AS1Sender Class

Properties   Methods   Events   Config Settings   Errors  

The AS1Sender class implements an AS1 / EDI-INT client, capable of sending EDI messages over electronic mail.

Syntax

class ipworksedi.AS1Sender

Remarks

The AS1Sender component is used to send EDI or other messages over SMTP/S, using the AS1 protocol specified in RFC 3335. The class is also used to retrieve and verify server responses.

A typical AS1 transaction is as follows:

(1) The sender sends an EDI document to the receiver using SMTP or SMTPS. Typically the document will be signed and encrypted (particularly if TLS/SSL is not used). A signed receipt will also be requested.

(2) The receiver decrypts the message and verifies the signature.

(3) The receiver sends a signed receipt back to the client. The signature is over the hash of an MDN, which contains a hash of the received message.

When sending an EDI message, the client should specify, at a minimum, from_address and send_to, mail_server, and edi_data and ediedi_type. The send method should then be invoked.

To secure the EDI transmission, the message may be signed and/or encrypted by setting the appropriate certificates. By default, the class will apply message security if the appropriate certificates are specified. To sign the data set signing_cert. To encrypt, set recipient_certs.

TLS/SSL will also be used if ssl_start_mode is set. In case your trading partner is using a self-signed certificate with their mail server it will be necessary to set ssl_accept_server_cert or trap the on_ssl_server_authentication event to accept the certificate.

The message may also be compressed by setting compression_format.

To request a receipt, or Message Disposition Notification (MDN), simply set the mdn_to property. The MDN will be returned in a separate email response. The mdn_options property may be used to customize the request. By default, the class will request a signed MDN over an SHA1 hash.

Validating AS1 MDNs

AS1 MDNs are returned asynchronously in a separate email. Generally MDNs will not be returned immediately.

The class supports the use of the POP/S protocol for receiving e-mail. To receive an MDN, set the mail_server, user, and password properties, and call connect. At this point you may search your mailbox using the MailMessage properties; when you have found the appropriate message you should invoke read_receipt, which will set mdn_receipt. If the receipt is indeed an MDN it will also be parsed (although not verified) and message_id will be set. If the message is not an MDN an exception will be thrown.

You should then use the values of from_address and message_id to look up your trading partner's certificates, the mdn_options requested, and the original_content_mic calculated when you sent the original message (you must store this value externally to verify signed receipts). Finally, invoke verify_receipt.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

attachment_countThe number of records in the Attachment arrays.
attachment_content_typeThe MIME content-type of this ediattachment .
attachment_dataThis property contains the attachment data.
attachment_file_nameThe file name of the attachment.
attachment_headersThe class fills out Headers each time any of the other properties for that ediattachment are changed.
attachment_nameName is the final name to be associated with the contents of either the Data or FileName properties.
compression_formatThe compression format (if any) to use.
connectedWhether the class is connected.
edi_dataThis property contains the EDI payload of the transmission.
edi_typeThe Content-Type of the EDI message.
edi_nameName is the final name to be associated with the contents of either the Data or FileName properties.
edi_file_nameIn a sender, if FileName is specified, the file specified will be used for the EDI payload of the transmission.
encryption_algorithmThe algorithm used to encrypt the EDI data.
firewall_auto_detectWhether to automatically detect and use firewall system settings, if available.
firewall_typeThe type of firewall to connect through.
firewall_hostThe name or IP address of the firewall (optional).
firewall_passwordA password if authentication is to be used when connecting through the firewall.
firewall_portThe Transmission Control Protocol (TCP) port for the firewall Host .
firewall_userA username if authentication is to be used when connecting through a firewall.
from_addressThe sender of the original message.
local_hostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
log_directoryThe path to a directory for logging.
log_fileThe log file written.
mail_message_ccThe value of the Cc header of the mail message.
mail_message_countThe number of messages waiting in the mailbox.
mail_message_dateThe message date for the currently selected message.
mail_message_fromThe sender of the mail message.
mail_message_headersThe message headers for the currently selected message.
mail_message_numberThe message number on the incoming mail server.
mail_message_reply_toThe value of the ReplyTo header of the mail message.
mail_message_subjectThe subject of the mail message.
mail_message_textThe text of the mail message.
mail_message_toThe recipient of the mail message.
mail_serverThe address of your mail server.
mdn_optionsUsed to indicate the options requested for the MDN receipt.
mdn_receipt_contentThis contains the entire content of the MDN Receipt.
mdn_receipt_header_countThe number of headers in the MDN.
mdn_receipt_header_fieldThe property name of the MDN header currently selected by HeaderIndex .
mdn_receipt_header_indexWhich MDN header is currently selected to populate HeaderField and HeaderValue .
mdn_receipt_headersHeaders contains all of the headers of the AS2 MDN Receipt as a single string.
mdn_receipt_header_valueThe value of the MDN header currently selected by HeaderIndex .
mdn_receipt_mdnMDN will contain the entire machine readable text of the Message Disposition Notification in the receipt.
mdn_receipt_messageThe human-readable portion of the MDN receipt.
mdn_receipt_mic_valueThe Message Integrity Check(s) (one-way hash) of the original EDI message.
mdn_receipt_signing_protocolThis property contains the MIME type of the signature used, if any (i.
mdn_toThe system to which an MDN should be directed.
message_idThe Id of the message.
original_content_micThe Message Integrity Check(s) (one-way hash) of the outgoing message.
passwordThe password for your incoming mail server.
receipt_signer_cert_effective_dateThe date on which this certificate becomes valid.
receipt_signer_cert_expiration_dateThe date on which the certificate expires.
receipt_signer_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
receipt_signer_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
receipt_signer_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
receipt_signer_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
receipt_signer_cert_issuerThe issuer of the certificate.
receipt_signer_cert_private_keyThe private key of the certificate (if available).
receipt_signer_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
receipt_signer_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
receipt_signer_cert_public_keyThe public key of the certificate.
receipt_signer_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
receipt_signer_cert_public_key_lengthThe length of the certificate's public key (in bits).
receipt_signer_cert_serial_numberThe serial number of the certificate encoded as a string.
receipt_signer_cert_signature_algorithmThe text description of the certificate's signature algorithm.
receipt_signer_cert_storeThe name of the certificate store for the client certificate.
receipt_signer_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
receipt_signer_cert_store_typeThe type of certificate store for this certificate.
receipt_signer_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
receipt_signer_cert_thumbprint_md5The MD5 hash of the certificate.
receipt_signer_cert_thumbprint_sha1The SHA-1 hash of the certificate.
receipt_signer_cert_thumbprint_sha256The SHA-256 hash of the certificate.
receipt_signer_cert_usageThe text description of UsageFlags .
receipt_signer_cert_usage_flagsThe flags that show intended use for the certificate.
receipt_signer_cert_versionThe certificate's version number.
receipt_signer_cert_subjectThe subject of the certificate used for client authentication.
receipt_signer_cert_encodedThe certificate (PEM/Base64 encoded).
recipient_cert_countThe number of records in the RecipientCert arrays.
recipient_cert_effective_dateThe date on which this certificate becomes valid.
recipient_cert_expiration_dateThe date on which the certificate expires.
recipient_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
recipient_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
recipient_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
recipient_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
recipient_cert_issuerThe issuer of the certificate.
recipient_cert_private_keyThe private key of the certificate (if available).
recipient_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
recipient_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
recipient_cert_public_keyThe public key of the certificate.
recipient_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
recipient_cert_public_key_lengthThe length of the certificate's public key (in bits).
recipient_cert_serial_numberThe serial number of the certificate encoded as a string.
recipient_cert_signature_algorithmThe text description of the certificate's signature algorithm.
recipient_cert_storeThe name of the certificate store for the client certificate.
recipient_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
recipient_cert_store_typeThe type of certificate store for this certificate.
recipient_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
recipient_cert_thumbprint_md5The MD5 hash of the certificate.
recipient_cert_thumbprint_sha1The SHA-1 hash of the certificate.
recipient_cert_thumbprint_sha256The SHA-256 hash of the certificate.
recipient_cert_usageThe text description of UsageFlags .
recipient_cert_usage_flagsThe flags that show intended use for the certificate.
recipient_cert_versionThe certificate's version number.
recipient_cert_subjectThe subject of the certificate used for client authentication.
recipient_cert_encodedThe certificate (PEM/Base64 encoded).
send_toThe recipient of the message.
signature_algorithmSignature algorithm to be used in outgoing messages.
signing_cert_effective_dateThe date on which this certificate becomes valid.
signing_cert_expiration_dateThe date on which the certificate expires.
signing_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
signing_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
signing_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
signing_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
signing_cert_issuerThe issuer of the certificate.
signing_cert_private_keyThe private key of the certificate (if available).
signing_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
signing_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
signing_cert_public_keyThe public key of the certificate.
signing_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
signing_cert_public_key_lengthThe length of the certificate's public key (in bits).
signing_cert_serial_numberThe serial number of the certificate encoded as a string.
signing_cert_signature_algorithmThe text description of the certificate's signature algorithm.
signing_cert_storeThe name of the certificate store for the client certificate.
signing_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
signing_cert_store_typeThe type of certificate store for this certificate.
signing_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
signing_cert_thumbprint_md5The MD5 hash of the certificate.
signing_cert_thumbprint_sha1The SHA-1 hash of the certificate.
signing_cert_thumbprint_sha256The SHA-256 hash of the certificate.
signing_cert_usageThe text description of UsageFlags .
signing_cert_usage_flagsThe flags that show intended use for the certificate.
signing_cert_versionThe certificate's version number.
signing_cert_subjectThe subject of the certificate used for client authentication.
signing_cert_encodedThe certificate (PEM/Base64 encoded).
ssl_accept_server_cert_effective_dateThe date on which this certificate becomes valid.
ssl_accept_server_cert_expiration_dateThe date on which the certificate expires.
ssl_accept_server_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
ssl_accept_server_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
ssl_accept_server_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
ssl_accept_server_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
ssl_accept_server_cert_issuerThe issuer of the certificate.
ssl_accept_server_cert_private_keyThe private key of the certificate (if available).
ssl_accept_server_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
ssl_accept_server_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
ssl_accept_server_cert_public_keyThe public key of the certificate.
ssl_accept_server_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
ssl_accept_server_cert_public_key_lengthThe length of the certificate's public key (in bits).
ssl_accept_server_cert_serial_numberThe serial number of the certificate encoded as a string.
ssl_accept_server_cert_signature_algorithmThe text description of the certificate's signature algorithm.
ssl_accept_server_cert_storeThe name of the certificate store for the client certificate.
ssl_accept_server_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_accept_server_cert_store_typeThe type of certificate store for this certificate.
ssl_accept_server_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
ssl_accept_server_cert_thumbprint_md5The MD5 hash of the certificate.
ssl_accept_server_cert_thumbprint_sha1The SHA-1 hash of the certificate.
ssl_accept_server_cert_thumbprint_sha256The SHA-256 hash of the certificate.
ssl_accept_server_cert_usageThe text description of UsageFlags .
ssl_accept_server_cert_usage_flagsThe flags that show intended use for the certificate.
ssl_accept_server_cert_versionThe certificate's version number.
ssl_accept_server_cert_subjectThe subject of the certificate used for client authentication.
ssl_accept_server_cert_encodedThe certificate (PEM/Base64 encoded).
ssl_cert_effective_dateThe date on which this certificate becomes valid.
ssl_cert_expiration_dateThe date on which the certificate expires.
ssl_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
ssl_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
ssl_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
ssl_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
ssl_cert_issuerThe issuer of the certificate.
ssl_cert_private_keyThe private key of the certificate (if available).
ssl_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
ssl_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
ssl_cert_public_keyThe public key of the certificate.
ssl_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
ssl_cert_public_key_lengthThe length of the certificate's public key (in bits).
ssl_cert_serial_numberThe serial number of the certificate encoded as a string.
ssl_cert_signature_algorithmThe text description of the certificate's signature algorithm.
ssl_cert_storeThe name of the certificate store for the client certificate.
ssl_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_cert_store_typeThe type of certificate store for this certificate.
ssl_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
ssl_cert_thumbprint_md5The MD5 hash of the certificate.
ssl_cert_thumbprint_sha1The SHA-1 hash of the certificate.
ssl_cert_thumbprint_sha256The SHA-256 hash of the certificate.
ssl_cert_usageThe text description of UsageFlags .
ssl_cert_usage_flagsThe flags that show intended use for the certificate.
ssl_cert_versionThe certificate's version number.
ssl_cert_subjectThe subject of the certificate used for client authentication.
ssl_cert_encodedThe certificate (PEM/Base64 encoded).
ssl_providerThe Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
ssl_server_cert_effective_dateThe date on which this certificate becomes valid.
ssl_server_cert_expiration_dateThe date on which the certificate expires.
ssl_server_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
ssl_server_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
ssl_server_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
ssl_server_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
ssl_server_cert_issuerThe issuer of the certificate.
ssl_server_cert_private_keyThe private key of the certificate (if available).
ssl_server_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
ssl_server_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
ssl_server_cert_public_keyThe public key of the certificate.
ssl_server_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
ssl_server_cert_public_key_lengthThe length of the certificate's public key (in bits).
ssl_server_cert_serial_numberThe serial number of the certificate encoded as a string.
ssl_server_cert_signature_algorithmThe text description of the certificate's signature algorithm.
ssl_server_cert_storeThe name of the certificate store for the client certificate.
ssl_server_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_server_cert_store_typeThe type of certificate store for this certificate.
ssl_server_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
ssl_server_cert_thumbprint_md5The MD5 hash of the certificate.
ssl_server_cert_thumbprint_sha1The SHA-1 hash of the certificate.
ssl_server_cert_thumbprint_sha256The SHA-256 hash of the certificate.
ssl_server_cert_usageThe text description of UsageFlags .
ssl_server_cert_usage_flagsThe flags that show intended use for the certificate.
ssl_server_cert_versionThe certificate's version number.
ssl_server_cert_subjectThe subject of the certificate used for client authentication.
ssl_server_cert_encodedThe certificate (PEM/Base64 encoded).
ssl_start_modeDetermines how the class starts the SSL negotiation. By default, SSL will not be used.
subjectThe subject of the message.
userThe username for your incoming mail server.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

configSets or retrieves a configuration setting.
connectConnects to the incoming mail server.
delete_messageDeletes the message specified by MailMessageNumber .
disconnectDisconnects from the incoming mail server.
process_queueSend the messages queued for sending.
query_message_sizeReturns the size in bytes of the current message.
query_message_uidReturns the unique identifier of the message as specified by the server.
queuePrepares and queues the message to the specified directory.
read_receiptReads and parses (but does not verify) an MDN receipt.
resetResets the state of the control.
select_mail_messageSelects and obtains information about the specified message.
sendPrepares and sends the AS1 message.
set_request_headerAllows the user to set or add arbitrary HTTP request headers.
verify_receiptVerifies an MDN receipt.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

on_connection_statusFired to indicate changes in the connection state.
on_end_transferFired when the message text completes transferring.
on_errorFired when information is available about errors during data delivery.
on_headerThis event is fired for every message header being retrieved.
on_logFired with log information while processing a message.
on_pi_trailThis event traces the commands sent to the mail server, and the respective replies.
on_ssl_server_authenticationFired after the server presents its certificate to the client.
on_ssl_statusFired when secure connection progress messages are available.
on_start_transferFired when the message text starts transferring (on either a send or receive).
on_transferFired while the message text gets transferred to or from MailServer .

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

LogFilenameThe base name of the log file.
POPPortThe POP mail port to be used, if different than MailServer.
POPServerThe POP server to be used, if different than MailServer.
SMTPAuthMechanismThe authentication mechanism used to connect to the SMTP server.
SMTPPasswordThe password used for authentication.
SMTPPortThe SMTP mail port to be used, if different than MailServer.
SMTPServerThe SMTP server to be used, if different than MailServer.
SMTPSSLStartModeDetermines how SSL negotiation starts with the SMTP server.
SMTPUserThe user name used for authentication.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertFilePathsThe paths to CA certificate files on Unix/Linux.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseFIPSCompliantAPITells the class whether or not to use FIPS certified APIs.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

attachment_count property

The number of records in the Attachment arrays.

Syntax

def get_attachment_count() -> int: ...
def set_attachment_count(value: int) -> None: ...

attachment_count = property(get_attachment_count, set_attachment_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at attachment_count - 1.

attachment_content_type property

The MIME content-type of this ediattachment .

Syntax

def get_attachment_content_type(attachment_index: int) -> str: ...
def set_attachment_content_type(attachment_index: int, value: str) -> None: ...

Default Value

""

Remarks

The MIME content-type of this EDIAttachment.

The attachment_index parameter specifies the index of the item in the array. The size of the array is controlled by the attachment_count property.

attachment_data property

This property contains the attachment data.

Syntax

def get_attachment_data(attachment_index: int) -> bytes: ...
def set_attachment_data(attachment_index: int, value: bytes) -> None: ...

Default Value

""

Remarks

This property contains the attachment data.

In a receiver, the class decodes the attachment to the attachment_data property when attachment_data's value is first queried. This property will contain the full decrypted text of the attachment.

The attachment_index parameter specifies the index of the item in the array. The size of the array is controlled by the attachment_count property.

attachment_file_name property

The file name of the attachment.

Syntax

def get_attachment_file_name(attachment_index: int) -> str: ...
def set_attachment_file_name(attachment_index: int, value: str) -> None: ...

Default Value

""

Remarks

The file name of the attachment. If incoming_directory has been specified, the attachment will be written to the specified directory and the name will be provided by this property. Otherwise, this will contain the name of the attachment as described in the attachment_headers.

The attachment_index parameter specifies the index of the item in the array. The size of the array is controlled by the attachment_count property.

attachment_headers property

The class fills out Headers each time any of the other properties for that ediattachment are changed.

Syntax

def get_attachment_headers(attachment_index: int) -> str: ...
def set_attachment_headers(attachment_index: int, value: str) -> None: ...

Default Value

""

Remarks

The class fills out attachment_headers each time any of the other properties for that EDIAttachment are changed. If additional headers are needed they should be appended after all the other propertys for that EDIAttachment are set.

The attachment_index parameter specifies the index of the item in the array. The size of the array is controlled by the attachment_count property.

attachment_name property

Name is the final name to be associated with the contents of either the Data or FileName properties.

Syntax

def get_attachment_name(attachment_index: int) -> str: ...
def set_attachment_name(attachment_index: int, value: str) -> None: ...

Default Value

""

Remarks

attachment_name is the final name to be associated with the contents of either the attachment_data or attachment_file_name properties. This corresponds to the filename attribute of the Content-Disposition header for this attachment.

The attachment_index parameter specifies the index of the item in the array. The size of the array is controlled by the attachment_count property.

compression_format property

The compression format (if any) to use.

Syntax

def get_compression_format() -> int: ...
def set_compression_format(value: int) -> None: ...

compression_format = property(get_compression_format, set_compression_format)

Possible Values

0   # None
1 # ZLIB

Default Value

0

Remarks

By default, outgoing data will not be compressed. Setting this property will instruct the class to compress the outgoing data using the indicated format.

Compression is highly recommended for large messages, as it will reduce network bandwidth and processing time required.

The compression algorithm used is Zlib, as required by RFC 3274 and defined in RFCs 1950 and 1951.

connected property

Whether the class is connected.

Syntax

def get_connected() -> bool: ...

connected = property(get_connected, None)

Default Value

FALSE

Remarks

This property is used to determine whether or not the class is connected to the remote host. Use the connect and disconnect methods to manage the connection.

This property is read-only.

edi_data property

This property contains the EDI payload of the transmission.

Syntax

def get_edi_data() -> bytes: ...
def set_edi_data(value: bytes) -> None: ...

edi_data = property(get_edi_data, set_edi_data)

Default Value

""

Remarks

This property contains the EDI payload of the transmission.

In a receiver, this property will only be populated if incoming_directory and edi_output_stream have not been specified and parse_request finishes without an error, setting scan_result to 0. If so, Data will contain the full decrypted text of the EDI message.

The EDI message to send.

edi_type property

The Content-Type of the EDI message.

Syntax

def get_edi_type() -> str: ...
def set_edi_type(value: str) -> None: ...

edi_type = property(get_edi_type, set_edi_type)

Default Value

""

Remarks

The Content-Type of the EDI message. Sample values might be "application/edi-x12", "application/edifact" or "application/xml".

edi_name property

Name is the final name to be associated with the contents of either the Data or FileName properties.

Syntax

def get_edi_name() -> str: ...
def set_edi_name(value: str) -> None: ...

edi_name = property(get_edi_name, set_edi_name)

Default Value

"rfc1767.edi"

Remarks

edi_name is the final name to be associated with the contents of either the edi_data or edi_file_name properties. This corresponds to the filename attribute of the Content-Disposition header for the EDI payload.

When constructing EDI data to be sent, edi_name will be set to the same value as edi_file_name, but can be overridden after setting edi_file_name to indicate that another name should be used in the outbound request's Content-Disposition MIME header.

When receiving EDI data, edi_name will be read out of the "filename" attribute of the inbound request's Content-Disposition MIME header.

edi_file_name property

In a sender, if FileName is specified, the file specified will be used for the EDI payload of the transmission.

Syntax

def get_edi_file_name() -> str: ...
def set_edi_file_name(value: str) -> None: ...

edi_file_name = property(get_edi_file_name, set_edi_file_name)

Default Value

""

Remarks

In a sender, if edi_file_name is specified, the file specified will be used for the EDI payload of the transmission. edi_name will be populated with the name of the file.

In a receiver, when incoming_directory is set, this will be populated with the absolute path of the file which contains the processed message contents.

Note: When edi_output_stream is set, the data will be written to the stream and this property will not be populated.

encryption_algorithm property

The algorithm used to encrypt the EDI data.

Syntax

def get_encryption_algorithm() -> str: ...
def set_encryption_algorithm(value: str) -> None: ...

encryption_algorithm = property(get_encryption_algorithm, set_encryption_algorithm)

Default Value

"3DES"

Remarks

If recipient_certs contains a valid certificate, the data will be encrypted using this certificate and the algorithm specified in encryption_algorithm. If encryption_algorithm is set to the empty string, the data will not be encrypted.

The class supports "3DES", or industry-standard 168-bit Triple-DES encryption.

The class supports "AES" encryption with a default keysize of 128 bits. You may also set "AESCBC192" or "AESCBC256" for 192- and 256-bit keysizes.

Possible values are:

  • 3DES (default)
  • DES
  • AESCBC128
  • AESCBC192
  • AESCBC256
  • AESGCM128
  • AESGCM192
  • AESGCM256

firewall_auto_detect property

Whether to automatically detect and use firewall system settings, if available.

Syntax

def get_firewall_auto_detect() -> bool: ...
def set_firewall_auto_detect(value: bool) -> None: ...

firewall_auto_detect = property(get_firewall_auto_detect, set_firewall_auto_detect)

Default Value

FALSE

Remarks

Whether to automatically detect and use firewall system settings, if available.

firewall_type property

The type of firewall to connect through.

Syntax

def get_firewall_type() -> int: ...
def set_firewall_type(value: int) -> None: ...

firewall_type = property(get_firewall_type, set_firewall_type)

Possible Values

0   # None
1 # Tunnel
2 # SOCKS4
3 # SOCKS5
10 # SOCKS4A

Default Value

0

Remarks

The type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. firewall_port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. firewall_port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. firewall_port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. firewall_port is set to 1080.

firewall_host property

The name or IP address of the firewall (optional).

Syntax

def get_firewall_host() -> str: ...
def set_firewall_host(value: str) -> None: ...

firewall_host = property(get_firewall_host, set_firewall_host)

Default Value

""

Remarks

The name or IP address of the firewall (optional). If a firewall_host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.

firewall_password property

A password if authentication is to be used when connecting through the firewall.

Syntax

def get_firewall_password() -> str: ...
def set_firewall_password(value: str) -> None: ...

firewall_password = property(get_firewall_password, set_firewall_password)

Default Value

""

Remarks

A password if authentication is to be used when connecting through the firewall. If firewall_host is specified, the firewall_user and firewall_password properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

firewall_port property

The Transmission Control Protocol (TCP) port for the firewall Host .

Syntax

def get_firewall_port() -> int: ...
def set_firewall_port(value: int) -> None: ...

firewall_port = property(get_firewall_port, set_firewall_port)

Default Value

0

Remarks

The Transmission Control Protocol (TCP) port for the firewall firewall_host. See the description of the firewall_host property for details.

NOTE: This property is set automatically when firewall_type is set to a valid value. See the description of the firewall_type property for details.

firewall_user property

A username if authentication is to be used when connecting through a firewall.

Syntax

def get_firewall_user() -> str: ...
def set_firewall_user(value: str) -> None: ...

firewall_user = property(get_firewall_user, set_firewall_user)

Default Value

""

Remarks

A username if authentication is to be used when connecting through a firewall. If firewall_host is specified, this property and the firewall_password property are used to connect and authenticate to the given Firewall. If the authentication fails, the class fails with an error.

from_address property

The sender of the original message.

Syntax

def get_from_address() -> str: ...
def set_from_address(value: str) -> None: ...

from_address = property(get_from_address, set_from_address)

Default Value

""

Remarks

The sender of the original message. The recipient is given by send_to.

Note that from_address and send_to correspond to the sender and recipient of the original message. For MDNs the roles are reversed, so that from_address indicates the recipient, and send_to indicates the sender of the MDN.

local_host property

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

def get_local_host() -> str: ...
def set_local_host(value: str) -> None: ...

local_host = property(get_local_host, set_local_host)

Default Value

""

Remarks

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the class is connected, the local_host property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

NOTE: local_host is not persistent. You must always set it in code, and never in the property window.

log_directory property

The path to a directory for logging.

Syntax

def get_log_directory() -> str: ...
def set_log_directory(value: str) -> None: ...

log_directory = property(get_log_directory, set_log_directory)

Default Value

""

Remarks

Setting LogDirectory will instruct the component to log the details of each transmission to unique files in the specified directory. For each request processed, the class will log the original EDI data, the complete text of the outgoing request and the incoming response.

The class will write a file for each transmission, with extension ".log". In case of error an additional file will be written with extension ".err", and the error will be reported in both files. Raw AS1 messages created or downloaded by the class will be written with extension ".as1", and MDNs created or downloaded will be written with extension ".as1-mdn".

The filenames will be chosen automatically by the class. Each filename will be the system time, in the format YYYY-MM-DD-HH-MM-SS-MMMM, with extensions "-2", "-3", used in case files of those names already exist. After each transaction is processed log_file will contain the name of the files just written, minus the extension ".log" or ".err".

If logs cannot be written an exception will be thrown.

log_file property

The log file written.

Syntax

def get_log_file() -> str: ...

log_file = property(get_log_file, None)

Default Value

""

Remarks

In case log_directory is specified two log files will be written in the specified directory and log_file will contain the path.

log_file will in fact refer to several files with appropriate extensions. A diagnostic log will be written with filename log_file + ".log", and any EDI data read will be written with filename log_file + ".dat". Raw AS1 messages and MDNs will also be written with extensions ".as1" and ".as1-mdn".

This property is read-only.

mail_message_cc property

The value of the Cc header of the mail message.

Syntax

def get_mail_message_cc() -> str: ...

mail_message_cc = property(get_mail_message_cc, None)

Default Value

""

Remarks

After calling select_mail_message this property will be populated with the value of the Cc header of the mail message.

This property is read-only.

mail_message_count property

The number of messages waiting in the mailbox.

Syntax

def get_mail_message_count() -> int: ...

mail_message_count = property(get_mail_message_count, None)

Default Value

0

Remarks

When the class is not connected to the mail server, the value of the mail_message_count property is 0. When connected, it contains the number of messages in the mailbox. You may set mail_message_number to any value between 1 and mail_message_count to inspect a given message.

This property is read-only.

mail_message_date property

The message date for the currently selected message.

Syntax

def get_mail_message_date() -> str: ...

mail_message_date = property(get_mail_message_date, None)

Default Value

""

Remarks

The date will be formatted like the following example:

Wed, 29 Dec 2004 11:58:02 +0700

This property is read-only.

mail_message_from property

The sender of the mail message.

Syntax

def get_mail_message_from() -> str: ...

mail_message_from = property(get_mail_message_from, None)

Default Value

""

Remarks

After calling select_mail_message this property will be populated. When processing AS1 transmissions, this will correspond to from_address. When processing MDNs, this will correspond to send_to.

This property is read-only.

mail_message_headers property

The message headers for the currently selected message.

Syntax

def get_mail_message_headers() -> str: ...

mail_message_headers = property(get_mail_message_headers, None)

Default Value

""

Remarks

After calling select_mail_message this property will contain the full headers of the mail message as reported by the mail server.

This property is read-only.

mail_message_number property

The message number on the incoming mail server.

Syntax

def get_mail_message_number() -> int: ...
def set_mail_message_number(value: int) -> None: ...

mail_message_number = property(get_mail_message_number, set_mail_message_number)

Default Value

0

Remarks

mail_message_number specifies a number between 1 and mail_message_count, and serves as a message pointer to an incoming mail message.

Set this property before calling select_mail_message, query_message_size or query_message_uid.

mail_message_reply_to property

The value of the ReplyTo header of the mail message.

Syntax

def get_mail_message_reply_to() -> str: ...

mail_message_reply_to = property(get_mail_message_reply_to, None)

Default Value

""

Remarks

After calling select_mail_message this property will be populated with the value of the ReplyTo header of the mail message.

This property is read-only.

mail_message_subject property

The subject of the mail message.

Syntax

def get_mail_message_subject() -> str: ...

mail_message_subject = property(get_mail_message_subject, None)

Default Value

""

Remarks

After calling select_mail_message this property will be populated with the subject of the mail message.

This property is read-only.

mail_message_text property

The text of the mail message.

Syntax

def get_mail_message_text() -> str: ...

mail_message_text = property(get_mail_message_text, None)

Default Value

""

Remarks

The text of the mail message identified by mail_message_number, if it has been downloaded from the server. To read the message, invoke read_request (receiver) or read_receipt (sender). In case the message is not as AS1 message this will throw an exception, but you may catch it and then read the value of mail_message_text.

This property is read-only.

mail_message_to property

The recipient of the mail message.

Syntax

def get_mail_message_to() -> str: ...

mail_message_to = property(get_mail_message_to, None)

Default Value

""

Remarks

After calling select_mail_message this property will be populated with the recipient of the mail message.

This property is read-only.

mail_server property

The address of your mail server.

Syntax

def get_mail_server() -> str: ...
def set_mail_server(value: str) -> None: ...

mail_server = property(get_mail_server, set_mail_server)

Default Value

""

Remarks

The address of your mail server. By default, the class will send outgoing mail via SMTP, and receive incoming mail via POP. Moreover, the class will assume that both servers are located at the address specified by mail_server.

In case you use different addresses for incoming and outgoing mail you should set the POPServer and SMTPServer configuration settings appropriately. You may also set POPPort and SMTPPort in case you use nonstandard ports.

To configure SSL you should set ssl_start_mode. Note that if SSL is used for sending but not receiving, or vice versa, you should set ssl_start_mode each time you send or receive a file.

mdn_options property

Used to indicate the options requested for the MDN receipt.

Syntax

def get_mdn_options() -> str: ...
def set_mdn_options(value: str) -> None: ...

mdn_options = property(get_mdn_options, set_mdn_options)

Default Value

"signed-receipt-protocol=optional, pkcs7-signature; signed-receipt-micalg=optional, sha-256"

Remarks

By default, the class will request that the MDN be signed with a PKCS#7 signature over a SHA-256 hash, which is the industry standard.

Set mdn_options to an empty string to request an unsigned receipt.

This property will automatically be updated when signature_algorithm is set. Normally you will not need to set this property, however you can set a value here to override the automatically generated value.

The string format is that of the Disposition-Notification-Options HTTP header, as specified in RFC 3335. As a form of shorthand, you may set this property to "sha1", "sha-256", or "md5" to request the indicated hash algorithm.

mdn_receipt_content property

This contains the entire content of the MDN Receipt.

Syntax

def get_mdn_receipt_content() -> bytes: ...
def set_mdn_receipt_content(value: bytes) -> None: ...

mdn_receipt_content = property(get_mdn_receipt_content, set_mdn_receipt_content)

Default Value

""

Remarks

This contains the entire content of the MDN Receipt. This is a multipart/report entity consisting of a machine readable mdn_receipt_mdn (Message Disposition Notification) and a human readable mdn_receipt_message, which itself may be embedded in a multipart/signed entity if requested by the AS2 sender.

mdn_receipt_header_count property

The number of headers in the MDN.

Syntax

def get_mdn_receipt_header_count() -> int: ...

mdn_receipt_header_count = property(get_mdn_receipt_header_count, None)

Default Value

0

Remarks

The number of headers in the MDN.

This property is read-only.

mdn_receipt_header_field property

The property name of the MDN header currently selected by HeaderIndex .

Syntax

def get_mdn_receipt_header_field() -> str: ...

mdn_receipt_header_field = property(get_mdn_receipt_header_field, None)

Default Value

""

Remarks

The field name of the MDN header currently selected by mdn_receipt_header_index.

This property is read-only.

mdn_receipt_header_index property

Which MDN header is currently selected to populate HeaderField and HeaderValue .

Syntax

def get_mdn_receipt_header_index() -> int: ...
def set_mdn_receipt_header_index(value: int) -> None: ...

mdn_receipt_header_index = property(get_mdn_receipt_header_index, set_mdn_receipt_header_index)

Default Value

0

Remarks

Which MDN header is currently selected to populate mdn_receipt_header_field and mdn_receipt_header_value.

Valid values are 0 to mdn_receipt_header_count - 1.

mdn_receipt_headers property

Headers contains all of the headers of the AS2 MDN Receipt as a single string.

Syntax

def get_mdn_receipt_headers() -> str: ...
def set_mdn_receipt_headers(value: str) -> None: ...

mdn_receipt_headers = property(get_mdn_receipt_headers, set_mdn_receipt_headers)

Default Value

""

Remarks

Headers contains all of the headers of the AS2 MDN Receipt as a single string. This will include headers such as AS2-From, AS2-To, Date, Content-Type, etc. In an AS2Sender, these will also contain the transport headers of the MDN Receipt (HTTP or SMTP headers, depending on the delivery option).

You can also use mdn_receipt_header_count, mdn_receipt_header_index, mdn_receipt_header_field, and mdn_receipt_header_value to easily iterate through each individual header.

mdn_receipt_header_value property

The value of the MDN header currently selected by HeaderIndex .

Syntax

def get_mdn_receipt_header_value() -> str: ...

mdn_receipt_header_value = property(get_mdn_receipt_header_value, None)

Default Value

""

Remarks

The value of the MDN header currently selected by mdn_receipt_header_index.

This property is read-only.

mdn_receipt_mdn property

MDN will contain the entire machine readable text of the Message Disposition Notification in the receipt.

Syntax

def get_mdn_receipt_mdn() -> str: ...

mdn_receipt_mdn = property(get_mdn_receipt_mdn, None)

Default Value

""

Remarks

MDN will contain the entire machine readable text of the Message Disposition Notification in the receipt. It will report either success or failure depending on the processing status of the receiver. In either case, it will be RFC-compliant.

This property is read-only.

mdn_receipt_message property

The human-readable portion of the MDN receipt.

Syntax

def get_mdn_receipt_message() -> str: ...

mdn_receipt_message = property(get_mdn_receipt_message, None)

Default Value

""

Remarks

The human-readable portion of the MDN receipt.

The human-readable portion of the MDN receipt that indicates the status of the message processing. This can be used to provide the user with a helpful message in the event that an error is encountered.

This property is read-only.

mdn_receipt_mic_value property

The Message Integrity Check(s) (one-way hash) of the original EDI message.

Syntax

def get_mdn_receipt_mic_value() -> str: ...

mdn_receipt_mic_value = property(get_mdn_receipt_mic_value, None)

Default Value

""

Remarks

The Message Integrity Check(s) (one-way hash) of the original EDI message.

An MDN Receipt contains a MIC calculated over the EDI message that the receipt is in response to, to be matched on the sender side against a saved value for the original request to ensure that the integrity of the data that the receiver reports is preserved. When a signed receipt is requested, the MIC is be calculated using the algorithm used on the incoming message's signature, or SHA-1 if the incoming message is not signed.

The MIC will be base64 encoded and reported with the algorithm name as specified in RFC 3335; e.g., "w7AguNJEmhF/qIjJw6LnnA==, md5".

This property is read-only.

mdn_receipt_signing_protocol property

This property contains the MIME type of the signature used, if any (i.

Syntax

def get_mdn_receipt_signing_protocol() -> str: ...

mdn_receipt_signing_protocol = property(get_mdn_receipt_signing_protocol, None)

Default Value

""

Remarks

This property contains the MIME type of the signature used, if any (i.e., "application/pkcs7-signature"), to create this MDNReceipt. It will contain an empty string if the receipt is unsigned.

This property is read-only.

mdn_to property

The system to which an MDN should be directed.

Syntax

def get_mdn_to() -> str: ...
def set_mdn_to(value: str) -> None: ...

mdn_to = property(get_mdn_to, set_mdn_to)

Default Value

""

Remarks

If this property is set, a Disposition-Notification-To header will be added to the request, and an MDN will be requested. This should be set to a valid email address, and would typically be the same as the from_address address.

By default, the class will request a PKCS#7 signature signed over SHA-256. This can be customized by specifying mdn_options.

message_id property

The Id of the message.

Syntax

def get_message_id() -> str: ...
def set_message_id(value: str) -> None: ...

message_id = property(get_message_id, set_message_id)

Default Value

""

Remarks

The Id format is as in RFC 2822: id-left@id-right.

In AS1, customizing the message_id is not supported. An appropriate message_id will be generated by the class for each outgoing message. You should record this value after sending this value, and set it again when you verify the receipt.

original_content_mic property

The Message Integrity Check(s) (one-way hash) of the outgoing message.

Syntax

def get_original_content_mic() -> str: ...
def set_original_content_mic(value: str) -> None: ...

original_content_mic = property(get_original_content_mic, set_original_content_mic)

Default Value

""

Remarks

A MIC will be calculated over the outgoing message using the same algorithm in the signature_algorithm configuration used to sign the message. The property will be set when post (in AS3, send) is invoked, and the MIC will automatically be checked against the Original-Content-MIC in the MDN for synchronous MDNs.

The format is in RFC 3335, i.e. "w7AguNJEmhF/qIjJw6LnnA==, md5", with a newline at the end.

If you are requesting an asynchronous MDN, you must save this value externally so that it can be loaded when the MDN is received (you may also use async_mdn_info_dir).

password property

The password for your incoming mail server.

Syntax

def get_password() -> str: ...
def set_password(value: str) -> None: ...

password = property(get_password, set_password)

Default Value

""

Remarks

The password for your incoming mail server. Set this before invoking connect.

receipt_signer_cert_effective_date property

The date on which this certificate becomes valid.

Syntax

def get_receipt_signer_cert_effective_date() -> str: ...

receipt_signer_cert_effective_date = property(get_receipt_signer_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

receipt_signer_cert_expiration_date property

The date on which the certificate expires.

Syntax

def get_receipt_signer_cert_expiration_date() -> str: ...

receipt_signer_cert_expiration_date = property(get_receipt_signer_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

receipt_signer_cert_extended_key_usage property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_receipt_signer_cert_extended_key_usage() -> str: ...

receipt_signer_cert_extended_key_usage = property(get_receipt_signer_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

receipt_signer_cert_fingerprint property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_receipt_signer_cert_fingerprint() -> str: ...

receipt_signer_cert_fingerprint = property(get_receipt_signer_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

receipt_signer_cert_fingerprint_sha1 property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_receipt_signer_cert_fingerprint_sha1() -> str: ...

receipt_signer_cert_fingerprint_sha1 = property(get_receipt_signer_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

receipt_signer_cert_fingerprint_sha256 property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_receipt_signer_cert_fingerprint_sha256() -> str: ...

receipt_signer_cert_fingerprint_sha256 = property(get_receipt_signer_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

receipt_signer_cert_issuer property

The issuer of the certificate.

Syntax

def get_receipt_signer_cert_issuer() -> str: ...

receipt_signer_cert_issuer = property(get_receipt_signer_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

receipt_signer_cert_private_key property

The private key of the certificate (if available).

Syntax

def get_receipt_signer_cert_private_key() -> str: ...

receipt_signer_cert_private_key = property(get_receipt_signer_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

NOTE: The receipt_signer_cert_private_key may be available but not exportable. In this case, receipt_signer_cert_private_key returns an empty string.

This property is read-only.

receipt_signer_cert_private_key_available property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_receipt_signer_cert_private_key_available() -> bool: ...

receipt_signer_cert_private_key_available = property(get_receipt_signer_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a receipt_signer_cert_private_key is available for the selected certificate. If receipt_signer_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

receipt_signer_cert_private_key_container property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_receipt_signer_cert_private_key_container() -> str: ...

receipt_signer_cert_private_key_container = property(get_receipt_signer_cert_private_key_container, None)

Default Value

""

Remarks

The name of the receipt_signer_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

receipt_signer_cert_public_key property

The public key of the certificate.

Syntax

def get_receipt_signer_cert_public_key() -> str: ...

receipt_signer_cert_public_key = property(get_receipt_signer_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

receipt_signer_cert_public_key_algorithm property

The textual description of the certificate's public key algorithm.

Syntax

def get_receipt_signer_cert_public_key_algorithm() -> str: ...

receipt_signer_cert_public_key_algorithm = property(get_receipt_signer_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

receipt_signer_cert_public_key_length property

The length of the certificate's public key (in bits).

Syntax

def get_receipt_signer_cert_public_key_length() -> int: ...

receipt_signer_cert_public_key_length = property(get_receipt_signer_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

receipt_signer_cert_serial_number property

The serial number of the certificate encoded as a string.

Syntax

def get_receipt_signer_cert_serial_number() -> str: ...

receipt_signer_cert_serial_number = property(get_receipt_signer_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

receipt_signer_cert_signature_algorithm property

The text description of the certificate's signature algorithm.

Syntax

def get_receipt_signer_cert_signature_algorithm() -> str: ...

receipt_signer_cert_signature_algorithm = property(get_receipt_signer_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

receipt_signer_cert_store property

The name of the certificate store for the client certificate.

Syntax

def get_receipt_signer_cert_store() -> bytes: ...
def set_receipt_signer_cert_store(value: bytes) -> None: ...

receipt_signer_cert_store = property(get_receipt_signer_cert_store, set_receipt_signer_cert_store)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The receipt_signer_cert_store_type property denotes the type of the certificate store specified by receipt_signer_cert_store. If the store is password-protected, specify the password in receipt_signer_cert_store_password.

receipt_signer_cert_store is used in conjunction with the receipt_signer_cert_subject property to specify client certificates. If receipt_signer_cert_store has a value, and receipt_signer_cert_subject or receipt_signer_cert_encoded is set, a search for a certificate is initiated. Please see the receipt_signer_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

receipt_signer_cert_store_password property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_receipt_signer_cert_store_password() -> str: ...
def set_receipt_signer_cert_store_password(value: str) -> None: ...

receipt_signer_cert_store_password = property(get_receipt_signer_cert_store_password, set_receipt_signer_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

receipt_signer_cert_store_type property

The type of certificate store for this certificate.

Syntax

def get_receipt_signer_cert_store_type() -> int: ...
def set_receipt_signer_cert_store_type(value: int) -> None: ...

receipt_signer_cert_store_type = property(get_receipt_signer_cert_store_type, set_receipt_signer_cert_store_type)

Possible Values

0   # User
1 # Machine
2 # PFXFile
3 # PFXBlob
4 # JKSFile
5 # JKSBlob
6 # PEMKeyFile
7 # PEMKeyBlob
8 # PublicKeyFile
9 # PublicKeyBlob
10 # SSHPublicKeyBlob
11 # P7BFile
12 # P7BBlob
13 # SSHPublicKeyFile
14 # PPKFile
15 # PPKBlob
16 # XMLFile
17 # XMLBlob
18 # JWKFile
19 # JWKBlob
20 # SecurityKey
21 # BCFKSFile
22 # BCFKSBlob
23 # PKCS11
99 # Auto

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

NOTE: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

NOTE: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

NOTE: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

NOTE: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

NOTE: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

NOTE: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the receipt_signer_cert_store and set receipt_signer_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

receipt_signer_cert_subject_alt_names property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_receipt_signer_cert_subject_alt_names() -> str: ...

receipt_signer_cert_subject_alt_names = property(get_receipt_signer_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

receipt_signer_cert_thumbprint_md5 property

The MD5 hash of the certificate.

Syntax

def get_receipt_signer_cert_thumbprint_md5() -> str: ...

receipt_signer_cert_thumbprint_md5 = property(get_receipt_signer_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

receipt_signer_cert_thumbprint_sha1 property

The SHA-1 hash of the certificate.

Syntax

def get_receipt_signer_cert_thumbprint_sha1() -> str: ...

receipt_signer_cert_thumbprint_sha1 = property(get_receipt_signer_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

receipt_signer_cert_thumbprint_sha256 property

The SHA-256 hash of the certificate.

Syntax

def get_receipt_signer_cert_thumbprint_sha256() -> str: ...

receipt_signer_cert_thumbprint_sha256 = property(get_receipt_signer_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

receipt_signer_cert_usage property

The text description of UsageFlags .

Syntax

def get_receipt_signer_cert_usage() -> str: ...

receipt_signer_cert_usage = property(get_receipt_signer_cert_usage, None)

Default Value

""

Remarks

The text description of receipt_signer_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

receipt_signer_cert_usage_flags property

The flags that show intended use for the certificate.

Syntax

def get_receipt_signer_cert_usage_flags() -> int: ...

receipt_signer_cert_usage_flags = property(get_receipt_signer_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of receipt_signer_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the receipt_signer_cert_usage property for a text representation of receipt_signer_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

receipt_signer_cert_version property

The certificate's version number.

Syntax

def get_receipt_signer_cert_version() -> str: ...

receipt_signer_cert_version = property(get_receipt_signer_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

receipt_signer_cert_subject property

The subject of the certificate used for client authentication.

Syntax

def get_receipt_signer_cert_subject() -> str: ...
def set_receipt_signer_cert_subject(value: str) -> None: ...

receipt_signer_cert_subject = property(get_receipt_signer_cert_subject, set_receipt_signer_cert_subject)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=example@email.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

receipt_signer_cert_encoded property

The certificate (PEM/Base64 encoded).

Syntax

def get_receipt_signer_cert_encoded() -> bytes: ...
def set_receipt_signer_cert_encoded(value: bytes) -> None: ...

receipt_signer_cert_encoded = property(get_receipt_signer_cert_encoded, set_receipt_signer_cert_encoded)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The receipt_signer_cert_store and receipt_signer_cert_subject properties also may be used to specify a certificate.

When receipt_signer_cert_encoded is set, a search is initiated in the current receipt_signer_cert_store for the private key of the certificate. If the key is found, receipt_signer_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, receipt_signer_cert_subject is set to an empty string.

recipient_cert_count property

The number of records in the RecipientCert arrays.

Syntax

def get_recipient_cert_count() -> int: ...
def set_recipient_cert_count(value: int) -> None: ...

recipient_cert_count = property(get_recipient_cert_count, set_recipient_cert_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at recipient_cert_count - 1.

recipient_cert_effective_date property

The date on which this certificate becomes valid.

Syntax

def get_recipient_cert_effective_date(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_expiration_date property

The date on which the certificate expires.

Syntax

def get_recipient_cert_expiration_date(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_extended_key_usage property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_recipient_cert_extended_key_usage(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_fingerprint property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_recipient_cert_fingerprint(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_fingerprint_sha1 property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_recipient_cert_fingerprint_sha1(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_fingerprint_sha256 property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_recipient_cert_fingerprint_sha256(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_issuer property

The issuer of the certificate.

Syntax

def get_recipient_cert_issuer(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_private_key property

The private key of the certificate (if available).

Syntax

def get_recipient_cert_private_key(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

NOTE: The recipient_cert_private_key may be available but not exportable. In this case, recipient_cert_private_key returns an empty string.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_private_key_available property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_recipient_cert_private_key_available(recipient_cert_index: int) -> bool: ...

Default Value

FALSE

Remarks

Whether a recipient_cert_private_key is available for the selected certificate. If recipient_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_private_key_container property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_recipient_cert_private_key_container(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The name of the recipient_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_public_key property

The public key of the certificate.

Syntax

def get_recipient_cert_public_key(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_public_key_algorithm property

The textual description of the certificate's public key algorithm.

Syntax

def get_recipient_cert_public_key_algorithm(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_public_key_length property

The length of the certificate's public key (in bits).

Syntax

def get_recipient_cert_public_key_length(recipient_cert_index: int) -> int: ...

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_serial_number property

The serial number of the certificate encoded as a string.

Syntax

def get_recipient_cert_serial_number(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_signature_algorithm property

The text description of the certificate's signature algorithm.

Syntax

def get_recipient_cert_signature_algorithm(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_store property

The name of the certificate store for the client certificate.

Syntax

def get_recipient_cert_store(recipient_cert_index: int) -> bytes: ...
def set_recipient_cert_store(recipient_cert_index: int, value: bytes) -> None: ...

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The recipient_cert_store_type property denotes the type of the certificate store specified by recipient_cert_store. If the store is password-protected, specify the password in recipient_cert_store_password.

recipient_cert_store is used in conjunction with the recipient_cert_subject property to specify client certificates. If recipient_cert_store has a value, and recipient_cert_subject or recipient_cert_encoded is set, a search for a certificate is initiated. Please see the recipient_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

recipient_cert_store_password property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_recipient_cert_store_password(recipient_cert_index: int) -> str: ...
def set_recipient_cert_store_password(recipient_cert_index: int, value: str) -> None: ...

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

recipient_cert_store_type property

The type of certificate store for this certificate.

Syntax

def get_recipient_cert_store_type(recipient_cert_index: int) -> int: ...
def set_recipient_cert_store_type(recipient_cert_index: int, value: int) -> None: ...

Possible Values

0   # User
1 # Machine
2 # PFXFile
3 # PFXBlob
4 # JKSFile
5 # JKSBlob
6 # PEMKeyFile
7 # PEMKeyBlob
8 # PublicKeyFile
9 # PublicKeyBlob
10 # SSHPublicKeyBlob
11 # P7BFile
12 # P7BBlob
13 # SSHPublicKeyFile
14 # PPKFile
15 # PPKBlob
16 # XMLFile
17 # XMLBlob
18 # JWKFile
19 # JWKBlob
20 # SecurityKey
21 # BCFKSFile
22 # BCFKSBlob
23 # PKCS11
99 # Auto

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

NOTE: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

NOTE: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

NOTE: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

NOTE: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

NOTE: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

NOTE: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the recipient_cert_store and set recipient_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

recipient_cert_subject_alt_names property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_recipient_cert_subject_alt_names(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_thumbprint_md5 property

The MD5 hash of the certificate.

Syntax

def get_recipient_cert_thumbprint_md5(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_thumbprint_sha1 property

The SHA-1 hash of the certificate.

Syntax

def get_recipient_cert_thumbprint_sha1(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_thumbprint_sha256 property

The SHA-256 hash of the certificate.

Syntax

def get_recipient_cert_thumbprint_sha256(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_usage property

The text description of UsageFlags .

Syntax

def get_recipient_cert_usage(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The text description of recipient_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_usage_flags property

The flags that show intended use for the certificate.

Syntax

def get_recipient_cert_usage_flags(recipient_cert_index: int) -> int: ...

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of recipient_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the recipient_cert_usage property for a text representation of recipient_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_version property

The certificate's version number.

Syntax

def get_recipient_cert_version(recipient_cert_index: int) -> str: ...

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

This property is read-only.

recipient_cert_subject property

The subject of the certificate used for client authentication.

Syntax

def get_recipient_cert_subject(recipient_cert_index: int) -> str: ...
def set_recipient_cert_subject(recipient_cert_index: int, value: str) -> None: ...

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=example@email.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

recipient_cert_encoded property

The certificate (PEM/Base64 encoded).

Syntax

def get_recipient_cert_encoded(recipient_cert_index: int) -> bytes: ...
def set_recipient_cert_encoded(recipient_cert_index: int, value: bytes) -> None: ...

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The recipient_cert_store and recipient_cert_subject properties also may be used to specify a certificate.

When recipient_cert_encoded is set, a search is initiated in the current recipient_cert_store for the private key of the certificate. If the key is found, recipient_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, recipient_cert_subject is set to an empty string.

The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.

send_to property

The recipient of the message.

Syntax

def get_send_to() -> str: ...
def set_send_to(value: str) -> None: ...

send_to = property(get_send_to, set_send_to)

Default Value

""

Remarks

The recipient of the AS1 message. The originator is given by from_address.

Note that from_address and send_to correspond to the sender and recipient of the original message. For MDNs the roles are reversed, so that from_address indicates the recipient, and send_to indicates the sender of the MDN.

signature_algorithm property

Signature algorithm to be used in outgoing messages.

Syntax

def get_signature_algorithm() -> str: ...
def set_signature_algorithm(value: str) -> None: ...

signature_algorithm = property(get_signature_algorithm, set_signature_algorithm)

Default Value

"sha-256"

Remarks

Signature Algorithm can be set to indicate the preferred signing algorithm. Possible values are:

  • sha1
  • md5
  • sha-256 (or sha256) (default)
  • sha-384 (or sha384)
  • sha-512 (or sha512)
  • sha-224 (or sha224)

The default value is "sha-256". When this property is set the mdn_options property is automatically updated to request the MDN receipt be signed with the same algorithm.

signing_cert_effective_date property

The date on which this certificate becomes valid.

Syntax

def get_signing_cert_effective_date() -> str: ...

signing_cert_effective_date = property(get_signing_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

signing_cert_expiration_date property

The date on which the certificate expires.

Syntax

def get_signing_cert_expiration_date() -> str: ...

signing_cert_expiration_date = property(get_signing_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

signing_cert_extended_key_usage property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_signing_cert_extended_key_usage() -> str: ...

signing_cert_extended_key_usage = property(get_signing_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

signing_cert_fingerprint property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_signing_cert_fingerprint() -> str: ...

signing_cert_fingerprint = property(get_signing_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

signing_cert_fingerprint_sha1 property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_signing_cert_fingerprint_sha1() -> str: ...

signing_cert_fingerprint_sha1 = property(get_signing_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

signing_cert_fingerprint_sha256 property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_signing_cert_fingerprint_sha256() -> str: ...

signing_cert_fingerprint_sha256 = property(get_signing_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

signing_cert_issuer property

The issuer of the certificate.

Syntax

def get_signing_cert_issuer() -> str: ...

signing_cert_issuer = property(get_signing_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

signing_cert_private_key property

The private key of the certificate (if available).

Syntax

def get_signing_cert_private_key() -> str: ...

signing_cert_private_key = property(get_signing_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

NOTE: The signing_cert_private_key may be available but not exportable. In this case, signing_cert_private_key returns an empty string.

This property is read-only.

signing_cert_private_key_available property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_signing_cert_private_key_available() -> bool: ...

signing_cert_private_key_available = property(get_signing_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a signing_cert_private_key is available for the selected certificate. If signing_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

signing_cert_private_key_container property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_signing_cert_private_key_container() -> str: ...

signing_cert_private_key_container = property(get_signing_cert_private_key_container, None)

Default Value

""

Remarks

The name of the signing_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

signing_cert_public_key property

The public key of the certificate.

Syntax

def get_signing_cert_public_key() -> str: ...

signing_cert_public_key = property(get_signing_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

signing_cert_public_key_algorithm property

The textual description of the certificate's public key algorithm.

Syntax

def get_signing_cert_public_key_algorithm() -> str: ...

signing_cert_public_key_algorithm = property(get_signing_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

signing_cert_public_key_length property

The length of the certificate's public key (in bits).

Syntax

def get_signing_cert_public_key_length() -> int: ...

signing_cert_public_key_length = property(get_signing_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

signing_cert_serial_number property

The serial number of the certificate encoded as a string.

Syntax

def get_signing_cert_serial_number() -> str: ...

signing_cert_serial_number = property(get_signing_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

signing_cert_signature_algorithm property

The text description of the certificate's signature algorithm.

Syntax

def get_signing_cert_signature_algorithm() -> str: ...

signing_cert_signature_algorithm = property(get_signing_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

signing_cert_store property

The name of the certificate store for the client certificate.

Syntax

def get_signing_cert_store() -> bytes: ...
def set_signing_cert_store(value: bytes) -> None: ...

signing_cert_store = property(get_signing_cert_store, set_signing_cert_store)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The signing_cert_store_type property denotes the type of the certificate store specified by signing_cert_store. If the store is password-protected, specify the password in signing_cert_store_password.

signing_cert_store is used in conjunction with the signing_cert_subject property to specify client certificates. If signing_cert_store has a value, and signing_cert_subject or signing_cert_encoded is set, a search for a certificate is initiated. Please see the signing_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

signing_cert_store_password property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_signing_cert_store_password() -> str: ...
def set_signing_cert_store_password(value: str) -> None: ...

signing_cert_store_password = property(get_signing_cert_store_password, set_signing_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

signing_cert_store_type property

The type of certificate store for this certificate.

Syntax

def get_signing_cert_store_type() -> int: ...
def set_signing_cert_store_type(value: int) -> None: ...

signing_cert_store_type = property(get_signing_cert_store_type, set_signing_cert_store_type)

Possible Values

0   # User
1 # Machine
2 # PFXFile
3 # PFXBlob
4 # JKSFile
5 # JKSBlob
6 # PEMKeyFile
7 # PEMKeyBlob
8 # PublicKeyFile
9 # PublicKeyBlob
10 # SSHPublicKeyBlob
11 # P7BFile
12 # P7BBlob
13 # SSHPublicKeyFile
14 # PPKFile
15 # PPKBlob
16 # XMLFile
17 # XMLBlob
18 # JWKFile
19 # JWKBlob
20 # SecurityKey
21 # BCFKSFile
22 # BCFKSBlob
23 # PKCS11
99 # Auto

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

NOTE: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

NOTE: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

NOTE: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

NOTE: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

NOTE: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

NOTE: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the signing_cert_store and set signing_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

signing_cert_subject_alt_names property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_signing_cert_subject_alt_names() -> str: ...

signing_cert_subject_alt_names = property(get_signing_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

signing_cert_thumbprint_md5 property

The MD5 hash of the certificate.

Syntax

def get_signing_cert_thumbprint_md5() -> str: ...

signing_cert_thumbprint_md5 = property(get_signing_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

signing_cert_thumbprint_sha1 property

The SHA-1 hash of the certificate.

Syntax

def get_signing_cert_thumbprint_sha1() -> str: ...

signing_cert_thumbprint_sha1 = property(get_signing_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

signing_cert_thumbprint_sha256 property

The SHA-256 hash of the certificate.

Syntax

def get_signing_cert_thumbprint_sha256() -> str: ...

signing_cert_thumbprint_sha256 = property(get_signing_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

signing_cert_usage property

The text description of UsageFlags .

Syntax

def get_signing_cert_usage() -> str: ...

signing_cert_usage = property(get_signing_cert_usage, None)

Default Value

""

Remarks

The text description of signing_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

signing_cert_usage_flags property

The flags that show intended use for the certificate.

Syntax

def get_signing_cert_usage_flags() -> int: ...

signing_cert_usage_flags = property(get_signing_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of signing_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the signing_cert_usage property for a text representation of signing_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

signing_cert_version property

The certificate's version number.

Syntax

def get_signing_cert_version() -> str: ...

signing_cert_version = property(get_signing_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

signing_cert_subject property

The subject of the certificate used for client authentication.

Syntax

def get_signing_cert_subject() -> str: ...
def set_signing_cert_subject(value: str) -> None: ...

signing_cert_subject = property(get_signing_cert_subject, set_signing_cert_subject)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=example@email.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

signing_cert_encoded property

The certificate (PEM/Base64 encoded).

Syntax

def get_signing_cert_encoded() -> bytes: ...
def set_signing_cert_encoded(value: bytes) -> None: ...

signing_cert_encoded = property(get_signing_cert_encoded, set_signing_cert_encoded)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The signing_cert_store and signing_cert_subject properties also may be used to specify a certificate.

When signing_cert_encoded is set, a search is initiated in the current signing_cert_store for the private key of the certificate. If the key is found, signing_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, signing_cert_subject is set to an empty string.

ssl_accept_server_cert_effective_date property

The date on which this certificate becomes valid.

Syntax

def get_ssl_accept_server_cert_effective_date() -> str: ...

ssl_accept_server_cert_effective_date = property(get_ssl_accept_server_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

ssl_accept_server_cert_expiration_date property

The date on which the certificate expires.

Syntax

def get_ssl_accept_server_cert_expiration_date() -> str: ...

ssl_accept_server_cert_expiration_date = property(get_ssl_accept_server_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

ssl_accept_server_cert_extended_key_usage property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_ssl_accept_server_cert_extended_key_usage() -> str: ...

ssl_accept_server_cert_extended_key_usage = property(get_ssl_accept_server_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

ssl_accept_server_cert_fingerprint property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_ssl_accept_server_cert_fingerprint() -> str: ...

ssl_accept_server_cert_fingerprint = property(get_ssl_accept_server_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

ssl_accept_server_cert_fingerprint_sha1 property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_ssl_accept_server_cert_fingerprint_sha1() -> str: ...

ssl_accept_server_cert_fingerprint_sha1 = property(get_ssl_accept_server_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

ssl_accept_server_cert_fingerprint_sha256 property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_ssl_accept_server_cert_fingerprint_sha256() -> str: ...

ssl_accept_server_cert_fingerprint_sha256 = property(get_ssl_accept_server_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

ssl_accept_server_cert_issuer property

The issuer of the certificate.

Syntax

def get_ssl_accept_server_cert_issuer() -> str: ...

ssl_accept_server_cert_issuer = property(get_ssl_accept_server_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

ssl_accept_server_cert_private_key property

The private key of the certificate (if available).

Syntax

def get_ssl_accept_server_cert_private_key() -> str: ...

ssl_accept_server_cert_private_key = property(get_ssl_accept_server_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

NOTE: The ssl_accept_server_cert_private_key may be available but not exportable. In this case, ssl_accept_server_cert_private_key returns an empty string.

This property is read-only.

ssl_accept_server_cert_private_key_available property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_ssl_accept_server_cert_private_key_available() -> bool: ...

ssl_accept_server_cert_private_key_available = property(get_ssl_accept_server_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a ssl_accept_server_cert_private_key is available for the selected certificate. If ssl_accept_server_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

ssl_accept_server_cert_private_key_container property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_ssl_accept_server_cert_private_key_container() -> str: ...

ssl_accept_server_cert_private_key_container = property(get_ssl_accept_server_cert_private_key_container, None)

Default Value

""

Remarks

The name of the ssl_accept_server_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

ssl_accept_server_cert_public_key property

The public key of the certificate.

Syntax

def get_ssl_accept_server_cert_public_key() -> str: ...

ssl_accept_server_cert_public_key = property(get_ssl_accept_server_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

ssl_accept_server_cert_public_key_algorithm property

The textual description of the certificate's public key algorithm.

Syntax

def get_ssl_accept_server_cert_public_key_algorithm() -> str: ...

ssl_accept_server_cert_public_key_algorithm = property(get_ssl_accept_server_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_accept_server_cert_public_key_length property

The length of the certificate's public key (in bits).

Syntax

def get_ssl_accept_server_cert_public_key_length() -> int: ...

ssl_accept_server_cert_public_key_length = property(get_ssl_accept_server_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

ssl_accept_server_cert_serial_number property

The serial number of the certificate encoded as a string.

Syntax

def get_ssl_accept_server_cert_serial_number() -> str: ...

ssl_accept_server_cert_serial_number = property(get_ssl_accept_server_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

ssl_accept_server_cert_signature_algorithm property

The text description of the certificate's signature algorithm.

Syntax

def get_ssl_accept_server_cert_signature_algorithm() -> str: ...

ssl_accept_server_cert_signature_algorithm = property(get_ssl_accept_server_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_accept_server_cert_store property

The name of the certificate store for the client certificate.

Syntax

def get_ssl_accept_server_cert_store() -> bytes: ...
def set_ssl_accept_server_cert_store(value: bytes) -> None: ...

ssl_accept_server_cert_store = property(get_ssl_accept_server_cert_store, set_ssl_accept_server_cert_store)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The ssl_accept_server_cert_store_type property denotes the type of the certificate store specified by ssl_accept_server_cert_store. If the store is password-protected, specify the password in ssl_accept_server_cert_store_password.

ssl_accept_server_cert_store is used in conjunction with the ssl_accept_server_cert_subject property to specify client certificates. If ssl_accept_server_cert_store has a value, and ssl_accept_server_cert_subject or ssl_accept_server_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_accept_server_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

ssl_accept_server_cert_store_password property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_accept_server_cert_store_password() -> str: ...
def set_ssl_accept_server_cert_store_password(value: str) -> None: ...

ssl_accept_server_cert_store_password = property(get_ssl_accept_server_cert_store_password, set_ssl_accept_server_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

ssl_accept_server_cert_store_type property

The type of certificate store for this certificate.

Syntax

def get_ssl_accept_server_cert_store_type() -> int: ...
def set_ssl_accept_server_cert_store_type(value: int) -> None: ...

ssl_accept_server_cert_store_type = property(get_ssl_accept_server_cert_store_type, set_ssl_accept_server_cert_store_type)

Possible Values

0   # User
1 # Machine
2 # PFXFile
3 # PFXBlob
4 # JKSFile
5 # JKSBlob
6 # PEMKeyFile
7 # PEMKeyBlob
8 # PublicKeyFile
9 # PublicKeyBlob
10 # SSHPublicKeyBlob
11 # P7BFile
12 # P7BBlob
13 # SSHPublicKeyFile
14 # PPKFile
15 # PPKBlob
16 # XMLFile
17 # XMLBlob
18 # JWKFile
19 # JWKBlob
20 # SecurityKey
21 # BCFKSFile
22 # BCFKSBlob
23 # PKCS11
99 # Auto

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

NOTE: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

NOTE: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

NOTE: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

NOTE: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

NOTE: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

NOTE: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_accept_server_cert_store and set ssl_accept_server_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

ssl_accept_server_cert_subject_alt_names property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_ssl_accept_server_cert_subject_alt_names() -> str: ...

ssl_accept_server_cert_subject_alt_names = property(get_ssl_accept_server_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

ssl_accept_server_cert_thumbprint_md5 property

The MD5 hash of the certificate.

Syntax

def get_ssl_accept_server_cert_thumbprint_md5() -> str: ...

ssl_accept_server_cert_thumbprint_md5 = property(get_ssl_accept_server_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_accept_server_cert_thumbprint_sha1 property

The SHA-1 hash of the certificate.

Syntax

def get_ssl_accept_server_cert_thumbprint_sha1() -> str: ...

ssl_accept_server_cert_thumbprint_sha1 = property(get_ssl_accept_server_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_accept_server_cert_thumbprint_sha256 property

The SHA-256 hash of the certificate.

Syntax

def get_ssl_accept_server_cert_thumbprint_sha256() -> str: ...

ssl_accept_server_cert_thumbprint_sha256 = property(get_ssl_accept_server_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_accept_server_cert_usage property

The text description of UsageFlags .

Syntax

def get_ssl_accept_server_cert_usage() -> str: ...

ssl_accept_server_cert_usage = property(get_ssl_accept_server_cert_usage, None)

Default Value

""

Remarks

The text description of ssl_accept_server_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

ssl_accept_server_cert_usage_flags property

The flags that show intended use for the certificate.

Syntax

def get_ssl_accept_server_cert_usage_flags() -> int: ...

ssl_accept_server_cert_usage_flags = property(get_ssl_accept_server_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of ssl_accept_server_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the ssl_accept_server_cert_usage property for a text representation of ssl_accept_server_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

ssl_accept_server_cert_version property

The certificate's version number.

Syntax

def get_ssl_accept_server_cert_version() -> str: ...

ssl_accept_server_cert_version = property(get_ssl_accept_server_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

ssl_accept_server_cert_subject property

The subject of the certificate used for client authentication.

Syntax

def get_ssl_accept_server_cert_subject() -> str: ...
def set_ssl_accept_server_cert_subject(value: str) -> None: ...

ssl_accept_server_cert_subject = property(get_ssl_accept_server_cert_subject, set_ssl_accept_server_cert_subject)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=example@email.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

ssl_accept_server_cert_encoded property

The certificate (PEM/Base64 encoded).

Syntax

def get_ssl_accept_server_cert_encoded() -> bytes: ...
def set_ssl_accept_server_cert_encoded(value: bytes) -> None: ...

ssl_accept_server_cert_encoded = property(get_ssl_accept_server_cert_encoded, set_ssl_accept_server_cert_encoded)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_accept_server_cert_store and ssl_accept_server_cert_subject properties also may be used to specify a certificate.

When ssl_accept_server_cert_encoded is set, a search is initiated in the current ssl_accept_server_cert_store for the private key of the certificate. If the key is found, ssl_accept_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_accept_server_cert_subject is set to an empty string.

ssl_cert_effective_date property

The date on which this certificate becomes valid.

Syntax

def get_ssl_cert_effective_date() -> str: ...

ssl_cert_effective_date = property(get_ssl_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

ssl_cert_expiration_date property

The date on which the certificate expires.

Syntax

def get_ssl_cert_expiration_date() -> str: ...

ssl_cert_expiration_date = property(get_ssl_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

ssl_cert_extended_key_usage property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_ssl_cert_extended_key_usage() -> str: ...

ssl_cert_extended_key_usage = property(get_ssl_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

ssl_cert_fingerprint property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_ssl_cert_fingerprint() -> str: ...

ssl_cert_fingerprint = property(get_ssl_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

ssl_cert_fingerprint_sha1 property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_ssl_cert_fingerprint_sha1() -> str: ...

ssl_cert_fingerprint_sha1 = property(get_ssl_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

ssl_cert_fingerprint_sha256 property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_ssl_cert_fingerprint_sha256() -> str: ...

ssl_cert_fingerprint_sha256 = property(get_ssl_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

ssl_cert_issuer property

The issuer of the certificate.

Syntax

def get_ssl_cert_issuer() -> str: ...

ssl_cert_issuer = property(get_ssl_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

ssl_cert_private_key property

The private key of the certificate (if available).

Syntax

def get_ssl_cert_private_key() -> str: ...

ssl_cert_private_key = property(get_ssl_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

NOTE: The ssl_cert_private_key may be available but not exportable. In this case, ssl_cert_private_key returns an empty string.

This property is read-only.

ssl_cert_private_key_available property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_ssl_cert_private_key_available() -> bool: ...

ssl_cert_private_key_available = property(get_ssl_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a ssl_cert_private_key is available for the selected certificate. If ssl_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

ssl_cert_private_key_container property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_ssl_cert_private_key_container() -> str: ...

ssl_cert_private_key_container = property(get_ssl_cert_private_key_container, None)

Default Value

""

Remarks

The name of the ssl_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

ssl_cert_public_key property

The public key of the certificate.

Syntax

def get_ssl_cert_public_key() -> str: ...

ssl_cert_public_key = property(get_ssl_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

ssl_cert_public_key_algorithm property

The textual description of the certificate's public key algorithm.

Syntax

def get_ssl_cert_public_key_algorithm() -> str: ...

ssl_cert_public_key_algorithm = property(get_ssl_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_cert_public_key_length property

The length of the certificate's public key (in bits).

Syntax

def get_ssl_cert_public_key_length() -> int: ...

ssl_cert_public_key_length = property(get_ssl_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

ssl_cert_serial_number property

The serial number of the certificate encoded as a string.

Syntax

def get_ssl_cert_serial_number() -> str: ...

ssl_cert_serial_number = property(get_ssl_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

ssl_cert_signature_algorithm property

The text description of the certificate's signature algorithm.

Syntax

def get_ssl_cert_signature_algorithm() -> str: ...

ssl_cert_signature_algorithm = property(get_ssl_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_cert_store property

The name of the certificate store for the client certificate.

Syntax

def get_ssl_cert_store() -> bytes: ...
def set_ssl_cert_store(value: bytes) -> None: ...

ssl_cert_store = property(get_ssl_cert_store, set_ssl_cert_store)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The ssl_cert_store_type property denotes the type of the certificate store specified by ssl_cert_store. If the store is password-protected, specify the password in ssl_cert_store_password.

ssl_cert_store is used in conjunction with the ssl_cert_subject property to specify client certificates. If ssl_cert_store has a value, and ssl_cert_subject or ssl_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

ssl_cert_store_password property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_cert_store_password() -> str: ...
def set_ssl_cert_store_password(value: str) -> None: ...

ssl_cert_store_password = property(get_ssl_cert_store_password, set_ssl_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

ssl_cert_store_type property

The type of certificate store for this certificate.

Syntax

def get_ssl_cert_store_type() -> int: ...
def set_ssl_cert_store_type(value: int) -> None: ...

ssl_cert_store_type = property(get_ssl_cert_store_type, set_ssl_cert_store_type)

Possible Values

0   # User
1 # Machine
2 # PFXFile
3 # PFXBlob
4 # JKSFile
5 # JKSBlob
6 # PEMKeyFile
7 # PEMKeyBlob
8 # PublicKeyFile
9 # PublicKeyBlob
10 # SSHPublicKeyBlob
11 # P7BFile
12 # P7BBlob
13 # SSHPublicKeyFile
14 # PPKFile
15 # PPKBlob
16 # XMLFile
17 # XMLBlob
18 # JWKFile
19 # JWKBlob
20 # SecurityKey
21 # BCFKSFile
22 # BCFKSBlob
23 # PKCS11
99 # Auto

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

NOTE: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

NOTE: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

NOTE: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

NOTE: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

NOTE: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

NOTE: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_cert_store and set ssl_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

ssl_cert_subject_alt_names property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_ssl_cert_subject_alt_names() -> str: ...

ssl_cert_subject_alt_names = property(get_ssl_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

ssl_cert_thumbprint_md5 property

The MD5 hash of the certificate.

Syntax

def get_ssl_cert_thumbprint_md5() -> str: ...

ssl_cert_thumbprint_md5 = property(get_ssl_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_cert_thumbprint_sha1 property

The SHA-1 hash of the certificate.

Syntax

def get_ssl_cert_thumbprint_sha1() -> str: ...

ssl_cert_thumbprint_sha1 = property(get_ssl_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_cert_thumbprint_sha256 property

The SHA-256 hash of the certificate.

Syntax

def get_ssl_cert_thumbprint_sha256() -> str: ...

ssl_cert_thumbprint_sha256 = property(get_ssl_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_cert_usage property

The text description of UsageFlags .

Syntax

def get_ssl_cert_usage() -> str: ...

ssl_cert_usage = property(get_ssl_cert_usage, None)

Default Value

""

Remarks

The text description of ssl_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

ssl_cert_usage_flags property

The flags that show intended use for the certificate.

Syntax

def get_ssl_cert_usage_flags() -> int: ...

ssl_cert_usage_flags = property(get_ssl_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of ssl_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the ssl_cert_usage property for a text representation of ssl_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

ssl_cert_version property

The certificate's version number.

Syntax

def get_ssl_cert_version() -> str: ...

ssl_cert_version = property(get_ssl_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

ssl_cert_subject property

The subject of the certificate used for client authentication.

Syntax

def get_ssl_cert_subject() -> str: ...
def set_ssl_cert_subject(value: str) -> None: ...

ssl_cert_subject = property(get_ssl_cert_subject, set_ssl_cert_subject)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=example@email.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

ssl_cert_encoded property

The certificate (PEM/Base64 encoded).

Syntax

def get_ssl_cert_encoded() -> bytes: ...
def set_ssl_cert_encoded(value: bytes) -> None: ...

ssl_cert_encoded = property(get_ssl_cert_encoded, set_ssl_cert_encoded)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_cert_store and ssl_cert_subject properties also may be used to specify a certificate.

When ssl_cert_encoded is set, a search is initiated in the current ssl_cert_store for the private key of the certificate. If the key is found, ssl_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_cert_subject is set to an empty string.

ssl_provider property

The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.

Syntax

def get_ssl_provider() -> int: ...
def set_ssl_provider(value: int) -> None: ...

ssl_provider = property(get_ssl_provider, set_ssl_provider)

Possible Values

0   # Automatic
1 # Platform
2 # Internal

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are as follows:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, on Windows, the class will use the platform implementation. On Linux/macOS, the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used on all platforms.

ssl_server_cert_effective_date property

The date on which this certificate becomes valid.

Syntax

def get_ssl_server_cert_effective_date() -> str: ...

ssl_server_cert_effective_date = property(get_ssl_server_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

ssl_server_cert_expiration_date property

The date on which the certificate expires.

Syntax

def get_ssl_server_cert_expiration_date() -> str: ...

ssl_server_cert_expiration_date = property(get_ssl_server_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

ssl_server_cert_extended_key_usage property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_ssl_server_cert_extended_key_usage() -> str: ...

ssl_server_cert_extended_key_usage = property(get_ssl_server_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

ssl_server_cert_fingerprint property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_ssl_server_cert_fingerprint() -> str: ...

ssl_server_cert_fingerprint = property(get_ssl_server_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

ssl_server_cert_fingerprint_sha1 property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_ssl_server_cert_fingerprint_sha1() -> str: ...

ssl_server_cert_fingerprint_sha1 = property(get_ssl_server_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

ssl_server_cert_fingerprint_sha256 property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_ssl_server_cert_fingerprint_sha256() -> str: ...

ssl_server_cert_fingerprint_sha256 = property(get_ssl_server_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

ssl_server_cert_issuer property

The issuer of the certificate.

Syntax

def get_ssl_server_cert_issuer() -> str: ...

ssl_server_cert_issuer = property(get_ssl_server_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

ssl_server_cert_private_key property

The private key of the certificate (if available).

Syntax

def get_ssl_server_cert_private_key() -> str: ...

ssl_server_cert_private_key = property(get_ssl_server_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

NOTE: The ssl_server_cert_private_key may be available but not exportable. In this case, ssl_server_cert_private_key returns an empty string.

This property is read-only.

ssl_server_cert_private_key_available property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_ssl_server_cert_private_key_available() -> bool: ...

ssl_server_cert_private_key_available = property(get_ssl_server_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a ssl_server_cert_private_key is available for the selected certificate. If ssl_server_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

ssl_server_cert_private_key_container property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_ssl_server_cert_private_key_container() -> str: ...

ssl_server_cert_private_key_container = property(get_ssl_server_cert_private_key_container, None)

Default Value

""

Remarks

The name of the ssl_server_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

ssl_server_cert_public_key property

The public key of the certificate.

Syntax

def get_ssl_server_cert_public_key() -> str: ...

ssl_server_cert_public_key = property(get_ssl_server_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

ssl_server_cert_public_key_algorithm property

The textual description of the certificate's public key algorithm.

Syntax

def get_ssl_server_cert_public_key_algorithm() -> str: ...

ssl_server_cert_public_key_algorithm = property(get_ssl_server_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_server_cert_public_key_length property

The length of the certificate's public key (in bits).

Syntax

def get_ssl_server_cert_public_key_length() -> int: ...

ssl_server_cert_public_key_length = property(get_ssl_server_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

ssl_server_cert_serial_number property

The serial number of the certificate encoded as a string.

Syntax

def get_ssl_server_cert_serial_number() -> str: ...

ssl_server_cert_serial_number = property(get_ssl_server_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

ssl_server_cert_signature_algorithm property

The text description of the certificate's signature algorithm.

Syntax

def get_ssl_server_cert_signature_algorithm() -> str: ...

ssl_server_cert_signature_algorithm = property(get_ssl_server_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_server_cert_store property

The name of the certificate store for the client certificate.

Syntax

def get_ssl_server_cert_store() -> bytes: ...

ssl_server_cert_store = property(get_ssl_server_cert_store, None)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The ssl_server_cert_store_type property denotes the type of the certificate store specified by ssl_server_cert_store. If the store is password-protected, specify the password in ssl_server_cert_store_password.

ssl_server_cert_store is used in conjunction with the ssl_server_cert_subject property to specify client certificates. If ssl_server_cert_store has a value, and ssl_server_cert_subject or ssl_server_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_server_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

This property is read-only.

ssl_server_cert_store_password property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_server_cert_store_password() -> str: ...

ssl_server_cert_store_password = property(get_ssl_server_cert_store_password, None)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

This property is read-only.

ssl_server_cert_store_type property

The type of certificate store for this certificate.

Syntax

def get_ssl_server_cert_store_type() -> int: ...

ssl_server_cert_store_type = property(get_ssl_server_cert_store_type, None)

Possible Values

0   # User
1 # Machine
2 # PFXFile
3 # PFXBlob
4 # JKSFile
5 # JKSBlob
6 # PEMKeyFile
7 # PEMKeyBlob
8 # PublicKeyFile
9 # PublicKeyBlob
10 # SSHPublicKeyBlob
11 # P7BFile
12 # P7BBlob
13 # SSHPublicKeyFile
14 # PPKFile
15 # PPKBlob
16 # XMLFile
17 # XMLBlob
18 # JWKFile
19 # JWKBlob
20 # SecurityKey
21 # BCFKSFile
22 # BCFKSBlob
23 # PKCS11
99 # Auto

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

NOTE: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

NOTE: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

NOTE: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

NOTE: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

NOTE: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

NOTE: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_server_cert_store and set ssl_server_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

This property is read-only.

ssl_server_cert_subject_alt_names property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_ssl_server_cert_subject_alt_names() -> str: ...

ssl_server_cert_subject_alt_names = property(get_ssl_server_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

ssl_server_cert_thumbprint_md5 property

The MD5 hash of the certificate.

Syntax

def get_ssl_server_cert_thumbprint_md5() -> str: ...

ssl_server_cert_thumbprint_md5 = property(get_ssl_server_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_server_cert_thumbprint_sha1 property

The SHA-1 hash of the certificate.

Syntax

def get_ssl_server_cert_thumbprint_sha1() -> str: ...

ssl_server_cert_thumbprint_sha1 = property(get_ssl_server_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_server_cert_thumbprint_sha256 property

The SHA-256 hash of the certificate.

Syntax

def get_ssl_server_cert_thumbprint_sha256() -> str: ...

ssl_server_cert_thumbprint_sha256 = property(get_ssl_server_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_server_cert_usage property

The text description of UsageFlags .

Syntax

def get_ssl_server_cert_usage() -> str: ...

ssl_server_cert_usage = property(get_ssl_server_cert_usage, None)

Default Value

""

Remarks

The text description of ssl_server_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

ssl_server_cert_usage_flags property

The flags that show intended use for the certificate.

Syntax

def get_ssl_server_cert_usage_flags() -> int: ...

ssl_server_cert_usage_flags = property(get_ssl_server_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of ssl_server_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the ssl_server_cert_usage property for a text representation of ssl_server_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

ssl_server_cert_version property

The certificate's version number.

Syntax

def get_ssl_server_cert_version() -> str: ...

ssl_server_cert_version = property(get_ssl_server_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

ssl_server_cert_subject property

The subject of the certificate used for client authentication.

Syntax

def get_ssl_server_cert_subject() -> str: ...

ssl_server_cert_subject = property(get_ssl_server_cert_subject, None)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=example@email.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

This property is read-only.

ssl_server_cert_encoded property

The certificate (PEM/Base64 encoded).

Syntax

def get_ssl_server_cert_encoded() -> bytes: ...

ssl_server_cert_encoded = property(get_ssl_server_cert_encoded, None)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_server_cert_store and ssl_server_cert_subject properties also may be used to specify a certificate.

When ssl_server_cert_encoded is set, a search is initiated in the current ssl_server_cert_store for the private key of the certificate. If the key is found, ssl_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_server_cert_subject is set to an empty string.

This property is read-only.

ssl_start_mode property

Determines how the class starts the SSL negotiation. By default, SSL will not be used.

Syntax

def get_ssl_start_mode() -> int: ...
def set_ssl_start_mode(value: int) -> None: ...

ssl_start_mode = property(get_ssl_start_mode, set_ssl_start_mode)

Possible Values

0   # Automatic
1 # Implicit
2 # Explicit
3 # None

Default Value

3

Remarks

The ssl_start_mode property may have one of the following values:

0 (sslAutomatic - default)If the remote port is set to the standard plaintext port of the protocol (where applicable), the class will behave the same as if ssl_start_mode is set to sslExplicit. In all other cases, SSL negotiation will be implicit (sslImplicit).
1 (sslImplicit)The SSL negotiation will start immediately after the connection is established.
2 (sslExplicit)The class will first connect in plaintext, and then explicitly start SSL negotiation through a protocol command such as STARTTLS.
3 (sslNone)No SSL negotiation, no SSL security. All communication will be in plaintext mode.

subject property

The subject of the message.

Syntax

def get_subject() -> str: ...
def set_subject(value: str) -> None: ...

subject = property(get_subject, set_subject)

Default Value

"AS1 Message"

Remarks

The human-readable subject of the outgoing message.

user property

The username for your incoming mail server.

Syntax

def get_user() -> str: ...
def set_user(value: str) -> None: ...

user = property(get_user, set_user)

Default Value

""

Remarks

The username for your incoming mail server. Set this before invoking connect.

config method

Sets or retrieves a configuration setting.

Syntax

def config(configuration_string: str) -> str: ...

Remarks

config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

connect method

Connects to the incoming mail server.

Syntax

def connect() -> None: ...

Remarks

Connects to the incoming mail server specified by mail_server. You must set user and password prior to calling connect. The connection will be maintained until you call disconnect.

If you wish to connect in SSL you should first set the ssl_start_mode property. Note that it is not necessary to explicitly connect to an SMTP server for outgoing mail; a connection will be created and destroyed each time a mail is sent.

delete_message method

Deletes the message specified by MailMessageNumber .

Syntax

def delete_message() -> None: ...

Remarks

Requests that the mail_server delete the message specified by mail_message_number. The message will not actually be deleted until the connection is closed.

disconnect method

Disconnects from the incoming mail server.

Syntax

def disconnect() -> None: ...

Remarks

Disconnects from the incoming mail server specified by mail_server.

process_queue method

Send the messages queued for sending.

Syntax

def process_queue(directory: str) -> None: ...

Remarks

Invoking process_queue sends the messages that have been queued by queue.

query_message_size method

Returns the size in bytes of the current message.

Syntax

def query_message_size() -> int: ...

Remarks

This method queries the server for the size in bytes of the message specified by mail_message_number. The method returns the size (in bytes) of the message.

query_message_uid method

Returns the unique identifier of the message as specified by the server.

Syntax

def query_message_uid() -> str: ...

Remarks

This method returns the unique identifier of the message specified by mail_message_number.

queue method

Prepares and queues the message to the specified directory.

Syntax

def queue(directory: str) -> None: ...

Remarks

Invoking queue will prepare and queue the AS1 message. It will be signed if signing_cert is set, encrypted if recipient_cert is set, and compressed if compression_format is set. A receipt will be requested if mdn_to is set. The queued message can then be sent by invoking process_queue.

read_receipt method

Reads and parses (but does not verify) an MDN receipt.

Syntax

def read_receipt() -> None: ...

Remarks

read_receipt will retrieve the file specified by mail_message_number from the mail server, store it in mdn_receipt and attempt to parse it as an MDN receipt. If the file is a valid MDN receipt, the class will determine the originator of the receipt and the message_id of the original message. The originator of the receipt (your trading partner) will be stored in send_to, the intended recipient (presumably your system) will be stored in from_address, and the original message Id will be stored in message_id.

If you are not currently connected to a mail server, the class will process the receipt specified by mdn_receipt.

You should then look up the original message and set original_content_mic to the value of original_content_mic originally computed when the message was sent (you will need to save this information externally). You should also set receipt_signer_cert based on the value of send_to if necessary. Also, set mdn_options to the value used when making the original request.

Finally, verify_receipt should be used to verify the receipt.

reset method

Resets the state of the control.

Syntax

def reset() -> None: ...

Remarks

Reset resets the state of the class. All properties will be set to their default values.

select_mail_message method

Selects and obtains information about the specified message.

Syntax

def select_mail_message() -> None: ...

Remarks

This method selects the message specified by mail_message_number and retrieves information about it.

After calling this method properties such as mail_message_headers, mail_message_date, mail_message_from, etc. will be populated and allow you to determine if this message is an AS1 message. Additional properties are exposed via the config method.

If this message is an AS1 receipt (MDN), use read_receipt to read it. The mdn_receipt will then be populated with the receipt, and send_to will be populated with the email address of the originator. (from_address and send_to correspond to the originator and recipient of the original AS1 transmission.) You may then set trading partner information and invoke verify_receipt to verify the receipt.

send method

Prepares and sends the AS1 message.

Syntax

def send() -> None: ...

Remarks

Invoking send will prepare and send the AS1 message. It will be signed if signing_cert is set, encrypted if recipient_cert is set, and compressed if compression_format is set. A receipt will be requested if mdn_to is set.

You should set mail_server prior to sending.

set_request_header method

Allows the user to set or add arbitrary HTTP request headers.

Syntax

def set_request_header(header_name: str, header_value: str) -> None: ...

Remarks

HeaderName should contain the header name, and HeaderValue should contain its value. Use this to set headers such as To, Date, etc. Note that a default value for Date will automatically be determined and this method may be used to override the default.

SetRequestHeader may be used to set any header except for the following: AS2-To, AS2-From, AS2-Version, Subject, Message-Id, Disposition-Notification-To, Disposition-Notification-Options, Receipt-Delivery-Option, Host, Content-Length.

verify_receipt method

Verifies an MDN receipt.

Syntax

def verify_receipt() -> None: ...

Remarks

VerifyReceipt verifies the receipt in mdn_receipt against the values of original_content_mic and message_id and the preferences specified in mdn_options. The method operates similarly to post: After the method finishes, the mdn_receipt, ReceiptSigningProtocol, and receipt_signer_cert properties will be populated with the appropriate values.

The method operates synchronously, and will throw an exception if any errors or warnings occur. Errors might include a failure to decrypt or authenticate the receipt, the absence of an MDN when one was requested, TCP/IP errors, or any errors reported by the server in the MDN. Warnings might include the return of an unsigned receipt when a signed receipt was requested, or other warnings reported by the server in the MDN.

If an exception is thrown the error code will correspond to the severity of the warning or error, allowing client software to determine whether or not to accept the reply. If multiple errors occur, the exception will return a special error code, and the error message will contain a line for each error's code and description; i.e. "423: Failed to authenticate sender". If the error(s) is/are not fatal processing will not be interrupted, and the relevant properties will be populated as normal.

You should first invoke read_receipt when it is not known which message the receipt is in response to. This will allow you to determine the original message_id and originator of the receipt before trying to verify it.

on_connection_status event

Fired to indicate changes in the connection state.

Syntax

class AS1SenderConnectionStatusEventParams(object):
  @property
  def connection_event() -> str: ...

  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class AS1Sender:
@property
def on_connection_status() -> Callable[[AS1SenderConnectionStatusEventParams], None]: ...
@on_connection_status.setter
def on_connection_status(event_hook: Callable[[AS1SenderConnectionStatusEventParams], None]) -> None: ...

Remarks

This event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.

The ConnectionEvent parameter indicates the type of connection event. Values may include the following:

Firewall connection complete.
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.
StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

on_end_transfer event

Fired when the message text completes transferring.

Syntax

class AS1SenderEndTransferEventParams(object):
# In class AS1Sender:
@property
def on_end_transfer() -> Callable[[AS1SenderEndTransferEventParams], None]: ...
@on_end_transfer.setter
def on_end_transfer(event_hook: Callable[[AS1SenderEndTransferEventParams], None]) -> None: ...

Remarks

Fired when the message text completes transferring (on either a send or receive).

on_error event

Fired when information is available about errors during data delivery.

Syntax

class AS1SenderErrorEventParams(object):
  @property
  def error_code() -> int: ...

  @property
  def description() -> str: ...

# In class AS1Sender:
@property
def on_error() -> Callable[[AS1SenderErrorEventParams], None]: ...
@on_error.setter
def on_error(event_hook: Callable[[AS1SenderErrorEventParams], None]) -> None: ...

Remarks

The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

on_header event

This event is fired for every message header being retrieved.

Syntax

class AS1SenderHeaderEventParams(object):
  @property
  def field() -> str: ...

  @property
  def value() -> str: ...

# In class AS1Sender:
@property
def on_header() -> Callable[[AS1SenderHeaderEventParams], None]: ...
@on_header.setter
def on_header(event_hook: Callable[[AS1SenderHeaderEventParams], None]) -> None: ...

Remarks

The Field parameter contains the name of the header (in the same case as it is delivered). The Value parameter contains the header contents.

If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).

on_log event

Fired with log information while processing a message.

Syntax

class AS1SenderLogEventParams(object):
  @property
  def log_type() -> str: ...

  @property
  def log_message() -> bytes: ...

# In class AS1Sender:
@property
def on_log() -> Callable[[AS1SenderLogEventParams], None]: ...
@on_log.setter
def on_log(event_hook: Callable[[AS1SenderLogEventParams], None]) -> None: ...

Remarks

This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.

Log messages available through this event correspond to log files written to log_directory. This event provides a way to obtain log messages without relying on files on disk. This event fires regardless of the value of log_directory (i.e. when log_directory is empty the event will still fire).

The LogMessage event parameter holds the raw log data.

The LogType event parameter indicates the type of log. Possible values are:

"LOG" Information about the status of the process.
"ERR" An error was encountered.
"DAT" The EDI payload.
"REQ" The raw request
"MDN" The MDN response.
"DEBUG" Debug information.
"DAT.INPUT" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.ENCRYPT" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.COMPRESS" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.SIGN" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.DECRYPT" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.DECOMPRESS" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.VERIFY" Debug information when processing payload. Only applicable when LogDebug is True.
"DAT.DEBUG" Debug information when processing payload. Only applicable when LogDebug is True.

on_pi_trail event

This event traces the commands sent to the mail server, and the respective replies.

Syntax

class AS1SenderPITrailEventParams(object):
  @property
  def direction() -> int: ...

  @property
  def message() -> str: ...

# In class AS1Sender:
@property
def on_pi_trail() -> Callable[[AS1SenderPITrailEventParams], None]: ...
@on_pi_trail.setter
def on_pi_trail(event_hook: Callable[[AS1SenderPITrailEventParams], None]) -> None: ...

Remarks

The on_pi_trail event is useful for debugging purposes. It shows all of the interaction between the client and the server, line by line, except for message header and body transfers.

The Message parameter contains the full text of the message. The Direction parameter shows the originator of the message:

0 (Client)The Message originates from the client.
1 (Server)The Message originates from the server.
2 (Info)The Message is an informative message originating from the client software (the class code).

on_ssl_server_authentication event

Fired after the server presents its certificate to the client.

Syntax

class AS1SenderSSLServerAuthenticationEventParams(object):
  @property
  def cert_encoded() -> bytes: ...

  @property
  def cert_subject() -> str: ...

  @property
  def cert_issuer() -> str: ...

  @property
  def status() -> str: ...

  @property
  def accept() -> bool: ...
  @accept.setter
  def accept(value) -> None: ...

# In class AS1Sender:
@property
def on_ssl_server_authentication() -> Callable[[AS1SenderSSLServerAuthenticationEventParams], None]: ...
@on_ssl_server_authentication.setter
def on_ssl_server_authentication(event_hook: Callable[[AS1SenderSSLServerAuthenticationEventParams], None]) -> None: ...

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

on_ssl_status event

Fired when secure connection progress messages are available.

Syntax

class AS1SenderSSLStatusEventParams(object):
  @property
  def message() -> str: ...

# In class AS1Sender:
@property
def on_ssl_status() -> Callable[[AS1SenderSSLStatusEventParams], None]: ...
@on_ssl_status.setter
def on_ssl_status(event_hook: Callable[[AS1SenderSSLStatusEventParams], None]) -> None: ...

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

on_start_transfer event

Fired when the message text starts transferring (on either a send or receive).

Syntax

class AS1SenderStartTransferEventParams(object):
# In class AS1Sender:
@property
def on_start_transfer() -> Callable[[AS1SenderStartTransferEventParams], None]: ...
@on_start_transfer.setter
def on_start_transfer(event_hook: Callable[[AS1SenderStartTransferEventParams], None]) -> None: ...

Remarks

Fired when the message text starts transferring (on either a send or receive).

on_transfer event

Fired while the message text gets transferred to or from MailServer .

Syntax

class AS1SenderTransferEventParams(object):
  @property
  def bytes_transferred() -> int: ...

# In class AS1Sender:
@property
def on_transfer() -> Callable[[AS1SenderTransferEventParams], None]: ...
@on_transfer.setter
def on_transfer(event_hook: Callable[[AS1SenderTransferEventParams], None]) -> None: ...

Remarks

Fired while the message text gets transferred to or from mail_server.

AS1Sender Config Settings

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

AS1 Config Settings

LogFilename:   The base name of the log file.

If set, this will be used as for the filename of the log file.

Note that only the base name should be specified as the component will append the appropriate file extension.

POPPort:   The POP mail port to be used, if different than MailServer.

The mail port to be used for POP (or POP/S). For implicit SSL, use port 995.

POPServer:   The POP server to be used, if different than MailServer.

The mail server to be used for POP (or POP/S), in case different than MailServer.

SMTPAuthMechanism:   The authentication mechanism used to connect to the SMTP server.

By default, SMTPAuthMechanism is set to 0, which sends the AUTH command is SMTPUser and SMTPPassword are set. SMTPAuthMechanism can be set to 1 to use the more secure CRAM-MD5 authentication command.

SMTPPassword:   The password used for authentication.

If SMTPPassword is set to a non empty string, then when connecting to the SMTPServer an AUTH or CRAM-MD5 (depending on SMTPAuthMechanism) command is sent for user authentication.

SMTPPort:   The SMTP mail port to be used, if different than MailServer.

The mail port to be used for SMTP (or POP/S). For implicit SSL, use port 465.

SMTPServer:   The SMTP server to be used, if different than MailServer.

The mail server to be used for SMTP (or SMTP/S), in case different than MailServer.

SMTPSSLStartMode:   Determines how SSL negotiation starts with the SMTP server.

0 ssl Automatic 1 ssl Implicit 2 ssl Explicit 3 ssl None Default These modes have the same interpretation as defined by the property SSLStartMode.

SMTPUser:   The user name used for authentication.

If SMTPUser is set to a non empty string, then when connecting to the SMTPServer an AUTH or CRAM-MD5 (depending on SMTPAuthMechanism) command is sent for user authentication.

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When ssl_provider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the on_ssl_status event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if ssl_provider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACertFilePaths:   The paths to CA certificate files on Unix/Linux.

This configuration setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is as follows:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When ssl_provider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the ssl_cert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This configuration setting specifies whether the class will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class fails with an error.

When set to 0 (default), the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This configuration setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the class fails with an error.

When set to 0 (default), the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

NOTE: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the on_ssl_status event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when ssl_authenticate_clients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when ssl_provider is set to Platform include the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when ssl_provider is set to Platform include the following:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when ssl_provider is set to Internalinclude the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"); Possible values when ssl_provider is set to Internal include the following:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the ssl_provider is set to Automatic for all editions.

In editions that are designed to run on Windows, ssl_provider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the ssl_provider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and ssl_provider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is False by default, but it can be set to True to enable the extension.

This configuration setting is applicable only when ssl_provider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the on_ssl_server_authentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the on_ssl_server_authentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the on_ssl_server_authentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.

NOTE: This configuration setting is applicable only when ssl_provider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

NOTE: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

NOTE: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

NOTE: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

NOTE: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

NOTE: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

NOTE: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown certificate authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown certificate authority revocation status.
0x00000800Ignore unknown root revocation status.
0x00008000Allow test root certificate.
0x00004000Trust test root certificate.
0x80000000Ignore non-matching CN (certificate CN non-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when ssl_provider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and ssl_provider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

NOTE: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to True to mask sensitive data. The default is True.

ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when do_events is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseFIPSCompliantAPI:   Tells the class whether or not to use FIPS certified APIs.

When set to True, the class will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle Federal Information Processing Standards (FIPS), while all other Windows editions make use of Microsoft security libraries.

FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to True. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.

For more details, please see the FIPS 140-2 Compliance article.

NOTE: This setting is applicable only on Windows.

NOTE: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to False, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to True tells the class to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to False by default. On Linux/macOS, this setting is set to True by default.

To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.

AS1Sender Errors

AS1Sender Errors

501   Unable to parse the receipt.
502   The receipt is signed with an unsupported signature format (details follow).
511   Unsupported compression algorithm requested.
521   A Message Integrity Check was requested, but not provided in the MDN.
522   The Message Integrity Check returned in the MDN is incorrect.
523   Unable to parse Message Integrity Check.
524   Unrequested hashing algorithm used (check MDNOptions).
525   The Message ID returned in the MDN does not match.
531   The receipt was unsigned, and a signed receipt was expected.
532   The receipt signature could not be verified.
533   An MDN was expected, but was not returned.
600   Failure reported in MDN: Unsupported signing protocol.
601   Failure reported in MDN: Unsupported MIC algorithms.
602   Failure reported in MDN: Other (details follow).
611   Error reported in MDN: Decryption failed.
612   Error reported in MDN: Authentication failed.
613   Error reported in MDN: Could not verify content integrity.
614   Error reported in MDN: Unexpected processing error.
615   Error reported in MDN: Other (details follow).
621   Warning reported in MDN: Authentication failed, processing continued by receiver.
622   Warning reported in MDN: Other (details follow).
831   I/O Error (details follow).

POP Errors

116   mail_port cannot be zero. Please specify a valid service port number.
118   Firewall error. Error message contains detailed description.
171   POP protocol error. Description contains the server reply.
172   Error communicating with server. Error text is attached.
173   Please specify a valid mail_server.
174   Busy executing current method.

The class may also return one of the following error codes, which are inherited from other classes.

TCPClient Errors

100   You cannot change the remote_port at this time. A connection is in progress.
101   You cannot change the remote_host (Server) at this time. A connection is in progress.
102   The remote_host address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the local_port at this time. A connection is in progress.
107   You cannot change the local_host at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   remote_port cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on nonsocket.
10039   [10039] Destination address required.
10040   [10040] Message is too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol is not supported.
10044   [10044] Socket type is not supported.
10045   [10045] Operation is not supported on socket.
10046   [10046] Protocol family is not supported.
10047   [10047] Address family is not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Cannot assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Cannot send after socket shutdown.
10059   [10059] Too many references, cannot splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name is too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory is not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock is not loaded yet.
11001   [11001] Host not found.
11002   [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).

SMTP Errors

118   Firewall Error. Error message contains detailed description.
161   SMTP protocol error. Description contains the server reply.
162   Error communicating with server. Error text is attached.
163   Please specify a mail_server.
164   Please specify a sender (from_address).
165   Please specify a recipient.
166   Busy executing current method.
301   Operation interrupted.
302   Cannot open attached_file.

The class may also return one of the following error codes, which are inherited from other classes.

TCPClient Errors

100   You cannot change the remote_port at this time. A connection is in progress.
101   You cannot change the remote_host (Server) at this time. A connection is in progress.
102   The remote_host address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the local_port at this time. A connection is in progress.
107   You cannot change the local_host at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   remote_port cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on nonsocket.
10039   [10039] Destination address required.
10040   [10040] Message is too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol is not supported.
10044   [10044] Socket type is not supported.
10045   [10045] Operation is not supported on socket.
10046   [10046] Protocol family is not supported.
10047   [10047] Address family is not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Cannot assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Cannot send after socket shutdown.
10059   [10059] Too many references, cannot splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name is too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory is not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock is not loaded yet.
11001   [11001] Host not found.
11002   [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).

SMIME Errors

10191   Invalid index (RecipientIndex).
10192   Message decoding error (code).
10193   Unexpected message type.
10194   Unsupported hashing/signing algorithm.
10195   The message does not have any signers.
10196   The message signature could not be verified.
10197   Could not locate a suitable decryption certificate.
10198   The signer certificate could not be found.
10199   No signing certificate was supplied for signing the message.
10201   The specified certificate was not the one required.
10202   The specified certificate could not be found.
10221   Could not acquire CSP.
10222   Type validation error.
10223   Unsupported key size.
10224   Unrecognized Content-Type object identifier.
10225   Unrecognized public key format.
10226   No choices specified.
10228   Must specify output stream.
10280   Invalid part index.
10281   Unknown MIME type.
10283   No MIME-boundary found.
10280   Error decoding certificate.