EDIFACTWriter Class
Properties Methods Events Config Settings Errors
The EDIFACTWriter class is optimized for EDIFACT documents, providing a simple way to create EDIFACT documents.
Syntax
class ipworkseditranslator.EDIFACTWriter
Remarks
The class allows you to create a document from scratch. The class allows you to create an EDI document one segment at a time. Here's how a document would normally be created:
- Call load_schema to load the necessary schemas for the transactions that will be used.
- Specify where to write the output document by setting the output_file property or set_output_stream method, or set neither and check the output_data property.
- Create a new interchange start segment using the start_interchange_header method and set its properties using write_element_string and write_component_string.
- To write a basic element value to the current location, call the write_element_string method. For complex element values, there are two possibilities, elements which are split into components, and elements which repeat. To write these complex element values, use the start_element and end_element methods, with write_component_string and repeat_element methods for writing the values. (Examples available below).
- Create a new functional group using start_functional_group_header and set its properties using write_element_string and write_component_string.
- Create a new transaction using start_transaction_header and set the properties for the header segment.
- Write all the data for the transaction by creating new data segments using start_segment and providing the path of the segment to create using the schema names of the loops and segments, like /N1Loop1/N1.
- Once you are done with the segment, call end_segment.
- Once you are done with the transaction, call create_transaction_footer.
- Once you are done with the functional group, call create_functional_group_footer.
- Once the interchange is complete, call create_interchange_footer.
Example EDIFACTWriter Code:
EDIWriter1.StartInterchangeHeader("D98B");
//Complex Element, two components
EDIWriter1.StartElement();
EDIWriter1.WriteComponentString("UNOB");
EDIWriter1.WriteComponentString("1");
EDIWriter1.EndElement();
//Skip a value for this element
EDIWriter1.SkipElement();
//Basic element
EDIWriter1.WriteElementString("7654323");
...
EDIWriter1.StartFunctionalGroupHeader();
...
EDIWriter1.StartTransactionHeader("APERAK");
//Complex Element, repeated element
EDIWriter1.StartElement();
EDIWriter1.WriteComponentString("UNH1");
EDIWriter1.RepeatElement();
EDIWriter1.WriteComponentString("UNH2");
EDIWriter1.EndElement();
...
//Segment and its data
EDIWriter1.StartSegment("BGM");
EDIWriter1.StartElement();
EDIWriter1.WriteComponentString("C00");
EDIWriter1.EndElement();
EDIWriter1.StartElement();
EDIWriter1.WriteComponentString("C10601");
EDIWriter1.EndElement();
EDIWriter1.EndSegment();
...
CreateTransactionFooter();
CreateFunctionalGroupFooter();
CreateInterchangeFooter();
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
file_write_mode | Controls how the output file is opened. |
output_data | Contains the output data. |
output_file | Specifies the name of the EDI file to write to. |
schema_format | The format of the schema file. |
suffix | What to append after each segment delimiter. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
compile_schema | Compiles an existing XSD schema into an optimized binary representation. |
config | Sets or retrieves a configuration setting. |
create_functional_group_footer | Closes the current functional group by writing its footer segment. |
create_interchange_footer | Closes the current interchange by writing its footer segment. |
create_transaction_footer | Closes the current transaction set by writing its footer segment. |
display_schema_info | Returns a string showing the structure of the schema defining the document. |
end_element | Finishes the current composite data element. |
end_segment | Ends writing the current segment. |
flush | Forces any pending segments to be written to the output stream without closing it. |
load_schema | Loads a schema file describing a Transaction Set. |
repeat_element | Adds a new repetition to the current element. |
reset | Resets the state of the control. |
skip_component | Moves to the next sub-element in the current composite element in the current segment. |
skip_element | Moves to the next data element in the current segment. |
start_element | Starts a new EDI composite data element on the current segment. |
start_functional_group_header | Creates a new EDI functional group header segment on the current document. |
start_interchange_header | Creates a new EDI Interchange header segment on the current document. |
start_segment | Creates a new EDI data segment on the current document. |
start_transaction_header | Creates a new EDI transaction set header on the current document. |
write_component_string | Sets the value of the next class within the current element in the current segment. |
write_element_string | Sets a value of the next element in the current segment to a simple value. |
write_transaction | Writes an entire transaction to the output. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
on_error | Fired when information is available about errors during data delivery. |
on_output | Fires whenever a segment is complete. |
on_warning | Fires whenever a validation warning is encountered. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
ComponentDelimiter | The delimiter character to use to separate classes. |
EdifactSyntaxVersion | Changes the syntax version used for EDIFACT control segments. |
EDIStandard | The document format. |
ElementDelimiter | The delimiter character to use to separate data elements. |
Encoding | The character encoding to be applied when reading and writing data. |
IncludeUNA | Whether to include the UNA segment in the output. |
ReleaseChar | The character to use to escape delimiters within values. |
RepetitionChar | The repetition character. |
SegmentDelimiter | The delimiter character to use to separate segments. |
StrictSchemaValidation | Specifies the behavior during schema validation. |
TransactionOnly | Ignores interchange and functional group validation, allowing you to build the transaction body. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
file_write_mode Property
Controls how the output file is opened.
Syntax
def get_file_write_mode() -> int: ... def set_file_write_mode(value: int) -> None: ...
file_write_mode = property(get_file_write_mode, set_file_write_mode)
Default Value
0
Remarks
This property controls how the component will open the output file specified in output_file. Possible values are:
fwmCreate (0) | Always create a new file. If the file already exists, an error will be raised. |
fwmOverwrite (1) | If the output file already exists, it will be overwritten. |
fwmAppend (2) | If the output file already exists, data will be appended to it. |
output_data Property
Contains the output data.
Syntax
def get_output_data() -> bytes: ...
output_data = property(get_output_data, None)
Default Value
""
Remarks
This property will be populated with the contents of the EDI data as output by the class when no output_file has been specified and set_output_stream has not been called with a valid output stream.
This property is read-only.
output_file Property
Specifies the name of the EDI file to write to.
Syntax
def get_output_file() -> str: ... def set_output_file(value: str) -> None: ...
output_file = property(get_output_file, set_output_file)
Default Value
""
Remarks
Set output_file before calling the start_interchange_header method to write an EDI interchange to a file on disk.
schema_format Property
The format of the schema file.
Syntax
def get_schema_format() -> int: ... def set_schema_format(value: int) -> None: ...
schema_format = property(get_schema_format, set_schema_format)
Default Value
0
Remarks
Set schema_format before calling the load_schema method to specify the loading schema format.
The following schema formats are supported:
0 (schemaAutomatic - default) | The schema type is automatically determined based on file extension. |
1 (schemaBinary) | A binary schema that was previously compiled by calling compile_schema. |
2 (schemaBizTalk) | BizTalk (XSD): http://msdn.microsoft.com/en-us/library/aa559426(v=BTS.70).aspx |
3 (schemaSEF) | TIBCO Standard Exchange Format (SEF): https://docs.tibco.com/products/tibco-foresight-edisim-6-18-0 |
5 (schemaAltova) | Altova: http://www.altova.com/ |
6 (schemaJSON) | JSON |
suffix Property
What to append after each segment delimiter.
Syntax
def get_suffix() -> int: ... def set_suffix(value: int) -> None: ...
suffix = property(get_suffix, set_suffix)
Default Value
0
Remarks
If suffix is different from suffixNone, trailing (suffix) characters are appended after each segment delimiter. This is useful if you want to have a carriage return/line feed after each segment to make the document more readable.
compile_schema Method
Compiles an existing XSD schema into an optimized binary representation.
Syntax
def compile_schema(xsd_schema: str, bin_schema: str) -> None: ...
Remarks
This method parses XsdSchema and generates an optimized binary representation that is saved into the path referenced by BinSchema. Binary schemas are smaller and require less resources when loading later using load_schema
If the schema file does not exists or cannot be parsed as an EDI schema, the component throws an exception.
config Method
Sets or retrieves a configuration setting.
Syntax
def config(configuration_string: str) -> str: ...
Remarks
config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
create_functional_group_footer Method
Closes the current functional group by writing its footer segment.
Syntax
def create_functional_group_footer() -> None: ...
Remarks
The create_functional_group_footer method will write any existing segments to the output stream and then generate and write the functional group closing segment (GE or UNE). If there is an open transaction set, create_functional_group_footer will first call create_transaction_footer to close it. If there is no functional group open, an exception will be thrown.
create_interchange_footer Method
Closes the current interchange by writing its footer segment.
Syntax
def create_interchange_footer() -> None: ...
Remarks
The create_interchange_footer method will write any existing segments to the output stream and then generate and write the interchange closing segment (IEA or UNZ). If there is an open transaction set, create_interchange_footer will first call create_transaction_footer to close it. If there is an open functional group, create_interchange_footer will first call create_functional_group_footer to close it. If there is no interchange open, an exception will be thrown.
create_transaction_footer Method
Closes the current transaction set by writing its footer segment.
Syntax
def create_transaction_footer() -> None: ...
Remarks
The create_transaction_footer method will write any existing segments to the output stream and then generate and write the transaction set closing segment (SE or UNT). If there are no open transaction sets, an exception will be thrown.
display_schema_info Method
Returns a string showing the structure of the schema defining the document.
Syntax
def display_schema_info() -> str: ...
Remarks
After calling load_schema this may be called to obtain information about the structure of the schema defining the document. If the desired xpath is not known this helps determine the structure so that the correct xpath can be built.
Note: A valid schema must be loaded via load_schema.
For instance:
Console.WriteLine(component.DisplaySchemaInfo());
Will output text like:
UNH[0,1] BGM[0,1] DTM[0,35] PAI[0,1] ALI[0,5] IMD[0,1] FTX[0,10] LOC[0,10] GIS[0,10] DGS[0,1] RFFLoop1[0,99] RFF[0,1] DTM_2[0,5] GIR[0,5] LOC_2[0,2] MEA[0,5] QTY[0,2] FTX_2[0,5] MOA[0,2] NADLoop1[0,99] NAD[0,1] LOC_3[0,25] FII[0,5] RFFLoop2[0,9999] RFF_2[0,1] DTM_3[0,5] DOCLoop1[0,5] DOC[0,1] DTM_4[0,5] CTALoop1[0,5] CTA[0,1] COM[0,5] TAXLoop1[0,5] TAX[0,1] MOA_2[0,1] LOC_4[0,5] CUXLoop1[0,5] CUX[0,1] DTM_5[0,5] PATLoop1[0,10] PAT[0,1] DTM_6[0,5] PCD[0,1] MOA_3[0,1] PAI_2[0,1] FII_2[0,1] TDTLoop1[0,10] TDT[0,1] TSR[0,1] LOCLoop1[0,10] LOC_5[0,1] DTM_7[0,5] RFFLoop3[0,9999] RFF_3[0,1] DTM_8[0,5] TODLoop1[0,5] TOD[0,1] LOC_6[0,2] PACLoop1[0,1000] PAC[0,1] MEA_2[0,5] EQD[0,1] PCILoop1[0,5] PCI[0,1] RFF_4[0,1] DTM_9[0,5] GIN[0,5] ALCLoop1[0,9999] ALC[0,1] ALI_2[0,5] FTX_3[0,1] RFFLoop4[0,5] RFF_5[0,1] DTM_10[0,5] QTYLoop1[0,1] QTY_2[0,1] RNG[0,1] PCDLoop1[0,1] PCD_2[0,1] RNG_2[0,1] MOALoop1[0,2] MOA_4[0,1] RNG_3[0,1] CUX_2[0,1] DTM_11[0,1] RTELoop1[0,1] RTE[0,1] RNG_4[0,1] TAXLoop2[0,5] TAX_2[0,1] MOA_5[0,1] RCSLoop1[0,100] RCS[0,1] RFF_6[0,5] DTM_12[0,5] FTX_4[0,5] AJTLoop1[0,1] AJT[0,1] FTX_5[0,5] INPLoop1[0,1] INP[0,1] FTX_6[0,5] LINLoop1[0,9999999] LIN[0,1] PIA[0,25] IMD_2[0,10] MEA_3[0,5] QTY_3[0,5] PCD_3[0,1] ALI_3[0,5] DTM_13[0,35] GIN_2[0,1000] GIR_2[0,1000] QVR[0,1] EQD_2[0,1] FTX_7[0,5] DGS_2[0,1] MOALoop2[0,10] MOA_6[0,1] CUX_3[0,1] PATLoop2[0,10] PAT_2[0,1] DTM_14[0,5] PCD_4[0,1] MOA_7[0,1] PRILoop1[0,25] PRI[0,1] CUX_4[0,1] APR[0,1] RNG_5[0,1] DTM_15[0,5] RFFLoop5[0,10] RFF_7[0,1] DTM_16[0,5] PACLoop2[0,10] PAC_2[0,1] MEA_4[0,10] EQD_3[0,1] PCILoop2[0,10] PCI_2[0,1] RFF_8[0,1] DTM_17[0,5] GIN_3[0,10] LOCLoop2[0,9999] LOC_7[0,1] QTY_4[0,100] DTM_18[0,5] TAXLoop3[0,99] TAX_3[0,1] MOA_8[0,1] LOC_8[0,5] NADLoop2[0,99] NAD_2[0,1] LOC_9[0,5] RFFLoop6[0,5] RFF_9[0,1] DTM_19[0,5] DOCLoop2[0,5] DOC_2[0,1] DTM_20[0,5] CTALoop2[0,5] CTA_2[0,1] COM_2[0,5] ALCLoop2[0,30] ALC_2[0,1] ALI_4[0,5] DTM_21[0,5] FTX_8[0,1] QTYLoop2[0,1] QTY_5[0,1] RNG_6[0,1] PCDLoop2[0,1] PCD_5[0,1] RNG_7[0,1] MOALoop3[0,2] MOA_9[0,1] RNG_8[0,1] CUX_5[0,1] DTM_22[0,1] RTELoop2[0,1] RTE_2[0,1] RNG_9[0,1] TAXLoop4[0,5] TAX_4[0,1] MOA_10[0,1] TDTLoop2[0,10] TDT_2[0,1] LOCLoop3[0,10] LOC_10[0,1] DTM_23[0,5] TODLoop2[0,5] TOD_2[0,1] LOC_11[0,2] RCSLoop2[0,100] RCS_2[0,1] RFF_10[0,5] DTM_24[0,5] FTX_9[0,5] GISLoop1[0,10] GIS_2[0,1] RFF_11[0,1] DTM_25[0,5] GIR_3[0,5] LOC_12[0,2] MEA_5[0,5] QTY_6[0,2] FTX_10[0,5] MOA_11[0,2] UNS[0,1] CNT[0,10] MOALoop4[0,100] MOA_12[0,1] RFFLoop7[0,1] RFF_12[0,1] DTM_26[0,5] TAXLoop5[0,10] TAX_5[0,1] MOA_13[0,2] ALCLoop3[0,15] ALC_3[0,1] ALI_5[0,1] MOA_14[0,2] FTX_11[0,1] UNT[0,1]
end_element Method
Finishes the current composite data element.
Syntax
def end_element() -> None: ...
Remarks
Call end_element once you've written all components in an element started with start_element. You should not call this if you wrote a simple element using write_element_string
end_segment Method
Ends writing the current segment.
Syntax
def end_segment() -> None: ...
Remarks
end_segment terminates writing the current segment and flushes it to the output stream/file.
You should call end_segment to close a segment started with start_segment, start_interchange_header, start_functional_group_header or start_transaction_header.
flush Method
Forces any pending segments to be written to the output stream without closing it.
Syntax
def flush() -> None: ...
Remarks
The flush method forces the component to write the last created segment to the output stream and then flush the output stream.
load_schema Method
Loads a schema file describing a Transaction Set.
Syntax
def load_schema(file_name: str) -> None: ...
Remarks
This method parses the File and loads it into an internal schema list. The class will attempt to automatically detect the schema_format.
If the schema file does not exist or cannot be parsed as an EDI schema, the class fails with an error.
repeat_element Method
Adds a new repetition to the current element.
Syntax
def repeat_element() -> None: ...
Remarks
repeat_element is used to write repeated data elements in supporting version of X12 or EDIFACT. To use it, first write the first repetition of the simple or composite data element and then call repeat_element to repeat it, then write again.
Example: Repeating a simple data element:
EDIWriter writer = new EDIWriter();
...
writer.StartSegment("Tag");
...
writer.WriteElementString("R1_1");
writer.RepeatElement();
writer.WriteElementString("R1_2");
writer.RepeatElement();
writer.WriteElementString("R1_3");
...
writer.EndSegment();
Example: Repeating a composite data element:
EDIWriter writer = new EDIWriter();
...
writer.StartSegment("Tag");
...
writer.StartElement();
writer.WriteComponentString("C1_1");
writer.WriteComponentString("C2_1");
writer.RepeatElement();
writer.WriteComponentString("C1_2");
writer.WriteComponentString("C2_2");
writer.RepeatElement();
writer.WriteComponentString("C1_3");
writer.EndElement();
...
writer.EndSegment();
reset Method
Resets the state of the control.
Syntax
def reset() -> None: ...
Remarks
Resets the state of the writer. If a document has been partially written already, it will not be closed correctly and the write process will be aborted.
skip_component Method
Moves to the next sub-element in the current composite element in the current segment.
Syntax
def skip_component() -> None: ...
Remarks
skip_component can be used to avoid providing a value for the current sub-element in the opened composite element within the current segment.
If the sub-element already has a value (such as one provided by default by the class), said value will not be overwritten.
skip_element Method
Moves to the next data element in the current segment.
Syntax
def skip_element() -> None: ...
Remarks
skip_element can be used to avoid providing a value for the current element in the current segment.
If the element already has a value (such as one provided by default by the class), said value will not be overwritten.
start_element Method
Starts a new EDI composite data element on the current segment.
Syntax
def start_element() -> None: ...
Remarks
When called, a new composite data element is created in the current segment. You can then call write_component_string one or more times to write the individual components or subelements that make up this composite.
Call end_element once you've written all components in this element.
start_functional_group_header Method
Creates a new EDI functional group header segment on the current document.
Syntax
def start_functional_group_header() -> None: ...
Remarks
When called, a new functional group start (GS or UNG) segment is created and set as the current segment. You should then set the values on said segment before adding a new transaction set within the document.
start_interchange_header Method
Creates a new EDI Interchange header segment on the current document.
Syntax
def start_interchange_header(version: str) -> None: ...
Remarks
When called, a new interchange start (ISA or UNB) segment is created and set as the current segment. You should then set the values on said segment before creating a functional group or a new transaction set within the document.
start_segment Method
Creates a new EDI data segment on the current document.
Syntax
def start_segment(segment_type: str) -> None: ...
Remarks
When called, a new data segment is created in the current transaction and set as the current segment. You can then set the values on said segment. Creating a new data segment automatically writes the previous current segment to the output stream.
The SegmentType argument specifies the type of data segment to create, using an XPath-like syntax, based on the transaction set schema. For example, to create a new N1 segment on the first N1 loop, specify "/N1Loop1/N1".
It's important to realize that segments must be created in the same order they should appear on the target EDI document. The EDIWriter component doesn't automatically enforce ordering rules, nor does it force the document to reorder segments in loops automatically.
start_transaction_header Method
Creates a new EDI transaction set header on the current document.
Syntax
def start_transaction_header(code: str) -> None: ...
Remarks
When called, a new transaction set start (ST or UNH) segment is created and set as the current segment. You should then set the values on said segment before adding creating transaction data segments.
The Code argument should specify the transaction code you want to create (for example, "850" or "INVOIC"). This value, together with the EDI specification and the version provided in the start_interchange_header method are used to locate a matching transaction set schema on the components schema cache. You must make sure that a corresponding schema has been successfully loaded into the component by using the load_schema method before trying to call start_transaction_header.
write_component_string Method
Sets the value of the next class within the current element in the current segment.
Syntax
def write_component_string(value: str) -> None: ...
Remarks
Use the write_component_string method to specify a value for an individual component within a composite data element.
To write an entire composite data element, first call the start_element method, then do one or more calls to write_component_string. Finish the composite element by calling the end_element method.
write_element_string Method
Sets a value of the next element in the current segment to a simple value.
Syntax
def write_element_string(value: str) -> None: ...
Remarks
Use the write_element_string method to specify a value for the next data element with simple content on the current segment.
To write a composite data element, even if it has a single sub-element, use the start_element and write_component_string methods instead.
write_transaction Method
Writes an entire transaction to the output.
Syntax
def write_transaction(value: str) -> None: ...
Remarks
Use the write_transaction method when you have generated a complete transaction outside of the class and want to include it in the document being created by this instance.
No validation is done on the contents of the Value parameter. You must ensure the transaction data is valid and matches the same conventions (delimiters, etc) being used in this document.
on_error Event
Fired when information is available about errors during data delivery.
Syntax
class EDIFACTWriterErrorEventParams(object): @property def error_code() -> int: ... @property def description() -> str: ... # In class EDIFACTWriter: @property def on_error() -> Callable[[EDIFACTWriterErrorEventParams], None]: ... @on_error.setter def on_error(event_hook: Callable[[EDIFACTWriterErrorEventParams], None]) -> None: ...
Remarks
The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
on_output Event
Fires whenever a segment is complete.
Syntax
class EDIFACTWriterOutputEventParams(object): @property def output_data() -> bytes: ... # In class EDIFACTWriter: @property def on_output() -> Callable[[EDIFACTWriterOutputEventParams], None]: ... @on_output.setter def on_output(event_hook: Callable[[EDIFACTWriterOutputEventParams], None]) -> None: ...
Remarks
The on_output event will fire when the writer completes a new segment and writes data to the output stream or buffer. The Data parameter contains the data bytes.
on_warning Event
Fires whenever a validation warning is encountered.
Syntax
class EDIFACTWriterWarningEventParams(object): @property def warn_code() -> int: ... @property def message() -> str: ... @property def segment_number() -> int: ... @property def segment_tag() -> str: ... @property def segment_error_code() -> str: ... @property def element_error_code() -> str: ... @property def element_position() -> int: ... # In class EDIFACTWriter: @property def on_warning() -> Callable[[EDIFACTWriterWarningEventParams], None]: ... @on_warning.setter def on_warning(event_hook: Callable[[EDIFACTWriterWarningEventParams], None]) -> None: ...
Remarks
The on_warning event will fire if a validation error is encountered when writing a new segment to the output document. The WarnCode parameter contains the type of warning encountered. Message is a textual description of the problem. SegmentNumber is the index of the segment where the problem was found.
0 | The component is not required but is present. |
1 | Invalid segment count. |
2 | Invalid transaction count. |
3 | Invalid group count. |
4 | Invalid interchange control number. |
5 | Invalid group control number. |
6 | Invalid transaction control number. |
10 | A required data element is missing. |
11 | Invalid field length. |
12 | Invalid field value. |
13 | A required component is missing. |
14 | The data element is not defined but is present. |
30 | Required segment is missing. |
31 | Required loop is missing. |
32 | Occurrences exceeds the schema defined limit. |
33 | Occurrences is less than the schema defined minimum. |
40 | Paired rule validation failed, the pair of elements must be present. |
41 | At least one of element is required, see message for list of elements. |
42 | Exclusion validation failed, only one of the elements can be present. |
43 | Conditional rule validation failed. |
44 | List conditional rule validation failed. |
45 | First then none validation failed. The presence of an element requires that other specific elements must not be present. |
46 | Only one or none of the elements can be present. |
EDIFACTWriter Config Settings
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.EDIFACTWriter Config Settings
- 1 (EDIFACT - default)
- 3 (TRADACOMS)
0 (Ignore) | All validation warnings will be ignored. on_warning will not fire with warnings. |
1 (Warn - default) | The on_warning event will fire with all validation warnings. |
2 (Error) | All validation warnings are treated as errors and will cause an exception. Processing will stop immediately. |
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to True. This is a static setting which applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details please see the FIPS 140-2 Compliance article.
Note: This setting is only applicable on Windows.
Note: Enabling FIPS-compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to True tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to False by default. On Linux/macOS, this setting is set to True by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
EDIFACTWriter Errors
EDIFACTWriter Errors
1000 Input/Output error | |
1001 No stream or file name were specified for the component | |
1002 Unexpected end of file (EOF). | |
1003 Segment not found. | |
1004 Segment not found in schema. | |
1005 Schema not found. | |
1010 Invalid Writer state. | |
1011 Segment does not have the specified element or component. | |
1044 Error while reading schema file. | |
1099 Unexpected error. |