OIDC Class

Properties   Methods   Events   Config Settings   Errors  

The OIDC class provides an easy way to add OpenID Connect-based SSO to your application.

Syntax

class cloudsso.OIDC

Remarks

The OIDC class provides a simple way to authenticate users using OpenID Connect. The library makes it easy to add SSO support to web applications. Identity management is performed by OpenID Providers such as Microsoft, Google, Apple, GitHub, GitLab, Okta, or others.

An application that uses an OpenID Provider for authentication purposes is referred to as a Relying Party. When a user visits a website (Relying Party), they are directed to authenticate with the chosen OpenID Provider. Once authenticated, the user will give the OpenID Provider consent to use their account information to login to the Relying Party's service. The Relying Party will then be issued an ID Token by the OpenID Provider that will then be verified to confirm the identity of the user. This removes the need to manage and secure sensitive user information like passwords. Additionally, an OpenID Provider can also provide profile information about the user, further reducing the amount of information that needs to be stored.

Setup

Typically, the Relying Party will need to register their application with the OpenID Provider. This will give the OpenID Provider knowledge about the Relying Party. The exact information needed depends on the OpenID Provider that is being used, but typically this will include the redirect_uri to which users will be returned after authentication has been completed. Once registered, the OpenID Provider will also provide the Relying Party with some information. Typically the following values will be provided by the OpenID Provider:

  • Client Id (Required)
  • Client Secret (Optional)
  • Discovery Document URL (Recommended)

Once the application has been registered, the Relying Party can begin authenticating users.

Discovery

To start, a Relying Party will need to get information about the OpenID Provider they are connecting to. OIDC uses discovery documents to provide information about an OpenID Provider to a Relying Party. The OpenID Provider should host their discovery document at the domain of the issuer with /.well-known/openid-configuration concatenated at the end. For example, if the issuer is https://example.com, the discovery document URL would be:

https://example.com/.well-known/openid-configuration

This document stores important information that is required to correctly make requests and validate responses from an OpenID Provider.

Usage: Getting the Discovery Document

The OIDC class simplifies requesting and parsing the discovery document. The request_discovery_doc method will make a request to the specified discovery document URL. It will retrieve the discovery document and parse the commonly used information from it, setting the properties in the discovery_doc_details property. For example:

oidc.RequestDiscoveryDoc("https://example.com/.well-known/openid-configuration"); string issuer = oidc.DiscoveryDocDetails.Issuer;

This discovery document does change from time to time, but typically it can be cached to reduce the number of requests being made by the Relying Party. To save the discovery document for later, the discovery_doc_details_content property can be queried to get the raw JSON document. When the discovery document needs to be reloaded, the load_discovery_doc method can be used to reload the document. For example:

oidc.RequestDiscoveryDoc("https://example.com/.well-known/openid-configuration"); string raw_document = oidc.DiscoveryDocDetails.Content; //Save raw_document for later oidc.LoadDiscoveryDoc(raw_document);

The following properties and methods handle requesting, loading, or parsing discovery documents:

Signing Certificates

The discovery document also provides a URI for the JSON Web Key Set (JWKS) that will be used to verify ID Tokens (see below). Each JSON Web Key Set contains one or more public certificates (keys) that correspond to a private key that can be used when an OpenID provider signs an ID Token. These keys are often rotated periodically but can generally be cached to reduce the amount of requests being made by the Relying Party.

Usage: Requesting and Reloading Signing Certificates

The request_signer_certs method can be used to request the JWKS directly from the JWKS URI. This method will set the signer_jwks property which is automatically parsed to fill the signer_certs properties. If the signer_certs properties is empty and the class needs to verify the ID Token, the class will automatically make this request.

To reduce the number of requests made by the Relying Party, the load_signer_jwks method can be used to parse the signer_jwks again. This allows the Relying Party to cache the signer_jwks property and reuse it later, reducing the amount of times the JWKS is requested from the OpenID Provider. oidc.RequestDiscoveryDoc("https://example.com/.well-known/openid-configuration"); oidc.RequestSignerCerts(); string raw_jwks = oidc.SignerJWKS; //Save or Cache for later. //Continue on with operations that need to verify an ID Token. //Sometime later with a new instance. oidc.SignerJWKS = raw_jwks; oidc.LoadSignerJWKS(); //Continue on with new operations that need to verify an ID Token.

Authentication

The exact flow that a Relying Party goes through to authenticate a user depends on how the Relying Party configures their requests. These flows are broken up into different Grant Types with the most common being the Authorization Code grant type.

For a Relying Party using the Authorization Code grant type, the user must be redirected to the OpenID Provider's Authorization URL. The OpenID Provider will first ask the user to authenticate themselves. Once the user is authenticated, the OpenID Provider will then request authorization from the user to allow the Relying Party to access specific information about their account. This information will then be used to authenticate the user to the Relying Party. Once authorization has been provided, the user will be redirected back to the Relying Party with an authorization code.

With the authorization code, the Relying Party can now make a request to the token URL. The token server requires the authorization_code, client_id, and optional client_secret to confirm that the Relying Party has obtained authorization from the authorization server. The token server will then return an access_token,id_token, and optional refresh_token. To finish authenticating the user to the web application, the Relying Party will then validate the ID Token (see below).

Getting Authorization

To get authorization from an OpenID Provider, the user will need to be directed to the authorization server using an Authorization URL. There, the user will be asked to login and give authorization for (or consent to) the OpenID provider giving access to the specified information within the scope set by the Relying Party.

Usage: Getting the Authorization URL

The following example will assume that the Relying Party is using the ogtAuthorizationCode grant_type. This grant type sets the ResponseType to code, instructing the OpenID Provider to send the authorization code once authorization has been completed. First, the OIDC class needs to be configured with the information about the OpenID Provider (see Discovery above) and the specific information that has been provided or configured about the Relying Party. Once the class is configured, the get_authorization_url method can be used to get the URL to which the user should be directed in order to complete the authorization process. //OpenID Provider oidc.RequestDiscoveryDoc("https://example.com/.well-known/openid-configuration"); //Relying Party oidc.GrantType = ogtAuthorizationCode; oidc.ClientId = "Relying Party ID"; oidc.ReturnURL = "https://relying_party.com/"; oidc.AuthorizationScope = "openid profile email"; string authorization_url = oidc.GetAuthorizationURL(); //Direct the user to the URL...

Authorization Response

Once the authorization process has been completed, the OpenID Provider will redirect the user back to the Relying Party. Depending on the response_type set by the Relying Party, the redirect may contain any combination of an ID Token, an access token, or an authorization code. Once the user has been redirected back to the Relying Party, the request must be parsed to obtain the information from the OpenID Provider.

Parse vs. Process

The parse_oidc_response and process_oidc_response methods are used to handle HTTP requests that contain an OIDC response from an OpenID Provider. Generally, unless additional considerations or control are needed, the process_oidc_response method should be used. process_oidc_response will parse the incoming response from the OpenID Provider and make any additional requests necessary to obtain the access tokens and ID Tokens, as well as perform any necessary validation. For example, if an authorization code is found in the request, it will automatically make a request to the token server and handle/validate the response.

The parse_oidc_response method will only parse the information from the request. If an ID Token is found in the request, it will be validated. No further actions are performed.

Usage: Handling a redirect from an OpenID Provider

The OIDC class provides the parse_oidc_response and process_oidc_response methods to make it simple to get the required information from a redirect.

If the current HTTP context is unavailable, for instance when the class is not used directly within a web application, the HTTP headers and body that contain the OIDC response can be supplied by setting the oidc_response_headers and oidc_response_body properties.

The rest of the examples in this section will assume that the parse_oidc_response method is being used. See the process_oidc_response method for more information.

Getting Tokens

Once the Relying Party has an authorization code, the code can be used to obtain an ID Token and access token from the token server. Like when building the Authorization URL, the class will need to be configured again. Along with the other information, this step sometimes requires that a client secret be provided if it can be stored securely.

When request_tokens is called, a request is made to the token server. The token server authenticates the requester (the Relying Party) using the information provided in the request. Then, the token server will return an access token, an ID Token, and an optional refresh token. The Relying Party then needs to verify the ID Token (see below).

Refresh Tokens

Refresh tokens allow Relying Parties to skip obtaining authorization again for users that have already provided it once. How refresh tokens work depends on the OpenID Provider, but when the refresh_token property is set before calling request_tokens, the request will be made without the authorization code and the refresh_token will be used instead.

Usage: Request Tokens

The request_tokens method is used in the following example to make a request to the token server after parse_oidc_response has been called. //Parse OIDC Response oidc.ParseOIDCResponse(); //Get OpenID Provider Settings oidc.RequestDiscoveryDoc("https://example.com/.well-known/openid-configuration"); //Relying Party Settings oidc.GrantType = ogtAuthorizationCode; oidc.ClientId = "Relying Party ID"; oidc.ClientSecret = "Relying Party Secret Value"; oidc.ReturnURL = "https://relying_party.com/"; oidc.AuthorizationScope = "openid profile email"; try { oidc.RequestTokens(); } catch (OIDCException e) { //Error handling if there is an issue with the response. } string access_token = oidc.AccessToken; string id_token = oidc.IdTokenInfo.IdTokenContent; string refresh_token = oidc.RefreshToken;

Verifying ID Tokens

When a Relying Party receives an ID Token, it can verify the token to confirm the identity of the user that it represents. When the class receives an ID Token after calling parse_oidc_response, process_oidc_response, or request_tokens, it will automatically validate the ID Token.

The validation process checks the different JWT claims in the ID Token along with the signature using one of the keys from the JWKS provided by the OpenID Provider (see Signing Certificates). The following claims are used to validate the ID Token:

issThe issuer claim, checked that it matches the issuer provided in the discovery document.
audThe audience claim, checked that it matches the client_id for the Relying Party.
expThe expiration claim, checked that the current time is before the specified value.
iatThe "issued at" claim, checked that it is present and not set to 1-1-1970 (Unix Epoch).
nbfThe "not before" claim, checked that the current time is after the specified value.

Usage: Validate and Parse an ID Token

In a case where an ID Token is provided directly to the class, the validate_id_token method can be used to validate it, and the parse_id_token method can be used to parse it. The following example will set up the class with the information needed to validate and parse the ID Token. //OpenID Provider oidc.RequestDiscoveryDoc("https://example.com/.well-known/openid-configuration"); oidc.RequestSignerCerts(); //Relying Party oidc.ClientId = "Relying Party ID"; oidc.IdTokenInfo.IdTokenContent = "ID_TOKEN"; try { oidc.ValidateIdToken(); } catch (OIDCException e) { //If there is any validation issues. } //Parse the validated ID Token. oidc.ParseIdToken(); string issuer = oidc.IdTokenInfo.Issuer;

User Information

OpenID Providers give information about users through claims. These claims can be found in an ID Token or by calling the UserInfo endpoint to request the information directly.

When commonly used claims are parsed from an ID Token or the response from the UserInfo endpoint, the class will set the properties in the user_details property with the corresponding information. If there is a claim that is not found in the user_details property, the get_id_token_claim and the get_user_info_claim methods can be used to search for specific claims.

Usage: Request UserInfo

To make a request to the UserInfo endpoint, the class will need to have the access_token property set. Additionally, the discovery document can be used to get the UserInfo endpoint. The following code example assumes that the access_token has been set to a cached token from the current user session. oidc.RequestDiscoveryDoc("https://example.com/.well-known/openid-configuration"); oidc.AccessToken = "ACCESS_TOKEN"; oidc.RequestUserInfo(); string email = oidc.UserDetails.Email; string custom_claim = oidc.GetUserInfoClaim("/json/custom_claim");

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

access_tokenThe access token received from an OpenID provider.
authorization_scopeThe authorization scope used during authorization.
authz_response_codeThe error code from a recently parsed HTTP request.
authz_response_descThe error description from a recently parsed HTTP request.
client_idThe Id of the client assigned when registering the application.
client_secretThe secret value for the client assigned when registering the application.
discovery_doc_details_authorization_urlThe server authorization endpoint URL.
discovery_doc_details_claims_param_supportedWhether the claims request parameter is supported by the Open ID provider.
discovery_doc_details_contentThe raw discovery document JSON.
discovery_doc_details_issuerThe issuer identifier of the OpenID provider.
discovery_doc_details_logout_urlThe logout endpoint URL.
discovery_doc_details_registration_urlThe dynamic client registration URL.
discovery_doc_details_service_docs_urlThe URL of the human-readable service documentation.
discovery_doc_details_signer_cert_urlThe URL of the JSON Web Key Set used to verify signatures on values returned by the OpenID provider.
discovery_doc_details_supported_claimsA comma-separated list of claims that are supported by the OpenID provider.
discovery_doc_details_supported_displaysA comma-separated list of display values that are supported by the OpenID provider.
discovery_doc_details_supported_grant_typesA comma-separated list of grant types supported by the OpenID provider.
discovery_doc_details_supported_response_typesA comma-separated list of response types supported by the OpenID provider.
discovery_doc_details_supported_scopesA comma-separated list of scopes that are supported by the OpenID provider.
discovery_doc_details_token_urlThe token endpoint URL.
discovery_doc_details_user_info_urlThe user info endpoint URL.
firewall_auto_detectWhether to automatically detect and use firewall system settings, if available.
firewall_typeThe type of firewall to connect through.
firewall_hostThe name or IP address of the firewall (optional).
firewall_passwordA password if authentication is to be used when connecting through the firewall.
firewall_portThe Transmission Control Protocol (TCP) port for the firewall Host .
firewall_userA username if authentication is to be used when connecting through a firewall.
follow_redirectsDetermines what happens when the server issues a redirect.
grant_typeThe grant type defining the authentication flow.
id_token_audiencesA comma-separated list of audiences for which the ID Token is intended.
id_token_auth_timeThe time when the end user authenticates with the authorization server.
id_token_exp_timeThe time when the ID Token expires.
id_token_id_token_contentThe raw value of the ID Token.
id_token_issued_timeThe time when the authentication for this ID Token occurred.
id_token_issuerThe issuer, or authorization server, that constructed the ID Token.
local_hostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
oidc_response_bodyThe HTTP body of an OIDC response.
oidc_response_headersThe HTTP headers of an OIDC Response.
other_headersOther headers as determined by the user (optional).
param_countThe number of records in the Param arrays.
param_nameThe name of the parameter to be used in the request or returned in the response.
param_valueThe value of the parameter to be used in the request or returned in the response.
proxy_auth_schemeThe type of authorization to perform when connecting to the proxy.
proxy_auto_detectWhether to automatically detect and use proxy system settings, if available.
proxy_passwordA password if authentication is to be used for the proxy.
proxy_portThe Transmission Control Protocol (TCP) port for the proxy Server (default 80).
proxy_serverIf a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
proxy_sslWhen to use a Secure Sockets Layer (SSL) for the connection to the proxy.
proxy_userA username if authentication is to be used for the proxy.
refresh_tokenThe refresh token received from or sent to the token server.
return_urlThe URL where the user (browser) returns after authorization.
signer_cert_countThe number of records in the SignerCert arrays.
signer_cert_encodedThe certificate (PEM/Base64 encoded).
signer_jwksThe JSON Web Key Set provided by an OpenID provider.
ssl_accept_server_cert_effective_dateThe date on which this certificate becomes valid.
ssl_accept_server_cert_expiration_dateThe date on which the certificate expires.
ssl_accept_server_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
ssl_accept_server_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
ssl_accept_server_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
ssl_accept_server_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
ssl_accept_server_cert_issuerThe issuer of the certificate.
ssl_accept_server_cert_private_keyThe private key of the certificate (if available).
ssl_accept_server_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
ssl_accept_server_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
ssl_accept_server_cert_public_keyThe public key of the certificate.
ssl_accept_server_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
ssl_accept_server_cert_public_key_lengthThe length of the certificate's public key (in bits).
ssl_accept_server_cert_serial_numberThe serial number of the certificate encoded as a string.
ssl_accept_server_cert_signature_algorithmThe text description of the certificate's signature algorithm.
ssl_accept_server_cert_storeThe name of the certificate store for the client certificate.
ssl_accept_server_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_accept_server_cert_store_typeThe type of certificate store for this certificate.
ssl_accept_server_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
ssl_accept_server_cert_thumbprint_md5The MD5 hash of the certificate.
ssl_accept_server_cert_thumbprint_sha1The SHA-1 hash of the certificate.
ssl_accept_server_cert_thumbprint_sha256The SHA-256 hash of the certificate.
ssl_accept_server_cert_usageThe text description of UsageFlags .
ssl_accept_server_cert_usage_flagsThe flags that show intended use for the certificate.
ssl_accept_server_cert_versionThe certificate's version number.
ssl_accept_server_cert_subjectThe subject of the certificate used for client authentication.
ssl_accept_server_cert_encodedThe certificate (PEM/Base64 encoded).
ssl_cert_effective_dateThe date on which this certificate becomes valid.
ssl_cert_expiration_dateThe date on which the certificate expires.
ssl_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
ssl_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
ssl_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
ssl_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
ssl_cert_issuerThe issuer of the certificate.
ssl_cert_private_keyThe private key of the certificate (if available).
ssl_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
ssl_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
ssl_cert_public_keyThe public key of the certificate.
ssl_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
ssl_cert_public_key_lengthThe length of the certificate's public key (in bits).
ssl_cert_serial_numberThe serial number of the certificate encoded as a string.
ssl_cert_signature_algorithmThe text description of the certificate's signature algorithm.
ssl_cert_storeThe name of the certificate store for the client certificate.
ssl_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_cert_store_typeThe type of certificate store for this certificate.
ssl_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
ssl_cert_thumbprint_md5The MD5 hash of the certificate.
ssl_cert_thumbprint_sha1The SHA-1 hash of the certificate.
ssl_cert_thumbprint_sha256The SHA-256 hash of the certificate.
ssl_cert_usageThe text description of UsageFlags .
ssl_cert_usage_flagsThe flags that show intended use for the certificate.
ssl_cert_versionThe certificate's version number.
ssl_cert_subjectThe subject of the certificate used for client authentication.
ssl_cert_encodedThe certificate (PEM/Base64 encoded).
ssl_providerThe Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
ssl_server_cert_effective_dateThe date on which this certificate becomes valid.
ssl_server_cert_expiration_dateThe date on which the certificate expires.
ssl_server_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
ssl_server_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
ssl_server_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
ssl_server_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
ssl_server_cert_issuerThe issuer of the certificate.
ssl_server_cert_private_keyThe private key of the certificate (if available).
ssl_server_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
ssl_server_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
ssl_server_cert_public_keyThe public key of the certificate.
ssl_server_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
ssl_server_cert_public_key_lengthThe length of the certificate's public key (in bits).
ssl_server_cert_serial_numberThe serial number of the certificate encoded as a string.
ssl_server_cert_signature_algorithmThe text description of the certificate's signature algorithm.
ssl_server_cert_storeThe name of the certificate store for the client certificate.
ssl_server_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_server_cert_store_typeThe type of certificate store for this certificate.
ssl_server_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
ssl_server_cert_thumbprint_md5The MD5 hash of the certificate.
ssl_server_cert_thumbprint_sha1The SHA-1 hash of the certificate.
ssl_server_cert_thumbprint_sha256The SHA-256 hash of the certificate.
ssl_server_cert_usageThe text description of UsageFlags .
ssl_server_cert_usage_flagsThe flags that show intended use for the certificate.
ssl_server_cert_versionThe certificate's version number.
ssl_server_cert_subjectThe subject of the certificate used for client authentication.
ssl_server_cert_encodedThe certificate (PEM/Base64 encoded).
stateAn opaque value used to maintain state between the request and response.
timeoutThe timeout for the class.
transferred_dataThe contents of the last response from the server.
transferred_headersThe full set of headers as received from the server.
use_nonceWhether the Nonce parameter is added.
use_pkceWhether Proof Key for Code Exchange (PKCE) should be used.
user_details_addr_countryThe country name portion of the user's address.
user_details_addr_formattedThe full mailing address of the user, formatted for display or use on a mailing label.
user_details_addr_localityThe city or locality portion of the user's address.
user_details_addr_postal_codeThe zip code or postal code portion of the user's address.
user_details_addr_regionThe state, province, prefecture, or region portion of the user's address.
user_details_addr_street_addrThe street address portion of the user's address.
user_details_birthdayThe user's birthday.
user_details_emailThe user's preferred email address.
user_details_email_verifiedWhether the user's email address has been verified.
user_details_first_nameThe first name of the user.
user_details_genderThe user's gender.
user_details_last_nameThe last name of the user.
user_details_localeThe end user's locale.
user_details_middle_nameThe middle name of the user.
user_details_nameThe user's full name in displayable form including all name parts.
user_details_nicknameThe casual name of the user.
user_details_phone_numberThe user's phone number.
user_details_phone_number_verifiedWhether the user's phone number has been verified.
user_details_picture_urlThe URL of the user's profile picture.
user_details_preferred_usernameThe shorthand name by which the end-user wishes to be referred.
user_details_profile_urlThe URL of the user's profile page.
user_details_subjectThe subject of the user that is being represented.
user_details_updated_atThe time when the user's information was last updated.
user_details_websiteThe URL of the user's website.
user_details_zone_infoThe user's time zone.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

add_paramAdds a name-value pair to the query string parameters of the outgoing request.
configSets or retrieves a configuration setting.
do_eventsThis method processes events from the internal message queue.
get_authorization_urlBuilds the URL for an OpenID provider's authorization server.
get_discovery_metadataGets a specific metadata value from the discovery document.
get_id_token_claimGets a specific claim from the ID Token.
get_query_paramGets a specific claim from the current HTTP request.
get_user_info_claimGets a specific claim from the UserInfo response.
interruptThis method interrupts the current method.
load_discovery_docLoads in a raw discovery document.
load_signer_jwksLoads in the signer JWKS directly from a raw JWKS blob.
parse_id_tokenParses an ID Token.
parse_oidc_responseParses the current OIDC Response without additional processing.
process_oidc_responseProcesses the current OIDC response.
request_discovery_docRequests the OpenID Discovery Document.
request_signer_certsRequests the signing certificates from the OpenID provider.
request_tokensRequests new tokens from the token server.
request_user_infoRequests the information of a user.
resetThis method will reset the class.
validate_id_tokenValidates an ID Token.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

on_errorFired when information is available about errors during data delivery.
on_logFired once for each log message.
on_redirectFired when a redirection is received from the server.
on_ssl_server_authenticationFired after the server presents its certificate to the client.
on_ssl_statusFired when secure connection progress messages are available.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AccessTokenExpThe expiration date for the access token.
AuthErrorURIThe URI that provides more information about the authorization error.
AuthorizationCodeThe authorization code to be exchanged with the token server.
DisplayThe requested display options to present to the end user.
ExpectedAudienceThe expected audience when validating an ID Token.
ExpectedIssuerThe expected Issuer when validating an ID Token.
IDTokenHintAn ID Token value to be used as a hint about the user's session.
IdTokenVerificationFlagsThe checks that are ignored when validating an ID Token.
LoginHintThe login hint sent to the authorization server.
NonceThe nonce value that is used to verify an ID Token.
PKCEVerifierThe PKCE verifier used to generate the challenge.
ProcessedRequestTypeThe type of request that was processed or parsed.
PromptThe requested conditions under which the authorization server prompts for login.
ResponseTypeThe value of the response_type request parameter.
ServerAuthURLThe URL of the authorization server.
ServerSignerCertURLThe URL of the signer certificate server.
ServerTokenURLThe URL of the token server.
ServerUserInfoURLThe URL of the UserInfo server.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the class.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the class will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the class.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the class.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UsePlatformHTTPClientWhether or not to use the platform HTTP client.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertFilePathsThe paths to CA certificate files on Unix/Linux.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

access_token Property

The access token received from an OpenID provider.

Syntax

def get_access_token() -> str: ...
def set_access_token(value: str) -> None: ...

access_token = property(get_access_token, set_access_token)

Default Value

""

Remarks

This property will be populated with an access token that was received from an OpenID provider. When set, the AccessTokenExp configuration setting will also be set with the expiration date of the access token. The access token allows for requests to be made to the discovery_doc_details_user_info_url to retrieve information about the authenticated user. Additionally, depending on the OpenID provider, it may be used to access other APIs that are supported by the OpenID provider depending on how authorization_scope was set when calling get_authorization_url.

Each access_token is specific to the user that authorized the OpenID provider to provide it to your application. An access_token cannot be shared between multiple users.

When an OpenID provider provides an access token depends on the ResponseType that was set when calling get_authorization_url. Typically, the ResponseType configuration setting is set when selecting a grant_type which is set to ogtAuthorizationCode by default. When ResponseType contains code (ogtAuthorizationCode and ogtHybrid), the access_token is provided by the discovery_doc_details_token_url. When ResponseType contains token (ogtAuthorizationCode and ogtHybrid), the access_token is provided by the discovery_doc_details_authorization_url.

authorization_scope Property

The authorization scope used during authorization.

Syntax

def get_authorization_scope() -> str: ...
def set_authorization_scope(value: str) -> None: ...

authorization_scope = property(get_authorization_scope, set_authorization_scope)

Default Value

"openid"

Remarks

This property specifies the authorization scopes sent in the authorization request. The value specified here must be a space-separated list of scopes. For instance, openid profile email. The openid scope must always be present. The default value is openid.

After calling process_oidc_response or parse_oidc_response, if the authorization server returned the scope parameter, this property will be updated to match.

Along with OpenID Connect scopes, some OpenID providers also support other OAuth 2.0 scopes for various APIs that are also hosted by the OpenID provider. These can often also be added alongside the OpenID scopes. For example, openid profile email offline_access Mail.ReadWrite would be an example of a valid authorization_scope when using Microsoft Entra as an OpenID provider.

See the OpenID provider's documentation for supported values.

authz_response_code Property

The error code from a recently parsed HTTP request.

Syntax

def get_authz_response_code() -> str: ...

authz_response_code = property(get_authz_response_code, None)

Default Value

""

Remarks

This property holds the most recent error response code from an HTTP request that contains the response to an authorization (Authz) attempt. This is set when parse_oidc_response or process_oidc_response is called and the error response parameter is present. A description (if provided) of the error code can be found in the authz_response_desc property. The AuthErrorURI configuration setting may also be set if the request provided a URL to a page that describes the error.

This property is read-only.

authz_response_desc Property

The error description from a recently parsed HTTP request.

Syntax

def get_authz_response_desc() -> str: ...

authz_response_desc = property(get_authz_response_desc, None)

Default Value

""

Remarks

This property holds the most recent error response description from an HTTP request that contains the response to an authorization (Authz) attempt. This is set when parse_oidc_response or process_oidc_response is called and the error_description response parameter is present. The code for this error can be found in the authz_response_code property.

This property is read-only.

client_id Property

The Id of the client assigned when registering the application.

Syntax

def get_client_id() -> str: ...
def set_client_id(value: str) -> None: ...

client_id = property(get_client_id, set_client_id)

Default Value

""

Remarks

This property holds the Id of the client that was assigned when initially registering the application with the OpenID provider. This is sometimes referred to as the application id or the relying party id. This property is used to build the authorization URL when calling get_authorization_url. It is also used when making a request to the token server when calling process_oidc_response and request_tokens. Additionally, it is used to verify the id_token_audiences property of an ID Token when calling the validate_id_token, process_oidc_response, and possibly request_tokens methods.

client_secret Property

The secret value for the client assigned when registering the application.

Syntax

def get_client_secret() -> str: ...
def set_client_secret(value: str) -> None: ...

client_secret = property(get_client_secret, set_client_secret)

Default Value

""

Remarks

This property holds the secret of the client that might have been assigned when initially registering the application with the OpenID provider. This property is optional depending on the OpenID provider. If provided, it will be used when making a request to the token server when calling request_tokens or process_oidc_response.

discovery_doc_details_authorization_url Property

The server authorization endpoint URL.

Syntax

def get_discovery_doc_details_authorization_url() -> str: ...

discovery_doc_details_authorization_url = property(get_discovery_doc_details_authorization_url, None)

Default Value

""

Remarks

The server authorization endpoint URL.

This setting corresponds to the authorization_endpoint parameter in the discovery document.

This property is read-only.

discovery_doc_details_claims_param_supported Property

Whether the claims request parameter is supported by the Open ID provider.

Syntax

def get_discovery_doc_details_claims_param_supported() -> bool: ...

discovery_doc_details_claims_param_supported = property(get_discovery_doc_details_claims_param_supported, None)

Default Value

FALSE

Remarks

Whether the claims request parameter is supported by the Open ID provider.

This setting corresponds to the claims_parameter_supported parameter in the discovery document.

This property is read-only.

discovery_doc_details_content Property

The raw discovery document JSON.

Syntax

def get_discovery_doc_details_content() -> str: ...

discovery_doc_details_content = property(get_discovery_doc_details_content, None)

Default Value

""

Remarks

The raw discovery document JSON.

This property is read-only.

discovery_doc_details_issuer Property

The issuer identifier of the OpenID provider.

Syntax

def get_discovery_doc_details_issuer() -> str: ...

discovery_doc_details_issuer = property(get_discovery_doc_details_issuer, None)

Default Value

""

Remarks

The issuer identifier of the OpenID provider. This value is the same as the iss claim returned in ID Tokens issued from this provider. The value is a URL with the https scheme with no query string or fragment component.

This setting corresponds to the issuer parameter in the discovery document.

This property is read-only.

discovery_doc_details_logout_url Property

The logout endpoint URL.

Syntax

def get_discovery_doc_details_logout_url() -> str: ...

discovery_doc_details_logout_url = property(get_discovery_doc_details_logout_url, None)

Default Value

""

Remarks

The logout endpoint URL.

This setting corresponds to the optional end_session_endpoint parameter that may be found in the discovery document. If a user is directed to this URL, they will be asked to log out of their account.

This property is read-only.

discovery_doc_details_registration_url Property

The dynamic client registration URL.

Syntax

def get_discovery_doc_details_registration_url() -> str: ...

discovery_doc_details_registration_url = property(get_discovery_doc_details_registration_url, None)

Default Value

""

Remarks

The dynamic client registration URL.

This setting corresponds to the registration_endpoint parameter in the discovery document.

This property is read-only.

discovery_doc_details_service_docs_url Property

The URL of the human-readable service documentation.

Syntax

def get_discovery_doc_details_service_docs_url() -> str: ...

discovery_doc_details_service_docs_url = property(get_discovery_doc_details_service_docs_url, None)

Default Value

""

Remarks

The URL of the human-readable service documentation. The information at this URL is intended for developers integrating with the OpenID provider and may contain useful information.

This setting corresponds to the service_documentation parameter in the discovery document.

This property is read-only.

discovery_doc_details_signer_cert_url Property

The URL of the JSON Web Key Set used to verify signatures on values returned by the OpenID provider.

Syntax

def get_discovery_doc_details_signer_cert_url() -> str: ...

discovery_doc_details_signer_cert_url = property(get_discovery_doc_details_signer_cert_url, None)

Default Value

""

Remarks

The URL of the JSON Web Key Set used to verify signatures on values returned by the OpenID provider. The signer keys are automatically retrieved by the class when the ID Token signature verification is performed.

This setting corresponds to the jwks_uri parameter in the discovery document.

This property is read-only.

discovery_doc_details_supported_claims Property

A comma-separated list of claims that are supported by the OpenID provider.

Syntax

def get_discovery_doc_details_supported_claims() -> str: ...

discovery_doc_details_supported_claims = property(get_discovery_doc_details_supported_claims, None)

Default Value

""

Remarks

A comma-separated list of claims that are supported by the OpenID provider. For instance: aud,email,email_verified,exp,family_name,given_name,iat,iss,locale,name,picture,sub

This setting corresponds to the claims_supported parameter in the discovery document.

This property is read-only.

discovery_doc_details_supported_displays Property

A comma-separated list of display values that are supported by the OpenID provider.

Syntax

def get_discovery_doc_details_supported_displays() -> str: ...

discovery_doc_details_supported_displays = property(get_discovery_doc_details_supported_displays, None)

Default Value

""

Remarks

A comma-separated list of display values that are supported by the OpenID provider.

This setting corresponds to the display_values_supported parameter in the discovery document.

This property is read-only.

discovery_doc_details_supported_grant_types Property

A comma-separated list of grant types supported by the OpenID provider.

Syntax

def get_discovery_doc_details_supported_grant_types() -> str: ...

discovery_doc_details_supported_grant_types = property(get_discovery_doc_details_supported_grant_types, None)

Default Value

""

Remarks

A comma-separated list of grant types supported by the OpenID provider. If this value is not specified by the OpenID provider, it is specified that authorization_code and implicit are supported by the OpenID provider.

This setting corresponds to the grant_types_supported parameter in the discovery document.

This property is read-only.

discovery_doc_details_supported_response_types Property

A comma-separated list of response types supported by the OpenID provider.

Syntax

def get_discovery_doc_details_supported_response_types() -> str: ...

discovery_doc_details_supported_response_types = property(get_discovery_doc_details_supported_response_types, None)

Default Value

""

Remarks

A comma-separated list of response types supported by the OpenID provider. If this value is not specified by the OpenID provider, it is defined that the OpenID provider supports (at a minimum) the code, id_token, and token id_token values.

This setting corresponds to the response_types_supported parameter in the discovery document.

This property is read-only.

discovery_doc_details_supported_scopes Property

A comma-separated list of scopes that are supported by the OpenID provider.

Syntax

def get_discovery_doc_details_supported_scopes() -> str: ...

discovery_doc_details_supported_scopes = property(get_discovery_doc_details_supported_scopes, None)

Default Value

""

Remarks

A comma-separated list of scopes that are supported by the OpenID provider. For instance: openid,email,profile

This setting corresponds to the scopes_supported parameter in the discovery document.

This property is read-only.

discovery_doc_details_token_url Property

The token endpoint URL.

Syntax

def get_discovery_doc_details_token_url() -> str: ...

discovery_doc_details_token_url = property(get_discovery_doc_details_token_url, None)

Default Value

""

Remarks

The token endpoint URL.

This setting corresponds to the token_endpoint parameter in the discovery document.

This property is read-only.

discovery_doc_details_user_info_url Property

The user info endpoint URL.

Syntax

def get_discovery_doc_details_user_info_url() -> str: ...

discovery_doc_details_user_info_url = property(get_discovery_doc_details_user_info_url, None)

Default Value

""

Remarks

The user info endpoint URL.

This setting corresponds to the userinfo_endpoint parameter in the discovery document.

This property is read-only.

firewall_auto_detect Property

Whether to automatically detect and use firewall system settings, if available.

Syntax

def get_firewall_auto_detect() -> bool: ...
def set_firewall_auto_detect(value: bool) -> None: ...

firewall_auto_detect = property(get_firewall_auto_detect, set_firewall_auto_detect)

Default Value

FALSE

Remarks

Whether to automatically detect and use firewall system settings, if available.

firewall_type Property

The type of firewall to connect through.

Syntax

def get_firewall_type() -> int: ...
def set_firewall_type(value: int) -> None: ...

firewall_type = property(get_firewall_type, set_firewall_type)

Default Value

0

Remarks

The type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. firewall_port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. firewall_port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. firewall_port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. firewall_port is set to 1080.

firewall_host Property

The name or IP address of the firewall (optional).

Syntax

def get_firewall_host() -> str: ...
def set_firewall_host(value: str) -> None: ...

firewall_host = property(get_firewall_host, set_firewall_host)

Default Value

""

Remarks

The name or IP address of the firewall (optional). If a firewall_host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.

firewall_password Property

A password if authentication is to be used when connecting through the firewall.

Syntax

def get_firewall_password() -> str: ...
def set_firewall_password(value: str) -> None: ...

firewall_password = property(get_firewall_password, set_firewall_password)

Default Value

""

Remarks

A password if authentication is to be used when connecting through the firewall. If firewall_host is specified, the firewall_user and firewall_password properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

firewall_port Property

The Transmission Control Protocol (TCP) port for the firewall Host .

Syntax

def get_firewall_port() -> int: ...
def set_firewall_port(value: int) -> None: ...

firewall_port = property(get_firewall_port, set_firewall_port)

Default Value

0

Remarks

The Transmission Control Protocol (TCP) port for the firewall firewall_host. See the description of the firewall_host property for details.

Note: This property is set automatically when firewall_type is set to a valid value. See the description of the firewall_type property for details.

firewall_user Property

A username if authentication is to be used when connecting through a firewall.

Syntax

def get_firewall_user() -> str: ...
def set_firewall_user(value: str) -> None: ...

firewall_user = property(get_firewall_user, set_firewall_user)

Default Value

""

Remarks

A username if authentication is to be used when connecting through a firewall. If firewall_host is specified, this property and the firewall_password property are used to connect and authenticate to the given Firewall. If the authentication fails, the class fails with an error.

follow_redirects Property

Determines what happens when the server issues a redirect.

Syntax

def get_follow_redirects() -> int: ...
def set_follow_redirects(value: int) -> None: ...

follow_redirects = property(get_follow_redirects, set_follow_redirects)

Default Value

0

Remarks

This property determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to frAlways (1), the new url for the object is retrieved automatically every time.

If this property is set to frSameScheme (2), the new url is retrieved automatically only if the url_scheme is the same; otherwise, the class fails with an error.

Note: Following the HTTP specification, unless this property is set to frAlways (1), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, user and password are also reset to empty. If, however, this property is set to frAlways (1), the same credentials are used to connect to the new server.

A on_redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the on_redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is frNever (0). In this case, redirects are never followed, and the class fails with an error instead.

grant_type Property

The grant type defining the authentication flow.

Syntax

def get_grant_type() -> int: ...
def set_grant_type(value: int) -> None: ...

grant_type = property(get_grant_type, set_grant_type)

Default Value

0

Remarks

This property defines the grant type used when performing authentication. The value specified here controls the authentication flow.

Possible values for grant_type are:

  • 0 (Authorization Code - Default)
  • 1 (Implicit)
  • 2 (Hybrid)

When handled by the class using the parse_oidc_response and process_oidc_response methods, each grant type acts in the following manner by default.

When using 0 (Authorization Code Flow - Default), the AuthorizationCode configuration setting is set by the authorization server. When using process_oidc_response or calling the request_tokens method after parsing, the class will make a request to the token server and return the access_token and id_token_info properties. If provided, this grant type also supports the refresh_token property.

When using 1 (Implicit Flow), the access_token and id_token_info properties are set by the authorization server. This is only recommended for implementations that are in-browser, as this potentially exposes the tokens to the end-user and user agent itself.

When using 2 (Hybrid Flow), by default the AuthorizationCode configuration setting is set by the authorization server along with the id_token_info property (see Additional Notes). When using process_oidc_response or calling the request_tokens method after parsing, the class will make a request to the token server and set the access_token property and the id_token_info property if provided again. If provided, this grant type also supports the refresh_token property.

Additional Notes

The response_type request parameter is automatically set based on the value specified here. In some cases, multiple values are acceptable and a default value is chosen automatically. To explicitly specify a response_type value for the chosen grant type, set ResponseType after setting this property.

id_token_audiences Property

A comma-separated list of audiences for which the ID Token is intended.

Syntax

def get_id_token_audiences() -> str: ...

id_token_audiences = property(get_id_token_audiences, None)

Default Value

""

Remarks

A comma-separated list of audiences for which the ID Token is intended.

This property is read-only.

id_token_auth_time Property

The time when the end user authenticates with the authorization server.

Syntax

def get_id_token_auth_time() -> int: ...

id_token_auth_time = property(get_id_token_auth_time, None)

Default Value

0

Remarks

The time when the end user authenticates with the authorization server.

The time value is a number representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time.

This property is read-only.

id_token_exp_time Property

The time when the ID Token expires.

Syntax

def get_id_token_exp_time() -> int: ...

id_token_exp_time = property(get_id_token_exp_time, None)

Default Value

0

Remarks

The time when the ID Token expires.

The time value is a number representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time.

This property is read-only.

id_token_id_token_content Property

The raw value of the ID Token.

Syntax

def get_id_token_id_token_content() -> str: ...
def set_id_token_id_token_content(value: str) -> None: ...

id_token_id_token_content = property(get_id_token_id_token_content, set_id_token_id_token_content)

Default Value

""

Remarks

The raw value of the ID Token.

id_token_issued_time Property

The time when the authentication for this ID Token occurred.

Syntax

def get_id_token_issued_time() -> int: ...

id_token_issued_time = property(get_id_token_issued_time, None)

Default Value

0

Remarks

The time when the authentication for this ID Token occurred.

The time value is a number representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time.

This property is read-only.

id_token_issuer Property

The issuer, or authorization server, that constructed the ID Token.

Syntax

def get_id_token_issuer() -> str: ...

id_token_issuer = property(get_id_token_issuer, None)

Default Value

""

Remarks

The issuer, or authorization server, that constructed the ID Token.

This property is read-only.

local_host Property

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

def get_local_host() -> str: ...
def set_local_host(value: str) -> None: ...

local_host = property(get_local_host, set_local_host)

Default Value

""

Remarks

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the class is connected, the local_host property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: local_host is not persistent. You must always set it in code, and never in the property window.

oidc_response_body Property

The HTTP body of an OIDC response.

Syntax

def get_oidc_response_body() -> str: ...
def set_oidc_response_body(value: str) -> None: ...

oidc_response_body = property(get_oidc_response_body, set_oidc_response_body)

Default Value

""

Remarks

This property specifies the HTTP body for an OIDC response. This can be set to directly provide the HTTP body of the OIDC response to be processed by the parse_oidc_response or process_oidc_response methods. This property is also populated with the HTTP body that is parsed from the HTTP context if used by the parse_oidc_response or process_oidc_response methods.

oidc_response_headers Property

The HTTP headers of an OIDC Response.

Syntax

def get_oidc_response_headers() -> str: ...
def set_oidc_response_headers(value: str) -> None: ...

oidc_response_headers = property(get_oidc_response_headers, set_oidc_response_headers)

Default Value

""

Remarks

This property specifies the HTTP headers for an OIDC Response. This can be set to directly provide the HTTP headers of the OIDC response to be processed by the parse_oidc_response or process_oidc_response methods. This property is also populated with the HTTP headers that are parsed from the HTTP context if used by the parse_oidc_response or process_oidc_response methods.

other_headers Property

Other headers as determined by the user (optional).

Syntax

def get_other_headers() -> str: ...
def set_other_headers(value: str) -> None: ...

other_headers = property(get_other_headers, set_other_headers)

Default Value

""

Remarks

This property can be set to a string of headers to be appended to the HTTP request headers created from other properties like content_type and from_.

The headers must follow the format Header: Value as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this property with caution. If this property contains invalid headers, HTTP requests may fail.

This property is useful for extending the functionality of the class beyond what is provided.

param_count Property

The number of records in the Param arrays.

Syntax

def get_param_count() -> int: ...
def set_param_count(value: int) -> None: ...

param_count = property(get_param_count, set_param_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at param_count - 1.

param_name Property

The name of the parameter to be used in the request or returned in the response.

Syntax

def get_param_name(param_index: int) -> str: ...
def set_param_name(param_index: int, value: str) -> None: ...

Default Value

""

Remarks

The name of the parameter to be used in the request or returned in the response.

The param_index parameter specifies the index of the item in the array. The size of the array is controlled by the param_count property.

param_value Property

The value of the parameter to be used in the request or returned in the response.

Syntax

def get_param_value(param_index: int) -> str: ...
def set_param_value(param_index: int, value: str) -> None: ...

Default Value

""

Remarks

The value of the parameter to be used in the request or returned in the response. When issuing a request, the class will URL encode the value specified here. Returned values will be automatically URL decoded.

The param_index parameter specifies the index of the item in the array. The size of the array is controlled by the param_count property.

proxy_auth_scheme Property

The type of authorization to perform when connecting to the proxy.

Syntax

def get_proxy_auth_scheme() -> int: ...
def set_proxy_auth_scheme(value: int) -> None: ...

proxy_auth_scheme = property(get_proxy_auth_scheme, set_proxy_auth_scheme)

Default Value

0

Remarks

The type of authorization to perform when connecting to the proxy. This is used only when the proxy_user and proxy_password properties are set.

proxy_auth_scheme should be set to authNone (3) when no authentication is expected.

By default, proxy_auth_scheme is authBasic (0), and if the proxy_user and proxy_password properties are set, the class will attempt basic authentication.

If proxy_auth_scheme is set to authDigest (1), digest authentication will be attempted instead.

If proxy_auth_scheme is set to authProprietary (2), then the authorization token will not be generated by the class. Look at the configuration file for the class being used to find more information about manually setting this token.

If proxy_auth_scheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this property will clear the values of proxy_user and proxy_password.

proxy_auto_detect Property

Whether to automatically detect and use proxy system settings, if available.

Syntax

def get_proxy_auto_detect() -> bool: ...
def set_proxy_auto_detect(value: bool) -> None: ...

proxy_auto_detect = property(get_proxy_auto_detect, set_proxy_auto_detect)

Default Value

FALSE

Remarks

Whether to automatically detect and use proxy system settings, if available. The default value is False.

proxy_password Property

A password if authentication is to be used for the proxy.

Syntax

def get_proxy_password() -> str: ...
def set_proxy_password(value: str) -> None: ...

proxy_password = property(get_proxy_password, set_proxy_password)

Default Value

""

Remarks

A password if authentication is to be used for the proxy.

If proxy_auth_scheme is set to Basic Authentication, the proxy_user and proxy_password properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If proxy_auth_scheme is set to Digest Authentication, the proxy_user and proxy_password properties are used to respond to the Digest Authentication challenge from the server.

If proxy_auth_scheme is set to NTLM Authentication, the proxy_user and proxy_password properties are used to authenticate through NTLM negotiation.

proxy_port Property

The Transmission Control Protocol (TCP) port for the proxy Server (default 80).

Syntax

def get_proxy_port() -> int: ...
def set_proxy_port(value: int) -> None: ...

proxy_port = property(get_proxy_port, set_proxy_port)

Default Value

80

Remarks

The Transmission Control Protocol (TCP) port for the proxy proxy_server (default 80). See the description of the proxy_server property for details.

proxy_server Property

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

Syntax

def get_proxy_server() -> str: ...
def set_proxy_server(value: str) -> None: ...

proxy_server = property(get_proxy_server, set_proxy_server)

Default Value

""

Remarks

If a proxy proxy_server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the proxy_server property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the proxy_server property is set to the corresponding address. If the search is not successful, an error is returned.

proxy_ssl Property

When to use a Secure Sockets Layer (SSL) for the connection to the proxy.

Syntax

def get_proxy_ssl() -> int: ...
def set_proxy_ssl(value: int) -> None: ...

proxy_ssl = property(get_proxy_ssl, set_proxy_ssl)

Default Value

0

Remarks

When to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the class will use the psTunnel option. If the URL is an http URL, the class will use the psNever option.
psAlways (1)The connection is always SSL-enabled.
psNever (2)The connection is not SSL-enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

proxy_user Property

A username if authentication is to be used for the proxy.

Syntax

def get_proxy_user() -> str: ...
def set_proxy_user(value: str) -> None: ...

proxy_user = property(get_proxy_user, set_proxy_user)

Default Value

""

Remarks

A username if authentication is to be used for the proxy.

If proxy_auth_scheme is set to Basic Authentication, the proxy_user and proxy_password properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If proxy_auth_scheme is set to Digest Authentication, the proxy_user and proxy_password properties are used to respond to the Digest Authentication challenge from the server.

If proxy_auth_scheme is set to NTLM Authentication, the proxy_user and proxy_password properties are used to authenticate through NTLM negotiation.

refresh_token Property

The refresh token received from or sent to the token server.

Syntax

def get_refresh_token() -> str: ...
def set_refresh_token(value: str) -> None: ...

refresh_token = property(get_refresh_token, set_refresh_token)

Default Value

""

Remarks

This property is set by the class when it receives a refresh token after the process_oidc_response or request_tokens methods make a request to an OpenID provider's token server.

Usage:

In cases where a user's session may last longer than the actual expiration period (see AccessTokenExp) for the user's access_token, the refresh_token can be used to "refresh" the session. "Refreshing" the session allows the application to get a new access token without needing to have the user re-authorize the application again. To have the class use a refresh_token, first the application will need to save the refresh token in a secure location. Refresh tokens are specific to the user, meaning each user will need to have their own refresh_token saved. Once the application needs a new access_token, it will just set this property before calling the request_tokens method.

Some OpenID providers will also return a newly issued ID Token when using a refresh_token to get a new access_token. Additionally, some OpenID providers will either provide a new refresh_token or reset the expiration date on the refresh_token that was used. See the OpenID provider's documentation for more specifics.

return_url Property

The URL where the user (browser) returns after authorization.

Syntax

def get_return_url() -> str: ...
def set_return_url(value: str) -> None: ...

return_url = property(get_return_url, set_return_url)

Default Value

""

Remarks

This property specifies the URL that is used by the authorization server to redirect the user after the user has finished the authorization process with the authorization server. This property corresponds to the redirect_uri query string parameter when get_authorization_url creates the authorization URL.

Typically, this is set to the part of the web server that is responsible for processing incoming HTTP requests using the process_oidc_response or parse_oidc_response methods.

signer_cert_count Property

The number of records in the SignerCert arrays.

Syntax

def get_signer_cert_count() -> int: ...

signer_cert_count = property(get_signer_cert_count, None)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at signer_cert_count - 1.

This property is read-only.

signer_cert_encoded Property

The certificate (PEM/Base64 encoded).

Syntax

def get_signer_cert_encoded(signer_cert_index: int) -> bytes: ...

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The signer_cert_store and signer_cert_subject properties also may be used to specify a certificate.

When signer_cert_encoded is set, a search is initiated in the current signer_cert_store for the private key of the certificate. If the key is found, signer_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, signer_cert_subject is set to an empty string.

The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.

This property is read-only.

signer_jwks Property

The JSON Web Key Set provided by an OpenID provider.

Syntax

def get_signer_jwks() -> str: ...

signer_jwks = property(get_signer_jwks, None)

Default Value

""

Remarks

This property holds the JSON Web Key Set provided by the OpenID Provider that will be used for signing ID Tokens.

Typically, this is returned from the discovery_doc_details_signer_cert_url when the class makes a request to populate the signer_certs properties. The request_signer_certs method can be used to manually make a request to the discovery_doc_details_signer_cert_url; otherwise, the class will automatically make the request if the properties is not set and it needs the certificates to validate an ID Token.

This property can be saved/cached for later and used to reload the certificates by calling the load_signer_jwks method. This can be used to reduce how often the class makes requests to the discovery_doc_details_signer_cert_url server.

This property is read-only.

ssl_accept_server_cert_effective_date Property

The date on which this certificate becomes valid.

Syntax

def get_ssl_accept_server_cert_effective_date() -> str: ...

ssl_accept_server_cert_effective_date = property(get_ssl_accept_server_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

ssl_accept_server_cert_expiration_date Property

The date on which the certificate expires.

Syntax

def get_ssl_accept_server_cert_expiration_date() -> str: ...

ssl_accept_server_cert_expiration_date = property(get_ssl_accept_server_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

ssl_accept_server_cert_extended_key_usage Property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_ssl_accept_server_cert_extended_key_usage() -> str: ...

ssl_accept_server_cert_extended_key_usage = property(get_ssl_accept_server_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

ssl_accept_server_cert_fingerprint Property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_ssl_accept_server_cert_fingerprint() -> str: ...

ssl_accept_server_cert_fingerprint = property(get_ssl_accept_server_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

ssl_accept_server_cert_fingerprint_sha1 Property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_ssl_accept_server_cert_fingerprint_sha1() -> str: ...

ssl_accept_server_cert_fingerprint_sha1 = property(get_ssl_accept_server_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

ssl_accept_server_cert_fingerprint_sha256 Property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_ssl_accept_server_cert_fingerprint_sha256() -> str: ...

ssl_accept_server_cert_fingerprint_sha256 = property(get_ssl_accept_server_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

ssl_accept_server_cert_issuer Property

The issuer of the certificate.

Syntax

def get_ssl_accept_server_cert_issuer() -> str: ...

ssl_accept_server_cert_issuer = property(get_ssl_accept_server_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

ssl_accept_server_cert_private_key Property

The private key of the certificate (if available).

Syntax

def get_ssl_accept_server_cert_private_key() -> str: ...

ssl_accept_server_cert_private_key = property(get_ssl_accept_server_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The ssl_accept_server_cert_private_key may be available but not exportable. In this case, ssl_accept_server_cert_private_key returns an empty string.

This property is read-only.

ssl_accept_server_cert_private_key_available Property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_ssl_accept_server_cert_private_key_available() -> bool: ...

ssl_accept_server_cert_private_key_available = property(get_ssl_accept_server_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a ssl_accept_server_cert_private_key is available for the selected certificate. If ssl_accept_server_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

ssl_accept_server_cert_private_key_container Property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_ssl_accept_server_cert_private_key_container() -> str: ...

ssl_accept_server_cert_private_key_container = property(get_ssl_accept_server_cert_private_key_container, None)

Default Value

""

Remarks

The name of the ssl_accept_server_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

ssl_accept_server_cert_public_key Property

The public key of the certificate.

Syntax

def get_ssl_accept_server_cert_public_key() -> str: ...

ssl_accept_server_cert_public_key = property(get_ssl_accept_server_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

ssl_accept_server_cert_public_key_algorithm Property

The textual description of the certificate's public key algorithm.

Syntax

def get_ssl_accept_server_cert_public_key_algorithm() -> str: ...

ssl_accept_server_cert_public_key_algorithm = property(get_ssl_accept_server_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_accept_server_cert_public_key_length Property

The length of the certificate's public key (in bits).

Syntax

def get_ssl_accept_server_cert_public_key_length() -> int: ...

ssl_accept_server_cert_public_key_length = property(get_ssl_accept_server_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

ssl_accept_server_cert_serial_number Property

The serial number of the certificate encoded as a string.

Syntax

def get_ssl_accept_server_cert_serial_number() -> str: ...

ssl_accept_server_cert_serial_number = property(get_ssl_accept_server_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

ssl_accept_server_cert_signature_algorithm Property

The text description of the certificate's signature algorithm.

Syntax

def get_ssl_accept_server_cert_signature_algorithm() -> str: ...

ssl_accept_server_cert_signature_algorithm = property(get_ssl_accept_server_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_accept_server_cert_store Property

The name of the certificate store for the client certificate.

Syntax

def get_ssl_accept_server_cert_store() -> bytes: ...
def set_ssl_accept_server_cert_store(value: bytes) -> None: ...

ssl_accept_server_cert_store = property(get_ssl_accept_server_cert_store, set_ssl_accept_server_cert_store)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The ssl_accept_server_cert_store_type property denotes the type of the certificate store specified by ssl_accept_server_cert_store. If the store is password-protected, specify the password in ssl_accept_server_cert_store_password.

ssl_accept_server_cert_store is used in conjunction with the ssl_accept_server_cert_subject property to specify client certificates. If ssl_accept_server_cert_store has a value, and ssl_accept_server_cert_subject or ssl_accept_server_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_accept_server_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

ssl_accept_server_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_accept_server_cert_store_password() -> str: ...
def set_ssl_accept_server_cert_store_password(value: str) -> None: ...

ssl_accept_server_cert_store_password = property(get_ssl_accept_server_cert_store_password, set_ssl_accept_server_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

ssl_accept_server_cert_store_type Property

The type of certificate store for this certificate.

Syntax

def get_ssl_accept_server_cert_store_type() -> int: ...
def set_ssl_accept_server_cert_store_type(value: int) -> None: ...

ssl_accept_server_cert_store_type = property(get_ssl_accept_server_cert_store_type, set_ssl_accept_server_cert_store_type)

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CERTMGR class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_accept_server_cert_store and set ssl_accept_server_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

ssl_accept_server_cert_subject_alt_names Property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_ssl_accept_server_cert_subject_alt_names() -> str: ...

ssl_accept_server_cert_subject_alt_names = property(get_ssl_accept_server_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

ssl_accept_server_cert_thumbprint_md5 Property

The MD5 hash of the certificate.

Syntax

def get_ssl_accept_server_cert_thumbprint_md5() -> str: ...

ssl_accept_server_cert_thumbprint_md5 = property(get_ssl_accept_server_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_accept_server_cert_thumbprint_sha1 Property

The SHA-1 hash of the certificate.

Syntax

def get_ssl_accept_server_cert_thumbprint_sha1() -> str: ...

ssl_accept_server_cert_thumbprint_sha1 = property(get_ssl_accept_server_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_accept_server_cert_thumbprint_sha256 Property

The SHA-256 hash of the certificate.

Syntax

def get_ssl_accept_server_cert_thumbprint_sha256() -> str: ...

ssl_accept_server_cert_thumbprint_sha256 = property(get_ssl_accept_server_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_accept_server_cert_usage Property

The text description of UsageFlags .

Syntax

def get_ssl_accept_server_cert_usage() -> str: ...

ssl_accept_server_cert_usage = property(get_ssl_accept_server_cert_usage, None)

Default Value

""

Remarks

The text description of ssl_accept_server_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

ssl_accept_server_cert_usage_flags Property

The flags that show intended use for the certificate.

Syntax

def get_ssl_accept_server_cert_usage_flags() -> int: ...

ssl_accept_server_cert_usage_flags = property(get_ssl_accept_server_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of ssl_accept_server_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the ssl_accept_server_cert_usage property for a text representation of ssl_accept_server_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

ssl_accept_server_cert_version Property

The certificate's version number.

Syntax

def get_ssl_accept_server_cert_version() -> str: ...

ssl_accept_server_cert_version = property(get_ssl_accept_server_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

ssl_accept_server_cert_subject Property

The subject of the certificate used for client authentication.

Syntax

def get_ssl_accept_server_cert_subject() -> str: ...
def set_ssl_accept_server_cert_subject(value: str) -> None: ...

ssl_accept_server_cert_subject = property(get_ssl_accept_server_cert_subject, set_ssl_accept_server_cert_subject)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

ssl_accept_server_cert_encoded Property

The certificate (PEM/Base64 encoded).

Syntax

def get_ssl_accept_server_cert_encoded() -> bytes: ...
def set_ssl_accept_server_cert_encoded(value: bytes) -> None: ...

ssl_accept_server_cert_encoded = property(get_ssl_accept_server_cert_encoded, set_ssl_accept_server_cert_encoded)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_accept_server_cert_store and ssl_accept_server_cert_subject properties also may be used to specify a certificate.

When ssl_accept_server_cert_encoded is set, a search is initiated in the current ssl_accept_server_cert_store for the private key of the certificate. If the key is found, ssl_accept_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_accept_server_cert_subject is set to an empty string.

ssl_cert_effective_date Property

The date on which this certificate becomes valid.

Syntax

def get_ssl_cert_effective_date() -> str: ...

ssl_cert_effective_date = property(get_ssl_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

ssl_cert_expiration_date Property

The date on which the certificate expires.

Syntax

def get_ssl_cert_expiration_date() -> str: ...

ssl_cert_expiration_date = property(get_ssl_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

ssl_cert_extended_key_usage Property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_ssl_cert_extended_key_usage() -> str: ...

ssl_cert_extended_key_usage = property(get_ssl_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

ssl_cert_fingerprint Property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_ssl_cert_fingerprint() -> str: ...

ssl_cert_fingerprint = property(get_ssl_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

ssl_cert_fingerprint_sha1 Property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_ssl_cert_fingerprint_sha1() -> str: ...

ssl_cert_fingerprint_sha1 = property(get_ssl_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

ssl_cert_fingerprint_sha256 Property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_ssl_cert_fingerprint_sha256() -> str: ...

ssl_cert_fingerprint_sha256 = property(get_ssl_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

ssl_cert_issuer Property

The issuer of the certificate.

Syntax

def get_ssl_cert_issuer() -> str: ...

ssl_cert_issuer = property(get_ssl_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

ssl_cert_private_key Property

The private key of the certificate (if available).

Syntax

def get_ssl_cert_private_key() -> str: ...

ssl_cert_private_key = property(get_ssl_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The ssl_cert_private_key may be available but not exportable. In this case, ssl_cert_private_key returns an empty string.

This property is read-only.

ssl_cert_private_key_available Property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_ssl_cert_private_key_available() -> bool: ...

ssl_cert_private_key_available = property(get_ssl_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a ssl_cert_private_key is available for the selected certificate. If ssl_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

ssl_cert_private_key_container Property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_ssl_cert_private_key_container() -> str: ...

ssl_cert_private_key_container = property(get_ssl_cert_private_key_container, None)

Default Value

""

Remarks

The name of the ssl_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

ssl_cert_public_key Property

The public key of the certificate.

Syntax

def get_ssl_cert_public_key() -> str: ...

ssl_cert_public_key = property(get_ssl_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

ssl_cert_public_key_algorithm Property

The textual description of the certificate's public key algorithm.

Syntax

def get_ssl_cert_public_key_algorithm() -> str: ...

ssl_cert_public_key_algorithm = property(get_ssl_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_cert_public_key_length Property

The length of the certificate's public key (in bits).

Syntax

def get_ssl_cert_public_key_length() -> int: ...

ssl_cert_public_key_length = property(get_ssl_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

ssl_cert_serial_number Property

The serial number of the certificate encoded as a string.

Syntax

def get_ssl_cert_serial_number() -> str: ...

ssl_cert_serial_number = property(get_ssl_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

ssl_cert_signature_algorithm Property

The text description of the certificate's signature algorithm.

Syntax

def get_ssl_cert_signature_algorithm() -> str: ...

ssl_cert_signature_algorithm = property(get_ssl_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_cert_store Property

The name of the certificate store for the client certificate.

Syntax

def get_ssl_cert_store() -> bytes: ...
def set_ssl_cert_store(value: bytes) -> None: ...

ssl_cert_store = property(get_ssl_cert_store, set_ssl_cert_store)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The ssl_cert_store_type property denotes the type of the certificate store specified by ssl_cert_store. If the store is password-protected, specify the password in ssl_cert_store_password.

ssl_cert_store is used in conjunction with the ssl_cert_subject property to specify client certificates. If ssl_cert_store has a value, and ssl_cert_subject or ssl_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

ssl_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_cert_store_password() -> str: ...
def set_ssl_cert_store_password(value: str) -> None: ...

ssl_cert_store_password = property(get_ssl_cert_store_password, set_ssl_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

ssl_cert_store_type Property

The type of certificate store for this certificate.

Syntax

def get_ssl_cert_store_type() -> int: ...
def set_ssl_cert_store_type(value: int) -> None: ...

ssl_cert_store_type = property(get_ssl_cert_store_type, set_ssl_cert_store_type)

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CERTMGR class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_cert_store and set ssl_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

ssl_cert_subject_alt_names Property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_ssl_cert_subject_alt_names() -> str: ...

ssl_cert_subject_alt_names = property(get_ssl_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

ssl_cert_thumbprint_md5 Property

The MD5 hash of the certificate.

Syntax

def get_ssl_cert_thumbprint_md5() -> str: ...

ssl_cert_thumbprint_md5 = property(get_ssl_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_cert_thumbprint_sha1 Property

The SHA-1 hash of the certificate.

Syntax

def get_ssl_cert_thumbprint_sha1() -> str: ...

ssl_cert_thumbprint_sha1 = property(get_ssl_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_cert_thumbprint_sha256 Property

The SHA-256 hash of the certificate.

Syntax

def get_ssl_cert_thumbprint_sha256() -> str: ...

ssl_cert_thumbprint_sha256 = property(get_ssl_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_cert_usage Property

The text description of UsageFlags .

Syntax

def get_ssl_cert_usage() -> str: ...

ssl_cert_usage = property(get_ssl_cert_usage, None)

Default Value

""

Remarks

The text description of ssl_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

ssl_cert_usage_flags Property

The flags that show intended use for the certificate.

Syntax

def get_ssl_cert_usage_flags() -> int: ...

ssl_cert_usage_flags = property(get_ssl_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of ssl_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the ssl_cert_usage property for a text representation of ssl_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

ssl_cert_version Property

The certificate's version number.

Syntax

def get_ssl_cert_version() -> str: ...

ssl_cert_version = property(get_ssl_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

ssl_cert_subject Property

The subject of the certificate used for client authentication.

Syntax

def get_ssl_cert_subject() -> str: ...
def set_ssl_cert_subject(value: str) -> None: ...

ssl_cert_subject = property(get_ssl_cert_subject, set_ssl_cert_subject)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

ssl_cert_encoded Property

The certificate (PEM/Base64 encoded).

Syntax

def get_ssl_cert_encoded() -> bytes: ...
def set_ssl_cert_encoded(value: bytes) -> None: ...

ssl_cert_encoded = property(get_ssl_cert_encoded, set_ssl_cert_encoded)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_cert_store and ssl_cert_subject properties also may be used to specify a certificate.

When ssl_cert_encoded is set, a search is initiated in the current ssl_cert_store for the private key of the certificate. If the key is found, ssl_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_cert_subject is set to an empty string.

ssl_provider Property

The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.

Syntax

def get_ssl_provider() -> int: ...
def set_ssl_provider(value: int) -> None: ...

ssl_provider = property(get_ssl_provider, set_ssl_provider)

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are as follows:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, on Windows, the class will use the platform implementation. On Linux/macOS, the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used on all platforms.

ssl_server_cert_effective_date Property

The date on which this certificate becomes valid.

Syntax

def get_ssl_server_cert_effective_date() -> str: ...

ssl_server_cert_effective_date = property(get_ssl_server_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

ssl_server_cert_expiration_date Property

The date on which the certificate expires.

Syntax

def get_ssl_server_cert_expiration_date() -> str: ...

ssl_server_cert_expiration_date = property(get_ssl_server_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

ssl_server_cert_extended_key_usage Property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_ssl_server_cert_extended_key_usage() -> str: ...

ssl_server_cert_extended_key_usage = property(get_ssl_server_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

ssl_server_cert_fingerprint Property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_ssl_server_cert_fingerprint() -> str: ...

ssl_server_cert_fingerprint = property(get_ssl_server_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

ssl_server_cert_fingerprint_sha1 Property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_ssl_server_cert_fingerprint_sha1() -> str: ...

ssl_server_cert_fingerprint_sha1 = property(get_ssl_server_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

ssl_server_cert_fingerprint_sha256 Property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_ssl_server_cert_fingerprint_sha256() -> str: ...

ssl_server_cert_fingerprint_sha256 = property(get_ssl_server_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

ssl_server_cert_issuer Property

The issuer of the certificate.

Syntax

def get_ssl_server_cert_issuer() -> str: ...

ssl_server_cert_issuer = property(get_ssl_server_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

ssl_server_cert_private_key Property

The private key of the certificate (if available).

Syntax

def get_ssl_server_cert_private_key() -> str: ...

ssl_server_cert_private_key = property(get_ssl_server_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The ssl_server_cert_private_key may be available but not exportable. In this case, ssl_server_cert_private_key returns an empty string.

This property is read-only.

ssl_server_cert_private_key_available Property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_ssl_server_cert_private_key_available() -> bool: ...

ssl_server_cert_private_key_available = property(get_ssl_server_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a ssl_server_cert_private_key is available for the selected certificate. If ssl_server_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

ssl_server_cert_private_key_container Property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_ssl_server_cert_private_key_container() -> str: ...

ssl_server_cert_private_key_container = property(get_ssl_server_cert_private_key_container, None)

Default Value

""

Remarks

The name of the ssl_server_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

ssl_server_cert_public_key Property

The public key of the certificate.

Syntax

def get_ssl_server_cert_public_key() -> str: ...

ssl_server_cert_public_key = property(get_ssl_server_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

ssl_server_cert_public_key_algorithm Property

The textual description of the certificate's public key algorithm.

Syntax

def get_ssl_server_cert_public_key_algorithm() -> str: ...

ssl_server_cert_public_key_algorithm = property(get_ssl_server_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_server_cert_public_key_length Property

The length of the certificate's public key (in bits).

Syntax

def get_ssl_server_cert_public_key_length() -> int: ...

ssl_server_cert_public_key_length = property(get_ssl_server_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

ssl_server_cert_serial_number Property

The serial number of the certificate encoded as a string.

Syntax

def get_ssl_server_cert_serial_number() -> str: ...

ssl_server_cert_serial_number = property(get_ssl_server_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

ssl_server_cert_signature_algorithm Property

The text description of the certificate's signature algorithm.

Syntax

def get_ssl_server_cert_signature_algorithm() -> str: ...

ssl_server_cert_signature_algorithm = property(get_ssl_server_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_server_cert_store Property

The name of the certificate store for the client certificate.

Syntax

def get_ssl_server_cert_store() -> bytes: ...

ssl_server_cert_store = property(get_ssl_server_cert_store, None)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The ssl_server_cert_store_type property denotes the type of the certificate store specified by ssl_server_cert_store. If the store is password-protected, specify the password in ssl_server_cert_store_password.

ssl_server_cert_store is used in conjunction with the ssl_server_cert_subject property to specify client certificates. If ssl_server_cert_store has a value, and ssl_server_cert_subject or ssl_server_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_server_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

This property is read-only.

ssl_server_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_server_cert_store_password() -> str: ...

ssl_server_cert_store_password = property(get_ssl_server_cert_store_password, None)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

This property is read-only.

ssl_server_cert_store_type Property

The type of certificate store for this certificate.

Syntax

def get_ssl_server_cert_store_type() -> int: ...

ssl_server_cert_store_type = property(get_ssl_server_cert_store_type, None)

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CERTMGR class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_server_cert_store and set ssl_server_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

This property is read-only.

ssl_server_cert_subject_alt_names Property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_ssl_server_cert_subject_alt_names() -> str: ...

ssl_server_cert_subject_alt_names = property(get_ssl_server_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

ssl_server_cert_thumbprint_md5 Property

The MD5 hash of the certificate.

Syntax

def get_ssl_server_cert_thumbprint_md5() -> str: ...

ssl_server_cert_thumbprint_md5 = property(get_ssl_server_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_server_cert_thumbprint_sha1 Property

The SHA-1 hash of the certificate.

Syntax

def get_ssl_server_cert_thumbprint_sha1() -> str: ...

ssl_server_cert_thumbprint_sha1 = property(get_ssl_server_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_server_cert_thumbprint_sha256 Property

The SHA-256 hash of the certificate.

Syntax

def get_ssl_server_cert_thumbprint_sha256() -> str: ...

ssl_server_cert_thumbprint_sha256 = property(get_ssl_server_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_server_cert_usage Property

The text description of UsageFlags .

Syntax

def get_ssl_server_cert_usage() -> str: ...

ssl_server_cert_usage = property(get_ssl_server_cert_usage, None)

Default Value

""

Remarks

The text description of ssl_server_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

ssl_server_cert_usage_flags Property

The flags that show intended use for the certificate.

Syntax

def get_ssl_server_cert_usage_flags() -> int: ...

ssl_server_cert_usage_flags = property(get_ssl_server_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of ssl_server_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the ssl_server_cert_usage property for a text representation of ssl_server_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

ssl_server_cert_version Property

The certificate's version number.

Syntax

def get_ssl_server_cert_version() -> str: ...

ssl_server_cert_version = property(get_ssl_server_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

ssl_server_cert_subject Property

The subject of the certificate used for client authentication.

Syntax

def get_ssl_server_cert_subject() -> str: ...

ssl_server_cert_subject = property(get_ssl_server_cert_subject, None)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

This property is read-only.

ssl_server_cert_encoded Property

The certificate (PEM/Base64 encoded).

Syntax

def get_ssl_server_cert_encoded() -> bytes: ...

ssl_server_cert_encoded = property(get_ssl_server_cert_encoded, None)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_server_cert_store and ssl_server_cert_subject properties also may be used to specify a certificate.

When ssl_server_cert_encoded is set, a search is initiated in the current ssl_server_cert_store for the private key of the certificate. If the key is found, ssl_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_server_cert_subject is set to an empty string.

This property is read-only.

state Property

An opaque value used to maintain state between the request and response.

Syntax

def get_state() -> str: ...
def set_state(value: str) -> None: ...

state = property(get_state, set_state)

Default Value

""

Remarks

This property optionally holds a string value which will be returned by the authorization server with the response.

Any value may be specified here and it will be returned exactly as it was sent. This can be used to maintain state within the application, and also may be used for security purposes (for instance to prevent Cross-Site Request Forgery). The contents of this property are treated as an opaque value.

timeout Property

The timeout for the class.

Syntax

def get_timeout() -> int: ...
def set_timeout(value: int) -> None: ...

timeout = property(get_timeout, set_timeout)

Default Value

60

Remarks

If the timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If timeout is set to a positive value, the class will wait for the operation to complete before returning control.

The class will use do_events to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.

If timeout expires, and the operation is not yet complete, the class fails with an error.

Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by timeout seconds when any amount of data is successfully sent or received.

The default value for the timeout property is 60 seconds.

transferred_data Property

The contents of the last response from the server.

Syntax

def get_transferred_data() -> bytes: ...

transferred_data = property(get_transferred_data, None)

Default Value

""

Remarks

This property contains the contents of the last response from the server.

TransferredDataLimit controls the maximum amount of data accumulated in transferred_data (by default, there is no limit).

This property is read-only.

transferred_headers Property

The full set of headers as received from the server.

Syntax

def get_transferred_headers() -> str: ...

transferred_headers = property(get_transferred_headers, None)

Default Value

""

Remarks

This property returns the complete set of raw headers as received from the server.

The on_header event shows the individual headers as parsed by the class.

This property is read-only.

use_nonce Property

Whether the Nonce parameter is added.

Syntax

def get_use_nonce() -> bool: ...
def set_use_nonce(value: bool) -> None: ...

use_nonce = property(get_use_nonce, set_use_nonce)

Default Value

FALSE

Remarks

If this property is set to true, the nonce parameter will be added to the OIDC authorization request when get_authorization_url is called. In OpenID Connect, the nonce parameter is provided during the authorization request. Then, when the OpenID Provider issues an ID Token, they will include the nonce claim with the same value (similar to state).

If the Nonce configuration setting is not set before calling get_authorization_url the class will generate a new one and set the Nonce setting. The same nonce value will need to be supplied to the class before calling the process_oidc_response or validate_id_token methods. When the class validates an ID Token, it will check the Nonce configuration setting if a nonce claim is found. By default, the nonce claim is not required but setting this property to true will require the nonce claim to be present and match the Nonce configuration setting.

use_pkce Property

Whether Proof Key for Code Exchange (PKCE) should be used.

Syntax

def get_use_pkce() -> bool: ...
def set_use_pkce(value: bool) -> None: ...

use_pkce = property(get_use_pkce, set_use_pkce)

Default Value

FALSE

Remarks

If this property is specified, the class will use Proof Key for Code Exchange (PKCE) as defined by RFC 7636 when get_authorization_url is called. This applies when grant_type is set to the Authorization Code or Hybrid grant types. Typically, a new instance of the class will be used to process the request from the authorization server than the one used to create the request to the authorization server. To verify the request from the authorization server, the PKCEVerifier will need to be saved in a safe location. Then before handling the request from the authorization server, the PKCEVerifier should be set to the saved value.

user_details_addr_country Property

The country name portion of the user's address.

Syntax

def get_user_details_addr_country() -> str: ...

user_details_addr_country = property(get_user_details_addr_country, None)

Default Value

""

Remarks

The country name portion of the user's address.

This property is read-only.

user_details_addr_formatted Property

The full mailing address of the user, formatted for display or use on a mailing label.

Syntax

def get_user_details_addr_formatted() -> str: ...

user_details_addr_formatted = property(get_user_details_addr_formatted, None)

Default Value

""

Remarks

The full mailing address of the user, formatted for display or use on a mailing label. This value may contain multiple lines.

This property is read-only.

user_details_addr_locality Property

The city or locality portion of the user's address.

Syntax

def get_user_details_addr_locality() -> str: ...

user_details_addr_locality = property(get_user_details_addr_locality, None)

Default Value

""

Remarks

The city or locality portion of the user's address.

This property is read-only.

user_details_addr_postal_code Property

The zip code or postal code portion of the user's address.

Syntax

def get_user_details_addr_postal_code() -> str: ...

user_details_addr_postal_code = property(get_user_details_addr_postal_code, None)

Default Value

""

Remarks

The zip code or postal code portion of the user's address.

This property is read-only.

user_details_addr_region Property

The state, province, prefecture, or region portion of the user's address.

Syntax

def get_user_details_addr_region() -> str: ...

user_details_addr_region = property(get_user_details_addr_region, None)

Default Value

""

Remarks

The state, province, prefecture, or region portion of the user's address.

This property is read-only.

user_details_addr_street_addr Property

The street address portion of the user's address.

Syntax

def get_user_details_addr_street_addr() -> str: ...

user_details_addr_street_addr = property(get_user_details_addr_street_addr, None)

Default Value

""

Remarks

The street address portion of the user's address. This is the full street address which may include house number, street name, post office box, and multi-line extended street information. This value may contain multiple lines.

This property is read-only.

user_details_birthday Property

The user's birthday.

Syntax

def get_user_details_birthday() -> str: ...

user_details_birthday = property(get_user_details_birthday, None)

Default Value

""

Remarks

The user's birthday. The format of the value is YYYY-MM-DD or YYYY. The year may be 0000 to indicate that it was omitted.

This property is read-only.

user_details_email Property

The user's preferred email address.

Syntax

def get_user_details_email() -> str: ...

user_details_email = property(get_user_details_email, None)

Default Value

""

Remarks

The user's preferred email address.

This property is read-only.

user_details_email_verified Property

Whether the user's email address has been verified.

Syntax

def get_user_details_email_verified() -> bool: ...

user_details_email_verified = property(get_user_details_email_verified, None)

Default Value

FALSE

Remarks

Whether the user's email address has been verified. To be considered verified, the end-user must prove the email address was under the user's control at the time of verification.

This property is read-only.

user_details_first_name Property

The first name of the user.

Syntax

def get_user_details_first_name() -> str: ...

user_details_first_name = property(get_user_details_first_name, None)

Default Value

""

Remarks

The first name of the user. If multiple names are present, they are space-separated.

This property is read-only.

user_details_gender Property

The user's gender.

Syntax

def get_user_details_gender() -> str: ...

user_details_gender = property(get_user_details_gender, None)

Default Value

""

Remarks

The user's gender. Defined values are male and female, but other values may also be used.

This property is read-only.

user_details_last_name Property

The last name of the user.

Syntax

def get_user_details_last_name() -> str: ...

user_details_last_name = property(get_user_details_last_name, None)

Default Value

""

Remarks

The last name of the user. If multiple names are present, they are space-separated.

This property is read-only.

user_details_locale Property

The end user's locale.

Syntax

def get_user_details_locale() -> str: ...

user_details_locale = property(get_user_details_locale, None)

Default Value

""

Remarks

The end user's locale. This is represented as a BCP47 (RFC 5646) language tag. For instance, en-US or en_US.

This property is read-only.

user_details_middle_name Property

The middle name of the user.

Syntax

def get_user_details_middle_name() -> str: ...

user_details_middle_name = property(get_user_details_middle_name, None)

Default Value

""

Remarks

The middle name of the user. If multiple names are present, they are space-separated.

This property is read-only.

user_details_name Property

The user's full name in displayable form including all name parts.

Syntax

def get_user_details_name() -> str: ...

user_details_name = property(get_user_details_name, None)

Default Value

""

Remarks

The user's full name in displayable form including all name parts. This may include titles and suffixes.

This property is read-only.

user_details_nickname Property

The casual name of the user.

Syntax

def get_user_details_nickname() -> str: ...

user_details_nickname = property(get_user_details_nickname, None)

Default Value

""

Remarks

The casual name of the user. This may or may not be the same as user_details_first_name.

This property is read-only.

user_details_phone_number Property

The user's phone number.

Syntax

def get_user_details_phone_number() -> str: ...

user_details_phone_number = property(get_user_details_phone_number, None)

Default Value

""

Remarks

The user's phone number. This may be in E.164 format, for instance +1 (425) 555-1212. If an extension is present, it may be represented according to RFC 3966. For instance: +1 (604) 555-1234;ext=5678.

This property is read-only.

user_details_phone_number_verified Property

Whether the user's phone number has been verified.

Syntax

def get_user_details_phone_number_verified() -> bool: ...

user_details_phone_number_verified = property(get_user_details_phone_number_verified, None)

Default Value

FALSE

Remarks

Whether the user's phone number has been verified. To be considered verified, the end-user must prove the phone number was under the user's control at the time of verification.

This property is read-only.

user_details_picture_url Property

The URL of the user's profile picture.

Syntax

def get_user_details_picture_url() -> str: ...

user_details_picture_url = property(get_user_details_picture_url, None)

Default Value

""

Remarks

The URL of the user's profile picture.

This property is read-only.

user_details_preferred_username Property

The shorthand name by which the end-user wishes to be referred.

Syntax

def get_user_details_preferred_username() -> str: ...

user_details_preferred_username = property(get_user_details_preferred_username, None)

Default Value

""

Remarks

The shorthand name by which the end-user wishes to be referred.

This property is read-only.

user_details_profile_url Property

The URL of the user's profile page.

Syntax

def get_user_details_profile_url() -> str: ...

user_details_profile_url = property(get_user_details_profile_url, None)

Default Value

""

Remarks

The URL of the user's profile page.

This property is read-only.

user_details_subject Property

The subject of the user that is being represented.

Syntax

def get_user_details_subject() -> str: ...

user_details_subject = property(get_user_details_subject, None)

Default Value

""

Remarks

The subject of the user that is being represented. This property is set when parsed from an ID Token or after retrieving the user info. Typically this represents the user of the application.

This property is read-only.

user_details_updated_at Property

The time when the user's information was last updated.

Syntax

def get_user_details_updated_at() -> int: ...

user_details_updated_at = property(get_user_details_updated_at, None)

Default Value

0

Remarks

The time when the user's information was last updated.

The time value is a number representing the number of seconds from 1970-01-01T0:0:0Z as measured in UTC until the date/time.

This property is read-only.

user_details_website Property

The URL of the user's website.

Syntax

def get_user_details_website() -> str: ...

user_details_website = property(get_user_details_website, None)

Default Value

""

Remarks

The URL of the user's website.

This property is read-only.

user_details_zone_info Property

The user's time zone.

Syntax

def get_user_details_zone_info() -> str: ...

user_details_zone_info = property(get_user_details_zone_info, None)

Default Value

""

Remarks

The user's time zone. For instance: America/Los_Angeles.

This property is read-only.

add_param Method

Adds a name-value pair to the query string parameters of the outgoing request.

Syntax

def add_param(param_name: str, param_value: str) -> None: ...

Remarks

This method can be used to add query string parameters to the requests being built by the get_authorization_url method.

For example, this can be used to set the ui_locales request parameter. This parameter allows you to provide language preferences to the authorization server for a more cohesive user experience. For example, the following informs the authorization server that the user would prefer French (Canada), French (General), and English (General), in that order.

oidc.AddParam("ui_locales", "fr-CA fr en");

config Method

Sets or retrieves a configuration setting.

Syntax

def config(configuration_string: str) -> str: ...

Remarks

config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

do_events Method

This method processes events from the internal message queue.

Syntax

def do_events() -> None: ...

Remarks

When do_events is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

get_authorization_url Method

Builds the URL for an OpenID provider's authorization server.

Syntax

def get_authorization_url() -> str: ...

Remarks

This method will build the authorization URL that should be used to direct the user to the OpenID provider's authorization server. Before calling this method, the class will need to be configured so that it has the needed information. The discovery document for the OpenID provider is used to provide the necessary information about the authorization server like the discovery_doc_details_authorization_url. If needed, the ServerAuthURL configuration setting can be used to override or manually provide the URL of the authorization server. The rest of the information needed can be provided through the following properties or configuration settings.

get_discovery_metadata Method

Gets a specific metadata value from the discovery document.

Syntax

def get_discovery_metadata(metadata_name: str) -> str: ...

Remarks

This method will search the current discovery document for a specific metadata value. This can take the metadata name or the JSON path. This works on documents that have been provided by both the load_discovery_doc and request_discovery_doc methods. For example, to get the authorization endpoint metadata field from the document, both of the following are valid:

Metadata Name oidc.GetDiscoveryMetadata("authorization_endpoint");

JSON Path oidc.GetDiscoveryMetadata("/json/authorization_endpoint");

get_id_token_claim Method

Gets a specific claim from the ID Token.

Syntax

def get_id_token_claim(claim_name: str) -> str: ...

Remarks

This method will search the current ID Token for a specific claim. This can take the claim name (defined by the specification) or a JSON path. For example, to get the audience claim from the ID Token, both of the following are valid:

Claim Name oidc.GetIdTokenClaim("aud");

JSON Path oidc.GetIdTokenClaim("/json/aud");

get_query_param Method

Gets a specific claim from the current HTTP request.

Syntax

def get_query_param(param_name: str) -> str: ...

Remarks

This method searches the current context (after process_oidc_response or parse_oidc_response is called) or the oidc_response_headers property for a specific query parameter and returns the value. For example, if the request that was recently processed by the class contains the state parameter, then the following code would return the value of the state returned from the authorization server.

oidc.ProcessHTTPRequest(); string state = oidc.GetQueryParam("state");

get_user_info_claim Method

Gets a specific claim from the UserInfo response.

Syntax

def get_user_info_claim(claim_name: str) -> str: ...

Remarks

This method will search the most recent response from the request_user_info method response for a specific claim. This can take the claim name (defined by the specification) or a JSON path. For example, to get the audience claim from the response, both of the following are valid:

Claim Name oidc.GetUserInfoClaim("aud");

JSON Path oidc.GetUserInfoClaim("/json/aud");

interrupt Method

This method interrupts the current method.

Syntax

def interrupt() -> None: ...

Remarks

If there is no method in progress, interrupt simply returns, doing nothing.

load_discovery_doc Method

Loads in a raw discovery document.

Syntax

def load_discovery_doc(document_data: str) -> None: ...

Remarks

This method loads a discovery document directly from the documentData parameter. Typically, this can be used to reload a discovery document that has been previously retrieved by the request_discovery_doc method.

load_signer_jwks Method

Loads in the signer JWKS directly from a raw JWKS blob.

Syntax

def load_signer_jwks(jwks_data: str) -> None: ...

Remarks

This method loads the JSON Web Keys Set (JWKS) provided through the jwksData parameter. Calling this method will set the signer_jwks property and populate the signer_certs properties without making a request to the discovery_doc_details_signer_cert_url endpoint. Typically, this will be used to reload a JWKS that we previously requested by the request_signer_certs method.

parse_id_token Method

Parses an ID Token.

Syntax

def parse_id_token() -> None: ...

Remarks

This method parses the current ID Token. If the method is able to successfully parse the ID Token, it will populate the id_token_info and user_details properties. Any uncommon or custom claims can be retrieved by calling the get_id_token_claim method. The ID Token can be populated directly by setting the id_token_id_token_content property or by calling the parse_oidc_response, process_oidc_response, or request_tokens methods. Typically, the class will automatically validate and parse an ID Token if it is found. The exception is if the parse_oidc_response method is called which will only set the id_token_id_token_content property. See validate_id_token for information on validating an ID Token.

parse_oidc_response Method

Parses the current OIDC Response without additional processing.

Syntax

def parse_oidc_response() -> None: ...

Remarks

This method parses the OIDC Response from the current HTTP request and, if applicable, parses the ID Token, authorization code, or error information from it, populating the id_token_id_token_content, AuthorizationCode, and authz_response_code properties respectively. Unlike the process_oidc_response method, this method will not do any additional processing. Typically, this method is used with others like request_signer_certs, validate_id_token, parse_id_token, and request_tokens.

The HTTP request is taken directly from the oidc_response_headers and oidc_response_body properties if set; otherwise, it will try to read the HTTP context. If this method is able to parse the HTTP request and headers from the HTTP Context, it will also set the oidc_response_headers and oidc_response_body properties.

process_oidc_response Method

Processes the current OIDC response.

Syntax

def process_oidc_response() -> None: ...

Remarks

This method parses the OIDC response out of the current HTTP request and processes the results. Depending on the grant_type and ResponseType settings when the request was created, the processing flow will change. Generally, this method is equivalent to calling the following methods:

If an ID Token is returned from both the initial OIDC response from the authorization server and from the token server, both ID Tokens will be validated, but the ID Token from the token server will be used. The HTTP request is taken directly from the oidc_response_headers and oidc_response_body properties if set; otherwise, it will try to read the HTTP context.

request_discovery_doc Method

Requests the OpenID Discovery Document.

Syntax

def request_discovery_doc(url: str) -> None: ...

Remarks

This method gets the OpenID Connect Discovery Document specified by the URL parameter and parses the response. The discovery document contains details about the OpenID Provider configuration including endpoint URLs, supported claims and response types, and more.

The discovery document URL is typically published by an OpenID Provider (OP) and must be known before calling this method. The format of the URL is standardized and typically takes the form:

https://www.youropenidserver.com/.well-known/openid-configuration

Call request_discovery_doc before calling get_authorization_url to populate the class properties with information required to request authorization. The retrieved information includes endpoint URLs as well as the OpenID public certificates used to verify the signature on the ID Token. After calling this method, the discovery_doc_details property is populated. The discovery_doc_details_content property may be stored and reloaded using the load_discovery_doc method to avoid calling request_discovery_doc on subsequent authorization requests.

To access values not automatically parsed by the class, the get_discovery_metadata method can be used to query for a specific metadata entry.

request_signer_certs Method

Requests the signing certificates from the OpenID provider.

Syntax

def request_signer_certs() -> None: ...

Remarks

This method makes a request to the discovery_doc_details_signer_cert_url to get the current signer certificates for the OpenID provider. The OpenID provider will return a JSON Web Key Set (JWKS) that represents the set of signing certificates that might be used when signing ID Tokens. The class will automatically populate the signer_certs properties with the signer certificates parsed from the JWKS. Additionally, this method will set the signer_jwks property with the returned JWKS. The signer_jwks property can be saved for later and used with the load_signer_jwks method to avoid needing to use this method for subsequent requests.

request_tokens Method

Requests new tokens from the token server.

Syntax

def request_tokens() -> None: ...

Remarks

This method makes a request to the token server to exchange an AuthorizationCode or refresh_token for a set of tokens. The specific tokens returned depends on the grant type and OpenID provider, but they can be any combination of an access_token, ID Token (id_token_info), and refresh_token.

If an ID Token is returned, the class will automatically attempt to verify it using the values specified by the discovery_doc_details, client_id, and signer_certs properties. If verification is successful, it will then attempt to parse the ID Token. See validate_id_token and parse_id_token for more information.

The class will make the request to the discovery_doc_details_token_url property or the ServerTokenURL configuration setting if either has been set.

request_user_info Method

Requests the information of a user.

Syntax

def request_user_info() -> None: ...

Remarks

This method makes a request to get a specific user's info based on the current access_token. The request is made to the UserInfo endpoint which is defined by the discovery_doc_details_user_info_url property when parsed from a discovery document. The URL can also be provided directly to the class by setting the ServerUserInfoURL configuration setting.

When a valid response is returned from the UserInfo endpoint, the class will populate the properties in the user_details property. For uncommon or custom claims, the get_user_info_claim method can be used to get claims not covered by the user_details property.

reset Method

This method will reset the class.

Syntax

def reset() -> None: ...

Remarks

This method will reset the class's properties to their default values.

validate_id_token Method

Validates an ID Token.

Syntax

def validate_id_token() -> None: ...

Remarks

This method validates the current ID Token. The ID Token can be populated directly by setting the id_token_id_token_content property or by calling the parse_oidc_response, process_oidc_response, or request_tokens methods. Typically, the class will automatically validate and parse an ID Token if it is found. The exception is if the parse_oidc_response method is called which will only set the id_token_id_token_content property.

The method will first check the signature of the ID Token using the signer_certs properties which contains the corresponding public certificates of the certificates used to sign the original ID Token. If the signer_certs properties is not populated, then a request will be made to the discovery_doc_details_signer_cert_url property or the ServerSignerCertURL configuration setting if set. This is equivalent to calling the request_signer_certs method.

Then, the class will verify that the id_token_issuer property matches what is expected in the discovery_doc_details_issuer property. Next, the id_token_audiences will be checked to ensure that it matches the client_id property. The ExpectedIssuer and ExpectedAudience configuration settings can be used to override the typical expected values. The last check is to ensure that the id_token_issued_time and id_token_exp_time are valid based on the current time. Additionally, if the nbf (Not Before) claim is present, that will also be verified.

If verification fails, the class will throw an exception with the matching error code. If certain steps in the verification process should be skipped, the IdTokenVerificationFlags configuration setting can be used.

on_error Event

Fired when information is available about errors during data delivery.

Syntax

class OIDCErrorEventParams(object):
  @property
  def error_code() -> int: ...

  @property
  def description() -> str: ...

# In class OIDC:
@property
def on_error() -> Callable[[OIDCErrorEventParams], None]: ...
@on_error.setter
def on_error(event_hook: Callable[[OIDCErrorEventParams], None]) -> None: ...

Remarks

The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

on_log Event

Fired once for each log message.

Syntax

class OIDCLogEventParams(object):
  @property
  def log_level() -> int: ...

  @property
  def message() -> str: ...

  @property
  def log_type() -> str: ...

# In class OIDC:
@property
def on_log() -> Callable[[OIDCLogEventParams], None]: ...
@on_log.setter
def on_log(event_hook: Callable[[OIDCLogEventParams], None]) -> None: ...

Remarks

This event is fired once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.

LogLevel indicates the level of message. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

Message is the log entry.

LogType identifies the type of log entry. Possible values are as follows:

  • "Info"
  • "RequestHeaders"
  • "ResponseHeaders"
  • "RequestBody"
  • "ResponseBody"
  • "ProxyRequest"
  • "ProxyResponse"
  • "FirewallRequest"
  • "FirewallResponse"

on_redirect Event

Fired when a redirection is received from the server.

Syntax

class OIDCRedirectEventParams(object):
  @property
  def location() -> str: ...

  @property
  def accept() -> bool: ...
  @accept.setter
  def accept(value) -> None: ...

# In class OIDC:
@property
def on_redirect() -> Callable[[OIDCRedirectEventParams], None]: ...
@on_redirect.setter
def on_redirect(event_hook: Callable[[OIDCRedirectEventParams], None]) -> None: ...

Remarks

This event is fired in cases in which the client can decide whether or not to continue with the redirection process. The Accept parameter is always True by default, but if you do not want to follow the redirection, Accept may be set to False, in which case the class fails with an error. Location is the location to which the client is being redirected. Further control over redirection is provided in the follow_redirects property.

on_ssl_server_authentication Event

Fired after the server presents its certificate to the client.

Syntax

class OIDCSSLServerAuthenticationEventParams(object):
  @property
  def cert_encoded() -> bytes: ...

  @property
  def cert_subject() -> str: ...

  @property
  def cert_issuer() -> str: ...

  @property
  def status() -> str: ...

  @property
  def accept() -> bool: ...
  @accept.setter
  def accept(value) -> None: ...

# In class OIDC:
@property
def on_ssl_server_authentication() -> Callable[[OIDCSSLServerAuthenticationEventParams], None]: ...
@on_ssl_server_authentication.setter
def on_ssl_server_authentication(event_hook: Callable[[OIDCSSLServerAuthenticationEventParams], None]) -> None: ...

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

on_ssl_status Event

Fired when secure connection progress messages are available.

Syntax

class OIDCSSLStatusEventParams(object):
  @property
  def message() -> str: ...

# In class OIDC:
@property
def on_ssl_status() -> Callable[[OIDCSSLStatusEventParams], None]: ...
@on_ssl_status.setter
def on_ssl_status(event_hook: Callable[[OIDCSSLStatusEventParams], None]) -> None: ...

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

OIDC Config Settings

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

OIDC Config Settings

AccessTokenExp:   The expiration date for the access token.

The expiration date for the most recently retrieved access token.

AuthErrorURI:   The URI that provides more information about the authorization error.

When the authorization server returns with an authorization or authentication error, the OpenID provider can optionally provide a URI to a webpage that provides more information on the error.

AuthorizationCode:   The authorization code to be exchanged with the token server.

The authorization code that will be used in a request to the token server. This configuration setting is set when calling process_oidc_response or parse_oidc_response. This configuration setting is used when calling request_tokens or when found during the process_oidc_response method's execution.

Display:   The requested display options to present to the end user.

This optional setting specifies the display options that the authorization server should display to the user. Possible values are:

pageThe authorization server SHOULD display the authentication and consent UI consistent with a full user agent page view. If the display parameter is not specified, this is the default display mode.
popupThe authorization server SHOULD display the authentication and consent UI consistent with a popup user agent window. The popup user agent window should be of an appropriate size for a login-focused dialog and should not obscure the entire window that it is popping up over.
touchThe authorization server SHOULD display the authentication and consent UI consistent with a device that leverages a touch interface.
wapThe authorization server SHOULD display the authentication and consent UI consistent with a "feature phone" type display.
The authorization server may choose to use another method to determine how to interact with the user.

This setting corresponds to the display request parameter.

ExpectedAudience:   The expected audience when validating an ID Token.

When set, the class will check the audience (aud) claim against this value rather than the client_id property.

ExpectedIssuer:   The expected Issuer when validating an ID Token.

When set, the class will check the issuer (iss) claim against this value rather than the value found in the id_token_issuer property.

IDTokenHint:   An ID Token value to be used as a hint about the user's session.

This setting may be specified before calling get_authorization_url to provide an ID Token as a hint about the user's current or past authenticated session. If the user identified by the ID Token present here is logged in, then the authorization server should return a positive response. If Prompt is set to none, it is recommended to set this value. The value for this setting is the raw id_token_issuer received from a previous session.

This setting corresponds to the id_token_hint request parameter.

IdTokenVerificationFlags:   The checks that are ignored when validating an ID Token.

Informs the class to skip certain checks when validating an ID Token. The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore the issuer (iss) claim.
0x00000002Ignore the audience (aud) claim.
0x00000004Ignore the expiration (exp) claim.
0x00000008Ignore the JWT signature.
0x00000010Ignore the "issued at" (iat) claim.
0x00000020Ignore the "not before" (nbf) claim.
0x00000040Ignore the nonce (nonce) claim.
LoginHint:   The login hint sent to the authorization server.

This setting optionally specifies an identifier of the end-user which may be used as a hint to the authorization server about the user's identity. For instance, this may be the email address or phone number of a user. The authorization may or may not use the value provided.

This setting corresponds to the login_hint request parameter.

Nonce:   The nonce value that is used to verify an ID Token.

This setting provides the value of the Nonce parameter that is provided to the OpenID Provider when making a request and the value that should be used for validation when validating an ID Token. If left blank when use_nonce is set to true, the class will generate a new one.

When validating an ID Token with the nonce claim, the class will check the claim against this setting. If the instance of the class that generated the authorization request is different than the instance of the class that is doing the validating, then this configuration setting will need to be set again. If the class generates the nonce value, then the application will need to save the original nonce value in a safe location specific to the user authenticating.

PKCEVerifier:   The PKCE verifier used to generate the challenge.

This configuration setting, when queried, provides the PKCE verifier that is used to generate the PKCE challenge for the get_authorization_url, process_oidc_response, and request_tokens methods when use_pkce is set to True. It can be used to process the response from the authorization server from a different instance than the one used to create the authorization request.

ProcessedRequestType:   The type of request that was processed or parsed.

This configuration setting is the type of request that was processed or parsed after calling process_oidc_response or parse_oidc_response.

  • 0 - Authorization Success
  • 1 - Authorization Failure
  • 99 - Unknown Type
Prompt:   The requested conditions under which the authorization server prompts for login.

This optional setting specifies the conditions under which the authorization server should prompt for login. The value specified here is a space-delimited, case-sensitive list of one or more of the following values. For instance: login consent. Possible values are:

noneThe authorization server MUST NOT display any authentication or consent user interface pages. An error is returned if an end-user is not already authenticated, the client does not have pre-configured consent for the requested claims, or the client does not fulfill other conditions for processing the request. The error code will typically be login_required, interaction_required, or another code defined in Section 3.1.2.6 of the OpenID specification. This can be used as a method to check for existing authentication and/or consent.
loginThe authorization server SHOULD prompt the end-user for re-authentication. If it cannot re-authenticate the end-user, it MUST return an error, typically login_required.
consentThe authorization server SHOULD prompt the end-user for consent before returning information to the client. If it cannot obtain consent, it MUST return an error, typically consent_required.
select_accountThe authorization server SHOULD prompt the end-user to select a user account. This enables an end-user who has multiple accounts at the authorization server to select amongst the multiple accounts for which they might have current sessions. If it cannot obtain an account selection choice made by the end-user, it MUST return an error, typically account_selection_required.

The prompt parameter can be used to make sure that the end-user is still present for the current session or to bring attention to the request. If this parameter contains none with any other value, an error is returned.

This setting corresponds to the prompt request parameter.

ResponseType:   The value of the response_type request parameter.

This setting optionally specifies the value of the response_type request parameter. When grant_type is set, a value for the response_type is automatically chosen. If a different value is desired, it may be specified here. The table below illustrates the default and possible values.

grant_type Default value Possible values
0 (Authorization Code) code
  • code
1 (Implicit) id_token token
  • id_token
  • id_token token
2 (Hybrid) code id_token
  • code id_token
  • code token
  • code id_token token

ServerAuthURL:   The URL of the authorization server.

This configuration setting is used to provide the class an authorization server URL directly to be used by the get_authorization_url method.

ServerSignerCertURL:   The URL of the signer certificate server.

This configuration setting is used to provide the class a signer certificate server URL directly to be used when requesting signer certificates.

ServerTokenURL:   The URL of the token server.

This configuration setting is used to provide the class a token server URL directly to be used by the process_oidc_response or request_tokens methods.

ServerUserInfoURL:   The URL of the UserInfo server.

This configuration setting is used to provide the class a UserInfo server URL directly to be used by the request_user_info method.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the class adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The class only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the class will accept compressed data. It then will uncompress the data it has received. The class will handle data compressed by both gzip and deflate compression algorithms.

When True, the class adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when http_version is set to "2.0".

If set to True (default), the class will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the class fails with an error if the server does not support HTTP/2.

The default value is True.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to local_file. When set to True, downloaded data will be appended to local_file. This may be used in conjunction with range to resume a failed download. This is applicable only when local_file is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The auth_scheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time user and password are set, they are Base64 encoded, and the result is put in the authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the on_transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the class.

If set to True, the URL passed to the class will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new url for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new url is retrieved automatically only if the URL Scheme is the same; otherwise, the class fails with an error.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, user and password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A on_redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the on_redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the class fails with an error instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the class will perform a GET on the new location.

The default value is False. If set to True, the class will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the class.

This property specifies the HTTP version used by the class. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the class will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If True, the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If False, the connection will be closed immediately after the server response is received.

The default value for KeepAlive is False.

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the on_log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When follow_redirects is set to any value other than frNever, the class will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When http_version is set to "2.0" (if the server does not support "2.0"), then the class will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the class beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If proxy_user and proxy_password are specified, this value is calculated using the algorithm specified by proxy_auth_scheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the class.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the class.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the class will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the class will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001. In the C++ Edition for Windows, the *W version of the class must be used. For instance, DNSW or HTTPW.

UsePlatformHTTPClient:   Whether or not to use the platform HTTP client.

When using this configuration setting, if True, the component will use the default HTTP client for the platform (URLConnection in Java, WebRequest in .NET, or CFHTTPMessage in Mac/iOS) instead of the internal HTTP implementation. This is important for environments in which direct access to sockets is limited or not allowed (e.g., in the Google AppEngine).

Note: This setting is applicable only to Mac/iOS editions.

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the class will attempt to use the Proxy auto-config URL when establishing a connection and proxy_auto_detect is set to True.

When True (default), the class will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

Possible values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The local_host setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the local_host setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This configuration setting must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by local_port after the connection is established.

local_port cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an eol string.

If an eol string is found in the input stream before MaxLineLength bytes are received, the on_data_in event is fired with the EOL parameter set to True, and the buffer is reset.

If no eol is found, and MaxLineLength bytes are accumulated in the buffer, the on_data_in event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When ssl_provider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the on_ssl_status event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if ssl_provider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACertFilePaths:   The paths to CA certificate files on Unix/Linux.

This configuration setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is as follows:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When ssl_provider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the ssl_cert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This configuration setting specifies whether the class will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class fails with an error.

When set to 0 (default), the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This configuration setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the class fails with an error.

When set to 0 (default), the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the on_ssl_status event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when ssl_authenticate_clients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when ssl_provider is set to Platform include the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when ssl_provider is set to Platform include the following:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when ssl_provider is set to Internalinclude the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"); Possible values when ssl_provider is set to Internal include the following:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the ssl_provider is set to Automatic for all editions.

In editions that are designed to run on Windows, ssl_provider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the ssl_provider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and ssl_provider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is False by default, but it can be set to True to enable the extension.

This configuration setting is applicable only when ssl_provider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the on_ssl_server_authentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the on_ssl_server_authentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the on_ssl_server_authentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when ssl_provider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown certificate authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown certificate authority revocation status.
0x00000800Ignore unknown root revocation status.
0x00008000Allow test root certificate.
0x00004000Trust test root certificate.
0x80000000Ignore non-matching CN (certificate CN non-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when ssl_provider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and ssl_provider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to True to mask sensitive data. The default is True.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when do_events is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to False, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to True tells the class to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to False by default. On Linux/macOS, this setting is set to True by default.

To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.

OIDC Errors

OIDC Errors

900   Invalid discovery document. The data is not a properly formatted discovery document.
901   Invalid ID Token. The ID Token could not be parsed.
902   Invalid ResponseType specified. The supplied ResponseType was unrecognized.
903   ID Token verification failed.
910    ID Token verification failed. ID Token has expired.
911    ID Token verification failed. ID Token issuer does not match expected issuer.
912    ID Token verification failed. ID Token audience does not match the expected audience.
913    ID Token verification failed. ID Token is missing a required claim.
914    ID Token verification failed. ID Token is meant for future use.
915    ID Token verification failed. ID Token has an invalid issued time.
920    ID Token verification failed. Could not validate signature.
921    ID Token verification failed. Could not find a valid Signer Certificate.
922    ID Token verification failed. Could not find a Signer Certificate that matches ID Token Headers.
923    ID Token verification failed. Could not find signature.
930   OIDC Response processing error. The OIDC Response could not be found. Check the HTTPContext or the oidc_response_headers property.
931   OIDC Response processing error. The OIDC Response's HTTP headers or body were malformed. Check that processed request contains OIDC content meant for a relying party.
932   OIDC Response processing error. The OIDC Response contained an error message from the authorization server. Check description for more information.

The class may also return one of the following error codes, which are inherited from other classes.