_files is called. This functionality is only applicable when calling receive_files.

token_password should normally be set to the plaintext password that both the client and server know. The class will automatically use SHA-1 to create a hash of the password when token_password_type is set to tptDigest (default). The hashed password is sent in the request, along with a creation date and nonce. The server will validate these values when receiving the request.

client.TokenUser = "User"; client.TokenPassword = "MyPassword"; client.TokenPasswordType = As4clientTokenPasswordTypes.tptDigest; client.ReceiveFiles();

A creation date element is always sent in the request. A nonce is sent by default but can be disabled by setting UseNonce to False.

If token_password_type is set to tptText the class will transmit value provided in token_password exactly as it is provided. The value will not be hashed. This may be useful in cases where an alternative credential mechanism is used between the client and server.

url Property

The URL to which the request is made.

Syntax

def get_url() -> str: ...
def set_url(value: str) -> None: ...

url = property(get_url, set_url)

Default Value

""

Remarks

This property specifies the URL to which the request is made. SSL will be used if and only if the URL scheme is "https".

config Method

Sets or retrieves a configuration setting.

Syntax

def config(configuration_string: str) -> str: ...

Remarks

config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

do_events Method

Processes events from the internal message queue.

Syntax

def do_events() -> None: ...

Remarks

When do_events is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

interrupt Method

Interrupt the current method.

Syntax

def interrupt() -> None: ...

Remarks

If there is no method in progress, interrupt simply returns, doing nothing.

receive_files Method

Connects to a server to receive files.

Syntax

def receive_files() -> None: ...

Remarks

receive_files establishes a connection to the server specified by url and receives files.

The mpc specifies the Message Partition Channel from which messages will be received. The server will reply with files from this channel. If incoming_directory is set before calling this method the files will be written to the specified folder, otherwise inspect edi_data to obtain the received file data. The following properties are applicable when calling this method:

After calling this method the following properties will be populated and may be inspected: The receipt property will be populated with the receipt corresponding to the received message, but it is not yet delivered. The receipt may be delivered by bundling it with another request to receive files, or by calling send_receipt.

To bundle the receipt with a subsequent receive_files call the receipt property must hold the receipt. If the same instance of the class is being used this is already true since receipt is populated automatically after receiving the file. To use another instance of the class for multiple calls to receive_files be sure to save the Receipt's receipt_content and receipt_ref_to_message_id values for later use.

ReceiveFiles Example: client.Profile = As4clientProfiles.ebpfENTSOG; //Company A's private certificate. Used for signing the request. client.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, "C:\\files\\as4\\CompanyA.pfx", "password", "*"); //Company A's private certificate. Used for decrypting the file. client.Certificate = new Certificate(CertStoreTypes.cstPFXFile, "C:\\files\\as4\\CompanyA.pfx", "password", "*"); //Company B's public certificate. Used for signature verification. client.SignerCert = new Certificate("C:\\files\\as4\\CompanyB.cer"); client.URL = "http://www.company.com:9090/msh"; //Message Channel id client.MPC = "mpc_a"; client.IncomingDirectory = "C:\\incoming_dir"; client.ReceiveFiles(); //Inspect client.AgreementRef and other properties for information about the received files Console.WriteLine(client.AgreementRef); Console.WriteLine(client.AS4From.Id); Console.WriteLine(client.AS4To.Id); Console.WriteLine(client.ConversationId); //Save the receipt for later use string receiptContent = client.Receipt.Content; string receiptRefId = client.Receipt.RefToMessageId;

At this stage the receipt data is saved. Later when making another call to ReceiveFiles and populate the Receipt property with this receipt data. When ReceiveFiles is called again, the receipt for the previous message will be included with the request. client.Receipt = new EBReceipt(receiptRefId, receiptContent); client.ReceiveFiles(); //This will now include the bundled receipt

reset Method

Resets the state of the control.

Syntax

def reset() -> None: ...

Remarks

Reset resets the state of the class. All properties will be set to their default values.

send_files Method

Sends file(s) to the specified server and verify the receipt (if present).

Syntax

def send_files() -> None: ...

Remarks

send_files sends the files specified by edi_data to url.

Before calling this method set agreement_ref to the agreement identifier used by both parties. Set as4_from and as4_to. Set edi_data specifies the file(s) to be sent. To encrypt the data set recipient_certs. To sign the data set signing_cert. The signer_cert property should be set to verify the signed receipt.

When this method is called the file(s) will be sent and any returned receipts will be verified.

To indicate a synchronous receipt is expected set receipt_reply_mode to rrmSync. The following properties are applicable when calling this method with an agreement specifying a synchronous receipt (a receipt provided in the response):

SendFiles Example (synchronous receipt): client.Profile = As4clientProfiles.ebpfENTSOG; //Specify the agreement and party information client.AgreementRef = "http://agreements.company.com/sign_and_encrypt"; client.AS4From.Role = "Sender"; client.AS4From.Id = "org:b2b:example:company:A"; client.AS4To.Role = "Receiver"; client.AS4To.Id = "org:b2b:example:company:B"; //Configure the component to expect a synchronous receipt. client.ReceiptReplyMode = As4clientReceiptReplyModes.rrmSync; //Company A's private certificate. Used to sign the outgoing message and files. client.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, "C:\\files\\CompanyA.pfx", "password", "*"); //Company B's public certificate. Used to encrypt the outgoing file. client.RecipientCerts.Add(new Certificate("C:\\files\\as4\\CompanyB.cer")); //Company B's public certificate. Used to verify the signed receipt. client.SignerCert = new Certificate("C:\\files\\as4\\CompanyB.cer"); client.URL = "http://www.company.com:9090/msh"; EBData data = new EBData(); data.EDIType = "application/edi-x12"; data.Filename = "C:\\files\\myfile.x12"; data.Name = "myfile.x12"; client.EDIData.Add(data); //Send file(s) and verify the receipt. client.SendFiles();

The class also supports asynchronous receipts. In this configuration a file is sent from the class to another party, but the receipt is not returned in the response. Instead the other party sends the receipt at a later time. The AS4Server class may be used inside a web page to receive the asynchronous receipt. After receiving the receipt either AS4Server or AS4Client may be used to verify the receipt.

Details about the original message must be stored so that the receipt can be correlated with the message and properly verified. The easiest way to do this is to set async_receipt_info_dir before calling send_files. The class will automatically store the required information.

See the verify_receipt method of AS4Server for details about verifying asynchronous receipts.

To indicate an asynchronous receipt is expected set receipt_reply_mode to rrmAsync. The following properties are applicable when calling this method with an agreement specifying a synchronous receipt (a receipt provided in the response):

SendFiles Example (asynchronous receipt): client.Profile = As4clientProfiles.ebpfENTSOG; //Specify the agreement and party information client.AgreementRef = "http://agreements.company.com/sign_and_encrypt_async"; client.AS4From.Role = "Sender"; client.AS4From.Id = "org:b2b:example:company:A"; client.AS4To.Role = "Receiver"; client.AS4To.Id = "org:b2b:example:company:B"; //Configure the component to expect a synchronous receipt. client.ReceiptReplyMode = As4clientReceiptReplyModes.rrmAsync; client.AsyncReceiptInfoDir = "C:\\async_info"; //Company A's private certificate. Used to sign the outgoing message and files. client.SigningCert = new Certificate(CertStoreTypes.cstPFXFile, "C:\\files\\CompanyA.pfx", "password", "*"); //Company B's public certificate. Used to encrypt the outgoing files. client.RecipientCerts.Add(new Certificate("C:\\files\\as4\\CompanyB.cer")); //Company B's public certificate. Used to verify the signed receipt. client.SignerCert = new Certificate("C:\\files\\as4\\CompanyB.cer"); client.URL = "http://www.company.com:9090/msh"; EBData data = new EBData(); data.EDIType = "application/edi-x12"; data.Filename = "C:\\files\\myfile.x12"; data.Name = "myfile.x12"; client.EDIData.Add(data); //Send file(s). client.SendFiles();

At this point the file(s) have been sent, but a receipt has not yet been received. AS4Server can be used within a web site to listen for the receipt. //**** Inside a web site **** As4server server = new As4server; server.ReadRequest(); if (!String.IsNullOrEmpty(server.IncomingReceipt.Content)) { server.AsyncReceiptInfoDir = "C:\\async_info"; server.VerifyReceipt(); //The receipt is now verified }

send_receipt Method

Sends an asynchronous receipt.

Syntax

def send_receipt() -> None: ...

Remarks

send_receipt sends an asynchronous receipt to the url.

This method is typically used in conjunction with AS4Server to send an asynchronous receipt after receiving a message. The receipt will be created at the time of the incoming request, then saved for later use. When the receipt is to be sent populate receipt and call this method.

//Send an asynchronous receipt client.URL = ""http://www.company.com:9090/msh""; client.Receipt = new EBReceipt(server.Receipt.RefToMessageId, server.Receipt.Content); client.ReceiptReplyMode = As4clientReceiptReplyModes.rrmAsync; client.SendReceipt();

on_connected Event

This event is fired immediately after a connection completes (or fails).

Syntax

class AS4ClientConnectedEventParams(object):
  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class AS4Client:
@property
def on_connected() -> Callable[[AS4ClientConnectedEventParams], None]: ...
@on_connected.setter
def on_connected(event_hook: Callable[[AS4ClientConnectedEventParams], None]) -> None: ...

Remarks

If the connection is made normally, StatusCode is 0 and Description is "OK".

If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

on_disconnected Event

This event is fired when a connection is closed.

Syntax

class AS4ClientDisconnectedEventParams(object):
  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class AS4Client:
@property
def on_disconnected() -> Callable[[AS4ClientDisconnectedEventParams], None]: ...
@on_disconnected.setter
def on_disconnected(event_hook: Callable[[AS4ClientDisconnectedEventParams], None]) -> None: ...

Remarks

If the connection is broken normally, StatusCode is 0 and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.

Please refer to the Error Codes section for more information.

on_end_transfer Event

This event is fired when a document finishes transferring.

Syntax

class AS4ClientEndTransferEventParams(object):
  @property
  def direction() -> int: ...

# In class AS4Client:
@property
def on_end_transfer() -> Callable[[AS4ClientEndTransferEventParams], None]: ...
@on_end_transfer.setter
def on_end_transfer(event_hook: Callable[[AS4ClientEndTransferEventParams], None]) -> None: ...

Remarks

The on_end_transfer event is fired first when the client finishes sending data to the server (in a POST or PUT request) and then when the document text finishes transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

on_error Event

Information about errors during data delivery.

Syntax

class AS4ClientErrorEventParams(object):
  @property
  def error_code() -> int: ...

  @property
  def description() -> str: ...

# In class AS4Client:
@property
def on_error() -> Callable[[AS4ClientErrorEventParams], None]: ...
@on_error.setter
def on_error(event_hook: Callable[[AS4ClientErrorEventParams], None]) -> None: ...

Remarks

The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

on_header Event

This event is fired every time a header line comes in.

Syntax

class AS4ClientHeaderEventParams(object):
  @property
  def field() -> str: ...

  @property
  def value() -> str: ...

# In class AS4Client:
@property
def on_header() -> Callable[[AS4ClientHeaderEventParams], None]: ...
@on_header.setter
def on_header(event_hook: Callable[[AS4ClientHeaderEventParams], None]) -> None: ...

Remarks

The Field parameter contains the name of the HTTP header (which is the same as it is delivered). The Value parameter contains the header contents.

If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).

on_log Event

Fired with log information while processing a message.

Syntax

class AS4ClientLogEventParams(object):
  @property
  def log_type() -> str: ...

  @property
  def log_message() -> str: ...

# In class AS4Client:
@property
def on_log() -> Callable[[AS4ClientLogEventParams], None]: ...
@on_log.setter
def on_log(event_hook: Callable[[AS4ClientLogEventParams], None]) -> None: ...

Remarks

This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.

Log messages available through this event correspond to log files written to log_directory. This event provides a way to obtain log messages without relying on files on disk. This event fires regardless of the value of log_directory (i.e. when log_directory is empty the event will still fire).

The LogMessage event parameter holds the raw log data.

The LogType event parameter indicates the type of log. Possible values are:

"INFO" Information about the status of the process.
"ERROR" An error was encountered.
"DEBUG" Debug information.

on_recipient_info Event

Fired for each recipient certificate of the encrypted message.

Syntax

class AS4ClientRecipientInfoEventParams(object):
  @property
  def issuer() -> str: ...

  @property
  def serial_number() -> str: ...

  @property
  def subject_key_identifier() -> str: ...

  @property
  def encryption_algorithm() -> str: ...

# In class AS4Client:
@property
def on_recipient_info() -> Callable[[AS4ClientRecipientInfoEventParams], None]: ...
@on_recipient_info.setter
def on_recipient_info(event_hook: Callable[[AS4ClientRecipientInfoEventParams], None]) -> None: ...

Remarks

When parse_request is called and the file is encrypted, this event will fire for each recipient certificate for which the file was encrypted.

Issuer is the subject of the issuer certificate.

SerialNumber is the serial number of the encryption certificate.

SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.

EncryptionAlgorithm is the encryption algorithm used to encrypt the message. Possible values are as follows:

  • "3DES"
  • "DES"
  • "RC2CBC40"
  • "RC2CBC64"
  • "RC2CBC128" or "RC2"
  • "AESCBC128" or "AES"
  • "AESCBC192"
  • "AESCBC256"
  • "AESGCM128" or "AESGCM"
  • "AESGCM192"
  • "AESGCM256"

on_set_cookie Event

This event is fired for every cookie set by the server.

Syntax

class AS4ClientSetCookieEventParams(object):
  @property
  def name() -> str: ...

  @property
  def value() -> str: ...

  @property
  def expires() -> str: ...

  @property
  def domain() -> str: ...

  @property
  def path() -> str: ...

  @property
  def secure() -> bool: ...

# In class AS4Client:
@property
def on_set_cookie() -> Callable[[AS4ClientSetCookieEventParams], None]: ...
@on_set_cookie.setter
def on_set_cookie(event_hook: Callable[[AS4ClientSetCookieEventParams], None]) -> None: ...

Remarks

The on_set_cookie event is fired for every Set-Cookie: header received from the HTTP server.

The Name parameter contains the name of the cookie, with the corresponding value supplied in the Value parameter.

The Expires parameter contains an expiration time for the cookie (if provided by the server). The time format used is "Weekday, DD-Mon-YY HH:MM:SS GMT". If the server does not provide an expiration time, the Expires parameter will be an empty string. In this case, the convention is to drop the cookie at the end of the session.

The Domain parameter contains a domain name to limit the cookie to (if provided by the server). If the server does not provide a domain name, the Domain parameter will be an empty string. The convention in this case is to use the server specified in the URL (url_server) as the cookie domain.

The Path parameter contains a path name to limit the cookie to (if provided by the server). If the server does not provide a cookie path, the Path parameter will be an empty string. The convention in this case is to use the path specified in the URL (url_path) as the cookie path.

The Secure parameter specifies whether the cookie is secure. If the value of this parameter is True, the cookie value must be submitted only through a secure (HTTPS) connection.

on_signer_cert_info Event

This event is fired during verification of the signed message.

Syntax

class AS4ClientSignerCertInfoEventParams(object):
  @property
  def issuer() -> str: ...

  @property
  def serial_number() -> str: ...

  @property
  def subject_key_identifier() -> str: ...

  @property
  def cert_encoded() -> bytes: ...

# In class AS4Client:
@property
def on_signer_cert_info() -> Callable[[AS4ClientSignerCertInfoEventParams], None]: ...
@on_signer_cert_info.setter
def on_signer_cert_info(event_hook: Callable[[AS4ClientSignerCertInfoEventParams], None]) -> None: ...

Remarks

During verification, this event will be raised while parsing the signer's certificate information. The parameters that are populated depend on the options used when the message was originally signed. This information may be used to select the correct certificate for signer_cert to verify the signature. The following parameters may be populated:

Issuer specifies the subject of the issuer of the certificate used to sign the message.

SerialNumber is the serial number of the certificate used to sign the message.

SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.

CertEncoded is the PEM (Base64 encoded) public certificate needed to verify the signature.

Note: When this value is present, the class will automatically use this value to perform signature verification.

The signer_cert property may be set from within this event. In this manner, the decision of which signer certificate to load may be delayed until the parameters of this event are inspected and the correct certificate can be located and loaded.

on_ssl_server_authentication Event

Fired after the server presents its certificate to the client.

Syntax

class AS4ClientSSLServerAuthenticationEventParams(object):
  @property
  def cert_encoded() -> bytes: ...

  @property
  def cert_subject() -> str: ...

  @property
  def cert_issuer() -> str: ...

  @property
  def status() -> str: ...

  @property
  def accept() -> bool: ...
  @accept.setter
  def accept(value) -> None: ...

# In class AS4Client:
@property
def on_ssl_server_authentication() -> Callable[[AS4ClientSSLServerAuthenticationEventParams], None]: ...
@on_ssl_server_authentication.setter
def on_ssl_server_authentication(event_hook: Callable[[AS4ClientSSLServerAuthenticationEventParams], None]) -> None: ...

Remarks

This event is where the client can decide whether to continue with the connection process or not. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether to continue or not.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK"). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

on_ssl_status Event

Shows the progress of the secure connection.

Syntax

class AS4ClientSSLStatusEventParams(object):
  @property
  def message() -> str: ...

# In class AS4Client:
@property
def on_ssl_status() -> Callable[[AS4ClientSSLStatusEventParams], None]: ...
@on_ssl_status.setter
def on_ssl_status(event_hook: Callable[[AS4ClientSSLStatusEventParams], None]) -> None: ...

Remarks

The event is fired for informational and logging purposes only. Used to track the progress of the connection.

on_start_transfer Event

This event is fired when a document starts transferring (after the headers).

Syntax

class AS4ClientStartTransferEventParams(object):
  @property
  def direction() -> int: ...

# In class AS4Client:
@property
def on_start_transfer() -> Callable[[AS4ClientStartTransferEventParams], None]: ...
@on_start_transfer.setter
def on_start_transfer(event_hook: Callable[[AS4ClientStartTransferEventParams], None]) -> None: ...

Remarks

The on_start_transfer event is fired first when the client starts sending data to the server (in a POST or PUT request) and then when the document text starts transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

on_token_authentication Event

Fired when the server makes use of UsernameToken authentication.

Syntax

class AS4ClientTokenAuthenticationEventParams(object):
  @property
  def user() -> str: ...

  @property
  def password() -> str: ...
  @password.setter
  def password(value) -> None: ...

  @property
  def password_type() -> str: ...

  @property
  def accept() -> bool: ...
  @accept.setter
  def accept(value) -> None: ...

# In class AS4Client:
@property
def on_token_authentication() -> Callable[[AS4ClientTokenAuthenticationEventParams], None]: ...
@on_token_authentication.setter
def on_token_authentication(event_hook: Callable[[AS4ClientTokenAuthenticationEventParams], None]) -> None: ...

Remarks

This event fires when a server sends a response that includes UsernameToken authentication. This is typically only used by servers when sending a pull response.

User identifies the user.

Password should be set from within the event if PasswordType is 0 (digest). This parameter can be read when PasswordType is 1 (text).

PasswordType specifies the type of password. Possible values are:

  • 0 (Digest)
  • 1 (Text)

Accept may be set to manually accept the request.

When PasswordType is 0 (Digest) set the Password parameter to the plaintext password. Do not set Accept The class will hash the provided password value and compare it to the value in the request. If it matched the class will accept the request. If it does not match the class will populate errors with an error indicating authentication has failed.

When PasswordType is 1 (Text) the Password parameter will hold the exact value received in the request. Inspect Password and determine whether to accept the request. To accept the request set Accept to True.

After this event fires if authentication failed errors will contain an appropriate error. Send the errors back to the server by calling send_response.

on_transfer Event

This event is fired while a document transfers (delivers document).

Syntax

class AS4ClientTransferEventParams(object):
  @property
  def direction() -> int: ...

  @property
  def bytes_transferred() -> int: ...

  @property
  def percent_done() -> int: ...

  @property
  def text() -> bytes: ...

# In class AS4Client:
@property
def on_transfer() -> Callable[[AS4ClientTransferEventParams], None]: ...
@on_transfer.setter
def on_transfer(event_hook: Callable[[AS4ClientTransferEventParams], None]) -> None: ...

Remarks

The Text parameter contains the portion of the document text being received. It is empty if data are being posted to the server.

The BytesTransferred parameter contains the number of bytes transferred in this Direction since the beginning of the document text (excluding HTTP response headers).

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.

Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.

AS4Client Config Settings

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

AS4Client Config Settings

AgreementRefPMode:   AgreementRef PMode of message.

This optional setting allows for the association of a message with a particular P-Mode. If specified it should be the PMode.ID parameter.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:AgreementRef/@pmode"

AgreementRefType:   The type of AgreementRef.

This optional setting indicates how parties should interpret the value of agreement_ref. The semantics of this value should be decided upon between the parties.

This value corresponds to the ebMS element "eb:Messaging/eb:UserMessage/eb:CollaborationInfo/eb:AgreementRef/@type"

AllowWarnings:   Whether warnings are interpreted as fatal errors.

When set to False (default) any ebMS level error returned by the other party will be considered an error and cause an exception. When set to True the severity of the ebMS error will be inspected. If the severity is "warning" it will not cause an exception. In this case errors will still be populated with the error details.

AttachXMLFiles:   Whether to send XML files as attachments or within the SOAP body.

This setting specifies whether XML files are included as attachments or within the SOAP body.

This setting is only applicable when the first file specified in edi_data is of type "text/xml" or "application/xml". In addition this is only applicable when profile is set to Standard.

If set to True (default), the file will be sent as an attachment. This allows the filename to be preserved and the file is sent as a separate MIME part. If set to False and the criteria above are met then the file will be sent within the SOAP body. In this case the filename cannot be preserved normally.

The default value is True.

Authorization:   The Authorization string to be sent to the server.

If the Authorization setting contains a non-empty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This setting is provided so that the class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The AuthScheme; setting defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization setting in the form "Basic [encoded-user-password]".

AuthScheme:   The authorization scheme to be used when server authorization is to be performed.

Use the AuthScheme property to tell the component which type of authorization to perform when the User and Password properties are set. Possible values are:

0 (default)Basic
1Digest
2Proprietary
3None
4NTLM
5Negotiate
6OAuth
By default, AuthScheme is Basic (0), and if the User and Password configuration settings are set, the component will attempt basic authentication. If AuthScheme is set to Digest (1), digest authentication will be attempted instead.

For security reasons, setting this value will clear the values of User and Password.

CloseStreamAfterProcessing:   Whether to close the input or output stream after processing.

This setting specifies whether the input or output stream will be closed after processing. This may be set to False to leave the stream open for further operations. The default value is True and the stream will be by the class.

CompressXMLPayloads:   Whether to compress XML data.

When compression_format is set to GZIP all edi_data parts will be compressed. To exclude XML payloads with ediedi_type values of "text/xml" or "application/xml" from being compressed set this value to False. By default this is True and all attachments will be compressed.

Note: When profile is set to Standard the first edi_data part will be included in the SOAP body if the ediedi_type is "text/xml" or "application/xml". In that case since the data is included in the SOAP body it will not be compressed. When profile is set to ENTSOG all edi_data parts are compressed.

ContentTransferEncoding:   The content encoding of the payload data.

This setting can be used to specify the content encoding of the payload data of the AS4 message. This is set to binary (4) by default. Possible values for the this field are:

Base64 (2) Base64 encoding of binary data.
Binary (4) Binary data without any encoding.
DetectDuplicates:   Whether to detect duplicate messages when receiving.

Whether to detect duplicate messages. If set to True log_directory must be set. When a file is received the class will store a file containing the MessageId of the received file. When additional files are received the class will scan the log_directory to see if a file with the same MessageId has already been received. If a duplicate is detected an entry is added to the .log file and on_log fires.

The default value depends on the profile. For the Standard profile the default value is False. When profile is set to ENTSOG this value is set to True.

EBPrefix:   Specifies the prefix to use for messaging.

This setting specified the prefix to use for messaging. The default value is "eb3" and will result in values such as: eb3:Messaging It may be desirable to set this to another value such as "eb" so client and server sides both use the same prefix.

EDIDataPartId[i]:   Specified the part Id at the given index.

This setting may be used to specify the value for each edi_data part that is present in the message. By default the class will generate a unique value. For instance:

<eb3:PartInfo href="cid:_de48eece-d1d8-4823-8a63-d3a8d14dc1a8@nsoftware">
In some cases it may be desired or necessary to specify a user-defined value. For instance:
<eb3:PartInfo href="cid:mypart@myhost">
After adding the part to edi_data the Id may be specified by setting:
AS4Component.Config("EDIDataPartId[0]=mypart@myhost");
This setting is also populated with the parsed Ids after receiving a message.
EnableTokenReferenceTokenType:   Whether to include the TokenType attribute in a SecurityTokenReference element.

When this configuration setting is enabled, messages will include the TokenType attribute in any SecurityTokenReference elements. It will also add a namespace declaration for Web Services Security Version 1.1 (http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd). Note: This setting is not compatible with the X509 security token format.

EncryptionSecurityTokenFormat:   The format to use for the security token when encryption.

This setting specifies the security token format that is included in the message when encrypting. This setting should only be set if there is a specific reason to do so. This specifies the reference type in the SecurityTokenReference element applicable to the encrypted data. Possible values are:

0 (X509 - default) X509 data including the certificate's issuer name and issuer serial number is included in the X509Data element.
1 (Binary) A binary security token holds the base64 encoded contents of the public certificate and is referenced from within the Reference element.
2 (Subject Key Identifier) The X509 subject key identifier is included in the KeyIdentifier element.
3 (X509PKIPathv1) A binary security token holds the base64 encoded ordered list of X509 public certificates and is referenced from within the Reference element.

The default value is 0 (X509) and should not be changed unless there is a specific reason to do so.

Note: The default value when profile is set to eDelivery is 1 (Binary).

FilenameProperty:   Defines a part property to hold the filename.

This setting specifies the edi_property_name that will hold the name of the file. This may be used to preserve filenames. Both the client and server must agree on the name of the property that will be used to hold the filename.

This is helpful in the case where profile is set to ebpfStandard and the first file being sent is of type "text/xml" or "application/xml". In that case the file content is included in the SOAP body and there is no standard mechanism for preserving the filename.

When set the class will automatically populate the property when sending files and will read the filename from this property when receiving files.

By default this is not specified.

Note: The filenames will always be preserved within the MIME header attributes whenever possible regardless of whether this setting is specified.

ForceSigningCert:   Whether to force only the SigningCert to be used for signing.

When set to False the class will first check signing_cert for a certificate to use for signing operations. If signing_cert is not specified it will use the certificate specified in certificate.

If set to True (default) the class will only attempt to use the certificate specified by signing_cert. If signing_cert is not specified signing will not be attempted.

FromId[i]:   The Id of the party specified by AS4From.

This setting sets the Id of the party specified by as4_from at the index specified here. This is only used when multiple Ids are set. See FromIdCount for more details.

FromIdCount:   The number of Ids for the party specified by AS4From.

Multiple Ids may be specified for the as4_from party. This setting defines the total number of Ids. This is used in conjunction with FromId and FromIdType. For instance: component.Config("FromIdCount=2"); component.Config("FromId[0]=id1"); component.Config("FromIdType[0]=mytype"); component.Config("FromId[1]=id2");

When receiving a message with multiple Ids, query these settings to read the values.

By default this value is unspecified and only a single Id is used as specified in the as4_from_id property of as4_from.

FromIdType[i]:   The Id type of the party specified by AS4From.

This setting sets the Id type of the party specified by as4_from at the index specified here. This is only used when multiple Ids are set. See FromIdCount for more details.

IdRight:   A custom Id for the right side of the MessageId.

This setting may be used to specify a custom value for the right side of the message_id that is generated by the class. By default the class will automatically generate message Ids in the format: 2a1546bd-d623-4e7f-bb8d-ddecfb4de51c@nsoftware This setting provides a way to replace the "nsoftware" value after the "@" symbol with another value.

IncludeHeaders:   Whether headers are included when posting to a file.

This setting determines if headers are included in the file when using PostToFile. By default this value is true. When set to False headers are not included in the content written to the file. When set to False this also allows data to be streamed directly to the file specified by PostToFile without any substantial memory overhead or the use of EncodeToTempDir. After posting to a file check the MessageHeaders to obtain the headers. This setting should only be used when PostToFile is set.

KeyAgreementMethod:   The agreement method used for KeyWrap encryption algorithms.

This setting specifies the agreement method used for KeyWrap encryption algorithms (KW-AES). The default is ECDH-ES, and other methods are not currently supported. Possible values are:

ValueAlgorithmNotes
DHhttp://www.w3.org/2009/xmlenc11#dhNot currently implemented.
DH-EShttp://www.w3.org/2009/xmlenc11#dh-esNot currently implemented.
ECDH-EShttp://www.w3.org/2009/xmlenc11#ECDH-ESDefault when profile is ebpfBDEW.

KeyDerivationConcatKDFDigestMethod:   The digest method used for the ConcatKDF key derivation method.

This is the digest method used when the ConcatKDF key derivation method is selected. In most cases this should not be changed. Only change this value if there is a specific reason to do so. Possible values are:

  • SHA512
  • SHA384
  • SHA256 (Default)
  • SHA224
  • SHA1

KeyDerivationMethod:   The key derivation method used for KeyWrap encryption algorithms.

This setting specifies the derivation method used for KeyWrap encryption algorithms (KW-AES). Possible values are:

ValueAlgorithm
ConcatKDF (Default)http://www.w3.org/2009/xmlenc11#ConcatKDF
PBKDF2http://www.w3.org/2009/xmlenc11#pbkdf2

KeyEncryptionAlgorithm:   The algorithm used to encrypt the key.

This setting specifies the algorithm used to encrypt the key for this message. In most cases this should not be changed. Only change this value if there is a specific reason to do so. Possible values are:

ValueAlgorithmNotes
RSA-OAEP-XMLENC11http://www.w3.org/2009/xmlenc11#rsa-oaepThis is used in the default configuration. Additionally if RSA-OAEP is specified this will be automatically used instead if OAEPMGF1HashAlgorithm is set to any value except SHA1 or OAEPRSAHashAlgorithm is set to SHA384 or SHA512.
RSA-v1.5http://www.w3.org/2001/04/xmlenc#rsa-1_5There are no conditions for the use of this algorithm. If specified it will be used regardless of other settings.
RSA-OAEPhttp://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1pThis is used by default when OAEPMGF1HashAlgorithm is set to SHA1 and OAEPRSAHashAlgorithm is set to SHA1 or SHA256. This is only applicable under these conditions, it cannot override when RSA-OAEP-XMLENC11 is used based on the OAEPMGF1HashAlgorithm and OAEPRSAHashAlgorithm values.
KW-AES128http://www.w3.org/2001/04/xmlenc#kw-aes128This is used by default if profile is set to ebpfBDEW.
KW-AES192http://www.w3.org/2001/04/xmlenc#kw-aes192
KW-AES256http://www.w3.org/2001/04/xmlenc#kw-aes256

LogLevel:   The level of information to log.

This setting specifies the level of detail that is logged to the on_log event and to any log files on disk. Possible value are:

0 (Error) Only errors are logged.
1 (Info - default) Informational and errors are logged.
2 (Debug) All information is logged including debug info.
LogOptions:   The information to be written to log files.

When log_directory is set, several pieces of information are written to log files in the specified directory. Set LogOptions to one or more of the following values to control what information is written to file. When specifying multiple values, include them in the same string (i.e. "LogOptions=Incoming, Outgoing, Log"). The default value is All. Possible values are:

LogContains information about the steps taken during processing. Also see LogLevel.
IncomingContains the raw request/response that is received by the class.
OutgoingContains the raw request/response that is sent by the class.
IncomingMessageContains the incoming ebXML message.
OutgoingMessageContains the outgoing ebXML message.
All (default)All of the above
MessageHeaders:   Returns the headers of the message.

This setting returns the headers of the generated message when IncludeHeaders is False and PostToFile is set. It should not be used in any other cases.

MessageType:   Indicates the type of message received.

This property may be used to determine what type of message was received in a request. Requests may be used for multiple functions. For instance a request may contain a pull request and a receipt. This setting may be used as a bitmask to determine which combination of types are present. To inspect the message perform a binary 'AND' with one or more of the following values:

1 Pull Request (Receive Files)
2 User Message (Send Files)
4 Receipt
8 Error Message
For instance: int requestType = Int32.Parse(AS4Server.Config("MessageType")); if((requestType & 1) != 0) //The request contains a pull request
NormalizeIssuerSubject:   Whether to normalize the certificate subject within the X509Data element.

If set to True (default) the class will normalize the X509IssuerName element within the request to conform to RFC 2253. If set to False the class will use a standard format used by other components within the toolkit, which may not be compatible with all other AS4 software.

The default value is True to maximize interoperability with other AS4 software.

OAEPMGF1HashAlgorithm:   The MGF1 hash algorithm used when encrypting a key.

When encryption is enabled, this algorithm specifies the MGF1 hash algorithm used for the encryption key by RSA OAEP. Possible values are:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"

Note: If profile is set to ENTSOG the MGF1HashAlgorithm will be set to "SHA256" by default.

OAEPParams:   The hex encoded OAEP parameters to be used when encrypting a key.

This setting is optional and should only be specified if OAEP parameters need to be explicitly set. The value specified should be a hex string. By default this setting is unspecified.

OAEPRSAHashAlgorithm:   The RSA hash algorithm used when encrypting a key.

When encryption is enabled, this algorithm specifies the RSA hash algorithm used for the encryption key. This may differ from the hash algorithm used to sign the AS4 message content. Possible values are:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"
Password:   A password if authentication is to be used.

If AuthScheme is set to Basic, the User and Password are Base64 encoded and the result is put in the Authorization configuration setting in the form "Basic [encoded-user-password]".

If AuthScheme is set to Digest, the User and Password properties are used to respond to the HTTP Digest Authentication challenge from the server.

The User and Password properties must be set only after the url property is set. When the url property is set, for security reasons, User and Password are immediately cleared.

PostToFile:   Creates the message on disk.

This setting allows for the message to be created on disk without actually being sent. This is useful in certain situations to prepare the message where it is sent by a different transport mechanism at a later time. This should be set to a relative or absolute file path including the filename. When this is set the class will immediately start processing the message and writing to the specified file.

PullAction:   The Action to use with selective message pulling.

When calling receive_files this setting may be used to selectively download files from the server. If the server supports this functionality, only messages matching the criteria specified will be downloaded.

PullAgreementRef:   The AgreementRef to use with selective message pulling.

When calling receive_files this setting may be used to selectively download files from the server. If the server supports this functionality, only messages matching the criteria specified will be downloaded.

PullRefToMessageId:   The RefToMessageId to use with selective message pulling.

When calling receive_files this setting may be used to selectively download files from the server. If the server supports this functionality, only messages matching the criteria specified will be downloaded.

PullService:   The Service to use with selective message pulling.

When calling receive_files this setting may be used to selectively download files from the server. If the server supports this functionality, only messages matching the criteria specified will be downloaded.

PullServiceType:   The ServiceType to use with selective message pulling.

When calling receive_files this setting may be used to selectively download files from the server. If the server supports this functionality, only messages matching the criteria specified will be downloaded.

ReferenceHashAlgorithm:   The hash algorithm used to has the data specified in the reference of a signature.

When signing the content being signed is referred to by a reference in the Signature element. This setting specifies the hash algorithm used when computing the reference digest. Possible values are:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"
RequireEncryption:   Whether encryption is required when processing received messages.

This setting may be set to True to require that received messages are encrypted. When True if a message is received that is not encrypted the class will throw an exception. The default value is False.

RequireSignature:   Whether a signature is required when processing received messages.

This setting may be set to True to require that received messages are signed. When True if a message is received that is not signed the class will throw an exception. The default value is False.

ResponseFile:   A file from which to read the response.

This setting specifies a file from which the response is read. This may be useful in cases where the response is not received directly by the class. For instance it may be useful in debugging. If ResponseHeaders is not specified they will be read from file.

ResponseHeaders:   The headers for the AS4 response message.

This setting specifies the headers to be used in conjunction with ResponseFile to provide the request to the class. See ResponseFile for details.

SignerCACert:   The CA certificates that issued the signer certificate.

This setting may be set prior to signature verification when receiving messages that are signed using a certificate specified in the message itself as a BinarySecurityToken.

If this setting is specified, the class will verify the chain of the signer certificate against the CA list set in this setting. To specify one or more CA certificate prior to signature verification set this to the base64 encoded public certificate of each CA certificate. Each additional certificate can be added by prepending the data with a + character. If the value begins with a + the class will add the following value to an internal store of CA certificates. For instance: //Add the first CA certificate as4.Config("SignerCACert=MIICFDCCAX2g..."); //Add another CA certificate (Note the leading '+') as4.Config("SignerCACert=+MIICHDCCAYW...");

If the chain validation fails during signature verification the class fails with an error. If this setting is not specified no chain validation is performed.

SigningSecurityTokenFormat:   The format to use for the security token when signing.

This setting specifies the security token format that is included in the message when signing. This setting should only be set if there is a specific reason to do so. This specifies the reference type in the SecurityTokenReference element applicable to the signed data. Possible values are:

0 (X509 - default) X509 data including the certificate's issuer name and issuer serial number is included in the X509Data element.
1 (Binary) A binary security token holds the base64 encoded contents of the public certificate and is referenced from within the Reference element.
2 (Subject Key Identifier) The X509 subject key identifier is included in the KeyIdentifier element.
3 (X509PKIPathv1) A binary security token holds the base64 encoded ordered list of X509 public certificates and is referenced from within the Reference element.

The default value is 0 (X509) and should not be changed unless there is a specific reason to do so.

Note: The default value when profile is set to eDelivery is 1 (Binary).

TempPath:   Where temporary files are optionally written.

When processing large files an excessive amount of memory may be used, leading to out-of-memory exceptions. To reduce the amount of memory used, partially encoded files can be written to a temporary directory. Set this to a folder on disk where temporary files may be written.

ToId[i]:   The Id of the party specified by AS4To.

This setting sets the Id of the party specified by as4_to at the index specified here. This is only used when multiple Ids are set. See ToIdCount for more details.

ToIdCount:   The number of Ids for the party specified by AS4To.

Multiple Ids may be specified for the as4_to party. This setting defines the total number of Ids. This is used in conjunction with ToId and ToIdType. For instance: component.Config("ToIdCount=2"); component.Config("ToId[0]=id1"); component.Config("ToIdType[0]=mytype"); component.Config("ToId[1]=id2");

When receiving a message with multiple Ids, query these settings to read the values.

By default this value is unspecified and only a single Id is used as specified in the as4_to_id property of as4_to.

ToIdType[i]:   The Id type of the party specified by AS4To.

This setting sets the Id type of the party specified by as4_to at the index specified here. This is only used when multiple Ids are set. See ToIdCount for more details.

TransformReceipt:   Whether to canonicalize the received receipt.

When a receipt is received this setting controls whether the value in receipt_content is transformed.

When set to True (default) the class will perform canonicalize the receipt when it is received. This may be helpful if the value of receipt_content is to be used in a later process where a valid XML document is required. When set to true (false by default), the component will transform the receipt content made available in the component using Exclusive XML Canonicalization.

If False the class will not alter the received receipt. The value of receipt_content will not itself be a well formed XML document.

UseNonce:   Whether to use a nonce in UsernameToken authentication.

This setting specifies whether a nonce is included in the UsernameToken authentication when receive_files is called. If True (default) the class will generate and include a nonce. This is recommended for security purposes. If set to False the class will not include a nonce in the request.

See token_user and token_password for more details.

User:   A user name if authentication is to be used.

If AuthScheme is set to Basic, the User and Password are Base64 encoded and the result is put in the Authorization configuration setting in the form "Basic [encoded-user-password]".

If AuthScheme is set to Digest, the User and Password properties are used to respond to the HTTP Digest Authentication challenge from the server.

The User and Password properties must be set only after the url property is set. When the url property is set, for security reasons, User and Password are immediately cleared.

UseTransformedXMLAttachment:   Whether to send the canonicalized XML.

By default, when an XML document is specified in the edi_data, it will be canonicalized (c14n) in order to calculate the hash value. When the XML attachment is transmitted, this canonicalized data is used by default (True). When set to False, the class will transmit the original data instead.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the class adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The class only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the class will accept compressed data. It then will uncompress the data it has received. The class will handle data compressed by both gzip and deflate compression algorithms.

When True, the class adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when http_version is set to "2.0".

If set to True (default), the class will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the class fails with an error if the server does not support HTTP/2.

The default value is True.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to local_file. When set to True, downloaded data will be appended to local_file. This may be used in conjunction with range to resume a failed download. This is applicable only when local_file is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The auth_scheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time user and password are set, they are Base64 encoded, and the result is put in the authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the on_transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the class.

If set to True, the URL passed to the class will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new url for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new url is retrieved automatically only if the URL Scheme is the same; otherwise, the class fails with an error.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, user and password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A on_redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the on_redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the class fails with an error instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the class will perform a GET on the new location.

The default value is False. If set to True, the class will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the class.

This property specifies the HTTP version used by the class. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the class will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If True, the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If False, the connection will be closed immediately after the server response is received.

The default value for KeepAlive is False.

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the on_log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When follow_redirects is set to any value other than frNever, the class will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When http_version is set to "2.0" (if the server does not support "2.0"), then the class will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the class beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If proxy_user and proxy_password are specified, this value is calculated using the algorithm specified by proxy_auth_scheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the class.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the class.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the class will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the class will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001. In the C++ Edition for Windows, the *W version of the class must be used. For instance, DNSW or HTTPW.

UsePlatformHTTPClient:   Whether or not to use the platform HTTP client.

When using this configuration setting, if True, the component will use the default HTTP client for the platform (URLConnection in Java, WebRequest in .NET, or CFHTTPMessage in Mac/iOS) instead of the internal HTTP implementation. This is important for environments in which direct access to sockets is limited or not allowed (e.g., in the Google AppEngine).

Note: This setting is applicable only to Mac/iOS editions.

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the class will attempt to use the Proxy auto-config URL when establishing a connection and proxy_auto_detect is set to True.

When True (default), the class will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The local_host setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the local_host setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by local_port after the connection is established.

local_port cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an eol string.

If an eol string is found in the input stream before MaxLineLength bytes are received, the on_data_in event is fired with the EOL parameter set to True, and the buffer is reset.

If no eol is found, and MaxLineLength bytes are accumulated in the buffer, the on_data_in event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When ssl_provider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the on_ssl_status event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if ssl_provider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACertFilePaths:   The paths to CA certificate files on Unix/Linux.

This setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the class will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class fails with an error.

When set to 0 (default) the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the OCSP URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class fails with an error.

When set to 0 (default) the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the on_ssl_status event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when ssl_provider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when ssl_provider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when ssl_provider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when ssl_provider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the ssl_provider is set to Automatic for all editions.

In editions which are designed to run on Windows ssl_provider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is True by default, but can be set to False to disable the extension.

This setting is only applicable when ssl_provider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the on_ssl_server_authentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the on_ssl_server_authentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the on_ssl_server_authentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.

Note: This setting is only applicable when ssl_provider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when ssl_provider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class fails with an error.

The format of this value is a comma separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and ssl_provider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to True to mask sensitive data. The default is True.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when do_events is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseFIPSCompliantAPI:   Tells the class whether or not to use FIPS certified APIs.

When set to True, the class will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle FIPS, while all the other Windows editions make use of Microsoft security libraries.

FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to True. This is a static setting which applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.

For more details please see the FIPS 140-2 Compliance article.

Note: This setting is only applicable on Windows.

Note: Enabling FIPS-compliance requires a special license; please contact sales@nsoftware.com for details.

UseInternalSecurityAPI:   Tells the class whether or not to use the system security libraries or an internal implementation.

When set to False, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this setting to True tells the class to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to False by default. On Linux/macOS, this setting is set to True by default.

To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.

AS4Client Errors

AS4Client Errors

601   Unsupported signature algorithm.
705   No response to deliver.
774   Error writing to stream.
1201   Invalid ebXML.
1204   Invalid part href value.
1205   Unknown original message when creating receipt.
1206   Could not build user message.
1207   MPC value is missing.
1210   A required property is not set, check the message for details.
1211   Invalid or missing URL.
1212   Unable to send request.
1213   The other party returned an error. Check the errors property for details.
1214   Error processing receipt.
1215   Error saving data to AsyncReceiptInfoDir.
1216   Error reading data from AsyncReceiptInfoDir.
1217   MPC in the response does not match the MPC in the request.
1218   Duplicate message detected.
1219   Invalid profile value.
1220   Unsupported compression type
1221   Input file not found.
1222   Error compressing file.
1223   Invalid LogLevel value.
1224   Error setting EDI content when building message.
1225   Could not find a required message part.
1226   Invalid SOAP message.
1227   Invalid signature.
1228   Unknown XML reference.
1229   Digest verification failed.
1230   Could not find the required key.
1231   No CipherReference of CipherValue found.
1232   Only cid references are supported.
1233   Error signing message.
1234   Cannot find subject identifier.
1235   Error creating encryption key.
1236   Error decrypting part.
1237   Error calculating digest.
1238   The specified certificate cannot be used to decrypt this message.
1239   A signature is required, but is not present.
1240   Encryption is required, but the message is not encrypted.

HTTP Errors

118   Firewall Error. Error description contains detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in url
153   Specified url_scheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Can't open attached_file.

The class may also return one of the following error codes, which are inherited from other classes.

TCPClient Errors

100   You cannot change the remote_port at this time. A connection is in progress.
101   You cannot change the remote_host (Server) at this time. A connection is in progress.
102   The remote_host address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the local_port at this time. A connection is in progress.
107   You cannot change the local_host at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   remote_port cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).