AS3Receiver Class

Properties   Methods   Events   Config Settings   Errors  

The AS3Receiver class is used to process AS3 messages and generate receipts.

Syntax

ipworksedi.as3receiver()

Remarks

The AS3Receiver class allows you to receive AS3 messages over FTP, as specified in [AS3] and RFC 3335. The class can act as a FTP client, decrypt and verify incoming messages, and generate receipts including Message Disposition Notifications (MDNs). The class is designed to interoperate easily with a standard FTP server.

BASIC OPERATION

You should first log in to the FTP server by invoking Logon. If you need to search the FTP server for requests you may set RemotePath, invoke ListDirectory, etc. When you find the desired files you may then download them invoking ReadRequest. Alternatively, if you acquire the AS3 data by other means you may simply set Request.

ReadRequest (or ParseHeaders) will determine information such as AS3From and AS3To, which will allow you to set the appropriate certificates. You may specify your certificate with the Certificate property, and your trading partner's (signing) certificate with the SignerCert property.

Then, invoke ProcessRequest to process the request and generate the MDN receipt as specified in [AS3]. If the request was processed successfully, EDIData will contain the transmitted EDI data. If a problem occurred, EDIData will not be populated and an exception will be thrown. In either case MDNReceipt will contain the RFC-compliant receipt, which should be returned to the client.

The MDNReceipt may be returned over the same FTP connection by invoking SendResponse. If it is necessary to create a new connection or send receipts to a different server you may Logoff and Logon at will.

To create log files, set LogDirectory prior to invoking ProcessRequest. This will log all incoming and outgoing data, and will also write the received EDI files to disk.

EXAMPLE AS3Receiver1.User = "myusername" AS3Receiver1.Password = "mypassword" AS3Receiver1.RemoteHost = "ftp.mytradingpartner.com" AS3Receiver1.Logon() // You may need to search the server for received files at this point AS3Receiver1.ReadRequest("1053-ji094986.as3") // At this point, you should check the values of AS2From and AS2To. AS3Receiver1.Certificate = new Certificate(CertStoreTypes.cstPFXFile, "\\my_server_directory\\my_pfx_file.pfx", "my password", "CN=Me"); AS3Receiver1.SignerCert = (...); AS3Receiver1.LogDirectory = "c:\\my_server_directory\\my_log_directory"; AS3Receiver1.ProcessRequest(); // It will probably be necessary to change the RemotePath or even logon // to a different server here. AS3Receiver1.SendResponse("1053-ji094986-mdn.as3"); Additional functionality allows the user to examine details of the client's request, to permit certain types of errors, or to customize the outgoing MDN. See the property and method list for details.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

AS3FromThe identity of the sending system.
AS3ToThe identity of the receiving system.
AS3VersionIncomingThe version of AS3 being used.
AS3VersionOutgoingThe version of AS3 being used.
AttachmentsCollection of files attached to the current message.
CertificateThe decryption and receipt signing certificate.
CompressionFormatThe compression format used on the incoming message.
ConnectedWhether the class is connected.
EDIDataThe EDI data sent in Request .
FirewallA set of properties related to firewall access.
FTPLastReplyThe last reply from the FTP server.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
LogDirectoryThe path to a directory for logging.
LogFileThe log file written.
MDNReceiptThe MDN-based receipt generated by the class.
MDNToThe URL for the Message Disposition Notification (MDN).
MessageIdThe message ID of the incoming message.
PassiveThis controls whether or not to direct the server into a passive mode. It is recommended if behind a firewall.
PasswordThis is the password used to log in.
RemoteHostThis is the domain name or IP address of the FTP server.
RemotePortThis is the port for the FTP service (default is 21).
RequestThe AS3 request to process.
RequestHeadersThe headers in the AS3 request.
RequestHeadersStringThe headers in the AS3 request.
ScanResultThe result of invoking ParseRequest .
SignerCertYour trading partner's certificate.
SSLAcceptServerCertInstructs the class to unconditionally accept the server certificate that matches the supplied certificate.
SSLCertThe certificate to be used during Secure Sockets Layer (SSL) negotiation.
SSLProviderThe Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
SSLServerCertThe server certificate for the last established connection.
SSLStartModeDetermines how the class starts the SSL negotiation. By default, SSL will not be used.
TimeoutThe timeout for the class.
UserThis property contains the user identifier to use to log in.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

AbortThe method aborts the current upload or download.
ChangeRemotePathThis method changes the current path on the FTP server.
ConfigSets or retrieves a configuration setting.
CreateMDNReceiptCreates MDNReceipt .
DeleteFileThis method removes a file specified by FileName from an FTP server.
GetFileSizeGets the size of a file on the FTP server.
GetFileTimeGets the last modification time of a file on the FTP server.
ListDirectoryList the current directory on an FTP server.
ListDirectoryLongList the current directory on an FTP server.
LogoffThis method is used to log off from the FTP server by posting a QUIT command.
LogonLogon to the FTP RemoteHost using the current User and Password .
ParseRequestParses the EDI message and determines the EDIData .
ProcessRequestProcesses the EDI data, and generates the receipt.
QueryRemotePathThis queries the server for the current path.
ReadRequestReads the AS3 request from the FTP server.
ResetResets the state of the control.
SendFTPCommandThis method sends the exact FTP command directly to the FTP server.
SendResponseUploads the MDN receipt.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ConnectionStatusFired to indicate changes in the connection state.
DirListThis event is fired when a directory entry is received.
EndTransferThis event is fired when a file finishes downloading or uploading.
ErrorFired when information is available about errors during data delivery.
LogFired with log information while processing a message.
PITrailThis event traces the commands sent to the server, and the respective replies.
SignerCertInfoThis event is fired during verification of the signed message.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.
StartTransferThis event fires when a file starts downloading or uploading.
TransferThis event is fired during the file download or upload.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

LogFilenameThe base name of the log file.
ActiveModeIPAllows the specification of the IP address that the server will connect to for active mode connections.
ActiveModePORTAddressAllows the specification of the PORT address value for active mode connections.
AppendToLocalFileAppend downloaded files to a local file.
ApplyFileMaskLocallyWhether to filter the directory listing locally or on the server.
AutoSelectDataIPAutomatically select the data connection IP.
CalculatePercentDoneEnables or Disables calculating the percent complete for downloads.
CheckTotalEntryWhether to ignore directory listing total lines.
DILingerWhen set to True, DI connections are terminated gracefully.
DILingerTimeTime in seconds to have the DI connection linger.
FileTimeFormatThe format of file time reported by the server.
IgnoreEntriesDirectory entry data to ignore.
MaskSensitiveDataMasks passwords in logs.
ModeZCompressionLevelUsed to specify the level of compression used.
PortRangeAllows the specification of a port range where the class listens for active mode connections.
PreserveFileTimeAttempts to preserve timestamps when transferring files.
RealTimeUploadEnables real time uploading.
RealTimeUploadAgeLimitThe age limit in seconds when using RealTimeUpload.
ReusePISSLSessionInDIWhether the PI SSL session will be reused for the DI connection.
ReuseSSLSessionInDIWhether the SSL session will be reused for the DI connection.
UseClearChannelAllows for the Clear Command Channel (CCC) command.
UseClearDataChannelAllows for the PROT C command.
UseEPSVAllows extended passive mode.
UseMLSDUses listings for machine processing.
UseMLSTUses single file listing for machine processing.
UseModeZAllows compression to be used when transferring data.
UseOldAUTHSSLAllows use of the 'AUTH SSL' command instead of 'AUTH TLS'.
UseProtWhenImplicitSends the PROT P command to the server.
UseRemoteHostAddressForPassiveInstructs the class to use the address specified by RemoteHost when establishing a data connection.
VirtualHostNameSends the HOST command to the server.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLAcceptAnyServerCertWhether to trust any certificate presented by the server.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

AS3Receiver.AS3From Property

The identity of the sending system.

Syntax

getAS3From(): string;

Default Value

""

Remarks

May be company name, DUNS number, or anything agreed on by trading partners.

This property is read-only.

AS3Receiver.AS3To Property

The identity of the receiving system.

Syntax

getAS3To(): string;

Default Value

""

Remarks

May be company name, DUNS number, or anything agreed on by trading partners.

This property is read-only.

AS3Receiver.AS3VersionIncoming Property

The version of AS3 being used.

Syntax

getAS3VersionIncoming(): string;

Default Value

"1.0"

Remarks

The version of AS3 being used on the incoming transmission. Should be "1.0".

This property is read-only.

AS3Receiver.AS3VersionOutgoing Property

The version of AS3 being used.

Syntax

getAS3VersionOutgoing(): string;
setAS3VersionOutgoing(AS3VersionOutgoing: string): void;

Default Value

"1.0"

Remarks

The version of AS3 being used on the outgoing transmission. Should be "1.0".

AS3Receiver.Attachments Property

Collection of files attached to the current message.

Syntax

getAttachments(): EDIAttachmentList;

Default Value

Remarks

When a message is received, the class will write all of the files attached to the EDIData into temp files. These attachments can be retrieved by walking this collection and retrieving their file names.

This property is read-only and not available at design time.

Please refer to the EDIAttachment type for a complete list of fields.

AS3Receiver.Certificate Property

The decryption and receipt signing certificate.

Syntax

getCertificate(): Certificate;
setCertificate(certificate: Certificate): void;

Default Value

Remarks

The digital certificate that the class will use to decrypt incoming transmissions and sign the MDN receipt (if requested). If a different certificate is required for decryption than for MDN signing, set the decryption certificate before calling ParseRequest, then set the signing certificate before calling CreateMDNReceipt. Certificate must be set to a private key certificate.

Please refer to the Certificate type for a complete list of fields.

AS3Receiver.CompressionFormat Property

The compression format used on the incoming message.

Syntax

getCompressionFormat(): AS3ReceiverCompressionFormats;


enum AS3ReceiverCompressionFormats { cfNone, cfZLIB }

Default Value

0

Remarks

The compression format used on the incoming message, if any. Compressed messages will automatically be decompressed by the class.

This property is read-only.

AS3Receiver.Connected Property

Whether the class is connected.

Syntax

isConnected(): boolean;

Default Value

FALSE

Remarks

This property is used to determine whether or not the class is connected to the remote host. Use the Connect and Disconnect methods to manage the connection.

This property is read-only and not available at design time.

AS3Receiver.EDIData Property

The EDI data sent in Request .

Syntax

getEDIData(): EDIData;

Default Value

Remarks

This property will only be populated if ParseRequest or ProcessRequest finishes without an error, setting ScanResult to 0. If so, EDIData will contain the processed EDI message.

This property is read-only.

Please refer to the EDIData type for a complete list of fields.

AS3Receiver.Firewall Property

A set of properties related to firewall access.

Syntax

getFirewall(): Firewall;
setFirewall(firewall: Firewall): void;

Default Value

Remarks

This is a Firewall-type property, which contains fields describing the firewall through which the class will attempt to connect.

Please refer to the Firewall type for a complete list of fields.

AS3Receiver.FTPLastReply Property

The last reply from the FTP server.

Syntax

getFTPLastReply(): string;

Default Value

""

Remarks

The last reply from the FTP server.

This property is read-only.

AS3Receiver.LocalHost Property

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

getLocalHost(): string;
setLocalHost(localHost: string): void;

Default Value

""

Remarks

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: LocalHost is not persistent. You must always set it in code, and never in the property window.

AS3Receiver.LogDirectory Property

The path to a directory for logging.

Syntax

getLogDirectory(): string;
setLogDirectory(logDirectory: string): void;

Default Value

""

Remarks

Setting LogDirectory will instruct the component to log the details of each transmission to unique files in the specified directory. For each request processed, the class will log the original EDI data, the complete text of the outgoing request and the incoming response.

The class will write a file for each transmission, with extension ".log". In case of error an additional file will be written with extension ".err", and the error will be reported in both files. Raw AS3 messages created or downloaded by the class will be written with extension ".as3", and MDNs created or downloaded will be written with extension ".as3-mdn".

The filenames will be chosen automatically by the class. Each filename will be the system time, in the format YYYY-MM-DD-HH-MM-SS-MMMM, with extensions "-2", "-3", used in case files of those names already exist. After each transaction is processed LogFile will contain the name of the files just written, minus the extension ".log" or ".err".

If logs cannot be written an exception will be thrown.

AS3Receiver.LogFile Property

The log file written.

Syntax

getLogFile(): string;

Default Value

""

Remarks

In case LogDirectory is specified two log files will be written in the specified directory and LogFile will contain the path.

LogFile will in fact refer to several files with appropriate extensions. A diagnostic log will be written with filename LogFile + ".log", and any EDI data read will be written with filename LogFile + ".dat". Raw AS3 messages and MDNs will also be written with extensions ".as3" and ".as3-mdn".

This property is read-only.

AS3Receiver.MDNReceipt Property

The MDN-based receipt generated by the class.

Syntax

getMDNReceipt(): MDNReceipt;
setMDNReceipt(MDNReceipt: MDNReceipt): void;

Default Value

Remarks

After invoking CreateMDNReceipt, MDNReceipt will contain the entire text of the receipt to be returned to the client. It will report either success or failure depending on ScanResult; in either case it will be RFC-compliant and suitable for returning to the client.

The MDNReceipt will consist of the MDN itself, a human-readable message, MIME headers and footers, and a signature if applicable. The receipt may be generated by invoking CreateMDNReceipt and customized further by setting the parameters to CreateMDNReceipt.

A variety of configuration settings may be used to override the default generation of the outgoing MDN. The MIC algorithm used in the MDN may be set with MDNMICAlgorithm;. MDNReportingUA specifies the reporting agent, and MDNSendingMode may be used to specify the "disposition-mode" field in the MDN.

The signature, if any, will use the protocol specified by the ReceiptSigningProtocol configuration setting, and the certificate specified.

Error reporting may be controlled by configuring ErrorReportingFlags. By default, any errors will cause MDNReceipt to report a failure to process the message (either "failed/Failure" or "processed/Error" will be reported, according to the specification and the type of error). Setting ErrorReportingFlags will cause the MDNReceipt to overlook the chosen types of errors. If all errors are overlooked, the MDNReceipt will report success and calculate a MIC on the original message as usual. A warning may be reported by setting the MDNWarning configuration setting.

MDNReceipt will always be generated by the component; however, if MDNTo is empty, an MDN-based receipt has not been requested. One may be sent anyway at the option of the server. If MDNTo is nonempty, the receipt MUST be returned according to RFC specifications. In AS2, the MDN should be returned in the body of the HTTP reply, or if ReceiptDeliveryOption is nonempty, to the URL specified there instead. In AS3, the MDN should be returned to the URL specified in MDNTo.

Please refer to the MDNReceipt type for a complete list of fields.

AS3Receiver.MDNTo Property

The URL for the Message Disposition Notification (MDN).

Syntax

getMDNTo(): string;
setMDNTo(MDNTo: string): void;

Default Value

""

Remarks

MDNTo corresponds to the Disposition-Notification-To header of RequestHeaders. If nonempty, the client has requested that an MDN-based receipt be returned to the URL specified. This receipt will be generated in a call to ProcessRequest or CreateMDNReceipt, and may be sent by calling SendResponse.

The receipt and headers will be contained in MDNReceipt.

According to RFC specifications, MDNReceipt must be sent if requested by the client.

AS3Receiver.MessageId Property

The message ID of the incoming message.

Syntax

getMessageId(): string;

Default Value

""

Remarks

MessageId corresponds to the Message-Id header of Request, and will be used as the Original-Message-Id header of MDNReceipt.

This property is read-only.

AS3Receiver.Passive Property

This controls whether or not to direct the server into a passive mode. It is recommended if behind a firewall.

Syntax

isPassive(): boolean;
setPassive(passive: boolean): void;

Default Value

TRUE

Remarks

This property controls whether or not to direct the server into a passive mode. Many firewalls will not allow the FTP server to open a connection from outside to the higher ports where the FTP client class expects them to be. If Passive is set to TRUE, the class will use the PASV command instead of the PORT command and thus will direct the server into a passive mode: connections are initiated only by the client.

AS3Receiver.Password Property

This is the password used to log in.

Syntax

getPassword(): string;
setPassword(password: string): void;

Default Value

""

Remarks

This property contains the password used to log in. It must be set before the class connects to the FTP server.

AS3Receiver.RemoteHost Property

This is the domain name or IP address of the FTP server.

Syntax

getRemoteHost(): string;
setRemoteHost(remoteHost: string): void;

Default Value

""

Remarks

This property specifies the IP address (IP number in dotted internet format) or the domain name of the FTP server. It is set before a connection is attempted and cannot be changed once a connection is in progress.

If this property is set to a domain name, a DNS request is initiated and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.

If the class is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.

AS3Receiver.RemotePort Property

This is the port for the FTP service (default is 21).

Syntax

getRemotePort(): number;
setRemotePort(remotePort: number): void;

Default Value

21

Remarks

This property contains the port for the FTP service, which defaults to 21 if not set. A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.

For an implicit Secure Sockets Layer (SSL), use port 990 (please see the SSLStartMode property for more information).

This property is not available at design time.

AS3Receiver.Request Property

The AS3 request to process.

Syntax

getRequest(): Uint8Array;
setRequest(request: Uint8Array): void;

Default Value

""

Remarks

You may specify the request manually, or you may load the request from the FTP server by invoking ReadRequest.

The request may contain the AS3 headers, or these may be specified separately in RequestHeaders. Any methods which read or process the request will split the request into headers and body and populate Request and RequestHeaders appropriately.

AS3Receiver.RequestHeaders Property

The headers in the AS3 request.

Syntax

getRequestHeaders(): HeaderList;
setRequestHeaders(requestHeaders: HeaderList): void;

Default Value

Remarks

The headers will be parsed from the request by calls to methods such as ParseHeaders, ParseRequest, or ProcessRequest is invoked.

Please refer to the Header type for a complete list of fields.

AS3Receiver.RequestHeadersString Property

The headers in the AS3 request.

Syntax

getRequestHeadersString(): string;
setRequestHeadersString(requestHeadersString: string): void;

Default Value

""

Remarks

The headers will be parsed from the request by calls to methods such as ParseHeaders, ParseRequest, or ProcessRequest is invoked.

AS3Receiver.ScanResult Property

The result of invoking ParseRequest .

Syntax

getScanResult(): number;

Default Value

0

Remarks

ScanResult will contain information about any errors that occurred while invoking ParseRequest or ProcessRequest. ScanResult will contain 0 if no errors occurred, otherwise it will contain one or more of the following errors. If multiple errors are reported the results will be OR-ed together.

0x01 Unable to decrypt data.
0x02 Unable to decompress data.
0x04 Unable to validate integrity of data.
0x08 Unable to verify the signature.
0x10 Client requested unsupported signature type.
0x20 Client requested unsupported MIC algorithm.
0x40 Insufficient message security, as determined by the Config entries RequireSign and RequireEncrypt.
0x80 Unexpected processing error. An exception was encountered outside of message processing, such as configuration issues in the class.
0x100 Duplicate filename.
0x200 Illegal filename.
0x400 Empty filename.
0x800 Error writing incoming file.

This property is read-only.

AS3Receiver.SignerCert Property

Your trading partner's certificate.

Syntax

getSignerCert(): Certificate;
setSignerCert(signerCert: Certificate): void;

Default Value

Remarks

You must set your trading partner's certificate before processing any signed messages. This property should be set to a public key certificate.

If the trading partner's identity is unknown, you should first invoke ReadRequest and read the value of AS2To (or for AS3, AS3To). This will allow you to determine the correct certificate to use.

As a special case, you may set AcceptAnySignerCert to true. In this case, the class will attempt to validate the signature without knowing the certificate in advance. This is not recommended for production use, as it poses a security risk.

This property is not available at design time.

Please refer to the Certificate type for a complete list of fields.

AS3Receiver.SSLAcceptServerCert Property

Instructs the class to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

getSSLAcceptServerCert(): Certificate;
setSSLAcceptServerCert(SSLAcceptServerCert: Certificate): void;

Default Value

Remarks

If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Note: This functionality is provided only for cases in which you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

Please refer to the Certificate type for a complete list of fields.

AS3Receiver.SSLCert Property

The certificate to be used during Secure Sockets Layer (SSL) negotiation.

Syntax

getSSLCert(): Certificate;
setSSLCert(SSLCert: Certificate): void;

Default Value

Remarks

This property includes the digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the field to the encoded certificate. To select a certificate, use the store and subject fields.

Please refer to the Certificate type for a complete list of fields.

AS3Receiver.SSLProvider Property

The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.

Syntax

getSSLProvider(): AS3ReceiverSSLProviders;
setSSLProvider(SSLProvider: AS3ReceiverSSLProviders): void;

enum AS3ReceiverSSLProviders { sslpAutomatic, sslpPlatform, sslpInternal }

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are as follows:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, the platform implementation will be used by default in all cases in the JavaScript edition.

Note: The internal provider is not support at this time.

AS3Receiver.SSLServerCert Property

The server certificate for the last established connection.

Syntax

getSSLServerCert(): Certificate;

Default Value

Remarks

This property contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

Please refer to the Certificate type for a complete list of fields.

AS3Receiver.SSLStartMode Property

Determines how the class starts the SSL negotiation. By default, SSL will not be used.

Syntax

getSSLStartMode(): AS3ReceiverSSLStartModes;
setSSLStartMode(SSLStartMode: AS3ReceiverSSLStartModes): void;

enum AS3ReceiverSSLStartModes { sslAutomatic, sslImplicit, sslExplicit, sslNone }

Default Value

3

Remarks

The SSLStartMode property may have one of the following values:

0 (sslAutomatic - default)If the remote port is set to the standard plaintext port of the protocol (where applicable), the class will behave the same as if SSLStartMode is set to sslExplicit. In all other cases, SSL negotiation will be implicit (sslImplicit).
1 (sslImplicit)The SSL negotiation will start immediately after the connection is established.
2 (sslExplicit)The class will first connect in plaintext, and then explicitly start SSL negotiation through a protocol command such as STARTTLS.
3 (sslNone)No SSL negotiation, no SSL security. All communication will be in plaintext mode.

AS3Receiver.Timeout Property

The timeout for the class.

Syntax

getTimeout(): number;
setTimeout(timeout: number): void;

Default Value

60

Remarks

If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If Timeout is set to a positive value, the class will wait for the operation to complete before returning control.

The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.

If Timeout expires, and the operation is not yet complete, the class .

Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

AS3Receiver.User Property

This property contains the user identifier to use to log in.

Syntax

getUser(): string;
setUser(user: string): void;

Default Value

""

Remarks

This property contains the user identifier to be used when logging in. It must be set before the class connects to the FTP server.

AS3Receiver.abort Method

The method aborts the current upload or download.

Syntax

async as3receiver.abort(): Promise<void>

Remarks

This method sends an ABOR command to the FTP server. It is used to interrupt file uploads and downloads.

AS3Receiver.changeRemotePath Method

This method changes the current path on the FTP server.

Syntax

async as3receiver.changeRemotePath(remotePath : string): Promise<void>

Remarks

This method changes the current path on the FTP server to the specified RemotePath. When called, the class will issue a command to the server to change the directory. The RemotePath parameter may hold an absolute or relative path.

Absolute Paths

If the path begins with a /, it is considered an absolute path and must specify the entire path from the root of the server. For instance:

component.ChangeRemotePath("/home/testuser/myfolder");

Relative Paths

If the path does not begin with a /, it is considered a relative path and is resolved in relation to the current directory. For instance, a value of myfolder will indicate a subfolder of the current directory. The special value .. refers to the parent directory of the current path. For instance:

//Change to the 'myfolder' sub-directory component.ChangeRemotePath("myfolder"); //Navigate up two levels and then into the 'another/folder' path. component.ChangeRemotePath("../../another/folder");

AS3Receiver.config Method

Sets or retrieves a configuration setting.

Syntax

async as3receiver.config(configurationString : string): Promise<string>

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

AS3Receiver.createMDNReceipt Method

Creates MDNReceipt .

Syntax

async as3receiver.createMDNReceipt(headers : string, MDN : string, message : string): Promise<void>

Remarks

CreateMDNReceipt may be invoked after ParseRequest to create an MDN-based receipt. The receipt will report success or failure depending on ErrorReportingFlags and the success or failure of ParseRequest.

This method populates MDNReceipt with a new MDNReceipt. The Headers, MDN, and Message parameters can be used to further customize the receipt, or empty string ("") parameters may be set to use the class generated defaults. Headers will set additional transport headers to be sent with the receipt (in the HTTP or SMTP headers of the signed receipt). MDN can be used to append additional headers to the Message Disposition Notification portion of the MDN Receipt. If MDN is set to a value prefixed with an at sign ("@"), the at sign will be removed and the specified MDN will be used in the receipt in place of the component generated value. Message will set the human-readable portion of the receipt, and should describe any error conditions that may have occurred.

AS3Receiver.deleteFile Method

This method removes a file specified by FileName from an FTP server.

Syntax

async as3receiver.deleteFile(fileName : string): Promise<void>

Remarks

This method is used to remove a file specified by FileName from an FTP server. The remote file or directory specified by FileName is deleted. FileName is either an absolute path on the server, or a path relative to remote path set by ChangeRemotePath. If no FTP session is in place, one is automatically created by first calling the Logon method.

AS3Receiver.getFileSize Method

Gets the size of a file on the FTP server.

Syntax

async as3receiver.getFileSize(fileName : string): Promise<void>

Remarks

Gets the size of the file specified by FileName and RemotePath on the FTP server.

AS3Receiver.getFileTime Method

Gets the last modification time of a file on the FTP server.

Syntax

async as3receiver.getFileTime(fileName : string): Promise<void>

Remarks

Gets the last modification time of the file specified by FileName and RemotePath on the FTP server.

AS3Receiver.listDirectory Method

List the current directory on an FTP server.

Syntax

async as3receiver.listDirectory(filesToList : string): Promise<void>

Remarks

A listing is requested for the directory or file mask specified in FilesToList. This can be an absolute path on the server, a path relative to RemotePath, or a file mask. The file listing is received through the DirList event.

Similar to ListDirectoryLong, except only file names are returned. If no FTP session is in place, one is automatically created by first calling the Logon method.

AS3Receiver.listDirectoryLong Method

List the current directory on an FTP server.

Syntax

async as3receiver.listDirectoryLong(filesToList : string): Promise<void>

Remarks

A listing is requested for the directory or file mask specified in FilesToList. This can be an absolute path on the server, a path relative to RemotePath, or a file mask. The file listing is received through the DirList event. Extended file information is returned.

If no FTP session is in place, one is automatically created by first calling the Logon method.

AS3Receiver.logoff Method

This method is used to log off from the FTP server by posting a QUIT command.

Syntax

async as3receiver.logoff(): Promise<void>

Remarks

This method is used to log off from the FTP server by posting a QUIT command. If that fails, the connection is terminated by the local host.

AS3Receiver.logon Method

Logon to the FTP RemoteHost using the current User and Password .

Syntax

async as3receiver.logon(): Promise<void>

Remarks

Logon to the FTP server using the current User and Password. If an SSL (TLS) connection is required, you should first set SSLStartMode.

Example (Logging On)

FTPControl.RemoteHost = "ftpserver" FTPControl.User = "username" FTPControl.Password = "password" FTPControl.Logon()

AS3Receiver.parseRequest Method

Parses the EDI message and determines the EDIData .

Syntax

async as3receiver.parseRequest(): Promise<void>

Remarks

Processes the EDI message in the request (either from the HTTP context, or as given by Request and possibly RequestHeadersString). If the message is encrypted, it will be decrypted with the certificate specified in Certificate. If it is signed, the signature will be verified against the certificate specified in SignerCert.

If the message is scanned without difficulty, EDIData will be populated. If a problem occurs, an exception will be thrown. This might occur if the client used or requested unsupported algorithms or data formats. In this case, EDIData will not be determined.

The class may be configured to ignore certain errors by setting ErrorProcessingFlags. This will allow the message to be processed and EDIData to be determined. If any errors occur, an exception will be thrown and the ScanResult property will reflect the error condition.

Whether or not an exception is thrown, an MDNReceipt may be generated by invoking CreateMDNReceipt. In the case of a successful scan MDNReceipt will report the success, otherwise the receipt will provide information to the client about the error.

ProcessRequest may be used to scan and create the receipt in one step. ReadRequest may be used to scan the request headers only to obtain details that can be used to configure the correct settings for the partner.

AS3Receiver.processRequest Method

Processes the EDI data, and generates the receipt.

Syntax

async as3receiver.processRequest(): Promise<void>

Remarks

Invoking ProcessRequest automates the entire AS2 server process. The method scans the request, determines the EDIData, and generates the MDNReceipt. In a server environment the receipt may be returned by invoking SendResponse.

The method's functionality is the same as the combined functionality of ParseRequest and CreateMDNReceipt. The method's operation is controlled by ErrorProcessingFlags and ErrorReportingFlags, and ScanResult will be populated as in ParseRequest.

The method will throw an exception, as ParseRequest does, if a problem is found while processing the request. However, if the problem does not prevent an MDN from being generated, MDNReceipt will still be generated before the exception is thrown. In all cases, the receipt will be suitable for returning to the client. If an exception is thrown, the MDNReceipt will provide more detail on the cause of the error.

The class will populate EDIData if no errors occurred scanning the request, or if ErrorProcessingFlags had been previously configured to allow the error.

AS3Receiver.queryRemotePath Method

This queries the server for the current path.

Syntax

async as3receiver.queryRemotePath(): Promise<string>

Remarks

This method queries the server for the current path. When called, the class will issue a command to the server to retrieve the current path value. The return value of this method is the path returned by the server. For instance:

string remotePath = component.QueryRemotePath();

AS3Receiver.readRequest Method

Reads the AS3 request from the FTP server.

Syntax

async as3receiver.readRequest(fileName : string): Promise<void>

Remarks

Reads the AS3 request from the FTP server. The name of the file should be given by FileName. The request will be parsed into Request and RequestHeaders. The headers will also be parsed and the following properties will be populated:

ParseRequest may be used to scan the entire message.

AS3Receiver.reset Method

Resets the state of the control.

Syntax

async as3receiver.reset(): Promise<void>

Remarks

Reset resets the state of the class. All properties will be set to their default values.

AS3Receiver.sendFTPCommand Method

This method sends the exact FTP command directly to the FTP server.

Syntax

async as3receiver.sendFTPCommand(command : string): Promise<void>

Remarks

This method sends the command specified by Command to the server exactly as it is provided. Use this method to send additional or custom commands directly to the server.

After calling this method, check the FTPLastReply property or monitor the PITrail event to obtain the server's response.

AS3Receiver.sendResponse Method

Uploads the MDN receipt.

Syntax

async as3receiver.sendResponse(fileName : string): Promise<void>

Remarks

Uploads the MDN receipt specified by MDNReceipt. You may create this receipt by invoking ProcessRequest or CreateMDNReceipt.

Prior to sending, you may Logon to the FTP server and navigate to the desired RemotePath. If you have not created an FTP connection already then SendResponse will attempt to establish one.

The URL for upload will be specified (by the sender) in MDNTo.

FileName should contain the name of the file that will be written on the AS3/FTP server.

AS3Receiver.ConnectionStatus Event

Fired to indicate changes in the connection state.

Syntax

as3receiver.on('ConnectionStatus', listener: (e: {readonly connectionEvent: string, readonly statusCode: number, readonly description: string}) => void )

Remarks

This event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.

The ConnectionEvent parameter indicates the type of connection event. Values may include the following:

Firewall connection complete.
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.
StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

AS3Receiver.DirList Event

This event is fired when a directory entry is received.

Syntax

as3receiver.on('DirList', listener: (e: {readonly dirEntry: string, readonly fileName: string, readonly isDir: boolean, readonly fileSize: number, readonly fileTime: string}) => void )

Remarks

The DirList events are fired when a directory listing is received as a response to a ListDirectory or ListDirectoryLong call.

The StartTransfer and EndTransfer events mark the beginning and end of the event stream.

The DirEntry parameter contains the filename when ListDirectory is called and includes extended file information when ListDirectoryLong is called.

The class tries to fill out the FileName, IsDir, FileSize, and FileTime parameters when calling the ListDirectoryLong method. Except for FileName, these parameters are empty when a short "List Directory" is performed.

In Unix systems, the date is given in two types of formats: If the date is in the past 12 months the exact time is specified and the year is omitted. Otherwise, only the date and the year, but not hours or minutes, are given.

AS3Receiver.EndTransfer Event

This event is fired when a file finishes downloading or uploading.

Syntax

as3receiver.on('EndTransfer', listener: (e: {readonly direction: number}) => void )

Remarks

The EndTransfer event fires when a Data Interface connection is closed. This occurs when the file finishes transferring or a directory listing is finished.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

AS3Receiver.Error Event

Fired when information is available about errors during data delivery.

Syntax

as3receiver.on('Error', listener: (e: {readonly errorCode: number, readonly description: string}) => void )

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class .

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

AS3Receiver.Log Event

Fired with log information while processing a message.

Syntax

as3receiver.on('Log', listener: (e: {readonly logType: string, readonly logMessage: string, readonly logMessageB: Uint8Array}) => void )

Remarks

This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.

Log messages available through this event correspond to log files written to LogDirectory. This event provides a way to obtain log messages without relying on files on disk. This event fires regardless of the value of LogDirectory (i.e. when LogDirectory is empty the event will still fire).

The LogMessage event parameter holds the raw log data.

The LogType event parameter indicates the type of log. Possible values are:

"LOG" Information about the status of the process.
"ERR" An error was encountered.
"DAT" The EDI payload.
"REQ" The raw request
"MDN" The MDN response.
"DEBUG" Debug information.
"DAT.INPUT" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.ENCRYPT" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.COMPRESS" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.SIGN" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.DECRYPT" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.DECOMPRESS" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.VERIFY" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.DEBUG" Debug information when processing payload. Only applicable when LogDebug is True.

AS3Receiver.PITrail Event

This event traces the commands sent to the server, and the respective replies.

Syntax

as3receiver.on('PITrail', listener: (e: {readonly direction: number, readonly message: string}) => void )

Remarks

The PITrail event is useful for debugging purposes. It shows all of the interactions between the client and the server, line by line.

The Message parameter contains the full text of the message. The Direction parameter shows the originator of the message:

0 (Client)The Message originates from the client.
1 (Server)The Message originates from the server.
2 (Info)The Message is an informative message originating from the client software (the class code).

AS3Receiver.SignerCertInfo Event

This event is fired during verification of the signed message.

Syntax

as3receiver.on('SignerCertInfo', listener: (e: {readonly issuer: string, readonly serialNumber: string, readonly subjectKeyIdentifier: string, readonly certEncoded: string, readonly certEncodedB: Uint8Array}) => void )

Remarks

During verification, this event will be raised while parsing the signer's certificate information. The parameters that are populated depend on the options used when the message was originally signed. This information may be used to select the correct certificate for SignerCert to verify the signature. The following parameters may be populated:

Issuer specifies the subject of the issuer of the certificate used to sign the message.

SerialNumber is the serial number of the certificate used to sign the message.

SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.

CertEncoded is the PEM (Base64 encoded) public certificate needed to verify the signature.

Note: When this value is present, the class will automatically use this value to perform signature verification.

The SignerCert property may be set from within this event. In this manner, the decision of which signer certificate to load may be delayed until the parameters of this event are inspected and the correct certificate can be located and loaded.

AS3Receiver.SSLServerAuthentication Event

Fired after the server presents its certificate to the client.

Syntax

as3receiver.on('SSLServerAuthentication', listener: (e: {readonly certEncoded: string, readonly certEncodedB: Uint8Array, readonly certSubject: string, readonly certIssuer: string, readonly status: string, accept: boolean}) => void )

Remarks

This event fires with information about the server certificate. The Status property shows why verification failed (otherwise, Status contains the string OK). To manually accept an untrusted certificate, the SSLAcceptAnyServerCert setting must be set to True before initiating the connection.

AS3Receiver.SSLStatus Event

Fired when secure connection progress messages are available.

Syntax

as3receiver.on('SSLStatus', listener: (e: {readonly message: string}) => void )

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

AS3Receiver.StartTransfer Event

This event fires when a file starts downloading or uploading.

Syntax

as3receiver.on('StartTransfer', listener: (e: {readonly direction: number}) => void )

Remarks

The StartTransfer event fires when a Data Interface connection is created. This is when the file starts transferring or a directory listing is started.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

AS3Receiver.Transfer Event

This event is fired during the file download or upload.

Syntax

as3receiver.on('Transfer', listener: (e: {readonly direction: number, readonly bytesTransferred: number, readonly percentDone: number, readonly text: string, readonly textB: Uint8Array}) => void )

Remarks

One or more Transfer events are fired during file transfer. The BytesTransferred parameter shows the number of bytes transferred since the beginning of the transfer.

Text contains the portion of the file data being delivered.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.

Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

The following fields are available:

Fields

EffectiveDate
string (read-only)

Default Value: ""

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

ExpirationDate
string (read-only)

Default Value: ""

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
string (read-only)

Default Value: ""

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
string (read-only)

Default Value: ""

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
string (read-only)

Default Value: ""

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
string (read-only)

Default Value: ""

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
string (read-only)

Default Value: ""

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

KeyPassword
string

Default Value: ""

The password for the certificate's private key (if any).

Some certificate stores may individually protect certificates' private keys, separate from the standard protection offered by the . This property can be used to read such password-protected private keys.

Note: This property defaults to the value of . To clear it, you must set the property to the empty string (""). It can be set at any time, but when the private key's password is different from the store's password, then it must be set before calling .

PrivateKey
string (read-only)

Default Value: ""

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The may be available but not exportable. In this case, returns an empty string.

PrivateKeyAvailable
boolean (read-only)

Default Value: False

Whether a is available for the selected certificate. If is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
string (read-only)

Default Value: ""

The name of the container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
string (read-only)

Default Value: ""

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
string (read-only)

Default Value: ""

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
number (read-only)

Default Value: 0

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
string (read-only)

Default Value: ""

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
string (read-only)

Default Value: ""

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
string

Default Value: "MY"

The name of the certificate store for the client certificate.

The property denotes the type of the certificate store specified by . If the store is password-protected, specify the password in .

is used in conjunction with the property to specify client certificates. If has a value, and or is set, a search for a certificate is initiated. Please see the property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StoreB
Uint8Array

Default Value: "MY"

The name of the certificate store for the client certificate.

The property denotes the type of the certificate store specified by . If the store is password-protected, specify the password in .

is used in conjunction with the property to specify client certificates. If has a value, and or is set, a search for a certificate is initiated. Please see the property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
string

Default Value: ""

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

StoreType
CertStoreTypes

Default Value: 0

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the and set to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

SubjectAltNames
string (read-only)

Default Value: ""

Comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
string (read-only)

Default Value: ""

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
string (read-only)

Default Value: ""

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
string (read-only)

Default Value: ""

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
string (read-only)

Default Value: ""

The text description of .

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
number (read-only)

Default Value: 0

The flags that show intended use for the certificate. The value of is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the property for a text representation of .

This functionality currently is not available when the provider is OpenSSL.

Version
string (read-only)

Default Value: ""

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Subject
string

Default Value: ""

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Encoded
string

Default Value: ""

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The and properties also may be used to specify a certificate.

When is set, a search is initiated in the current for the private key of the certificate. If the key is found, is updated to reflect the full subject of the selected certificate; otherwise, is set to an empty string.

EncodedB
Uint8Array

Default Value: ""

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The and properties also may be used to specify a certificate.

When is set, a search is initiated in the current for the private key of the certificate. If the key is found, is updated to reflect the full subject of the selected certificate; otherwise, is set to an empty string.

Constructors

public Certificate();

Creates a instance whose properties can be set. This is useful for use with when generating new certificates.

public Certificate(String certificateFile);

Opens CertificateFile and reads out the contents as an X.509 public key.

public Certificate(byte[] encoded);

Parses Encoded as an X.509 public key.

public Certificate(int storeType, String store, String storePassword, String subject);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate(int storeType, String store, String storePassword, String subject, String configurationString);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

ConfigurationString is a newline-separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to the cstUser , cstMachine , cstPublicKeyFile , and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate(int storeType, String store, String storePassword, byte[] encoded);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

public Certificate(int storeType, byte[] store, String storePassword, String subject);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate(int storeType, byte[] store, String storePassword, String subject, String configurationString);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate(int storeType, byte[] store, String storePassword, byte[] encoded);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

EDIAttachment Type

This describes the file being attached.

Remarks

Information about the file's location that is being attached to the message is contained here.

The following fields are available:

Fields

ContentType
string

Default Value: ""

The MIME content-type of this EDIAttachment.

Data
string

Default Value: ""

This property contains the attachment data.

In a receiver, the class decodes the attachment to the property when 's value is first queried. This property will contain the full decrypted text of the attachment.

DataB
Uint8Array

Default Value: ""

This property contains the attachment data.

In a receiver, the class decodes the attachment to the property when 's value is first queried. This property will contain the full decrypted text of the attachment.

FileName
string

Default Value: ""

The file name of the attachment. If IncomingDirectory has been specified, the attachment will be written to the specified directory and the name will be provided by this property. Otherwise, this will contain the name of the attachment as described in the .

Headers
string

Default Value: ""

The class fills out each time any of the other properties for that EDIAttachment are changed. If additional headers are needed they should be appended after all the other propertys for that EDIAttachment are set.

Name
string

Default Value: ""

is the final name to be associated with the contents of either the or properties. This corresponds to the filename attribute of the Content-Disposition header for this attachment.

Constructors

public EDIAttachment();
public EDIAttachment(String fileName);
public EDIAttachment(String fileName, String contentType);
public EDIAttachment(String fileName, String contentType, String headers);

EDIData Type

The EDI payload of the AS2 message.

Remarks

The EDI payload of the AS2 message.

The following fields are available:

Fields

Data
string

Default Value: ""

This property contains the EDI payload of the transmission.

In a receiver, this property will only be populated if IncomingDirectory and have not been specified and ParseRequest finishes without an error, setting ScanResult to 0. If so, Data will contain the full decrypted text of the EDI message.

DataB
Uint8Array

Default Value: ""

This property contains the EDI payload of the transmission.

In a receiver, this property will only be populated if IncomingDirectory and have not been specified and ParseRequest finishes without an error, setting ScanResult to 0. If so, Data will contain the full decrypted text of the EDI message.

EDIType
string

Default Value: ""

The Content-Type of the EDI message. Sample values might be "application/edi-x12", "application/edifact" or "application/xml".

Name
string

Default Value: "rfc1767.edi"

is the final name to be associated with the contents of either the or properties. This corresponds to the filename attribute of the Content-Disposition header for the EDI payload.

When constructing EDI data to be sent, will be set to the same value as , but can be overridden after setting to indicate that another name should be used in the outbound request's Content-Disposition MIME header.

When receiving EDI data, will be read out of the "filename" attribute of the inbound request's Content-Disposition MIME header.

FileName
string

Default Value: ""

In a sender, if is specified, the file specified will be used for the EDI payload of the transmission. will be populated with the name of the file.

In a receiver, when IncomingDirectory is set, this will be populated with the absolute path of the file which contains the processed message contents.

Note: When is set, the data will be written to the stream and this property will not be populated.

Constructors

public EDIData();
public EDIData(byte[] data, String EDIType);
public EDIData(String fileName, String EDIType);

Firewall Type

The firewall the class will connect through.

Remarks

When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall and the .

The following fields are available:

Fields

AutoDetect
boolean

Default Value: False

Whether to automatically detect and use firewall system settings, if available.

FirewallType
FirewallTypes

Default Value: 0

The type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. is set to 1080.

Host
string

Default Value: ""

The name or IP address of the firewall (optional). If a is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class .

Password
string

Default Value: ""

A password if authentication is to be used when connecting through the firewall. If is specified, the and properties are used to connect and authenticate to the given firewall. If the authentication fails, the class .

Port
number

Default Value: 0

The Transmission Control Protocol (TCP) port for the firewall . See the description of the property for details.

Note: This property is set automatically when is set to a valid value. See the description of the property for details.

User
string

Default Value: ""

A username if authentication is to be used when connecting through a firewall. If is specified, this property and the property are used to connect and authenticate to the given Firewall. If the authentication fails, the class .

Constructors

public Firewall();

Header Type

This is an HTTP header as it is received from the server.

Remarks

When a header is received through a Header event, it is parsed into a Header type. This type contains a , and its corresponding .

The following fields are available:

Fields

Field
string

Default Value: ""

This property contains the name of the HTTP Header (this is the same case as it is delivered).

Value
string

Default Value: ""

This property contains the Header contents.

Constructors

public Header();
public Header(String field, String value);

MDNReceipt Type

The complete MDN Receipt returned by the receiver.

Remarks

The complete MDN Receipt contains the Message Disposition Notification (MDN) and an optional signature.

The following fields are available:

Fields

Content
string

Default Value: ""

This contains the entire content of the MDN Receipt. This is a multipart/report entity consisting of a machine readable (Message Disposition Notification) and a human readable , which itself may be embedded in a multipart/signed entity if requested by the AS2 sender.

ContentB
Uint8Array

Default Value: ""

This contains the entire content of the MDN Receipt. This is a multipart/report entity consisting of a machine readable (Message Disposition Notification) and a human readable , which itself may be embedded in a multipart/signed entity if requested by the AS2 sender.

HeaderCount
number (read-only)

Default Value: 0

The number of headers in the MDN.

HeaderField
string (read-only)

Default Value: ""

The field name of the MDN header currently selected by .

HeaderIndex
number

Default Value: 0

Which MDN header is currently selected to populate and .

Valid values are 0 to - 1.

Headers
string

Default Value: ""

Headers contains all of the headers of the AS2 MDN Receipt as a single string. This will include headers such as AS2-From, AS2-To, Date, Content-Type, etc. In an AS2Sender, these will also contain the transport headers of the MDN Receipt (HTTP or SMTP headers, depending on the delivery option).

You can also use , , , and to easily iterate through each individual header.

HeaderValue
string (read-only)

Default Value: ""

The value of the MDN header currently selected by .

MDN
string (read-only)

Default Value: ""

MDN will contain the entire machine readable text of the Message Disposition Notification in the receipt. It will report either success or failure depending on the processing status of the receiver. In either case, it will be RFC-compliant.

Message
string (read-only)

Default Value: ""

The human-readable portion of the MDN receipt.

The human-readable portion of the MDN receipt that indicates the status of the message processing. This can be used to provide the user with a helpful message in the event that an error is encountered.

MICValue
string (read-only)

Default Value: ""

The Message Integrity Check(s) (one-way hash) of the original EDI message.

An MDN Receipt contains a MIC calculated over the EDI message that the receipt is in response to, to be matched on the sender side against a saved value for the original request to ensure that the integrity of the data that the receiver reports is preserved. When a signed receipt is requested, the MIC is be calculated using the algorithm used on the incoming message's signature, or SHA-1 if the incoming message is not signed.

The MIC will be base64 encoded and reported with the algorithm name as specified in RFC 3335; e.g., "w7AguNJEmhF/qIjJw6LnnA==, md5".

SigningProtocol
string (read-only)

Default Value: ""

This property contains the MIME type of the signature used, if any (i.e., "application/pkcs7-signature"), to create this MDNReceipt. It will contain an empty string if the receipt is unsigned.

Constructors

public MDNReceipt();
public MDNReceipt(String headers, byte[] content);

Config Settings (class ipworksedi.as3receiver)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

AS3Receiver Config Settings

LogFilename:   The base name of the log file.

If set, this will be used as for the filename of the log file.

Note that only the base name should be specified as the component will append the appropriate file extension.

FTP Config Settings

ActiveModeIP:   Allows the specification of the IP address that the server will connect to for active mode connections.

The ActiveModeIP configuration setting can be used to specify the IP address that the server will connect to when using an active mode configuration (Passive = False). When this configuration setting is set, the port number where the component listens for active mode connections will still be managed by the component. The PortRange also can be used to ensure that the correct port is used by the client.

Note: This configuration setting will be ignored if ActiveModePORTAddress is also specified.

ActiveModePORTAddress:   Allows the specification of the PORT address value for active mode connections.

When using an active mode configuration (Passive = False) with a firewall, it may be necessary to specify the actual PORT value to be sent to the server. ActiveModePORTAddress takes the protocol-level parameter in the form "a,b,c,d,e,f" where "a,b,c,d" is the external IP address separated by commas, and e and f represent, respectively, the high-byte (divide by 256) and the low-byte (mod 256) values of the external port where the FTP client is listening.

This configuration setting must be used in conjunction with PortRange to ensure that the correct port is used by the client.

AppendToLocalFile:   Append downloaded files to a local file.

If set to True, the downloaded files will be appended to the file specified in LocalFile.

ApplyFileMaskLocally:   Whether to filter the directory listing locally or on the server.

If set to true any filemask provided to RemoteFile will be applied locally, after the server has returned the results. When set to false (default), the value in RemoteFile will be sent to the server as part of the relevant listing command. Because using filemasks with list commands is not standardized, some servers do not support them and will return an error.

AutoSelectDataIP:   Automatically select the data connection IP.

This setting controls the selection logic of the data connection. By default, this value is True and the class will attempt to determine the best IP for the data connection based on the returned value from the server. It is recommended to leave this value set to True unless there is a reason to disable it.

In many cases, FTP servers are not configured to return a valid public IP in the PASV response. When Secure Sockets Layer/Transport Layer Security (SSL/TLS) is used any network address translation (NAT) done by the firewall cannot occur. The result is the client may receive an IP that is not accessible.

This setting is designed to allow the connection to succeed in as many cases as possible. When the IP for the data connection is received from the server, the class will inspect the value. If the received value is not within the known private IP ranges, the class will use it, assuming it is a valid public IP. If the received value is a private IP, the class will instead assume the data connection should be established to the same IP as the command connection (true in almost all cases).

When this setting is False, the class will not perform any checks on the received value. When set to False, UseRemoteHostAddressForPassive is applicable.

CalculatePercentDone:   Enables or Disables calculating the percent complete for downloads.

When set to true (default), the class sends an FTP SIZE command to retrieve the file size before beginning a download. When downloading a large quantity of small files, performance may be increased by disabling this feature.

CheckTotalEntry:   Whether to ignore directory listing total lines.

Some servers will include "total" information when returning a directory listing that contains non-entry data. When CheckTotalEntry is set to True (default), the component will ignore lines beginning with "total" to account for this. In some cases, it may be desirable to include these lines in the resulting DirList data; this can be done by setting this configuration setting to False.

DILinger:   When set to True, DI connections are terminated gracefully.

This property controls how the DI connection is closed. The default is True.

In the case that DILinger is True (default), follow two scenarios to determine how long the connection will linger. In the first scenario, if DILingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, DILingerTime is a positive value, the system will attempt to send pending data until the specified DILingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (by a client acknowledgment, for example), setting this property to False might be the appropriate course of action.

DILingerTime:   Time in seconds to have the DI connection linger.

LingerTime is the time, in seconds, to let the socket connection linger. This value is 0 by default, which means it will use the default IP timeout.

FileTimeFormat:   The format of file time reported by the server.

The default value is "M/d/yyyy hh:mm:ss tt". When set, the class will format the time returned by the server when calling the QueryFileTime method. To disable all formatting, set this to empty string.

This setting applies only when calling QueryFileTime. It does not apply to the FileTime parameter of the DirList event.

IgnoreEntries:   Directory entry data to ignore.

Sometimes the FTP server will return data in a directory listing that is not entry data and can be ignored. The IgnoreEntries configuration setting takes a comma-separated list of entries to ignore. Only the beginning of the entries need to be specified and correct case is not required.

MaskSensitiveData:   Masks passwords in logs.

The default value is True. When set to True, the class will mask passwords that otherwise would appear in its logs.

ModeZCompressionLevel:   Used to specify the level of compression used.

The default value is 7. Valid values range from 0 to 9. A higher value indicates that a higher compression level is being used. This is valid only when UseModeZ is set to True.

Note: When this setting is specified, the class immediately performs an action. Use the ConfigAsync method to avoid blocking execution.

PortRange:   Allows the specification of a port range where the class listens for active mode connections.

When set to use active mode (Passive = False), the class uses any available port to listen to incoming connections from the server. You can override this behavior by setting PortRange to a value containing the range of ports the class will be listening to.

The range is provided as start-end, for instance: "1024-" stands for anything higher than 1024, "1024-2048" stands for ports between 1024 and 2048 inclusive, "4000-4010, 50000-50010" stands for ports between 4000 and 4010 or between 50000 and 50010.

PreserveFileTime:   Attempts to preserve timestamps when transferring files.

When set to True, the class will try to preserve timestamps when transferring files. The MDTM command is used when downloading, and the MFTM command is used when uploading. The server must support these commands for this to work and is False by default.

RealTimeUpload:   Enables real time uploading.

When this value is set to True, the class will upload the data in the file specified by LocalFile and continue monitoring LocalFile for additional data to upload until no new data is found for RealTimeUploadAgeLimit seconds. This allows you to start uploading a file immediately after the file is created and continue uploading as data is written to the file. The default value is False.

RealTimeUploadAgeLimit:   The age limit in seconds when using RealTimeUpload.

This value is only applicable when RealTimeUpload is set to "True". This specifies the number of seconds for which the class will monitor LocalFile for new data to upload. If this limit is reached and no new data are found in LocalFile the upload will complete. The default value is "1".

ReusePISSLSessionInDI:   Whether the PI SSL session will be reused for the DI connection.

When set to True (default), the class will reuse the PI SSL session when creating the DI connection. When set to False, the class will create a separate SSL session for the DI connection. The default value is True.

ReuseSSLSessionInDI:   Whether the SSL session will be reused for the DI connection.

When set to True (default), the class will ask the server to reuse the existing DI Secure Sockets Layer (SSL) session. When set to False, a new SSL session will always be created for the DI connection.

UseClearChannel:   Allows for the Clear Command Channel (CCC) command.

When this is set, the class will send the CCC command to the server requesting a clear (unprotected) command channel.

UseClearDataChannel:   Allows for the PROT C command.

When this is set, the class will use a clear (unprotected) data channel by sending the PROT C command to the server.

UseEPSV:   Allows extended passive mode.

When this is set, the extended passive mode will be used.

UseMLSD:   Uses listings for machine processing.

When this is set to True, the class will list files in the directory using the MLSD command. This command is an extension to the protocol that defines a more standardized and reliable directory listing format. Not all servers support this command. The default value is False.

When set to True, set RemoteFile to the filemask and call either ListDirectory or ListDirectoryLong. There is no difference between the two methods when this setting is enabled.

UseMLST:   Uses single file listing for machine processing.

This setting is similar to UseMLSD except that it is valid only for a single file. When this is set to True, the class will list the file or folder specified by RemoteFile. If RemoteFile is not set, a listing for the current directory will be returned. This command is an extension to the protocol, which defines a more standardized and reliable directory listing format, but does so only for a single file or folder. Not all servers support this command. The default value is False.

When set to True, set RemoteFile to the file or folder you wish to get information about and call either ListDirectory or ListDirectoryLong. There is no difference between the two methods when this setting is enabled. When both UseMLSD and UseMLST are set, UseMLSD takes precedence.

UseModeZ:   Allows compression to be used when transferring data.

The default value is False. When set to True, the class will issue the MODE Z command to the FTP server. This will enable deflate compression so that all data transferred are first compressed either by the server (when downloading) or by the class (when uploading). Note: Not all servers support this feature.

Note: When this setting is specified, the class immediately performs an action. Use the ConfigAsync method to avoid blocking execution.

UseOldAUTHSSL:   Allows use of the 'AUTH SSL' command instead of 'AUTH TLS'.

By default, the class uses the standard AUTH TLS command to initiate the SSL handshake with the server. This configuration setting is included for optional support of older servers that support only the AUTH SSL command.

Note: Using AUTH SSL instead of AUTH TLS is strongly discouraged because of potential security vulnerabilities. If you must use this configuration setting, please do so very carefully.

UseProtWhenImplicit:   Sends the PROT P command to the server.

When SSLStartMode is set to sslImplicit, setting this to True will instruct the class to send the PROT P command to the server. This explicitly tells the server that the data channel will be protected. The default value is True.

UseRemoteHostAddressForPassive:   Instructs the class to use the address specified by RemoteHost when establishing a data connection.

When this setting is True, the class will use the address specified by RemoteHost when establishing a data connection for directory listings and file transfers. This setting is applicable only when AutoSelectDataIP is set to False.

When this setting is False (default) and AutoSelectDataIP is also False, the class will use the IP address returned by the server when establishing a data connection.

This setting is not applicable when Passive is set to False (Active mode).

VirtualHostName:   Sends the HOST command to the server.

Defined in RFC 7151, the HOST command allows user-FTP processes to specify which virtual host to connect to for a server-FTP process that is handling requests for multiple virtual hosts on a single IP address. When this configuration setting is set, the HOST command is sent to the server before authenticating.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class .

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

Possible values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class .

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This configuration setting must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLAcceptAnyServerCert:   Whether to trust any certificate presented by the server.

This configuration setting disables all certificate verification when set to True. This configuration setting must be enabled to trust a self-signed certificate. It is not recommended to enable this configuration setting in a production environment. The default value is False.

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform include the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include the following:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internalinclude the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include the following:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

In the JavaScript edition, the platform implementation is used when TLS 1.3 is enabled and SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is false by default, but it can be set to true to enable the extension.

This configuration setting is applicable only when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown certificate authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown certificate authority revocation status.
0x00000800Ignore unknown root revocation status.
0x00008000Allow test root certificate.
0x00004000Trust test root certificate.
0x80000000Ignore non-matching CN (certificate CN non-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class .

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.

This setting is set to false by default on all platforms.

Trappable Errors (class ipworksedi.as3receiver)

AS3Receiver Errors

1001   You must set the request filename first.
903   You must specify a remote filename.
1002   A response was not requested.
701   Unable to write log file.
711   The incoming message was encrypted with an unknown protocol.
712   Unable to decrypt message.
713   Unable to decompress message.
732   *Unable to verify content integrity.
733   *Unsupported signature type was requested.
734   *Unsupported MIC algorithm(s) were requested.

FTP Errors

118   Firewall error. The error description contains detailed information.
141   FTP error. The error message contains the server reply.
142   Communication error. The error message contains the description.
143   Busy executing current method.
144   Local file error. The error description contains detailed information.
145   Can't open LocalFile for reading.
146   No RemoteFile specified while uploading.
147   Data interface error. The error description contains detailed information.
148   LocalFile already exists and overwrite is False.
149   Windows message queue dropped a message (typically due to heavy load).
301   Operation is interrupted.
302   Can't open local file.
311   Accept failed for data connection.
312   Asynchronous select failed for data connection.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on nonsocket.
10039   [10039] Destination address required.
10040   [10040] Message is too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol is not supported.
10044   [10044] Socket type is not supported.
10045   [10045] Operation is not supported on socket.
10046   [10046] Protocol family is not supported.
10047   [10047] Address family is not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Cannot assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Cannot send after socket shutdown.
10059   [10059] Too many references, cannot splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name is too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory is not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock is not loaded yet.
11001   [11001] Host not found.
11002   [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).

SMIME Errors

10191   Invalid index (RecipientIndex).
10192   Message decoding error (code).
10193   Unexpected message type.
10194   Unsupported hashing/signing algorithm.
10195   The message does not have any signers.
10196   The message signature could not be verified.
10197   Could not locate a suitable decryption certificate.
10198   The signer certificate could not be found.
10199   No signing certificate was supplied for signing the message.
10201   The specified certificate was not the one required.
10202   The specified certificate could not be found.
10221   Could not acquire CSP.
10222   Type validation error.
10223   Unsupported key size.
10224   Unrecognized Content-Type object identifier.
10225   Unrecognized public key format.
10226   No choices specified.
10228   Must specify output stream.
10280   Invalid part index.
10281   Unknown MIME type.
10283   No MIME-boundary found.
10280   Error decoding certificate.