SAML Module

Properties   Methods   Events   Config Settings   Errors  

The SAML module provides an easy way to add SAML-based SSO to your application.

Syntax

CloudSSO.SAML

Remarks

The Security Assertion Markup Language (SAML) protocol provides a standardized way to add Single Sign-on (SSO) to applications. Service Providers (i.e., your application) using SAML-based SSO can eliminate the need to store and manage user passwords. When using SAML, the responsibility of identifying a user can be shifted to the Identity Provider.

In a Web environment, this is typically done by redirecting a user with a SAMLRequest from your application to the Identity Provider's login page where a user already has an account. The user will login, and the Identity Provider will return an assertion in a SAMLResponse, which is a set of information about the user and the authentication steps taken to identify the user.

When a Service Provider (i.e., your web application) receives this SAMLResponse, it will verify both the SAMLResponse and its accompanying assertion to ensure that both were requested by the Service Provider and issued by the Identity Provider. Once the SAMLResponse and assertion have been verified, the assertion will typically contain attributes about the user and its profile with the Identity Provider.

SAML also supports Single Logout (SLO) that can be used to log a user out of the Identity Provider and, depending on the configuration of the Identity Provider, all other accounts that used the Identity Provider to authenticate the user.

Setup

To get started with the class, information about the Identity Provider is needed. Typically, this information is provided by a SAML Metadata Document that is either provided during the setup or requested from a URI. The RequestIdentityMetadata and LoadIdentityMetadata methods are both ways to populate the IdentityProviderMetadata, IdentityProviderSigningCert, and IdentityProviderURIs properties.

Usage: Requesting and Reloading the Identity Provider Metadata Document

saml.RequestIdentityMetadata("https://example.com/federationmetadata/federationmetadata.xml"); string raw_document = saml.IdentityProviderMetadata.MetadataContent; //... saml.LoadIdentityMetadata(raw_document, true);

Additionally, the class needs to be configured with the information about the Service Provider (i.e., your application). The ServiceProviderMetadata, ServiceProviderSigningCert, and ServiceProviderURIs properties can be used to provide information about the Service Provider. These are used by the class to build a valid SAMLRequest and to verify the SAMLResponse and its assertions. Additionally, to easily supply this information to an Identity Provider, the BuildServiceMetadata method can be used to create a SAML Metadata Document that describes your application (the Service Provider) to the Identity Provider.

Usage: Configuring Service Provider Metadata

saml.ServiceProviderMetadata.EntityId = "ServiceProviderId"; saml.ServiceProviderMetadata.AuthnRequestSigned = true; saml.ServiceProviderMetadata.WantAssertionsSigned = true; saml.ServiceProviderSigningCert = new Certificate(CertStoreTypes.cstPFXFile, "cert.pfx", "password", "*"); URI acs = new URI(); acs.URIType = SAMLURITypes.sutACS; acs.Location = "https://service_provider.com/acs/"; acs.BindingType = subPost; saml.ServiceProviderURIs.Add(acs); URI logout = new URI(); logout.URIType = SAMLURITypes.sutLogout; logout.Location = "https://service_provider.com/logout/"; logout.Binding = subRedirect; saml.ServiceProviderURIs.Add(acs); saml.BuildServiceMetadata();

Authentication Request

Once configured, the BuildAuthnRequest method can be used to build a SAMLRequest that has been configured by the SAMLRequestSettings. Additionally, to provide state information between the request and the response, the RelayState property can be set. Typically the RelayState property can be used to return a user back to the location within the application once they have been authenticated. After the request has been created, the SAMLRequestSettingsId and SAMLRequestSettingsIssuer properties need to be saved for verification purposes. The SAMLRequestSettingsIssuer property will be used to check that the SAMLResponse is meant for this Service Provider. The SAMLRequestSettingsId property is used to verify that the response corresponds to a request that was made by the Service Provider.

Usage: Building an Authn Request

saml.SAMLRequestSettings.Issuer = "ServiceProviderId"; saml.SAMLRequestSettings.RequestBinding = SAMLRequestBindings.srbHTTPRedirect; saml.SAMLRequestSettings.SignRequest = true; saml.RelayState = "https://service_provider.com/landing"; saml.BuildAuthnRequest(); string requestId = saml.SAMLRequestSettings.Id; //save for later

Depending on how the SAMLRequestSettingsRequestBinding property is configured, the results will be provided through the SAMLRequestBody and SAMLRequestURL properties. Using the information from the properties, the user that needs identifying should be directed to the SAMLRequestURL. If using the srbHTTPRedirect binding, this is typically done by redirecting the user to the URL. This URL will contain the SAMLRequest and RelayState as query parameters that are parsed by the Identity Provider. If using the srbHTTPPost binding, this is done by using an HTML form post as seen below:

string htmlContent = $@" <!DOCTYPE html> <html> <head> <title>SAML POST</title> </head> <body onload='document.forms[0].submit()'> <form method='post' action='{saml.SAMLRequestURL}'> <input type='hidden' name='SAMLRequest' value='{saml.SAMLRequestBody}'/> <input type='hidden' name='RelayState' value='{saml.RelayState}'/> </form> </body> </html>";

Authentication Response

Once the user has completed authentication, the Identity Provider will return the user to the Assertion Consumer Service (ASC) URI that was configured in the ServiceProviderURIs properties. If authentication was successful, this response should also contain an assertion as well as information about the authentication context.

To handle an incoming HTTP request that contains the SAMLResponse, the ProcessSAMLResponse or ParseSAMLResponse methods can be used. To provide the HTTP headers and body that contain the SAMLResponse directly to the class, the SAMLResponseHeaders and SAMLResponseBody properties can be set before calling ParseSAMLResponse or ProcessSAMLResponse. For example:

saml.SAMLResponseBody = "HTTP Body"; saml.SAMLResponseHeaders = "HTTP Headers";

Once the HTTP request that contains the SAMLResponse has been provided, the application can then call the ProcessSAMLResponse method. While the ProcessSAMLResponse method processes the SAMLResponse, the class fires the SAMLResponse and Assertion events. These events can be used to provide the class the information needed to correctly verify the SAMLResponse such as the SAMLRequestSettingsId and SAMLRequestSettingsIssuer properties that were saved after creating the SAMLRequest. If the SAMLResponse and assertion are valid, the method will return without any errors. Additionally, the SAMLResponseInfo, AssertionInfo, AssertionAttributeInfo, and AssertionAuthnInfo properties will be populated. saml.RequestIdentityMetadata("https://example.com/federationmetadata/federationmetadata.xml"); //Setup Service Provider URI acs = new URI(); acs.URIType = SAMLURITypes.sutACS; acs.Location = "https://service_provider.com/acs/"; acs.BindingType = URIBindings.subPost saml.ServiceProviderURIs.Add(acs); //Provide information about the SAMLRequest. saml.SAMLRequestSettings.Issuer = "ServiceProviderId"; saml.SAMLRequestSettings.Id = requestId; saml.ProcessSAMLResponse();

The ProcessSAMLResponse method performs multiple steps automatically, making it a simple method to handle the SAMLResponse. The method is the equivalent to calling the ParseSAMLResponse, ValidateSAMLResponse, ParseAssertion, and ValidateAssertion methods. These methods can be used in place of calling ProcessSAMLResponse if there are additional considerations or extra control is needed by your application. saml.ParseSAMLResponse(); saml.ValidateSAMLResponse(); saml.ParseAssertion(); saml.ValidateAssertion();

Assertions

The SAML 2.0 specification gives Identity Providers many different options for what can be included in an assertion. In the Web SSO profile, typically the assertion will contain the Issuer, Signature, Subject, Conditions, AttributeStatement, and AuthnStatement. Information found from the Issuer, Signature, Subject, and Conditions sections of the assertion can be found in the AssertionInfo property. Along with providing information about the assertion, these fields are also used to verify the assertion. An important field to note is the AssertionInfoSubjectNameId property. This property provides the unique identifier for the user which can be used for authorization purposes. See below for information about the AttributeStatement and AuthnStatement sections.

Assertion Authentication Context

The AuthnStatement section is used by the Identity Provider to provide the Service Provider with information about its authentication session with the user. The statement is parsed to the AssertionAuthnInfo property. Some commonly used information is how the user authenticated with the Identity Provider (see AssertionAuthnInfoContextClassReference) and the session identifier created by the Identity Provider for the Service Provider (see AssertionAuthnInfoSessionIndex).

Assertion Attributes

Along with the AssertionInfoSubjectNameId, the Identity Provider may give additional information about the user in the AttributeStatement section. What exactly is provided depends on how the connection between the Identity Provider and Service Provider was configured. Since there is no defined list of attributes, the AssertionAttributeInfo properties will be populated with each attribute found. Each attribute has a name and one or more values. For example, take the following attribute that describes a list of emails attached to the user.

<Attribute Name="verified_emails"> <AttributeValue>email@test.com</AttributeValue> <AttributeValue>other@example.com</AttributeValue> </Attribute>

In this assertion attribute statement, the user has two emails that have been verified. There are two ways to get this information using the SAML class. First, using the collection, the application can iterate through the collection for the attribute and then iterate through the associated values. Using this method is useful if there are multiple acceptable names for the attributes that could be accepted. For example: List<string> verified_emails = new List<string>(); for (int i = 0; i < saml.AssertionAttributeInfo.Count; i++) { if (saml.AssertionAttributeInfo[i].Name == "verified_emails" || saml.AssertionAttributeInfo[i].Name == "verified_email") { for (int j = 0; j < saml.AssertionAttributeInfo[i].AttributeValueCount; j++) { saml.AssertionAttributeInfo[i].AttributeValueIndex = j; verified_emails.Add(saml.AssertionAttributeInfo[i].AttributeValueData); } } }

The other option is to use the GetAssertionAttribute method. This method will search the assertion's attribute statement for the first attribute with a matching name. Like in the example above, if the attribute has multiple values, the method will return them in a semicolon-separated list. This method simplifies the process of searching the collection for a specific attribute if the name of the attribute is known ahead of time. For example: string[] verified_emails = saml.GetAssertionAttribute("verified_emails").Split(';');

Property List


The following is the full list of the properties of the module with short descriptions. Click on the links for further details.

AssertionAttributeInfoInformation about the attributes found in an assertion.
AssertionAuthnInfoInformation about the AuthnStatement in an assertion.
AssertionInfoInformation about a parsed assertion.
FirewallA set of properties related to firewall access.
FollowRedirectsDetermines what happens when the server issues a redirect.
IdentityProviderEncryptingCertThe certificate used to decrypt responses from an identity provider.
IdentityProviderMetadataInformation about the identity provider.
IdentityProviderSigningCertThe certificate used to verify signatures in responses from an identity provider.
IdentityProviderURIsThe URIs for an identity provider.
ProxyA set of properties related to proxy access.
RelayStateThe RelayState for a SAMLRequest or SAMLResponse.
SAMLRequestBodyThe HTTP body for a SAMLRequest.
SAMLRequestSettingsThe settings for a SAMLRequest.
SAMLRequestURLThe URL for SAMLRequests.
SAMLResponseBodyThe HTTP body for the current SAMLResponse.
SAMLResponseHeadersThe HTTP headers for the current SAMLResponse.
SAMLResponseInfoInformation about a SAMLResponse.
ServiceProviderMetadataInformation about a service provider's SAML metadata document.
ServiceProviderSigningCertThe certificate used by the service provider when signing a SAMLRequest or SAML metadata document.
ServiceProviderURIsInformation about the URIs for a service provider.
SSLAcceptServerCertInstructs the module to unconditionally accept the server certificate that matches the supplied certificate.
SSLCertThe certificate to be used during Secure Sockets Layer (SSL) negotiation.
SSLProviderThe Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
SSLServerCertThe server certificate for the last established connection.

Method List


The following is the full list of the methods of the module with short descriptions. Click on the links for further details.

BuildAuthnRequestBuilds an Authentication Request.
BuildLogoutRequestBuilds a Single Logout request.
BuildServiceMetadataBuilds a metadata document for a service provider.
ConfigSets or retrieves a configuration setting.
DoEventsThis method processes events from the internal message queue.
GetAssertionAttributeSearches for a specific assertion attribute.
InterruptThis method interrupts the current method.
LoadIdentityMetadataLoads an identity provider's metadata document.
ParseAssertionParses an assertion.
ParseSAMLResponseParses a SAMLResponse.
ProcessSAMLResponseProcesses the SAMLResponse from the current HTTP request.
RequestIdentityMetadataRequests an identity provider's SAML metadata document.
ResetThis method will reset the module.
ValidateAssertionValidates an assertion.
ValidateSAMLResponseValidates a SAMLResponse.

Event List


The following is the full list of the events fired by the module with short descriptions. Click on the links for further details.

AssertionFired when an assertion is validated.
ErrorFired when information is available about errors during data delivery.
LogFired once for each log message.
RedirectFired when a redirection is received from the server.
SAMLResponseFired when a SAMLResponse is validated.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.

Config Settings


The following is a list of config settings for the module with short descriptions. Click on the links for further details.

AssertionValidationFlagsThe checks that are ignored when validating an assertion.
AttributeNameProfileThe set of names that are used for common attributes.
SAMLRequestCustomConsentThe URI reference of a custom consent type.
SAMLRequestCustomNameIdFormatThe URI reference of a custom NameID format type.
SAMLResponseDetachedSignatureThe SAMLResponse's detached signature.
SAMLResponseDetachedSignatureAlgThe algorithm of a SAMLResponse's detached signature.
SAMLResponseValidationFlagsThe checks that are ignored when validating a SAMLResponse.
UseDetachedSignaturesWhether detached signatures are used when building a SAMLRequest.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the module.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the module will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the module.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the module.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the module whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the module binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

AssertionAttributeInfo Property (SAML Module)

Information about the attributes found in an assertion.

Syntax

public var assertionAttributeInfo: Array<AssertionAttribute> {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=assertionAttributeInfoCount,setter=setAssertionAttributeInfoCount:) int assertionAttributeInfoCount;

- (int)assertionAttributeInfoCount;
- (void)setAssertionAttributeInfoCount :(int)newAssertionAttributeInfoCount;

- (NSString*)assertionAttributeInfoAttributeContent:(int)assertionAttributeInfoIndex;

- (int)assertionAttributeInfoAttributeValueCount:(int)assertionAttributeInfoIndex;

- (NSString*)assertionAttributeInfoAttributeValueData:(int)assertionAttributeInfoIndex;

- (int)assertionAttributeInfoAttributeValueIndex:(int)assertionAttributeInfoIndex;
- (void)setAssertionAttributeInfoAttributeValueIndex:(int)assertionAttributeInfoIndex :(int)newAssertionAttributeInfoAttributeValueIndex;

- (NSString*)assertionAttributeInfoFriendlyName:(int)assertionAttributeInfoIndex;

- (NSString*)assertionAttributeInfoName:(int)assertionAttributeInfoIndex;

- (NSString*)assertionAttributeInfoNameFormat:(int)assertionAttributeInfoIndex;

Default Value

""

Remarks

This properties provides the information for each attribute in all of the AttributeStatement elements from the parsed assertion in the AssertionInfo property.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setAssertionAttributeInfoB(assertionAttributeInfo: Data) throws
public func setAssertionAttributeInfo(assertionAttributeInfo: String) throws

AssertionAuthnInfo Property (SAML Module)

Information about the AuthnStatement in an assertion.

Syntax

public var assertionAuthnInfo: Array<AuthnStatement> {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=assertionAuthnInfoCount,setter=setAssertionAuthnInfoCount:) int assertionAuthnInfoCount;

- (int)assertionAuthnInfoCount;
- (void)setAssertionAuthnInfoCount :(int)newAssertionAuthnInfoCount;

- (NSString*)assertionAuthnInfoAuthenticatingAuthorites:(int)assertionAuthnInfoIndex;

- (NSString*)assertionAuthnInfoAuthnInstant:(int)assertionAuthnInfoIndex;

- (NSString*)assertionAuthnInfoContextClassReference:(int)assertionAuthnInfoIndex;

- (NSString*)assertionAuthnInfoContextDeclaration:(int)assertionAuthnInfoIndex;

- (NSString*)assertionAuthnInfoSessionExpiration:(int)assertionAuthnInfoIndex;

- (NSString*)assertionAuthnInfoSessionIndex:(int)assertionAuthnInfoIndex;

- (NSString*)assertionAuthnInfoStatementContent:(int)assertionAuthnInfoIndex;

Default Value

""

Remarks

This property provides information about the AuthnStatement from the parsed assertion in the AssertionInfo property.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setAssertionAuthnInfoB(assertionAuthnInfo: Data) throws
public func setAssertionAuthnInfo(assertionAuthnInfo: String) throws

AssertionInfo Property (SAML Module)

Information about a parsed assertion.

Syntax

public var assertionInfo: AssertionInfo {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=assertionAssertionContent,setter=setAssertionAssertionContent:) NSString* assertionAssertionContent;

- (NSString*)assertionAssertionContent;
- (void)setAssertionAssertionContent :(NSString*)newAssertionAssertionContent;

@property (nonatomic,readwrite,assign,getter=assertionAssertionContentB,setter=setAssertionAssertionContentB:) NSData* assertionAssertionContentB;

- (NSData*)assertionAssertionContentB;
- (void)setAssertionAssertionContentB :(NSData*)newAssertionAssertionContent;
@property (nonatomic,readonly,assign,getter=assertionExpirationDate) NSString* assertionExpirationDate;

- (NSString*)assertionExpirationDate;

@property (nonatomic,readonly,assign,getter=assertionId) NSString* assertionId;

- (NSString*)assertionId;

@property (nonatomic,readonly,assign,getter=assertionIsSigned) BOOL assertionIsSigned;

- (BOOL)assertionIsSigned;

@property (nonatomic,readonly,assign,getter=assertionIssuedTime) NSString* assertionIssuedTime;

- (NSString*)assertionIssuedTime;

@property (nonatomic,readonly,assign,getter=assertionIssuer) NSString* assertionIssuer;

- (NSString*)assertionIssuer;

@property (nonatomic,readonly,assign,getter=assertionNotBeforeDate) NSString* assertionNotBeforeDate;

- (NSString*)assertionNotBeforeDate;

@property (nonatomic,readonly,assign,getter=assertionOneTimeUse) BOOL assertionOneTimeUse;

- (BOOL)assertionOneTimeUse;

@property (nonatomic,readonly,assign,getter=assertionSubjectNameId) NSString* assertionSubjectNameId;

- (NSString*)assertionSubjectNameId;

@property (nonatomic,readonly,assign,getter=assertionSubjectNameIdFormat) NSString* assertionSubjectNameIdFormat;

- (NSString*)assertionSubjectNameIdFormat;

@property (nonatomic,readonly,assign,getter=assertionUserInfoAddress) NSString* assertionUserInfoAddress;

- (NSString*)assertionUserInfoAddress;

@property (nonatomic,readonly,assign,getter=assertionUserInfoEmail) NSString* assertionUserInfoEmail;

- (NSString*)assertionUserInfoEmail;

@property (nonatomic,readonly,assign,getter=assertionUserInfoName) NSString* assertionUserInfoName;

- (NSString*)assertionUserInfoName;

 

Default Value

""

Remarks

This property provides information about the recently parsed assertion. It can also be used to provide a cached assertion manually to the class.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setAssertionInfoB(assertionInfo: Data) throws
public func setAssertionInfo(assertionInfo: String) throws

Firewall Property (SAML Module)

A set of properties related to firewall access.

Syntax

public var firewall: Firewall {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=firewallAutoDetect,setter=setFirewallAutoDetect:) BOOL firewallAutoDetect;

- (BOOL)firewallAutoDetect;
- (void)setFirewallAutoDetect :(BOOL)newFirewallAutoDetect;

@property (nonatomic,readwrite,assign,getter=firewallType,setter=setFirewallType:) int firewallType;

- (int)firewallType;
- (void)setFirewallType :(int)newFirewallType;

@property (nonatomic,readwrite,assign,getter=firewallHost,setter=setFirewallHost:) NSString* firewallHost;

- (NSString*)firewallHost;
- (void)setFirewallHost :(NSString*)newFirewallHost;

@property (nonatomic,readwrite,assign,getter=firewallPassword,setter=setFirewallPassword:) NSString* firewallPassword;

- (NSString*)firewallPassword;
- (void)setFirewallPassword :(NSString*)newFirewallPassword;

@property (nonatomic,readwrite,assign,getter=firewallPort,setter=setFirewallPort:) int firewallPort;

- (int)firewallPort;
- (void)setFirewallPort :(int)newFirewallPort;

@property (nonatomic,readwrite,assign,getter=firewallUser,setter=setFirewallUser:) NSString* firewallUser;

- (NSString*)firewallUser;
- (void)setFirewallUser :(NSString*)newFirewallUser;

 

Default Value

""

Remarks

This is a Firewall-type property, which contains fields describing the firewall through which the class will attempt to connect.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setFirewallB(firewall: Data) throws
public func setFirewall(firewall: String) throws

FollowRedirects Property (SAML Module)

Determines what happens when the server issues a redirect.

Syntax

public var followRedirects: SAMLFollowRedirects {
  get {...}
  set {...}
}

public enum SAMLFollowRedirects: Int32 { case frNever = 0 case frAlways = 1 case frSameScheme = 2 }

@property (nonatomic,readwrite,assign,getter=followRedirects,setter=setFollowRedirects:) int followRedirects;

- (int)followRedirects;
- (void)setFollowRedirects :(int)newFollowRedirects;

Default Value

0

Remarks

This property determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to frAlways (1), the new URL for the object is retrieved automatically every time.

If this property is set to frSameScheme (2), the new URL is retrieved automatically only if the URLScheme is the same; otherwise, the class .

Note: Following the HTTP specification, unless this property is set to frAlways (1), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty. If, however, this property is set to frAlways (1), the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is frNever (0). In this case, redirects are never followed, and the class instead.

IdentityProviderEncryptingCert Property (SAML Module)

The certificate used to decrypt responses from an identity provider.

Syntax

public var identityProviderEncryptingCert: Certificate {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=identityProviderEncryptingCertStore,setter=setIdentityProviderEncryptingCertStore:) NSString* identityProviderEncryptingCertStore;

- (NSString*)identityProviderEncryptingCertStore;
- (void)setIdentityProviderEncryptingCertStore :(NSString*)newIdentityProviderEncryptingCertStore;

@property (nonatomic,readwrite,assign,getter=identityProviderEncryptingCertStoreB,setter=setIdentityProviderEncryptingCertStoreB:) NSData* identityProviderEncryptingCertStoreB;

- (NSData*)identityProviderEncryptingCertStoreB;
- (void)setIdentityProviderEncryptingCertStoreB :(NSData*)newIdentityProviderEncryptingCertStore;
@property (nonatomic,readwrite,assign,getter=identityProviderEncryptingCertStorePassword,setter=setIdentityProviderEncryptingCertStorePassword:) NSString* identityProviderEncryptingCertStorePassword;

- (NSString*)identityProviderEncryptingCertStorePassword;
- (void)setIdentityProviderEncryptingCertStorePassword :(NSString*)newIdentityProviderEncryptingCertStorePassword;

@property (nonatomic,readwrite,assign,getter=identityProviderEncryptingCertStoreType,setter=setIdentityProviderEncryptingCertStoreType:) int identityProviderEncryptingCertStoreType;

- (int)identityProviderEncryptingCertStoreType;
- (void)setIdentityProviderEncryptingCertStoreType :(int)newIdentityProviderEncryptingCertStoreType;

@property (nonatomic,readwrite,assign,getter=identityProviderEncryptingCertSubject,setter=setIdentityProviderEncryptingCertSubject:) NSString* identityProviderEncryptingCertSubject;

- (NSString*)identityProviderEncryptingCertSubject;
- (void)setIdentityProviderEncryptingCertSubject :(NSString*)newIdentityProviderEncryptingCertSubject;

@property (nonatomic,readwrite,assign,getter=identityProviderEncryptingCertEncoded,setter=setIdentityProviderEncryptingCertEncoded:) NSString* identityProviderEncryptingCertEncoded;

- (NSString*)identityProviderEncryptingCertEncoded;
- (void)setIdentityProviderEncryptingCertEncoded :(NSString*)newIdentityProviderEncryptingCertEncoded;

@property (nonatomic,readwrite,assign,getter=identityProviderEncryptingCertEncodedB,setter=setIdentityProviderEncryptingCertEncodedB:) NSData* identityProviderEncryptingCertEncodedB;

- (NSData*)identityProviderEncryptingCertEncodedB;
- (void)setIdentityProviderEncryptingCertEncodedB :(NSData*)newIdentityProviderEncryptingCertEncoded;
 

Default Value

""

Remarks

This property contains the certificate used to decrypt if encryption is found while parsing. This certificate will need to have access to its private key to be able to successfully decrypt.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setIdentityProviderEncryptingCertB(identityProviderEncryptingCert: Data) throws
public func setIdentityProviderEncryptingCert(identityProviderEncryptingCert: String) throws

IdentityProviderMetadata Property (SAML Module)

Information about the identity provider.

Syntax

public var identityProviderMetadata: IdentityProviderMetadata {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=identityProviderMetadataEntityId,setter=setIdentityProviderMetadataEntityId:) NSString* identityProviderMetadataEntityId;

- (NSString*)identityProviderMetadataEntityId;
- (void)setIdentityProviderMetadataEntityId :(NSString*)newIdentityProviderMetadataEntityId;

@property (nonatomic,readonly,assign,getter=identityProviderMetadataExpirationDate) NSString* identityProviderMetadataExpirationDate;

- (NSString*)identityProviderMetadataExpirationDate;

@property (nonatomic,readwrite,assign,getter=identityProviderMetadataMetadataContent,setter=setIdentityProviderMetadataMetadataContent:) NSString* identityProviderMetadataMetadataContent;

- (NSString*)identityProviderMetadataMetadataContent;
- (void)setIdentityProviderMetadataMetadataContent :(NSString*)newIdentityProviderMetadataMetadataContent;

@property (nonatomic,readwrite,assign,getter=identityProviderMetadataMetadataContentB,setter=setIdentityProviderMetadataMetadataContentB:) NSData* identityProviderMetadataMetadataContentB;

- (NSData*)identityProviderMetadataMetadataContentB;
- (void)setIdentityProviderMetadataMetadataContentB :(NSData*)newIdentityProviderMetadataMetadataContent;
@property (nonatomic,readwrite,assign,getter=identityProviderMetadataRequestsSignedAuthnRequests,setter=setIdentityProviderMetadataRequestsSignedAuthnRequests:) BOOL identityProviderMetadataRequestsSignedAuthnRequests;

- (BOOL)identityProviderMetadataRequestsSignedAuthnRequests;
- (void)setIdentityProviderMetadataRequestsSignedAuthnRequests :(BOOL)newIdentityProviderMetadataRequestsSignedAuthnRequests;

@property (nonatomic,readonly,assign,getter=identityProviderMetadataSignedMetadata) BOOL identityProviderMetadataSignedMetadata;

- (BOOL)identityProviderMetadataSignedMetadata;

@property (nonatomic,readonly,assign,getter=identityProviderMetadataSupportedAttributeProfiles) NSString* identityProviderMetadataSupportedAttributeProfiles;

- (NSString*)identityProviderMetadataSupportedAttributeProfiles;

@property (nonatomic,readonly,assign,getter=identityProviderMetadataSupportedAttributes) NSString* identityProviderMetadataSupportedAttributes;

- (NSString*)identityProviderMetadataSupportedAttributes;

@property (nonatomic,readonly,assign,getter=identityProviderMetadataSupportedNameIdFormats) NSString* identityProviderMetadataSupportedNameIdFormats;

- (NSString*)identityProviderMetadataSupportedNameIdFormats;

 

Default Value

""

Remarks

This property contains information about the identity provider that is used when building requests or validating SAMLResponses or assertions. This can be set manually, by calling the LoadIdentityMetadata method, or by retrieving it using the RequestIdentityMetadata method.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setIdentityProviderMetadataB(identityProviderMetadata: Data) throws
public func setIdentityProviderMetadata(identityProviderMetadata: String) throws

IdentityProviderSigningCert Property (SAML Module)

The certificate used to verify signatures in responses from an identity provider.

Syntax

public var identityProviderSigningCert: Certificate {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=identityProviderSigningCertStore,setter=setIdentityProviderSigningCertStore:) NSString* identityProviderSigningCertStore;

- (NSString*)identityProviderSigningCertStore;
- (void)setIdentityProviderSigningCertStore :(NSString*)newIdentityProviderSigningCertStore;

@property (nonatomic,readwrite,assign,getter=identityProviderSigningCertStoreB,setter=setIdentityProviderSigningCertStoreB:) NSData* identityProviderSigningCertStoreB;

- (NSData*)identityProviderSigningCertStoreB;
- (void)setIdentityProviderSigningCertStoreB :(NSData*)newIdentityProviderSigningCertStore;
@property (nonatomic,readwrite,assign,getter=identityProviderSigningCertStorePassword,setter=setIdentityProviderSigningCertStorePassword:) NSString* identityProviderSigningCertStorePassword;

- (NSString*)identityProviderSigningCertStorePassword;
- (void)setIdentityProviderSigningCertStorePassword :(NSString*)newIdentityProviderSigningCertStorePassword;

@property (nonatomic,readwrite,assign,getter=identityProviderSigningCertStoreType,setter=setIdentityProviderSigningCertStoreType:) int identityProviderSigningCertStoreType;

- (int)identityProviderSigningCertStoreType;
- (void)setIdentityProviderSigningCertStoreType :(int)newIdentityProviderSigningCertStoreType;

@property (nonatomic,readwrite,assign,getter=identityProviderSigningCertSubject,setter=setIdentityProviderSigningCertSubject:) NSString* identityProviderSigningCertSubject;

- (NSString*)identityProviderSigningCertSubject;
- (void)setIdentityProviderSigningCertSubject :(NSString*)newIdentityProviderSigningCertSubject;

@property (nonatomic,readwrite,assign,getter=identityProviderSigningCertEncoded,setter=setIdentityProviderSigningCertEncoded:) NSString* identityProviderSigningCertEncoded;

- (NSString*)identityProviderSigningCertEncoded;
- (void)setIdentityProviderSigningCertEncoded :(NSString*)newIdentityProviderSigningCertEncoded;

@property (nonatomic,readwrite,assign,getter=identityProviderSigningCertEncodedB,setter=setIdentityProviderSigningCertEncodedB:) NSData* identityProviderSigningCertEncodedB;

- (NSData*)identityProviderSigningCertEncodedB;
- (void)setIdentityProviderSigningCertEncodedB :(NSData*)newIdentityProviderSigningCertEncoded;
 

Default Value

""

Remarks

This property contains the public certificate from the identity provider that will be used to verify any signatures found. Typically, this certificate is provided by the identity provider's SAML metadata document. See LoadIdentityMetadata and RequestIdentityMetadata for more information.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setIdentityProviderSigningCertB(identityProviderSigningCert: Data) throws
public func setIdentityProviderSigningCert(identityProviderSigningCert: String) throws

IdentityProviderURIs Property (SAML Module)

The URIs for an identity provider.

Syntax

public var identityProviderURIs: Array<URI> {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=identityProviderURICount,setter=setIdentityProviderURICount:) int identityProviderURICount;

- (int)identityProviderURICount;
- (void)setIdentityProviderURICount :(int)newIdentityProviderURICount;

- (NSString*)identityProviderURIBindingRef:(int)identityProviderURIIdx;
- (void)setIdentityProviderURIBindingRef:(int)identityProviderURIIdx :(NSString*)newIdentityProviderURIBindingRef;

- (int)identityProviderURIBindingType:(int)identityProviderURIIdx;
- (void)setIdentityProviderURIBindingType:(int)identityProviderURIIdx :(int)newIdentityProviderURIBindingType;

- (BOOL)identityProviderURIIsDefault:(int)identityProviderURIIdx;
- (void)setIdentityProviderURIIsDefault:(int)identityProviderURIIdx :(BOOL)newIdentityProviderURIIsDefault;

- (NSString*)identityProviderURILocation:(int)identityProviderURIIdx;
- (void)setIdentityProviderURILocation:(int)identityProviderURIIdx :(NSString*)newIdentityProviderURILocation;

- (int)identityProviderURIIndex:(int)identityProviderURIIdx;
- (void)setIdentityProviderURIIndex:(int)identityProviderURIIdx :(int)newIdentityProviderURIIndex;

- (int)identityProviderURIType:(int)identityProviderURIIdx;
- (void)setIdentityProviderURIType:(int)identityProviderURIIdx :(int)newIdentityProviderURIType;

Default Value

""

Remarks

This properties contains a list of URIs that are supported by the Identity Provider. Typically, these URIs are provided by the identity provider's SAML metadata document. See LoadIdentityMetadata and RequestIdentityMetadata for more information.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setIdentityProviderURIsB(identityProviderURIs: Data) throws
public func setIdentityProviderURIs(identityProviderURIs: String) throws

Proxy Property (SAML Module)

A set of properties related to proxy access.

Syntax

public var proxy: Proxy {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=proxyAuthScheme,setter=setProxyAuthScheme:) int proxyAuthScheme;

- (int)proxyAuthScheme;
- (void)setProxyAuthScheme :(int)newProxyAuthScheme;

@property (nonatomic,readwrite,assign,getter=proxyAutoDetect,setter=setProxyAutoDetect:) BOOL proxyAutoDetect;

- (BOOL)proxyAutoDetect;
- (void)setProxyAutoDetect :(BOOL)newProxyAutoDetect;

@property (nonatomic,readwrite,assign,getter=proxyPassword,setter=setProxyPassword:) NSString* proxyPassword;

- (NSString*)proxyPassword;
- (void)setProxyPassword :(NSString*)newProxyPassword;

@property (nonatomic,readwrite,assign,getter=proxyPort,setter=setProxyPort:) int proxyPort;

- (int)proxyPort;
- (void)setProxyPort :(int)newProxyPort;

@property (nonatomic,readwrite,assign,getter=proxyServer,setter=setProxyServer:) NSString* proxyServer;

- (NSString*)proxyServer;
- (void)setProxyServer :(NSString*)newProxyServer;

@property (nonatomic,readwrite,assign,getter=proxySSL,setter=setProxySSL:) int proxySSL;

- (int)proxySSL;
- (void)setProxySSL :(int)newProxySSL;

@property (nonatomic,readwrite,assign,getter=proxyUser,setter=setProxyUser:) NSString* proxyUser;

- (NSString*)proxyUser;
- (void)setProxyUser :(NSString*)newProxyUser;

 

Default Value

""

Remarks

This property contains fields describing the proxy through which the class will attempt to connect.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setProxyB(proxy: Data) throws
public func setProxy(proxy: String) throws

RelayState Property (SAML Module)

The RelayState for a SAMLRequest or SAMLResponse.

Syntax

public var relayState: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=relayState,setter=setRelayState:) NSString* relayState;

- (NSString*)relayState;
- (void)setRelayState :(NSString*)newRelayState;

Default Value

""

Remarks

When set before building a request using the BuildAuthnRequest and BuildLogoutRequest methods, this property will set the RelayState parameter. Any value may be specified here and it will be returned exactly as it was sent. This can be used to maintain state within the application, and also may be used for security purposes. The contents of this property are treated as an opaque value.

SAMLRequestBody Property (SAML Module)

The HTTP body for a SAMLRequest.

Syntax

public var samlRequestBody: String {
  get {...}
}

public var samlRequestBodyB: Data { get {...} }

@property (nonatomic,readonly,assign,getter=SAMLRequestBody) NSString* SAMLRequestBody;

- (NSString*)SAMLRequestBody;

@property (nonatomic,readonly,assign,getter=SAMLRequestBodyB) NSData* SAMLRequestBodyB;

- (NSData*)SAMLRequestBodyB;

Default Value

""

Remarks

This property contains the generated HTTP body for the request that should be provided to the SAMLRequestURL if required by the selected binding. It is generated alongside the SAMLRequestURL property when calling BuildAuthnRequest or BuildLogoutRequest.

This property is read-only.

SAMLRequestSettings Property (SAML Module)

The settings for a SAMLRequest.

Syntax

public var samlRequestSettings: SAMLRequestSettings {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=SAMLRequestAllowCreate,setter=setSAMLRequestAllowCreate:) BOOL SAMLRequestAllowCreate;

- (BOOL)SAMLRequestAllowCreate;
- (void)setSAMLRequestAllowCreate :(BOOL)newSAMLRequestAllowCreate;

@property (nonatomic,readwrite,assign,getter=SAMLRequestConsent,setter=setSAMLRequestConsent:) int SAMLRequestConsent;

- (int)SAMLRequestConsent;
- (void)setSAMLRequestConsent :(int)newSAMLRequestConsent;

@property (nonatomic,readwrite,assign,getter=SAMLRequestDestination,setter=setSAMLRequestDestination:) NSString* SAMLRequestDestination;

- (NSString*)SAMLRequestDestination;
- (void)setSAMLRequestDestination :(NSString*)newSAMLRequestDestination;

@property (nonatomic,readwrite,assign,getter=SAMLRequestId,setter=setSAMLRequestId:) NSString* SAMLRequestId;

- (NSString*)SAMLRequestId;
- (void)setSAMLRequestId :(NSString*)newSAMLRequestId;

@property (nonatomic,readwrite,assign,getter=SAMLRequestIssuedTime,setter=setSAMLRequestIssuedTime:) NSString* SAMLRequestIssuedTime;

- (NSString*)SAMLRequestIssuedTime;
- (void)setSAMLRequestIssuedTime :(NSString*)newSAMLRequestIssuedTime;

@property (nonatomic,readwrite,assign,getter=SAMLRequestIssuer,setter=setSAMLRequestIssuer:) NSString* SAMLRequestIssuer;

- (NSString*)SAMLRequestIssuer;
- (void)setSAMLRequestIssuer :(NSString*)newSAMLRequestIssuer;

@property (nonatomic,readwrite,assign,getter=SAMLRequestNameIdFormat,setter=setSAMLRequestNameIdFormat:) int SAMLRequestNameIdFormat;

- (int)SAMLRequestNameIdFormat;
- (void)setSAMLRequestNameIdFormat :(int)newSAMLRequestNameIdFormat;

@property (nonatomic,readwrite,assign,getter=SAMLRequestRequestBinding,setter=setSAMLRequestRequestBinding:) int SAMLRequestRequestBinding;

- (int)SAMLRequestRequestBinding;
- (void)setSAMLRequestRequestBinding :(int)newSAMLRequestRequestBinding;

@property (nonatomic,readwrite,assign,getter=SAMLRequestSelectedEndpoint,setter=setSAMLRequestSelectedEndpoint:) int SAMLRequestSelectedEndpoint;

- (int)SAMLRequestSelectedEndpoint;
- (void)setSAMLRequestSelectedEndpoint :(int)newSAMLRequestSelectedEndpoint;

@property (nonatomic,readwrite,assign,getter=SAMLRequestSignRequest,setter=setSAMLRequestSignRequest:) BOOL SAMLRequestSignRequest;

- (BOOL)SAMLRequestSignRequest;
- (void)setSAMLRequestSignRequest :(BOOL)newSAMLRequestSignRequest;

@property (nonatomic,readwrite,assign,getter=SAMLRequestUseDefaultEndpoint,setter=setSAMLRequestUseDefaultEndpoint:) BOOL SAMLRequestUseDefaultEndpoint;

- (BOOL)SAMLRequestUseDefaultEndpoint;
- (void)setSAMLRequestUseDefaultEndpoint :(BOOL)newSAMLRequestUseDefaultEndpoint;

 

Default Value

""

Remarks

This property is used to configure the SAMLRequest built by the BuildAuthnRequest or BuildLogoutRequest methods.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setSAMLRequestSettingsB(samlRequestSettings: Data) throws
public func setSAMLRequestSettings(samlRequestSettings: String) throws

SAMLRequestURL Property (SAML Module)

The URL for SAMLRequests.

Syntax

public var samlRequestURL: String {
  get {...}
}

@property (nonatomic,readonly,assign,getter=SAMLRequestURL) NSString* SAMLRequestURL;

- (NSString*)SAMLRequestURL;

Default Value

""

Remarks

This property contains the generated URL to an identity provider for a sign-on or logoff service. Depending on the binding used, the URL may contain the SAMLRequest, or the SAMLRequestBody property will be populated to be sent along with the request. It is generated using the BuildAuthnRequest or BuildLogoutRequest methods.

This property is read-only.

SAMLResponseBody Property (SAML Module)

The HTTP body for the current SAMLResponse.

Syntax

public var samlResponseBody: String {
  get {...}
  set {...}
}

public var samlResponseBodyB: Data { get {...} set {...} }

@property (nonatomic,readwrite,assign,getter=SAMLResponseBody,setter=setSAMLResponseBody:) NSString* SAMLResponseBody;

- (NSString*)SAMLResponseBody;
- (void)setSAMLResponseBody :(NSString*)newSAMLResponseBody;

@property (nonatomic,readwrite,assign,getter=SAMLResponseBodyB,setter=setSAMLResponseBodyB:) NSData* SAMLResponseBodyB;

- (NSData*)SAMLResponseBodyB;
- (void)setSAMLResponseBodyB :(NSData*)newSAMLResponseBody;

Default Value

""

Remarks

This property can be set before calling the ParseSAMLResponse or ProcessSAMLResponse methods to directly provide the HTTP body of the SAMLResponse that should be parsed. If using the HTTP context, this property is populated with the HTTP body containing the SAMLResponse that was parsed from the HTTP context after calling ParseSAMLResponse or ProcessSAMLResponse.

SAMLResponseHeaders Property (SAML Module)

The HTTP headers for the current SAMLResponse.

Syntax

public var samlResponseHeaders: String {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=SAMLResponseHeaders,setter=setSAMLResponseHeaders:) NSString* SAMLResponseHeaders;

- (NSString*)SAMLResponseHeaders;
- (void)setSAMLResponseHeaders :(NSString*)newSAMLResponseHeaders;

Default Value

""

Remarks

This property can be set before calling the ParseSAMLResponse or ProcessSAMLResponse methods to directly provide the HTTP headers that contain the SAMLResponse from the Identity Provider. If using the HTTP context, this property is populated with the HTTP headers that were parsed from the HTTP context after calling ParseSAMLResponse or ProcessSAMLResponse.

SAMLResponseInfo Property (SAML Module)

Information about a SAMLResponse.

Syntax

public var samlResponseInfo: SAMLResponseInfo {
  get {...}
  set {...}
}

@property (nonatomic,readonly,assign,getter=SAMLResponseConsent) NSString* SAMLResponseConsent;

- (NSString*)SAMLResponseConsent;

@property (nonatomic,readonly,assign,getter=SAMLResponseDestination) NSString* SAMLResponseDestination;

- (NSString*)SAMLResponseDestination;

@property (nonatomic,readonly,assign,getter=SAMLResponseInResponseTo) NSString* SAMLResponseInResponseTo;

- (NSString*)SAMLResponseInResponseTo;

@property (nonatomic,readonly,assign,getter=SAMLResponseIssuedTime) NSString* SAMLResponseIssuedTime;

- (NSString*)SAMLResponseIssuedTime;

@property (nonatomic,readonly,assign,getter=SAMLResponseIssuer) NSString* SAMLResponseIssuer;

- (NSString*)SAMLResponseIssuer;

@property (nonatomic,readwrite,assign,getter=SAMLResponseResponseContent,setter=setSAMLResponseResponseContent:) NSString* SAMLResponseResponseContent;

- (NSString*)SAMLResponseResponseContent;
- (void)setSAMLResponseResponseContent :(NSString*)newSAMLResponseResponseContent;

@property (nonatomic,readwrite,assign,getter=SAMLResponseResponseContentB,setter=setSAMLResponseResponseContentB:) NSData* SAMLResponseResponseContentB;

- (NSData*)SAMLResponseResponseContentB;
- (void)setSAMLResponseResponseContentB :(NSData*)newSAMLResponseResponseContent;
@property (nonatomic,readonly,assign,getter=SAMLResponseResponseId) NSString* SAMLResponseResponseId;

- (NSString*)SAMLResponseResponseId;

@property (nonatomic,readonly,assign,getter=SAMLResponseResponseType) int SAMLResponseResponseType;

- (int)SAMLResponseResponseType;

@property (nonatomic,readonly,assign,getter=SAMLResponseSigned) BOOL SAMLResponseSigned;

- (BOOL)SAMLResponseSigned;

@property (nonatomic,readonly,assign,getter=SAMLResponseStatusCodes) NSString* SAMLResponseStatusCodes;

- (NSString*)SAMLResponseStatusCodes;

@property (nonatomic,readonly,assign,getter=SAMLResponseStatusMessage) NSString* SAMLResponseStatusMessage;

- (NSString*)SAMLResponseStatusMessage;

 

Default Value

""

Remarks

This property provides information about the recently parsed SAMLResponse. It can be set when calling the ProcessSAMLResponse or ParseSAMLResponse methods. It can also be used to provide a stored SAMLResponse manually to the class.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setSAMLResponseInfoB(samlResponseInfo: Data) throws
public func setSAMLResponseInfo(samlResponseInfo: String) throws

ServiceProviderMetadata Property (SAML Module)

Information about a service provider's SAML metadata document.

Syntax

public var serviceProviderMetadata: ServiceProviderMetadata {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=serviceProviderMetadataAuthnRequestSigned,setter=setServiceProviderMetadataAuthnRequestSigned:) BOOL serviceProviderMetadataAuthnRequestSigned;

- (BOOL)serviceProviderMetadataAuthnRequestSigned;
- (void)setServiceProviderMetadataAuthnRequestSigned :(BOOL)newServiceProviderMetadataAuthnRequestSigned;

@property (nonatomic,readwrite,assign,getter=serviceProviderMetadataEntityId,setter=setServiceProviderMetadataEntityId:) NSString* serviceProviderMetadataEntityId;

- (NSString*)serviceProviderMetadataEntityId;
- (void)setServiceProviderMetadataEntityId :(NSString*)newServiceProviderMetadataEntityId;

@property (nonatomic,readwrite,assign,getter=serviceProviderMetadataMetadataContent,setter=setServiceProviderMetadataMetadataContent:) NSString* serviceProviderMetadataMetadataContent;

- (NSString*)serviceProviderMetadataMetadataContent;
- (void)setServiceProviderMetadataMetadataContent :(NSString*)newServiceProviderMetadataMetadataContent;

@property (nonatomic,readwrite,assign,getter=serviceProviderMetadataMetadataContentB,setter=setServiceProviderMetadataMetadataContentB:) NSData* serviceProviderMetadataMetadataContentB;

- (NSData*)serviceProviderMetadataMetadataContentB;
- (void)setServiceProviderMetadataMetadataContentB :(NSData*)newServiceProviderMetadataMetadataContent;
@property (nonatomic,readwrite,assign,getter=serviceProviderMetadataSignedMetadata,setter=setServiceProviderMetadataSignedMetadata:) BOOL serviceProviderMetadataSignedMetadata;

- (BOOL)serviceProviderMetadataSignedMetadata;
- (void)setServiceProviderMetadataSignedMetadata :(BOOL)newServiceProviderMetadataSignedMetadata;

@property (nonatomic,readwrite,assign,getter=serviceProviderMetadataSupportedNameIdFormats,setter=setServiceProviderMetadataSupportedNameIdFormats:) NSString* serviceProviderMetadataSupportedNameIdFormats;

- (NSString*)serviceProviderMetadataSupportedNameIdFormats;
- (void)setServiceProviderMetadataSupportedNameIdFormats :(NSString*)newServiceProviderMetadataSupportedNameIdFormats;

@property (nonatomic,readwrite,assign,getter=serviceProviderMetadataWantAssertionsSigned,setter=setServiceProviderMetadataWantAssertionsSigned:) BOOL serviceProviderMetadataWantAssertionsSigned;

- (BOOL)serviceProviderMetadataWantAssertionsSigned;
- (void)setServiceProviderMetadataWantAssertionsSigned :(BOOL)newServiceProviderMetadataWantAssertionsSigned;

 

Default Value

""

Remarks

This property contains the settings needed to generate the service provider's (this application) SAML metadata document to be given to the identity provider.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setServiceProviderMetadataB(serviceProviderMetadata: Data) throws
public func setServiceProviderMetadata(serviceProviderMetadata: String) throws

ServiceProviderSigningCert Property (SAML Module)

The certificate used by the service provider when signing a SAMLRequest or SAML metadata document.

Syntax

public var serviceProviderSigningCert: Certificate {
  get {...}
  set {...}
}

@property (nonatomic,readwrite,assign,getter=serviceProviderSigningCertStore,setter=setServiceProviderSigningCertStore:) NSString* serviceProviderSigningCertStore;

- (NSString*)serviceProviderSigningCertStore;
- (void)setServiceProviderSigningCertStore :(NSString*)newServiceProviderSigningCertStore;

@property (nonatomic,readwrite,assign,getter=serviceProviderSigningCertStoreB,setter=setServiceProviderSigningCertStoreB:) NSData* serviceProviderSigningCertStoreB;

- (NSData*)serviceProviderSigningCertStoreB;
- (void)setServiceProviderSigningCertStoreB :(NSData*)newServiceProviderSigningCertStore;
@property (nonatomic,readwrite,assign,getter=serviceProviderSigningCertStorePassword,setter=setServiceProviderSigningCertStorePassword:) NSString* serviceProviderSigningCertStorePassword;

- (NSString*)serviceProviderSigningCertStorePassword;
- (void)setServiceProviderSigningCertStorePassword :(NSString*)newServiceProviderSigningCertStorePassword;

@property (nonatomic,readwrite,assign,getter=serviceProviderSigningCertStoreType,setter=setServiceProviderSigningCertStoreType:) int serviceProviderSigningCertStoreType;

- (int)serviceProviderSigningCertStoreType;
- (void)setServiceProviderSigningCertStoreType :(int)newServiceProviderSigningCertStoreType;

@property (nonatomic,readwrite,assign,getter=serviceProviderSigningCertSubject,setter=setServiceProviderSigningCertSubject:) NSString* serviceProviderSigningCertSubject;

- (NSString*)serviceProviderSigningCertSubject;
- (void)setServiceProviderSigningCertSubject :(NSString*)newServiceProviderSigningCertSubject;

@property (nonatomic,readwrite,assign,getter=serviceProviderSigningCertEncoded,setter=setServiceProviderSigningCertEncoded:) NSString* serviceProviderSigningCertEncoded;

- (NSString*)serviceProviderSigningCertEncoded;
- (void)setServiceProviderSigningCertEncoded :(NSString*)newServiceProviderSigningCertEncoded;

@property (nonatomic,readwrite,assign,getter=serviceProviderSigningCertEncodedB,setter=setServiceProviderSigningCertEncodedB:) NSData* serviceProviderSigningCertEncodedB;

- (NSData*)serviceProviderSigningCertEncodedB;
- (void)setServiceProviderSigningCertEncodedB :(NSData*)newServiceProviderSigningCertEncoded;
 

Default Value

""

Remarks

This property contains the certificate that should be used if the SAMLRequest (Authn and Logout) needs to be signed when calling BuildAuthnRequest or BuildLogoutRequest. Additionally, if required, this certificate is used to sign a SAML metadata document when calling the BuildServiceMetadata method.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setServiceProviderSigningCertB(serviceProviderSigningCert: Data) throws
public func setServiceProviderSigningCert(serviceProviderSigningCert: String) throws

ServiceProviderURIs Property (SAML Module)

Information about the URIs for a service provider.

Syntax

public var serviceProviderURIs: Array<URI> {
  get {...}
}

@property (nonatomic,readwrite,assign,getter=serviceProviderURICount,setter=setServiceProviderURICount:) int serviceProviderURICount;

- (int)serviceProviderURICount;
- (void)setServiceProviderURICount :(int)newServiceProviderURICount;

- (NSString*)serviceProviderURIBindingRef:(int)serviceProviderURIIdx;
- (void)setServiceProviderURIBindingRef:(int)serviceProviderURIIdx :(NSString*)newServiceProviderURIBindingRef;

- (int)serviceProviderURIBindingType:(int)serviceProviderURIIdx;
- (void)setServiceProviderURIBindingType:(int)serviceProviderURIIdx :(int)newServiceProviderURIBindingType;

- (BOOL)serviceProviderURIIsDefault:(int)serviceProviderURIIdx;
- (void)setServiceProviderURIIsDefault:(int)serviceProviderURIIdx :(BOOL)newServiceProviderURIIsDefault;

- (NSString*)serviceProviderURILocation:(int)serviceProviderURIIdx;
- (void)setServiceProviderURILocation:(int)serviceProviderURIIdx :(NSString*)newServiceProviderURILocation;

- (int)serviceProviderURIIndex:(int)serviceProviderURIIdx;
- (void)setServiceProviderURIIndex:(int)serviceProviderURIIdx :(int)newServiceProviderURIIndex;

- (int)serviceProviderURIType:(int)serviceProviderURIIdx;
- (void)setServiceProviderURIType:(int)serviceProviderURIIdx :(int)newServiceProviderURIType;

Default Value

""

Remarks

This properties contains a list of URIs that are used by the service provider (this application) and should be provided to the identity provider. This is used when building the service provider's SAML metadata document during the BuildServiceMetadata method. When building an authentication request using the BuildAuthnRequest method, the class will use the fisrt URI from this properties if SAMLRequestSettingsUseDefaultEndpoint and SAMLRequestSettingsSelectedEndpoint are not set. When validating a SAMLResponse or assertion, these URIs are used to validate the destination or recipient attributes respectively. See ValidateSAMLResponse and ValidateAssertion for more information.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setServiceProviderURIsB(serviceProviderURIs: Data) throws
public func setServiceProviderURIs(serviceProviderURIs: String) throws

SSLAcceptServerCert Property (SAML Module)

Instructs the module to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

public var sslAcceptServerCert: Certificate {
  get {...}
  set {...}
}

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertEffectiveDate) NSString* SSLAcceptServerCertEffectiveDate;

- (NSString*)SSLAcceptServerCertEffectiveDate;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertExpirationDate) NSString* SSLAcceptServerCertExpirationDate;

- (NSString*)SSLAcceptServerCertExpirationDate;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertExtendedKeyUsage) NSString* SSLAcceptServerCertExtendedKeyUsage;

- (NSString*)SSLAcceptServerCertExtendedKeyUsage;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertFingerprint) NSString* SSLAcceptServerCertFingerprint;

- (NSString*)SSLAcceptServerCertFingerprint;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertFingerprintSHA1) NSString* SSLAcceptServerCertFingerprintSHA1;

- (NSString*)SSLAcceptServerCertFingerprintSHA1;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertFingerprintSHA256) NSString* SSLAcceptServerCertFingerprintSHA256;

- (NSString*)SSLAcceptServerCertFingerprintSHA256;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertIssuer) NSString* SSLAcceptServerCertIssuer;

- (NSString*)SSLAcceptServerCertIssuer;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertPrivateKey) NSString* SSLAcceptServerCertPrivateKey;

- (NSString*)SSLAcceptServerCertPrivateKey;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertPrivateKeyAvailable) BOOL SSLAcceptServerCertPrivateKeyAvailable;

- (BOOL)SSLAcceptServerCertPrivateKeyAvailable;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertPrivateKeyContainer) NSString* SSLAcceptServerCertPrivateKeyContainer;

- (NSString*)SSLAcceptServerCertPrivateKeyContainer;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertPublicKey) NSString* SSLAcceptServerCertPublicKey;

- (NSString*)SSLAcceptServerCertPublicKey;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertPublicKeyAlgorithm) NSString* SSLAcceptServerCertPublicKeyAlgorithm;

- (NSString*)SSLAcceptServerCertPublicKeyAlgorithm;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertPublicKeyLength) int SSLAcceptServerCertPublicKeyLength;

- (int)SSLAcceptServerCertPublicKeyLength;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertSerialNumber) NSString* SSLAcceptServerCertSerialNumber;

- (NSString*)SSLAcceptServerCertSerialNumber;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertSignatureAlgorithm) NSString* SSLAcceptServerCertSignatureAlgorithm;

- (NSString*)SSLAcceptServerCertSignatureAlgorithm;

@property (nonatomic,readwrite,assign,getter=SSLAcceptServerCertStore,setter=setSSLAcceptServerCertStore:) NSString* SSLAcceptServerCertStore;

- (NSString*)SSLAcceptServerCertStore;
- (void)setSSLAcceptServerCertStore :(NSString*)newSSLAcceptServerCertStore;

@property (nonatomic,readwrite,assign,getter=SSLAcceptServerCertStoreB,setter=setSSLAcceptServerCertStoreB:) NSData* SSLAcceptServerCertStoreB;

- (NSData*)SSLAcceptServerCertStoreB;
- (void)setSSLAcceptServerCertStoreB :(NSData*)newSSLAcceptServerCertStore;
@property (nonatomic,readwrite,assign,getter=SSLAcceptServerCertStorePassword,setter=setSSLAcceptServerCertStorePassword:) NSString* SSLAcceptServerCertStorePassword;

- (NSString*)SSLAcceptServerCertStorePassword;
- (void)setSSLAcceptServerCertStorePassword :(NSString*)newSSLAcceptServerCertStorePassword;

@property (nonatomic,readwrite,assign,getter=SSLAcceptServerCertStoreType,setter=setSSLAcceptServerCertStoreType:) int SSLAcceptServerCertStoreType;

- (int)SSLAcceptServerCertStoreType;
- (void)setSSLAcceptServerCertStoreType :(int)newSSLAcceptServerCertStoreType;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertSubjectAltNames) NSString* SSLAcceptServerCertSubjectAltNames;

- (NSString*)SSLAcceptServerCertSubjectAltNames;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertThumbprintMD5) NSString* SSLAcceptServerCertThumbprintMD5;

- (NSString*)SSLAcceptServerCertThumbprintMD5;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertThumbprintSHA1) NSString* SSLAcceptServerCertThumbprintSHA1;

- (NSString*)SSLAcceptServerCertThumbprintSHA1;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertThumbprintSHA256) NSString* SSLAcceptServerCertThumbprintSHA256;

- (NSString*)SSLAcceptServerCertThumbprintSHA256;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertUsage) NSString* SSLAcceptServerCertUsage;

- (NSString*)SSLAcceptServerCertUsage;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertUsageFlags) int SSLAcceptServerCertUsageFlags;

- (int)SSLAcceptServerCertUsageFlags;

@property (nonatomic,readonly,assign,getter=SSLAcceptServerCertVersion) NSString* SSLAcceptServerCertVersion;

- (NSString*)SSLAcceptServerCertVersion;

@property (nonatomic,readwrite,assign,getter=SSLAcceptServerCertSubject,setter=setSSLAcceptServerCertSubject:) NSString* SSLAcceptServerCertSubject;

- (NSString*)SSLAcceptServerCertSubject;
- (void)setSSLAcceptServerCertSubject :(NSString*)newSSLAcceptServerCertSubject;

@property (nonatomic,readwrite,assign,getter=SSLAcceptServerCertEncoded,setter=setSSLAcceptServerCertEncoded:) NSString* SSLAcceptServerCertEncoded;

- (NSString*)SSLAcceptServerCertEncoded;
- (void)setSSLAcceptServerCertEncoded :(NSString*)newSSLAcceptServerCertEncoded;

@property (nonatomic,readwrite,assign,getter=SSLAcceptServerCertEncodedB,setter=setSSLAcceptServerCertEncodedB:) NSData* SSLAcceptServerCertEncodedB;

- (NSData*)SSLAcceptServerCertEncodedB;
- (void)setSSLAcceptServerCertEncodedB :(NSData*)newSSLAcceptServerCertEncoded;
 

Default Value

""

Remarks

If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Note: This functionality is provided only for cases in which you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setSSLAcceptServerCertB(sslAcceptServerCert: Data) throws
public func setSSLAcceptServerCert(sslAcceptServerCert: String) throws

SSLCert Property (SAML Module)

The certificate to be used during Secure Sockets Layer (SSL) negotiation.

Syntax

public var sslCert: Certificate {
  get {...}
  set {...}
}

@property (nonatomic,readonly,assign,getter=SSLCertEffectiveDate) NSString* SSLCertEffectiveDate;

- (NSString*)SSLCertEffectiveDate;

@property (nonatomic,readonly,assign,getter=SSLCertExpirationDate) NSString* SSLCertExpirationDate;

- (NSString*)SSLCertExpirationDate;

@property (nonatomic,readonly,assign,getter=SSLCertExtendedKeyUsage) NSString* SSLCertExtendedKeyUsage;

- (NSString*)SSLCertExtendedKeyUsage;

@property (nonatomic,readonly,assign,getter=SSLCertFingerprint) NSString* SSLCertFingerprint;

- (NSString*)SSLCertFingerprint;

@property (nonatomic,readonly,assign,getter=SSLCertFingerprintSHA1) NSString* SSLCertFingerprintSHA1;

- (NSString*)SSLCertFingerprintSHA1;

@property (nonatomic,readonly,assign,getter=SSLCertFingerprintSHA256) NSString* SSLCertFingerprintSHA256;

- (NSString*)SSLCertFingerprintSHA256;

@property (nonatomic,readonly,assign,getter=SSLCertIssuer) NSString* SSLCertIssuer;

- (NSString*)SSLCertIssuer;

@property (nonatomic,readonly,assign,getter=SSLCertPrivateKey) NSString* SSLCertPrivateKey;

- (NSString*)SSLCertPrivateKey;

@property (nonatomic,readonly,assign,getter=SSLCertPrivateKeyAvailable) BOOL SSLCertPrivateKeyAvailable;

- (BOOL)SSLCertPrivateKeyAvailable;

@property (nonatomic,readonly,assign,getter=SSLCertPrivateKeyContainer) NSString* SSLCertPrivateKeyContainer;

- (NSString*)SSLCertPrivateKeyContainer;

@property (nonatomic,readonly,assign,getter=SSLCertPublicKey) NSString* SSLCertPublicKey;

- (NSString*)SSLCertPublicKey;

@property (nonatomic,readonly,assign,getter=SSLCertPublicKeyAlgorithm) NSString* SSLCertPublicKeyAlgorithm;

- (NSString*)SSLCertPublicKeyAlgorithm;

@property (nonatomic,readonly,assign,getter=SSLCertPublicKeyLength) int SSLCertPublicKeyLength;

- (int)SSLCertPublicKeyLength;

@property (nonatomic,readonly,assign,getter=SSLCertSerialNumber) NSString* SSLCertSerialNumber;

- (NSString*)SSLCertSerialNumber;

@property (nonatomic,readonly,assign,getter=SSLCertSignatureAlgorithm) NSString* SSLCertSignatureAlgorithm;

- (NSString*)SSLCertSignatureAlgorithm;

@property (nonatomic,readwrite,assign,getter=SSLCertStore,setter=setSSLCertStore:) NSString* SSLCertStore;

- (NSString*)SSLCertStore;
- (void)setSSLCertStore :(NSString*)newSSLCertStore;

@property (nonatomic,readwrite,assign,getter=SSLCertStoreB,setter=setSSLCertStoreB:) NSData* SSLCertStoreB;

- (NSData*)SSLCertStoreB;
- (void)setSSLCertStoreB :(NSData*)newSSLCertStore;
@property (nonatomic,readwrite,assign,getter=SSLCertStorePassword,setter=setSSLCertStorePassword:) NSString* SSLCertStorePassword;

- (NSString*)SSLCertStorePassword;
- (void)setSSLCertStorePassword :(NSString*)newSSLCertStorePassword;

@property (nonatomic,readwrite,assign,getter=SSLCertStoreType,setter=setSSLCertStoreType:) int SSLCertStoreType;

- (int)SSLCertStoreType;
- (void)setSSLCertStoreType :(int)newSSLCertStoreType;

@property (nonatomic,readonly,assign,getter=SSLCertSubjectAltNames) NSString* SSLCertSubjectAltNames;

- (NSString*)SSLCertSubjectAltNames;

@property (nonatomic,readonly,assign,getter=SSLCertThumbprintMD5) NSString* SSLCertThumbprintMD5;

- (NSString*)SSLCertThumbprintMD5;

@property (nonatomic,readonly,assign,getter=SSLCertThumbprintSHA1) NSString* SSLCertThumbprintSHA1;

- (NSString*)SSLCertThumbprintSHA1;

@property (nonatomic,readonly,assign,getter=SSLCertThumbprintSHA256) NSString* SSLCertThumbprintSHA256;

- (NSString*)SSLCertThumbprintSHA256;

@property (nonatomic,readonly,assign,getter=SSLCertUsage) NSString* SSLCertUsage;

- (NSString*)SSLCertUsage;

@property (nonatomic,readonly,assign,getter=SSLCertUsageFlags) int SSLCertUsageFlags;

- (int)SSLCertUsageFlags;

@property (nonatomic,readonly,assign,getter=SSLCertVersion) NSString* SSLCertVersion;

- (NSString*)SSLCertVersion;

@property (nonatomic,readwrite,assign,getter=SSLCertSubject,setter=setSSLCertSubject:) NSString* SSLCertSubject;

- (NSString*)SSLCertSubject;
- (void)setSSLCertSubject :(NSString*)newSSLCertSubject;

@property (nonatomic,readwrite,assign,getter=SSLCertEncoded,setter=setSSLCertEncoded:) NSString* SSLCertEncoded;

- (NSString*)SSLCertEncoded;
- (void)setSSLCertEncoded :(NSString*)newSSLCertEncoded;

@property (nonatomic,readwrite,assign,getter=SSLCertEncodedB,setter=setSSLCertEncodedB:) NSData* SSLCertEncodedB;

- (NSData*)SSLCertEncodedB;
- (void)setSSLCertEncodedB :(NSData*)newSSLCertEncoded;
 

Default Value

""

Remarks

This property includes the digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the field to the encoded certificate. To select a certificate, use the store and subject fields.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setSSLCertB(sslCert: Data) throws
public func setSSLCert(sslCert: String) throws

SSLProvider Property (SAML Module)

The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.

Syntax

public var sslProvider: SAMLSSLProviders {
  get {...}
  set {...}
}

public enum SAMLSSLProviders: Int32 { case sslpAutomatic = 0 case sslpPlatform = 1 case sslpInternal = 2 }

@property (nonatomic,readwrite,assign,getter=SSLProvider,setter=setSSLProvider:) int SSLProvider;

- (int)SSLProvider;
- (void)setSSLProvider :(int)newSSLProvider;

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are as follows:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, the platform implementation will be used by default in all cases in the macOS edition.

SSLServerCert Property (SAML Module)

The server certificate for the last established connection.

Syntax

public var sslServerCert: Certificate {
  get {...}
}

@property (nonatomic,readonly,assign,getter=SSLServerCertEffectiveDate) NSString* SSLServerCertEffectiveDate;

- (NSString*)SSLServerCertEffectiveDate;

@property (nonatomic,readonly,assign,getter=SSLServerCertExpirationDate) NSString* SSLServerCertExpirationDate;

- (NSString*)SSLServerCertExpirationDate;

@property (nonatomic,readonly,assign,getter=SSLServerCertExtendedKeyUsage) NSString* SSLServerCertExtendedKeyUsage;

- (NSString*)SSLServerCertExtendedKeyUsage;

@property (nonatomic,readonly,assign,getter=SSLServerCertFingerprint) NSString* SSLServerCertFingerprint;

- (NSString*)SSLServerCertFingerprint;

@property (nonatomic,readonly,assign,getter=SSLServerCertFingerprintSHA1) NSString* SSLServerCertFingerprintSHA1;

- (NSString*)SSLServerCertFingerprintSHA1;

@property (nonatomic,readonly,assign,getter=SSLServerCertFingerprintSHA256) NSString* SSLServerCertFingerprintSHA256;

- (NSString*)SSLServerCertFingerprintSHA256;

@property (nonatomic,readonly,assign,getter=SSLServerCertIssuer) NSString* SSLServerCertIssuer;

- (NSString*)SSLServerCertIssuer;

@property (nonatomic,readonly,assign,getter=SSLServerCertPrivateKey) NSString* SSLServerCertPrivateKey;

- (NSString*)SSLServerCertPrivateKey;

@property (nonatomic,readonly,assign,getter=SSLServerCertPrivateKeyAvailable) BOOL SSLServerCertPrivateKeyAvailable;

- (BOOL)SSLServerCertPrivateKeyAvailable;

@property (nonatomic,readonly,assign,getter=SSLServerCertPrivateKeyContainer) NSString* SSLServerCertPrivateKeyContainer;

- (NSString*)SSLServerCertPrivateKeyContainer;

@property (nonatomic,readonly,assign,getter=SSLServerCertPublicKey) NSString* SSLServerCertPublicKey;

- (NSString*)SSLServerCertPublicKey;

@property (nonatomic,readonly,assign,getter=SSLServerCertPublicKeyAlgorithm) NSString* SSLServerCertPublicKeyAlgorithm;

- (NSString*)SSLServerCertPublicKeyAlgorithm;

@property (nonatomic,readonly,assign,getter=SSLServerCertPublicKeyLength) int SSLServerCertPublicKeyLength;

- (int)SSLServerCertPublicKeyLength;

@property (nonatomic,readonly,assign,getter=SSLServerCertSerialNumber) NSString* SSLServerCertSerialNumber;

- (NSString*)SSLServerCertSerialNumber;

@property (nonatomic,readonly,assign,getter=SSLServerCertSignatureAlgorithm) NSString* SSLServerCertSignatureAlgorithm;

- (NSString*)SSLServerCertSignatureAlgorithm;

@property (nonatomic,readonly,assign,getter=SSLServerCertStore) NSString* SSLServerCertStore;

- (NSString*)SSLServerCertStore;

@property (nonatomic,readonly,assign,getter=SSLServerCertStoreB) NSData* SSLServerCertStoreB;

- (NSData*)SSLServerCertStoreB;
@property (nonatomic,readonly,assign,getter=SSLServerCertStorePassword) NSString* SSLServerCertStorePassword;

- (NSString*)SSLServerCertStorePassword;

@property (nonatomic,readonly,assign,getter=SSLServerCertStoreType) int SSLServerCertStoreType;

- (int)SSLServerCertStoreType;

@property (nonatomic,readonly,assign,getter=SSLServerCertSubjectAltNames) NSString* SSLServerCertSubjectAltNames;

- (NSString*)SSLServerCertSubjectAltNames;

@property (nonatomic,readonly,assign,getter=SSLServerCertThumbprintMD5) NSString* SSLServerCertThumbprintMD5;

- (NSString*)SSLServerCertThumbprintMD5;

@property (nonatomic,readonly,assign,getter=SSLServerCertThumbprintSHA1) NSString* SSLServerCertThumbprintSHA1;

- (NSString*)SSLServerCertThumbprintSHA1;

@property (nonatomic,readonly,assign,getter=SSLServerCertThumbprintSHA256) NSString* SSLServerCertThumbprintSHA256;

- (NSString*)SSLServerCertThumbprintSHA256;

@property (nonatomic,readonly,assign,getter=SSLServerCertUsage) NSString* SSLServerCertUsage;

- (NSString*)SSLServerCertUsage;

@property (nonatomic,readonly,assign,getter=SSLServerCertUsageFlags) int SSLServerCertUsageFlags;

- (int)SSLServerCertUsageFlags;

@property (nonatomic,readonly,assign,getter=SSLServerCertVersion) NSString* SSLServerCertVersion;

- (NSString*)SSLServerCertVersion;

@property (nonatomic,readonly,assign,getter=SSLServerCertSubject) NSString* SSLServerCertSubject;

- (NSString*)SSLServerCertSubject;

@property (nonatomic,readonly,assign,getter=SSLServerCertEncoded) NSString* SSLServerCertEncoded;

- (NSString*)SSLServerCertEncoded;

@property (nonatomic,readonly,assign,getter=SSLServerCertEncodedB) NSData* SSLServerCertEncodedB;

- (NSData*)SSLServerCertEncodedB;
 

Default Value

""

Remarks

This property contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

If an error occurs when setting this property an error will not be thrown. This property has a related method which will throw an error:

public func setSSLServerCertB(sslServerCert: Data) throws
public func setSSLServerCert(sslServerCert: String) throws

BuildAuthnRequest Method (SAML Module)

Builds an Authentication Request.

Syntax

public func buildAuthnRequest() throws -> Void
- (void)buildAuthnRequest;

Remarks

Using the SAMLRequestSettings, this method will build a SAMLRequest meant for authenticating the current user. To help keep track of a user's state in your application, the RelayState property can be set to add a RelayState to the request. The value set in the RelayState property will then be present in the response from the Identity Provider. After the request is built, the following properties are set depending on how the SAMLRequestSettingsRequestBinding property is set.

The Assertion Consumer Service that should handle the response specified in the request depends on how SAMLRequestSettings is configured. If SAMLRequestSettingsUseDefaultEndpoint is set, the request will specify that the Identity Provider should use the URI that is configured as the default. If SAMLRequestSettingsSelectedEndpoint is set, the class will use that index in the request. Otherwise, the class will select the first URI set in the ServiceProviderURIs properties.

BuildLogoutRequest Method (SAML Module)

Builds a Single Logout request.

Syntax

public func buildLogoutRequest(nameIdentifier: String) throws -> Void
- (void)buildLogoutRequest:(NSString*)nameIdentifier;

Remarks

This method uses the SAMLRequestSettings property to build a SAMLRequest that is meant for logging out the user identified by the NameIdentifier parameter. To help keep track of a user's state in your application, the RelayState property can be set to add a RelayState to the request. The value set in the RelayState property will then be present in the response from the Identity Provider. Typically, if supported, the identity provider will also issue logout requests for all other sessions that are active for the user. After the request is built, the following properties are set depending on how the SAMLRequestSettingsRequestBinding property is set.

BuildServiceMetadata Method (SAML Module)

Builds a metadata document for a service provider.

Syntax

public func buildServiceMetadata() throws -> Void
- (void)buildServiceMetadata;

Remarks

This method uses the ServiceProviderMetadata property to create a new federation metadata document that describes the service provider. This is typically used to provide information about the service provider to the identity provider. The following fields and properties are used:

  • ServiceProviderMetadataAuthnRequestSigned
  • ServiceProviderMetadataEntityId
  • ServiceProviderMetadataSignedMetadata
  • ServiceProviderMetadataSupportedNameIdFormats
  • ServiceProviderMetadataWantAssertionsSigned
  • ServiceProviderSigningCert
  • ServiceProviderURIs

Config Method (SAML Module)

Sets or retrieves a configuration setting.

Syntax

public func config(configurationString: String) throws -> String
- (NSString*)config:(NSString*)configurationString;

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

DoEvents Method (SAML Module)

This method processes events from the internal message queue.

Syntax

public func doEvents() throws -> Void
- (void)doEvents;

Remarks

When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

GetAssertionAttribute Method (SAML Module)

Searches for a specific assertion attribute.

Syntax

public func getAssertionAttribute(attrName: String) throws -> String
- (NSString*)getAssertionAttribute:(NSString*)attrName;

Remarks

This method will search the current AssertionAttributeInfo properties for a specific attribute. The attrName parameter should be set to the attribute name. The method will then return the value of the attribute with the matching name. If there is more than one value, it will return the values in a semicolon-separated list.

Interrupt Method (SAML Module)

This method interrupts the current method.

Syntax

public func interrupt() throws -> Void
- (void)interrupt;

Remarks

If there is no method in progress, Interrupt simply returns, doing nothing.

LoadIdentityMetadata Method (SAML Module)

Loads an identity provider's metadata document.

Syntax

public func loadIdentityMetadata(metadataDocument: String, validate: Bool) throws -> Void
- (void)loadIdentityMetadata:(NSString*)metadataDocument :(BOOL)validate;

Remarks

This method loads in the identity provider's metadata document that is provided through the metadataDocument parameter. After the document has been loaded, the IdentityProviderEncryptingCert, IdentityProviderMetadata, IdentityProviderSigningCert and IdentityProviderURIs properties will be set with the information that is available in the document. If the metadata document is signed and the validate parameter is , the method will also validate the metadata document's signature.

ParseAssertion Method (SAML Module)

Parses an assertion.

Syntax

public func parseAssertion() throws -> Void
- (void)parseAssertion;

Remarks

This method parses the assertion found in the AssertionInfo property. The assertion can either be manually set by setting the AssertionInfoAssertionContent property or by first calling ParseSAMLResponse on a SAMLResponse that contains an assertion. If the method is able to successfully parse the assertion, the AssertionInfo property is populated along with the AssertionAttributeInfo and AssertionAuthnInfo collections, once for each type of statement found in the assertion.

ParseSAMLResponse Method (SAML Module)

Parses a SAMLResponse.

Syntax

public func parseSAMLResponse() throws -> Void
- (void)parseSAMLResponse;

Remarks

This method parses the SAMLResponse found in the SAMLResponseInfo property or from the current HTTP request. The HTTP request can be found through the SAMLResponseBody and SAMLResponseHeaders properties or from the current HTTP Context if accessible. The SAMLResponse can also be manually set by setting the SAMLResponseInfoResponseContent property. If the method is able to successfully parse the SAMLResponse, the information fields in the SAMLResponseInfo property are populated.

To validate a SAMLResponse, see ValidateSAMLResponse.

Additionally, if the SAMLResponseInfoResponseType is srtAuthn, the AssertionInfoAssertionContent property will be populated. See ValidateAssertion and ParseAssertion for more information on validating and parsing the assertion.

ProcessSAMLResponse Method (SAML Module)

Processes the SAMLResponse from the current HTTP request.

Syntax

public func processSAMLResponse() throws -> Void
- (void)processSAMLResponse;

Remarks

This method processes the SAMLResponse found in the current HTTP request and, if applicable, parses and validates the SAMLResponse and optional assertion from the request. The method is equivalent to calling the following methods. See the specific methods for more information.

The HTTP request is taken directly from the SAMLResponseHeaders and SAMLResponseBody properties if set; otherwise, it will try to read the HTTP context.

RequestIdentityMetadata Method (SAML Module)

Requests an identity provider's SAML metadata document.

Syntax

public func requestIdentityMetadata(url: String) throws -> Void
- (void)requestIdentityMetadata:(NSString*)URL;

Remarks

This method makes an HTTP GET request to get the Identity Provider metadata document from the URL location. Once the document has been retrieved, the method will parse and validate the metadata document. After the document has been parsed, the IdentityProviderEncryptingCert, IdentityProviderMetadata, IdentityProviderSigningCert, and IdentityProviderURIs properties will be populated with the information that is available in the document.

Reset Method (SAML Module)

This method will reset the component.

Syntax

public func reset() throws -> Void
- (void)reset;

Remarks

This method will reset the class's properties to their default values.

ValidateAssertion Method (SAML Module)

Validates an assertion.

Syntax

public func validateAssertion() throws -> Void
- (void)validateAssertion;

Remarks

This method validates the assertion found in the AssertionInfo property. The assertion can either be manually set via the AssertionInfoAssertionContent property or by first calling ParseSAMLResponse on a SAMLResponse that contains an assertion. Before attempting this validation, the Assertion event provides an opportunity to configure the class to successfully validate the assertion. If the validation fails at any point, the method will throw an exception with the error code corresponding to the reason. The following checks are performed on the assertion:

Validation Check Required Property or Field
Signature IdentityProviderSigningCert
Issuer Element Identity Provider's IdentityProviderMetadataEntityId
InResponseTo Attribute SAMLRequestSettingsId
Recipient Attribute ACS URI in ServiceProviderURIs
NotBefore Attribute N/A
NotOnOrAfter Attribute (Expiration Date) N/A
SessionNotOnOrAfter Attribute (Expiration Date) N/A

To skip certain checks, see AssertionValidationFlags.

ValidateSAMLResponse Method (SAML Module)

Validates a SAMLResponse.

Syntax

public func validateSAMLResponse() throws -> Void
- (void)validateSAMLResponse;

Remarks

This method validates a SAMLResponse. The SAMLResponse can either be manually set via the SAMLResponseInfoResponseContent property or by first calling ParseSAMLResponse on an HTTP request with a SAMLResponse. Before attempting validation, the SAMLResponse event provides an opportunity to configure the class to successfully validate the SAMLResponse. The following checks are performed on the SAMLResponse:

Validation Check Required Property or Field
Signature (if found) IdentityProviderSigningCert
Issuer Element Identity Provider's IdentityProviderMetadataEntityId
InResponseTo Attribute SAMLRequestSettingsId
Destination Attribute ACS URIs in ServiceProviderURIs
Status Element N/A

To skip certain checks, see SAMLResponseValidationFlags. Note that this method does not validate the assertion if one is found within the SAMLResponse. See ValidateAssertion and ParseAssertion for more information on validating and parsing the assertion.

Assertion Event (SAML Module)

Fired when an assertion is validated.

Syntax

func onAssertion(issuer: String, inResponseTo: String)
- (void)onAssertion:(NSString*)issuer :(NSString*)inResponseTo;

Remarks

This event is fired before an assertion is validated. The Issuer parameter is the Id of the entity that issued the assertion. The InResponseTo parameter is the Id of the SAMLRequest that requested the assertion. Note that these two parameters are found in the assertion and are not set in the IdentityProviderMetadataEntityId and SAMLRequestSettingsId properties respectively. This event allows certain settings to be configured before the validation checks happen to ensure the assertion is validated correctly. See ValidateAssertion for more information about the validation process.

Error Event (SAML Module)

Fired when information is available about errors during data delivery.

Syntax

func onError(errorCode: Int32, description: String)
- (void)onError:(int)errorCode :(NSString*)description;

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class .

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Log Event (SAML Module)

Fired once for each log message.

Syntax

func onLog(logLevel: Int32, message: String, logType: String)
- (void)onLog:(int)logLevel :(NSString*)message :(NSString*)logType;

Remarks

This event is fired once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.

LogLevel indicates the level of message. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

Message is the log entry.

LogType identifies the type of log entry. Possible values are as follows:

  • "Info"
  • "RequestHeaders"
  • "ResponseHeaders"
  • "RequestBody"
  • "ResponseBody"
  • "ProxyRequest"
  • "ProxyResponse"
  • "FirewallRequest"
  • "FirewallResponse"

Redirect Event (SAML Module)

Fired when a redirection is received from the server.

Syntax

func onRedirect(location: String, accept: inout Bool)
- (void)onRedirect:(NSString*)location :(int*)accept;

Remarks

This event is fired in cases in which the client can decide whether or not to continue with the redirection process. The Accept parameter is always True by default, but if you do not want to follow the redirection, Accept may be set to False, in which case the class . Location is the location to which the client is being redirected. Further control over redirection is provided in the FollowRedirects property.

SAMLResponse Event (SAML Module)

Fired when a SAMLResponse is validated.

Syntax

func onSAMLResponse(issuer: String, inResponseTo: String)
- (void)onSAMLResponse:(NSString*)issuer :(NSString*)inResponseTo;

Remarks

This event is fired before is SAMLResponse validated . The Issuer parameter is the Id of the entity that issued the SAMLResponse. The InResponseTo parameter is the Id of the SAMLRequest that requested the SAMLResponse. Note that these two parameters are found in the SAMLResponse and are not set in the IdentityProviderMetadataEntityId and SAMLRequestSettingsId properties respectively. This event allows certain settings to be configured before the validation checks happen to ensure the SAMLResponse is validated correctly. See ValidateSAMLResponse for more information about the validation process.

SSLServerAuthentication Event (SAML Module)

Fired after the server presents its certificate to the client.

Syntax

func onSSLServerAuthentication(certEncoded: Data, certSubject: String, certIssuer: String, status: String, accept: inout Bool)
- (void)onSSLServerAuthentication:(NSData*)certEncoded :(NSString*)certSubject :(NSString*)certIssuer :(NSString*)status :(int*)accept;

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (SAML Module)

Fired when secure connection progress messages are available.

Syntax

func onSSLStatus(message: String)
- (void)onSSLStatus:(NSString*)message;

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

AssertionAttribute Type

Holds information about an attribute.

Remarks

The properties of this type describe one of the attributes found in an assertion's attribute statement.

The following fields are available:

Fields

attributeContent
String (read-only)

Default Value: ""

The raw XML of the attribute. In cases where the content of the attribute is complex, this property can be used to do additional XML parsing.

attributeValueCount
Int32 (read-only)

Default Value: 0

In cases where there are multiple values for a single attribute, this count will be updated to reflect the size of the list. If the value of the attribute is not a list, the count will be set to 1. See for more information.

attributeValueData
String (read-only)

Default Value: ""

The content of the attribute value selected by .

attributeValueIndex
Int32

Default Value: 0

The index of the attribute value that should be populated in the property. Valid ranges for this property are from 0 to - 1. By default, this property is set to 0. In cases where there is only a singular value, that value will be at index 0. For example:

Multi-value attribute

<Attribute Name="ValueName" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified"> <AttributeValue>Value1</AttributeValue> <AttributeValue>Value2</AttributeValue> </Attribute>

Iterating through each value in an attribute

for (int i = 0; i < saml.AssertionAttributeInfo[0].AttributeValueCount; i++) { saml.AssertionAttributeInfo[0].AttributeValueIndex = i; string attribute_value = saml.AssertionAttributeInfo[0].AttributeValueData; //... the rest of the processing }

friendlyName
String (read-only)

Default Value: ""

A human-readable version of the attribute name, if provided. This value is intended to be used for informational and logging purposes only.

name
String (read-only)

Default Value: ""

The name of the attribute. The format of the name (if provided) can be found in the property.

nameFormat
String (read-only)

Default Value: ""

A URI reference to how the of the attribute is formatted. If not set, Unspecified is used. Some common values are:

urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified Unspecified
urn:oasis:names:tc:SAML:2.0:attrname-format:uri URI Reference
urn:oasis:names:tc:SAML:2.0:attrname-format:basic Basic

Constructors

public init()

AssertionInfo Type

Holds information about an assertion.

Remarks

The properties of this type describe an assertion that has been parsed or processed by the class.

The following fields are available:

Fields

assertionContentB
Data

Default Value: ""

The raw XML of the assertion. This property can be set to provide the assertion to the class for the ParseAssertion method to parse the assertion without the SAML response.

assertionContent
String

Default Value: ""

The raw XML of the assertion. This property can be set to provide the assertion to the class for the ParseAssertion method to parse the assertion without the SAML response.

expirationDate
String (read-only)

Default Value: ""

When the assertion expires. This represents the NotOnOrAfter attribute of the Conditions element if the attribute is present in the assertion.

Time-based values are specified by the SAML specification to be in UTC in the following format: YYYY-MM-DDTHH:mm:ss.sssZ

id
String (read-only)

Default Value: ""

The unique Id of the assertion generated by the identity provider. This is not an Id that is tied to a user but rather to the assertion itself.

isSigned
Bool (read-only)

Default Value: False

Whether the assertion has been signed by the identity provider. This is set to when the Signature element is present in the assertion.

issuedTime
String (read-only)

Default Value: ""

The time at which the assertion was issued by the (typically the identity provider). This property represents the IssueInstant attribute of the Assertion element.

Time-based values are specified by the SAML specification to be in UTC in the following format: YYYY-MM-DDTHH:mm:ss.sssZ

issuer
String (read-only)

Default Value: ""

The issuer of the assertion. Typically, this is the same as the identity provider that provided the SAML response. This property represents the Issuer element in the Assertion element.

notBeforeDate
String (read-only)

Default Value: ""

The time at which the assertion becomes valid. If the current time is before this property, then the assertion is not considered valid yet. This represents the NotBefore attribute of the Conditions element if the attribute is present in the assertion.

Time-based values are specified by the SAML specification to be in UTC in the following format: YYYY-MM-DDTHH:mm:ss.sssZ

oneTimeUse
Bool (read-only)

Default Value: False

Whether the issuer only considers this information valid for this single instance. The information saved here typically should not be cached or saved for future use. This represents the OneTimeUse element of the Conditions element if the element is present in the assertion.

subjectNameId
String (read-only)

Default Value: ""

The NameId for the subject of the assertion. Typically, the subject is the user that is being authenticated. The format of this name Id can be found in the property. This represents the NameId element of the Subject element if the element is present in the assertion.

subjectNameIdFormat
String (read-only)

Default Value: ""

A URI reference to how the of the element is formatted. If not set, Unspecified is used. This represents the Format attribute of the NameID element if the attribute is present in the assertion. Some common values are:

urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified Unspecified
urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress Email Address
urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName Windows Domain Qualified Name

userInfoAddress
String (read-only)

Default Value: ""

The address for the user if one could be parsed from the assertion. The attribute names used to set this and other properties can be configured using the AttributeNameProfile configuration setting.

userInfoEmail
String (read-only)

Default Value: ""

The email for the user if one could be parsed from the assertion. The attribute names used to set this and other properties can be configured using the AttributeNameProfile configuration setting.

userInfoName
String (read-only)

Default Value: ""

The address for the user if one could be parsed from the assertion. The attribute names used to set this and other properties can be configured using the AttributeNameProfile configuration setting.

Constructors

public init()

AuthnStatement Type

An Authn statement from an assertion.

Remarks

The properties of this type describe an authentication (Authn) statement from an assertion in response to an authentication request.

The following fields are available:

Fields

authenticatingAuthorites
String (read-only)

Default Value: ""

A semicolon-separated list of authorities involved with the current authentication context. Typically, this list includes other parties involved with the authentication of the subject besides the issuer that issued the assertion.

authnInstant
String (read-only)

Default Value: ""

The time at which the authentication took place.

Time-based values are specified by the SAML specification to be in UTC in the following format: YYYY-MM-DDTHH:mm:ss.sssZ

contextClassReference
String (read-only)

Default Value: ""

A per-defined URI reference identifying an authentication context class that describes how authentication was provided. For example, if the user used a password to perform authentication, this will be set to urn:oasis:names:tc:SAML:2.0:ac:classes:Password.

contextDeclaration
String (read-only)

Default Value: ""

A description or URI that describes additional information about the authentication context past the . This provides more detail about the authentication process when provided by the Identity Provider.

sessionExpiration
String (read-only)

Default Value: ""

The time at which the session between the principal and Identity Provider must be considered ended.

Time-based values are specified by the SAML specification to be in UTC in the following format: YYYY-MM-DDTHH:mm:ss.sssZ

sessionIndex
String (read-only)

Default Value: ""

The unique identifier for a particular session established between the user (principal) and the Service Provider (SP), as provided by the Identity Provider (IdP). It is common (but not required) to use this value as the session identifier between the user and the Service Provider (your application).

statementContent
String (read-only)

Default Value: ""

The raw XML of the Authn statement. Typically, this is used in cases to get additional information from the Authn statement that is not provided by the class.

Constructors

public init()

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

The following fields are available:

Fields

effectiveDate
String (read-only)

Default Value: ""

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

expirationDate
String (read-only)

Default Value: ""

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

extendedKeyUsage
String (read-only)

Default Value: ""

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

fingerprint
String (read-only)

Default Value: ""

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

fingerprintSHA1
String (read-only)

Default Value: ""

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

fingerprintSHA256
String (read-only)

Default Value: ""

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

issuer
String (read-only)

Default Value: ""

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

privateKey
String (read-only)

Default Value: ""

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The may be available but not exportable. In this case, returns an empty string.

privateKeyAvailable
Bool (read-only)

Default Value: False

Whether a is available for the selected certificate. If is True, the certificate may be used for authentication purposes (e.g., server authentication).

privateKeyContainer
String (read-only)

Default Value: ""

The name of the container for the certificate (if available). This functionality is available only on Windows platforms.

publicKey
String (read-only)

Default Value: ""

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

publicKeyAlgorithm
String (read-only)

Default Value: ""

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

publicKeyLength
Int32 (read-only)

Default Value: 0

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

serialNumber
String (read-only)

Default Value: ""

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

signatureAlgorithm
String (read-only)

Default Value: ""

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

storeB
Data

Default Value: "MY"

The name of the certificate store for the client certificate.

The property denotes the type of the certificate store specified by . If the store is password-protected, specify the password in .

is used in conjunction with the property to specify client certificates. If has a value, and or is set, a search for a certificate is initiated. Please see the property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

store
String

Default Value: "MY"

The name of the certificate store for the client certificate.

The property denotes the type of the certificate store specified by . If the store is password-protected, specify the password in .

is used in conjunction with the property to specify client certificates. If has a value, and or is set, a search for a certificate is initiated. Please see the property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

storePassword
String

Default Value: ""

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

storeType
CertStoreTypes

Default Value: 0

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CERTMGR class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the and set to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

subjectAltNames
String (read-only)

Default Value: ""

Comma-separated lists of alternative subject names for the certificate.

thumbprintMD5
String (read-only)

Default Value: ""

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

thumbprintSHA1
String (read-only)

Default Value: ""

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

thumbprintSHA256
String (read-only)

Default Value: ""

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

usage
String (read-only)

Default Value: ""

The text description of .

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

usageFlags
Int32 (read-only)

Default Value: 0

The flags that show intended use for the certificate. The value of is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the property for a text representation of .

This functionality currently is not available when the provider is OpenSSL.

version
String (read-only)

Default Value: ""

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

subject
String

Default Value: ""

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

encodedB
Data

Default Value: ""

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The and properties also may be used to specify a certificate.

When is set, a search is initiated in the current for the private key of the certificate. If the key is found, is updated to reflect the full subject of the selected certificate; otherwise, is set to an empty string.

encoded
String

Default Value: ""

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The and properties also may be used to specify a certificate.

When is set, a search is initiated in the current for the private key of the certificate. If the key is found, is updated to reflect the full subject of the selected certificate; otherwise, is set to an empty string.

Constructors

public init()

Creates a instance whose properties can be set. This is useful for use with when generating new certificates.

public init(encoded: )

Parses Encoded as an X.509 public key.

public init(storeType: , store: , storePassword: , subject: )

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public init(storeType: , store: , storePassword: , subject: )

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

Firewall Type

The firewall the component will connect through.

Remarks

When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall and the .

The following fields are available:

Fields

autoDetect
Bool

Default Value: False

Whether to automatically detect and use firewall system settings, if available.

firewallType
FirewallTypes

Default Value: 0

The type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. is set to 1080.

host
String

Default Value: ""

The name or IP address of the firewall (optional). If a is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class .

password
String

Default Value: ""

A password if authentication is to be used when connecting through the firewall. If is specified, the and properties are used to connect and authenticate to the given firewall. If the authentication fails, the class .

port
Int32

Default Value: 0

The Transmission Control Protocol (TCP) port for the firewall . See the description of the property for details.

Note: This property is set automatically when is set to a valid value. See the description of the property for details.

user
String

Default Value: ""

A username if authentication is to be used when connecting through a firewall. If is specified, this property and the property are used to connect and authenticate to the given Firewall. If the authentication fails, the class .

Constructors

public init()

IdentityProviderMetadata Type

The metadata for the Identity Provider.

Remarks

This type represents the metadata for a specific Identity Provider.

The following fields are available:

Fields

entityId
String

Default Value: ""

The unique Id for the identity provider that is being described. This is used for verification purposes when verifying the issuer of an assertion or SAMLResponse.

expirationDate
String (read-only)

Default Value: ""

The expiration date of the Identity Provider description provided by the metadata document. This represents the valid attribute of the IDPSSODescriptor element if the attribute is present in the document.

metadataContentB
Data

Default Value: ""

The raw metadata for the identity provider. To avoid repeated requests to the Identity Provider, this value can be saved for later to be used with the LoadIdentityMetadata method.

metadataContent
String

Default Value: ""

The raw metadata for the identity provider. To avoid repeated requests to the Identity Provider, this value can be saved for later to be used with the LoadIdentityMetadata method.

requestsSignedAuthnRequests
Bool

Default Value: False

Whether the identity provider requests that authentication (Authn) requests are signed.

signedMetadata
Bool (read-only)

Default Value: False

Whether the identity provider's parsed metadata is signed.

supportedAttributeProfiles
String (read-only)

Default Value: ""

A semicolon-separated list of attribute profiles supported by the identity provider. Some common attribute profiles are:

  • urn:oasis:names:tc:SAML:2.0:profiles:attribute:basic
  • urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500
  • urn:oasis:names:tc:SAML:2.0:profiles:attribute:UUID
  • urn:oasis:names:tc:SAML:2.0:profiles:attribute:DCE
  • urn:oasis:names:tc:SAML:2.0:profiles:attribute:XACML

supportedAttributes
String (read-only)

Default Value: ""

A semicolon-separated list of attributes supported by the identity provider as presented by the Identity Provider's metadata document. This is a list of attributes that are explicitly supported by the Identity Provider but is not a full list of all the supported attributes. The list will contain the Name of each attribute found in the IDPSSODescriptor element.

supportedNameIdFormats
String (read-only)

Default Value: ""

The name identifier formats supported by the identity provider if provided by the metadata document. Some common values are:

  • Unspecified - urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified
  • Email Address - urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress
  • Windows Domain Qualified Name - urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName

Constructors

public init()

Proxy Type

The proxy the component will connect to.

Remarks

When connecting through a proxy, this type is used to specify different properties of the proxy, such as the and the .

The following fields are available:

Fields

authScheme
ProxyAuthSchemes

Default Value: 0

The type of authorization to perform when connecting to the proxy. This is used only when the and properties are set.

should be set to authNone (3) when no authentication is expected.

By default, is authBasic (0), and if the and properties are set, the class will attempt basic authentication.

If is set to authDigest (1), digest authentication will be attempted instead.

If is set to authProprietary (2), then the authorization token will not be generated by the class. Look at the configuration file for the class being used to find more information about manually setting this token.

If is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this property will clear the values of and .

autoDetect
Bool

Default Value: False

Whether to automatically detect and use proxy system settings, if available. The default value is .

password
String

Default Value: ""

A password if authentication is to be used for the proxy.

If is set to Basic Authentication, the and properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If is set to Digest Authentication, the and properties are used to respond to the Digest Authentication challenge from the server.

If is set to NTLM Authentication, the and properties are used to authenticate through NTLM negotiation.

port
Int32

Default Value: 80

The Transmission Control Protocol (TCP) port for the proxy (default 80). See the description of the property for details.

server
String

Default Value: ""

If a proxy is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the property is set to the corresponding address. If the search is not successful, an error is returned.

ssl
ProxySSLTypes

Default Value: 0

When to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the class will use the psTunnel option. If the URL is an http URL, the class will use the psNever option.
psAlways (1)The connection is always SSL-enabled.
psNever (2)The connection is not SSL-enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

user
String

Default Value: ""

A username if authentication is to be used for the proxy.

If is set to Basic Authentication, the and properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If is set to Digest Authentication, the and properties are used to respond to the Digest Authentication challenge from the server.

If is set to NTLM Authentication, the and properties are used to authenticate through NTLM negotiation.

Constructors

public init()
public init(server: , port: )
public init(server: , port: , user: , password: )

SAMLRequestSettings Type

Settings used when building a SAMLRequest.

Remarks

The properties of this type are the settings used when building a SAMLRequest for an Authentication (Authn) or Logout request.

The following fields are available:

Fields

allowCreate
Bool

Default Value: False

Whether the class will set the AllowCreate attribute in the NameIDPolicy element that is specific to the AuthnRequest element. When set to , this will inform the Identity Provider that it is allowed to create a new identifier to represent the principal. When set to (default), the Identity Provider should only issue an assertion if an acceptable identifier is already created.

consent
ConsentIdentifiers

Default Value: 0

Whether consent from a principal was provided when this request was sent. This typically is set to some URI reference that was used by the application to obtain consent from the principal (user). This setting specifically sets the Consent attribute in the AuthnRequest or LogoutRequest elements in a SAMLRequest.

By default, the scidUnspecified value is used. If a format needs to be used that is not listed here, the snidCustom value can be used instead. When set, the SAMLRequestCustomConsent configuration setting will be used instead.

Value Consent Id Name Identifier URI
00 (scidUnspecified - default) Unspecified urn:oasis:names:tc:SAML:2.0:consent:unspecified
01 (scidObtained) Obtained urn:oasis:names:tc:SAML:2.0:consent:obtained
02 (scidPrior) Prior urn:oasis:names:tc:SAML:2.0:consent:prior
03 (scidImplicit) Implicit urn:oasis:names:tc:SAML:2.0:consent:current-implicit
04 (scidExplicit) Explicit urn:oasis:names:tc:SAML:2.0:consent:current-explicit
05 (scidUnavailable) Unavailable urn:oasis:names:tc:SAML:2.0:consent:unavailable
06 (scidInapplicable) Inapplicable urn:oasis:names:tc:SAML:2.0:consent:inapplicable
99 (scidCustom) Custom Format N/A

destination
String

Default Value: ""

A URI reference for the intended destination for the SAMLRequest. This is useful to prevent malicious forwarding of responses to unintended recipients.

id
String

Default Value: ""

A unique Id of the SAMLRequest. If left empty before calling BuildAuthnRequest or BuildLogoutRequest, the class will automatically generate an Id. This Id should match the Id of the InResponseTo attribute of the matching SAMLResponse (see for more information). Due to this, after BuildAuthnRequest or BuildLogoutRequest is used to create a request, this setting (along with the SAMLRequestSettingsIssuer property) should be cached for verification purposes.

issuedTime
String

Default Value: ""

The time at which the SAMLRequest was issued. If not set, the class will use the current time.

Time-based values are specified by the SAML specification to be in UTC in the following format: YYYY-MM-DDTHH:mm:ss.sssZ

issuer
String

Default Value: ""

The issuer for the SAML Request. Typically, this should be set to the Entity Id configured for the Identity Provider.

nameIdFormat
NameIdFormats

Default Value: 0

If supported by the Identity Provider, this setting can be used to tailor the name identifier for the subject in the response to an Authn Request. This property is not used for Logout Requests.

By default, the snidUnspecified format will be used, which informs the Identity Provider to use whatever name identifier format they prefer. This setting specifically sets the Format attribute in the NameIDPolicy element in an AuthnRequest. If a format needs to be used that is not listed here, the snidCustom value can be used instead. When set, the SAMLRequestCustomNameIdFormat configuration setting will be used instead.

Value Format Name Format URI
00 (snidUnspecified - default) Unspecified urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified
01 (snidEmail) Email Address urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress
02 (snidX509) X.509 Subject Name urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName
03 (snidWindowsDQ) Windows Domain Qualified Name urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName
04 (snidKerberos) Kerberos Principal Name urn:oasis:names:tc:SAML:2.0:nameid-format:kerberos
05 (snidEntity) Entity Identifier urn:oasis:names:tc:SAML:2.0:nameid-format:entity
06 (snidPersistent) Persistent Identifier urn:oasis:names:tc:SAML:2.0:nameid-format:persistent
07 (snidTransitent) Transient Identifier urn:oasis:names:tc:SAML:2.0:nameid-format:transient
99 (snidCustom) Custom Format N/A

requestBinding
SAMLRequestBindings

Default Value: 0

The binding that will be used to make the request.

By default, the class will use the srbHTTPRedirect binding which provides the SAMLRequest through a query parameter. The srbHTTPRedirect binding will set just the SAMLRequestURL property.

If set to the srbHTTPPost binding, the SAMLResponse is provided in an HTML body that should be used to make a form post request. This will set both the SAMLRequestURL and SAMLRequestBody properties.

Value BindingName Binding URI
0 (srbHTTPRedirect - default) HTTP Redirect Binding urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect
1 (srbHTTPPost) HTTP Post Binding urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

Note: This setting does not control the binding of the response, just how the request will be made.

selectedEndpoint
Int32

Default Value: -1

This setting only applies to Authn Requests since there can be multiple Assertion Consumer Service (ACS) endpoints per service provider. When building an Authn Request, the class will select the the ACS endpoint depending on how SAMLRequestSettings is configured. If SAMLRequestSettingsUseDefaultEndpoint is set to , the request will specify that the Identity Provider should use the URI that is configured as the default. If SAMLRequestSettingsSelectedEndpoint is set, the class will use that index in the request. Otherwise, the class will select the first URI available in the ServiceProviderURIs properties.

signRequest
Bool

Default Value: False

Whether the SAMLRequest should be signed when building the SAMLRequest using the BuildAuthnRequest or BuildLogoutRequest methods. The class will use the certificate set in the ServiceProviderSigningCert property to sign the request.

useDefaultEndpoint
Bool

Default Value: False

This setting only applies to Authn Requests since there can be multiple Assertion Consumer Service (ACS) endpoints per service provider. When multiple ACS endpoints are available, a single endpoint can be selected as the default endpoint. When building an Authn Request, the class will select the the ACS endpoint depending on how SAMLRequestSettings is configured. If SAMLRequestSettingsUseDefaultEndpoint is set to , the request will specify that the Identity Provider should use the URI that is configured as the default. If SAMLRequestSettingsSelectedEndpoint is set, then the class will use that index in the request. Otherwise, the class will select the first URI available in the ServiceProviderURIs properties.

Constructors

public init()

SAMLResponseInfo Type

Holds information about a SAMLResponse.

Remarks

The properties of this type describe a SAMLResponse that has been parsed or processed by the class.

The following fields are available:

Fields

consent
String (read-only)

Default Value: ""

Whether consent from a principal was provided when this response was sent. This typically is set to some URI reference that was used by the application to obtain consent from the principal (user). Some common URI values are:

  • Unspecified - urn:oasis:names:tc:SAML:2.0:consent:unspecified
  • Obtained - urn:oasis:names:tc:SAML:2.0:consent:obtained
  • Prior - urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName
  • Implicit - urn:oasis:names:tc:SAML:2.0:consent:current-implicit
  • Explicit - urn:oasis:names:tc:SAML:2.0:consent:current-explicit
  • Unavailable - urn:oasis:names:tc:SAML:2.0:consent:unavailable
  • Inapplicable - urn:oasis:names:tc:SAML:2.0:consent:inapplicable

destination
String (read-only)

Default Value: ""

A URI reference for the intended destination for the SAMLResponse. This is useful to prevent malicious forwarding of responses to unintended recipients.

inResponseTo
String (read-only)

Default Value: ""

The Id of the SAMLRequest that requested the Identity Provider to issue this SAMLResponse. It can be checked with the original Id of the SAMLRequest (see for more information).

issuedTime
String (read-only)

Default Value: ""

The time at which the SAMLResponse was issued by the .

Time-based values are specified by the SAML specification to be in UTC in the following format: YYYY-MM-DDTHH:mm:ss.sssZ

issuer
String (read-only)

Default Value: ""

The Entity Id of the issuer of the SAMLResponse. Typically, this will be the of the Identity Provider.

responseContentB
Data

Default Value: ""

The full XML of the SAMLResponse after being parsed or processed by the class after calling ParseHTTPRequest or ProcessHTTPRequest. Optionally, this setting can be set to provide a SAMLResponse directly to the class to be used with the ParseSAMLResponse method.

responseContent
String

Default Value: ""

The full XML of the SAMLResponse after being parsed or processed by the class after calling ParseHTTPRequest or ProcessHTTPRequest. Optionally, this setting can be set to provide a SAMLResponse directly to the class to be used with the ParseSAMLResponse method.

responseId
String (read-only)

Default Value: ""

The unique Id for the SAMLResponse that was created by the .

responseType
SAMLResponseTypes (read-only)

Default Value: 0

The type of SAMLResponse that was processed when calling ProcessHTTPRequest or manually parsed using the ParseSAMLResponse method.

0 (srtUnknown - default) The class was unable to determine the type of response contained in the SAMLResponse.
1 (srtAuthn) The class found a Response in the SAMLResponse.
2 (srtLogout) The class found an LogoutResponse in the SAMLResponse.

signed
Bool (read-only)

Default Value: False

Whether the SAMLResponse is signed. If the SAMLResponse contains no signatures, or only the assertion is signed, then this property will be set to .

statusCodes
String (read-only)

Default Value: ""

A semicolon-separated list of status codes found in the SAMLResponse. A compliant SAMLResponse will always contain a top-level response with one of the following values.

urn:oasis:names:tc:SAML:2.0:status:Success Success
urn:oasis:names:tc:SAML:2.0:status:Requester The original request could not be performed due to an issue from the requester.
urn:oasis:names:tc:SAML:2.0:status:Responder The original request could not be performed due to an issue from the issuer.
urn:oasis:names:tc:SAML:2.0:status:VersionMismatch The original request could not be processed due to a SAML version mismatch in the request..
After the top-level status code, second-level codes can also be included to provide additional information about the top-level status code. These second-level codes are also typically a URI reference like the top-level codes. For example, if the Identity Provider was unable to authenticate the user, this setting could be set to:

urn:oasis:names:tc:SAML:2.0:status:Responder;urn:oasis:names:tc:SAML:2.0:status:AuthnFailed

Sometimes, a message is also provided with the Status. See for more information.

statusMessage
String (read-only)

Default Value: ""

The message that was provided in the status of the SAMLResponse. This property is set alongside the and can be used to provide more information about the status.

Constructors

public init()

ServiceProviderMetadata Type

The metadata settings for a service provider.

Remarks

The metadata settings for a service provider. This is typically used when configuring an Identity Provider with the information about your application.

The following fields are available:

Fields

authnRequestSigned
Bool

Default Value: False

Whether the generated metadata document will inform the identity provider that this service provider will be sending signed requests.

entityId
String

Default Value: ""

The Entity Id for this service provider. This is the unique Id that will be used by the Identity Provider and should be unique to this service provider.

metadataContentB
Data

Default Value: ""

The raw XML document that represents the metadata document for the configured service provider. This property is populated when the BuildServiceMetadata method is used to generate a new document.

metadataContent
String

Default Value: ""

The raw XML document that represents the metadata document for the configured service provider. This property is populated when the BuildServiceMetadata method is used to generate a new document.

signedMetadata
Bool

Default Value: False

Whether the class will sign the metadata document when it is being generated. When the BuildServiceMetadata method is used to generate the metadata document, the class will use the ServiceProviderSigningCert property to sign the document.

supportedNameIdFormats
String

Default Value: ""

A semicolon-separated list of NameId formats that are supported by this service provider. Some common values are:

urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified Unspecified
urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress Email Address
urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName Windows Domain Qualified Name

To support both email addresses and Windows domain qualified name, this property would be set to:

urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress;urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName

wantAssertionsSigned
Bool

Default Value: False

Whether the metadata document will inform the identity provider that this service provider wants issued assertions to be signed.

Constructors

public init()

URI Type

A URI endpoint that is used in the SAML protocol.

Remarks

A URI endpoint that is used in the SAML protocol. Service providers and identity providers provide information about the URI that should be used when making specific requests.

The following fields are available:

Fields

bindingRef
String

Default Value: ""

The URI reference for the set . When the is set, this property will be updated to match. The exception is the subCustom value, which allows for any value to be placed in this property.

If this property is set instead, the class will attempt to set the property to match. If it can't, subCustom will also be used.

When parsing a metadata document, the class will also use the subCustom value for any binding types that are not recognized by the class.

bindingType
URIBindings

Default Value: 0

The type of binding that is supported for this URI. The class only supports using the HTTP Redirect and HTTP Post bindings. The HTTP Artifact and other bindings are informational, and support for them must be implemented directly.

When setting this property, the property will also be updated with the matching URI. The exception is the subCustom value, which allows for any value to be placed in the property.

If the property is set, during the processing of a metadata document the class will attempt to set this property as well with the matching value. If it can't, subCustom will be used instead.

Value Binding Name Identifier URI
00 (subRedirect - default) HTTP Redirect urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect
01 (subPost) HTTP POST urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST
02 (subArtifact - unsupported) HTTP Artifact urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact
99 (subCustom) Custom Format N/A

isDefault
Bool

Default Value: False

Whether this URI is the default URI that should be used for the specific and combination.

location
String

Default Value: ""

The address of the URI.

uriIndex
Int32

Default Value: 0

The index for the URI that can be optionally used if multiple URIs of the same and are provided.

uriType
SAMLURITypes

Default Value: 0

The purpose of the URI. Possible values are:

0 (sutSignon - default) Identity Provider Single Sign-on URI
1 (sutLogout) Both Logout URI
2 (sutACS) Service Provider Assertion Consumer Service

Constructors

public init()

Config Settings (SAML Module)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

SAML Config Settings

AssertionValidationFlags:   The checks that are ignored when validating an assertion.

This setting informs the class to skip certain checks when validating a parsed assertion. The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore the SubjectConfirmation element.
0x00000002Ignore the AuthnStatement element.
0x00000004Ignore the Issuer element.
0x00000008Ignore the assertion's signature (does not apply to the SAMLResponse).
0x00000010Ignores a mismatch between the certificates set in the class and the one found in the signature of the assertion.
0x00000020Ignores the Conditions element.
AttributeNameProfile:   The set of names that are used for common attributes.

This setting takes a semicolon-separated list of supported attribute names when setting the UserInfo* properties in the AssertionInfo property. For example, microsoft;basic would be a list that enables just the Azure and Basic profiles. The class will check in the order of each enabled profile. By default, all the profiles below are enabled.

basicThe basic names for the attributes.
microsoftThe scheme used by Microsoft Entra.
SAMLRequestCustomConsent:   The URI reference of a custom consent type.

When the SAMLRequestSettingsConsent property is set to scidCustom - 99, this configuration setting can be used to set the custom URI reference to the consent type.

SAMLRequestCustomNameIdFormat:   The URI reference of a custom NameID format type.

When the SAMLRequestSettingsNameIdFormat property is set to snidCustom - 99, this configuration setting can be used to set the custom URI reference to the NameID format type.

SAMLResponseDetachedSignature:   The SAMLResponse's detached signature.

This configuration setting can be set to a detached signature of a SAMLResponse so that it can be validated. This value should be URL decoded before providing it to the class. To set the signing algorithm, see SAMLResponseDetachedSignatureAlg for more information.

Particularly, when the SAMLResponseInfoResponseContent property is used to provide a SAMLResponse directly to the class, this configuration setting can be used to provide a detached signature. Typically this would be seen if the HTTP-Redirect binding was used to transmit the SAMLResponse.

SAMLResponseDetachedSignatureAlg:   The algorithm of a SAMLResponse's detached signature.

This configuration setting can be set to the signing algorithm used to created the detached signature of a SAMLResponse. This value should be URL decoded before providing it to the class. To set the signature value, see SAMLResponseDetachedSignature for more information.

SAMLResponseValidationFlags:   The checks that are ignored when validating a SAMLResponse.

This setting informs the class to skip certain checks when validating a parsed SAMLResponse. The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore the InResponseTo attribute.
0x00000002Ignore the destination attribute.
0x00000004Ignore the Issuer element.
0x00000008Ignore the SAMLResponse's signature (does not apply to the assertion).
0x00000010Ignores a mismatch between the certificates set in the class and the one found in the signature of the SAMLResponse.
0x00000020Ignores a status that is not set to a success.
UseDetachedSignatures:   Whether detached signatures are used when building a SAMLRequest.

This configuration setting only applies to request made with the HTTP-Redirect binding. By default, it is set to true. When set to true, the class will sign the SAMLRequest using a detached signature. When set to false the class will instead include the signature within the request.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the class adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The class only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the class will accept compressed data. It then will uncompress the data it has received. The class will handle data compressed by both gzip and deflate compression algorithms.

When True, the class adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when HTTPVersion is set to "2.0".

If set to True (default), the class will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the class if the server does not support HTTP/2.

The default value is True.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to LocalFile. When set to True, downloaded data will be appended to LocalFile. This may be used in conjunction with Range to resume a failed download. This is applicable only when LocalFile is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the Transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the class.

If set to True, the URL passed to the class will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new URL for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the class .

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the class instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the class will perform a GET on the new location.

The default value is False. If set to True, the class will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the class.

This property specifies the HTTP version used by the class. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the class will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If , the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If , the connection will be closed immediately after the server response is received.

The default value for KeepAlive is .

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the Log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When FollowRedirects is set to any value other than frNever, the class will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When HTTPVersion is set to "2.0" (if the server does not support "2.0"), then the class will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the class beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If ProxyUser and ProxyPassword are specified, this value is calculated using the algorithm specified by ProxyAuthScheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the class.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the class.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the class will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the class will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001.

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the class will attempt to use the Proxy auto-config URL when establishing a connection and ProxyAutoDetect is set to True.

When True (default), the class will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class .

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

Possible values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class .

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This configuration setting must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This configuration setting specifies whether the class will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class .

When set to 0 (default), the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This configuration setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the class .

When set to 0 (default), the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform include the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include the following:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internalinclude the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include the following:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is by default, but it can be set to to enable the extension.

This configuration setting is applicable only when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown certificate authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown certificate authority revocation status.
0x00000800Ignore unknown root revocation status.
0x00008000Allow test root certificate.
0x00004000Trust test root certificate.
0x80000000Ignore non-matching CN (certificate CN non-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class .

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to to mask sensitive data. The default is .

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to , the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to tells the class to use the internal implementation instead of using the system security libraries.

This setting is set to by default on all platforms.

Trappable Errors (SAML Module)

SAML Errors

500   Unable to request SAML Metadata Document. Invalid URI provided.
550   Unable to parse or process SAMLResponse. Provided SAMLResponse contained invalid HTTP headers.
600   Unable to parse or process SAMLResponse. Missing SAMLResponse.
650   Unable to parse or process HTTP Request. Invalid HTTP-POST binding request.
680   Unable to build SAMLRequest. Missing Id for request.
681   Unable to build SAMLRequest. Missing issue time instant for when SAMLRequest is issued.
700   SAMLResponse verification failed. Missing Id in a SAMLResponse.
701   SAMLResponse verification failed. Missing or invalid Version in a SAMLResponse.
702   SAMLResponse verification failed. Missing issued time instant in SAMLResponse.
703   SAMLResponse verification failed. Missing authentication time instant in SAMLResponse.
704   SAMLResponse verification failed. Invalid signature in SAMLResponse.
705   SAMLResponse verification failed. Certificate found in SAMLResponse's signature does not match the provided certificate.
706   SAMLResponse verification failed. The SAMLResponse is in response to a different request than the one configured.
707   SAMLResponse verification failed. The Entity Id of the issuer of the SAMLResponse is different than the one configured.
708   SAMLResponse verification failed. The SAMLResponse is meant for a different location (URI) than the ones configured.
708   SAMLResponse verification failed. The SAMLResponse needs to be parsed before ValidateSAMLResponse can be called.
750   Assertion verification failed. Invalid method used for the subject confirmation in Assertion.
751   Assertion verification failed. The Assertion is meant for future use (current time is before NotBefore element).
752   Assertion verification failed. The Assertion has expired.
753   Assertion verification failed. The Assertion is for a recipient different that the configured URIs.
754   Assertion verification failed. The Assertion is in response to a different request that the one configured.
755   Assertion verification failed. The Entity Id of the issuer of the Assertion is different than the one configured.
756   Assertion verification failed. The authentication session the Assertion is linked to has expired.
757   Assertion verification failed. Invalid signature in Assertion.
758   Assertion verification failed. Certificate found in Assertion's signature does not match the provided certificate.
759   Assertion verification failed. The recipient of the assertion (this Service Provider) does not match one of the URIs provided to the class.
760   Assertion verification failed. The Assertion is missing a Subject.
761   Assertion verification failed. The Assertion needs to be parsed before ValidateAssertion can be called.

HTTP Errors

118   Firewall error. The error description contains the detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in URL.
153   Specified URLScheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Cannot open AttachedFile.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on nonsocket.
10039   [10039] Destination address required.
10040   [10040] Message is too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol is not supported.
10044   [10044] Socket type is not supported.
10045   [10045] Operation is not supported on socket.
10046   [10046] Protocol family is not supported.
10047   [10047] Address family is not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Cannot assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Cannot send after socket shutdown.
10059   [10059] Too many references, cannot splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name is too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory is not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock is not loaded yet.
11001   [11001] Host not found.
11002   [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).