AzureSecrets Control

Properties   Methods   Events   Config Settings   Errors  

The AzureSecrets control makes it easy to interact with secrets in Azure Key Vaults.

Syntax

AzureSecrets

Remarks

The AzureSecrets control provides an easy-to-use interface for the secret-related functionality of the Azure Key Vault service. Azure Key Vault allows you to work with a few different kinds of resources, one of which is secrets (e.g., passwords, symmetric keys, etc.). This control helps you to create and manage said secrets. To work with asymmetric key pairs instead, refer to the AzureKeys control.

To begin, register for an Azure account and create one or more Key Vaults via the Azure Portal. Set the Vault property to the name of the vault you wish to work with.

This control requires authentication via OAuth 2.0. First, perform OAuth authentication using the OAuth property to set the appropriate fields for the chosen OAuthClientProfile and OAuthGrantType.

The component has the following defaults:

Authorization Server URL "https://login.microsoftonline.com/common/oauth2/v2.0/authorize"
Token Server URL "https://login.microsoftonline.com/common/oauth2/v2.0/token"
Scopes "offline_access https://vault.azure.net/user_impersonation"

Additionally, depending on how the application is registered (Ex. Single-tenant, Multi-tenant) and what OAuthGrantType is selected (Ex. Authorization Code, Password), it may be required to use the tenant ID rather than "common" in the OAuthServerAuthURL, and OAuthServerTokenURL properties. See below for examples of the modified URLs:

Authorization Server URL "https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"
Token Server URL "https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"
Below is a brief description of the different OAuthClientProfile and OAuthGrantType values that are supported by this control. For a more in-depth description of what needs to be set, refer to the service documentation.

Application Profile

This profile encompasses the most basic grant types that OAuth supports. When this profile is set, all the requests and response handling is done by the control. Depending on the grant type, this may involve launching a browser so a user can login to authenticate with a authorization server. It may also involve starting an embedded web server to receive a response from a redirect.

To start the authentication and authorization process, the Authorize method should be called. If the authorization and authentication was successful, then the OAuthAccessToken property will be populated. Additionally, if a refresh token was provided the OAuthRefreshToken property will be populated as well. These values of the fields are for informational purposes. The control will also cache these tokens along with when the OAuthAccessToken will be expired. When a method that makes requests to the service provider is called or the Authorize method is called the control will automatically check to see if the access token is expired. If it is, it will then automatically try to get a new OAuthAccessToken. If the Authorize method was not used and user interaction would be required, the control will throw an error which can be caught. When user interaction is needed depends on what grant type is set in the OAuthGrantType property. To force the component to only check the access token when the Authorize method is called, the OAuthAutomaticRefresh configuration setting can be set to false.

A brief description of the supported values for the OAuthGrantType property are below. For more information, see the service documentation.

Authorization Code

When using the Authorization Code grant type, the control will use an authorization code to get an access token. For this OAuthGrantType the control expects a OAuthClientId, OAuthClientSecret, OAuthServerAuthURL, and OAuthServerTokenURL to be set. When the Authorize method is called, the component will start the embedded web server and launch the browser so the user can authorize the application. Once the user authorizes, the service provider will redirect them to the embedded web server and the control will parse the authorization code, setting the OAuthAuthorizationCode property, from the redirect. Immediately, the control will make a request to the token server to exchange the authorization code for an access token. The token server will return an access token and possibly a refresh token. If the OAuthRefreshToken property is set, or a refresh token is cached, then the control will not launch the browser and use the refresh token in its request to the token server instead of an authorization code.

Example: AzureSecrets azuresecrets = new AzureSecrets(); azuresecrets.OAuth.ClientProfile = CloudOAuthClientProfiles.cocpApplication; azuresecrets.OAuth.GrantType = OAuthSettingsGrantTypes.cogtAuthorizationCode; azuresecrets.OAuth.ClientId = CLIENT_ID; azuresecrets.OAuth.ClientSecret = SECRET_ID; azuresecrets.OAuth.AuthorizationScope = "offline_access https://vault.azure.net/user_impersonation"; azuresecrets.OAuth.ServerAuthURL = "https://login.microsoftonline.com/" + TENANT_ID + "/oauth2/v2.0/authorize"; azuresecrets.OAuth.ServerTokenURL = "https://login.microsoftonline.com/" + TENANT_ID + "/oauth2/v2.0/token"; azuresecrets.Authorize(); Implicit

Note: This grant type is considered insecure and should only be used when necessary.

When using the Implicit grant type, the control will request the authorization server to get an access token. For this OAuthGrantType the control expects a OAuthClientId, OAuthClientSecret, and OAuthServerAuthURL to be set. When the Authorize method is called, the component will start the embedded web server and launch the browser so the user can authorize the application. Once the user authorizes, the service provider will redirect them to the embedded web server and the control will parse the access token from the redirect.

A disadvantage of the grant type is that can not use a refresh token to silently get a new access token. Most service providers offer a way to silently get a new access token. See the service documentation for specifics. This means the control will not be able to automatically get a fresh token once it expires.

Password

Note: This grant type is considered insecure and should only be used when necessary.

When using the Resource Owner Password Credentials grant type, the control will authenticate as the resource owner. This allows for the control to avoid user interaction. This grant type often has specific limitations put on it by the service provider. See the service documentation for more details.

For this OAuthGrantType the control requires OAuthPasswordGrantUsername, OAuthClientSecret, and OAuthServerTokenURL to be set. The OAuthClientSecret should be set to the password of the account instead of a typical secret. In some cases, the OAuthClientId also needs to be set. When the Authorize method is called, the component will make a request to the token server for an access token using the username and password. The token server will return an access token if the authentication was successful. When this access token is expired, the component will automatically (see above for detailed description) make a new request to get a fresh one.

Web Profile

This profile is similar to setting the control to the Application profile and Authorization Code grant type except the control will not launch the browser. It is typically used in situations where there is a back-end that is supporting some front end. This profile expects that OAuthClientId, OAuthClientSecret, OAuthServerAuthURL, OAuthServerTokenURL, and the OAuthReturnURL properties to be set. Before calling the Authorize method, the OAuthWebAuthURL property should be queried to get a URL. This URL should be used to redirect the user to the authorization page for the service provider. The redirect_uri parameter of this URL is mapped to the OAuthReturnURL property. The OAuthReturnURL property should be set to some web server that will parse the authorization code out of the query parameter from the redirect. Once the authorization code is parsed, it should be passed back to the server where it is then set to the OAuthAuthorizationCode property. Once that is set, the Authorize method can be called to exchange the authorization code for an access token and refresh token if provided. The control will then cache these values like normal and use them to make requests. If the OAuthRefreshToken field is set, or a refresh token is cached, then the Authorize method can immediately be called to make a request to the token server to get a new access token.

External OAuth Support

For complex profiles or grant types, or for more control of the flow, it is possible to perform OAuth authentication using the OAuth control or a separate process. Once complete you should have an authorization string which looks like:
Bearer ACCESS_TOKEN_VALUE

Assign this value to the Authorization property before attempting any operations. Setting the Authorization property will cause the control to ignore the values set in the OAuth property.

For Example: Oauth oauth = new Oauth(); oauth.ClientId = "CLIENT_ID"; oauth.ClientSecret = "CLIENT_SECRET"; oauth.ServerAuthURL = "https://login.microsoftonline.com/common/oauth2/v2.0/authorize"; oauth.ServerTokenURL = "https://login.microsoftonline.com/common/oauth2/v2.0/token"; oauth.AuthorizationScope = "offline_access https://vault.azure.net/user_impersonation"; oauth.GrantType = OauthGrantTypes.ogtAuthorizationCode; azuresecrets.Authorization = oauth.GetAuthorization(); Consult the documentation for the service for more information about supported scope values and more details on OAuth authentication.

Using the Control

Secrets can be created using the CreateSecret method. A secret's name must be set at the time of creation, and cannot be changed later. The secret's value and, optionally, content type must also be set, but can be changed at any time. To change a secret's value, create a new version of it using the CreateSecret method (which will always create a new version if a secret with the specified name already exists); to change a secret's content-type, use the UpdateSecret method.

To retrieve a secret and its information, use the GetSecret method.

When a secret will no long be used, it can be deleted using the DeleteSecret method. However, the secret will only be soft-deleted; by default, Azure will permanently delete it after the waiting period configured for the vault. During this waiting period, the soft-deleted secret may be recovered using RecoverSecret, or permanently deleted using PurgeSecret (assuming the currently-authenticated user has the permissions to do so). // Create a secret. azuresecrets.SecretData = "Test123"; azuresecrets.CreateSecret("mysecret", "text/plain"); // Download the secret value to a local file. azuresecrets.LocalFile = "C:\temp\secret.txt"; azuresecrets.GetSecret("mysecret"); // Create a new version of the secret. azuresecrets.SecretData = "Cats456"; azuresecrets.CreateSecret("mysecret", "text/plain"); // ... Some time later, when the secret is no longer needed ... azuresecrets.DeleteSecret("mysecret"); // At this point, the secret is only soft-deleted. It could be recovered... azuresecrets.RecoverSecret("mysecret"); // ...or permanently deleted. azuresecrets.PurgeSecret("mysecret");

To list secrets, use the ListSecrets method. This method is also used to list soft-deleted secrets if the GetDeleted configuration setting has been enabled first. To list a secret's versions, use the ListVersions method. (You cannot list a deleted secret's versions.) // If there are many secrets to list, there may be multiple pages of results. This will // cause all pages of results to be accumulated into the Secrets collection property. do { azuresecrets.ListSecrets(); } while (!string.IsNullOrEmpty(azuresecrets.SecretMarker)); // A similar thing applies to secret versions as well. do { azuresecrets.ListVersions("mysecret"); } while (!string.IsNullOrEmpty(azuresecrets.VersionMarker));

The control also supports a variety of other functionality, including:

Property List


The following is the full list of the properties of the control with short descriptions. Click on the links for further details.

AuthorizationOAuth 2.0 Authorization Token.
EncodeDataWhether to automatically base64-encode and -decode secret data.
FirewallAutoDetectWhether to automatically detect and use firewall system settings, if available.
FirewallTypeThe type of firewall to connect through.
FirewallHostThe name or IP address of the firewall (optional).
FirewallPasswordA password if authentication is to be used when connecting through the firewall.
FirewallPortThe Transmission Control Protocol (TCP) port for the firewall Host .
FirewallUserA username if authentication is to be used when connecting through a firewall.
IdleThe current status of the control.
LocalFileThe local file to write data to, or whose data should be sent.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
OAuthAccessTokenThe access token returned by the authorization server.
OAuthAuthorizationCodeThe authorization code that is exchanged for an access token.
OAuthAuthorizationScopeThe scope request or response parameter used during authorization.
OAuthClientIdThe id of the client assigned when registering the application.
OAuthClientProfileThe type of client that is requesting authorization.
OAuthClientSecretThe secret value for the client assigned when registering the application.
OAuthGrantTypeThe OAuth grant type used to acquire an OAuth access token.
OAuthRefreshTokenSpecifies the refresh token received from or sent to the authorization server.
OAuthRequestRefreshTokenSpecifies whether the control will request a refresh token during authorization.
OAuthReturnURLThe URL where the user (browser) returns after authenticating.
OAuthServerAuthURLThe URL of the authorization server.
OAuthServerTokenURLThe URL of the token server used to obtain the access token.
OAuthWebAuthURLThe URL to which the user should be re-directed for authorization.
OtherHeadersOther headers as determined by the user (optional).
OverwriteWhether the local file should be overwritten if necessary.
ParsedHeaderCountThe number of records in the ParsedHeader arrays.
ParsedHeaderFieldThis property contains the name of the HTTP header (this is the same case as it is delivered).
ParsedHeaderValueThis property contains the header contents.
ProxyAuthSchemeThe type of authorization to perform when connecting to the proxy.
ProxyAutoDetectWhether to automatically detect and use proxy system settings, if available.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortThe Transmission Control Protocol (TCP) port for the proxy Server (default 80).
ProxyServerIf a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
ProxySSLWhen to use a Secure Sockets Layer (SSL) for the connection to the proxy.
ProxyUserA username if authentication is to be used for the proxy.
QueryParamCountThe number of records in the QueryParam arrays.
QueryParamNameThe name of the query parameter.
QueryParamValueThe value of the query parameter.
SecretDataThe secret data that was retrieved, or that should be sent.
SecretMarkerA marker indicating what page of secrets to return next.
SecretCountThe number of records in the Secret arrays.
SecretContentTypeThe content type of the secret.
SecretCreationDateThe creation date of the secret.
SecretDeletionDateThe deletion date of the secret.
SecretEnabledWhether the secret is enabled.
SecretExpiryDateThe expiration date of the secret.
SecretNameThe name of the secret.
SecretNotBeforeDateThe 'not before' date of the secret.
SecretPurgeDateThe purge date of the secret.
SecretRecoverableDaysThe number of days the secret will be recoverable if it gets deleted.
SecretRecoveryLevelThe secret's ability to be recovered and/or purged if it gets deleted.
SecretUpdateDateThe update date of the secret.
SecretVersionIdThe version Id of the secret.
SSLAcceptServerCertEffectiveDateThe date on which this certificate becomes valid.
SSLAcceptServerCertExpirationDateThe date on which the certificate expires.
SSLAcceptServerCertExtendedKeyUsageA comma-delimited list of extended key usage identifiers.
SSLAcceptServerCertFingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
SSLAcceptServerCertFingerprintSHA1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
SSLAcceptServerCertFingerprintSHA256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
SSLAcceptServerCertIssuerThe issuer of the certificate.
SSLAcceptServerCertPrivateKeyThe private key of the certificate (if available).
SSLAcceptServerCertPrivateKeyAvailableWhether a PrivateKey is available for the selected certificate.
SSLAcceptServerCertPrivateKeyContainerThe name of the PrivateKey container for the certificate (if available).
SSLAcceptServerCertPublicKeyThe public key of the certificate.
SSLAcceptServerCertPublicKeyAlgorithmThe textual description of the certificate's public key algorithm.
SSLAcceptServerCertPublicKeyLengthThe length of the certificate's public key (in bits).
SSLAcceptServerCertSerialNumberThe serial number of the certificate encoded as a string.
SSLAcceptServerCertSignatureAlgorithmThe text description of the certificate's signature algorithm.
SSLAcceptServerCertStoreThe name of the certificate store for the client certificate.
SSLAcceptServerCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SSLAcceptServerCertStoreTypeThe type of certificate store for this certificate.
SSLAcceptServerCertSubjectAltNamesComma-separated lists of alternative subject names for the certificate.
SSLAcceptServerCertThumbprintMD5The MD5 hash of the certificate.
SSLAcceptServerCertThumbprintSHA1The SHA-1 hash of the certificate.
SSLAcceptServerCertThumbprintSHA256The SHA-256 hash of the certificate.
SSLAcceptServerCertUsageThe text description of UsageFlags .
SSLAcceptServerCertUsageFlagsThe flags that show intended use for the certificate.
SSLAcceptServerCertVersionThe certificate's version number.
SSLAcceptServerCertSubjectThe subject of the certificate used for client authentication.
SSLAcceptServerCertEncodedThe certificate (PEM/Base64 encoded).
SSLCertEffectiveDateThe date on which this certificate becomes valid.
SSLCertExpirationDateThe date on which the certificate expires.
SSLCertExtendedKeyUsageA comma-delimited list of extended key usage identifiers.
SSLCertFingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
SSLCertFingerprintSHA1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
SSLCertFingerprintSHA256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
SSLCertIssuerThe issuer of the certificate.
SSLCertPrivateKeyThe private key of the certificate (if available).
SSLCertPrivateKeyAvailableWhether a PrivateKey is available for the selected certificate.
SSLCertPrivateKeyContainerThe name of the PrivateKey container for the certificate (if available).
SSLCertPublicKeyThe public key of the certificate.
SSLCertPublicKeyAlgorithmThe textual description of the certificate's public key algorithm.
SSLCertPublicKeyLengthThe length of the certificate's public key (in bits).
SSLCertSerialNumberThe serial number of the certificate encoded as a string.
SSLCertSignatureAlgorithmThe text description of the certificate's signature algorithm.
SSLCertStoreThe name of the certificate store for the client certificate.
SSLCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SSLCertStoreTypeThe type of certificate store for this certificate.
SSLCertSubjectAltNamesComma-separated lists of alternative subject names for the certificate.
SSLCertThumbprintMD5The MD5 hash of the certificate.
SSLCertThumbprintSHA1The SHA-1 hash of the certificate.
SSLCertThumbprintSHA256The SHA-256 hash of the certificate.
SSLCertUsageThe text description of UsageFlags .
SSLCertUsageFlagsThe flags that show intended use for the certificate.
SSLCertVersionThe certificate's version number.
SSLCertSubjectThe subject of the certificate used for client authentication.
SSLCertEncodedThe certificate (PEM/Base64 encoded).
SSLProviderThe Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
SSLServerCertEffectiveDateThe date on which this certificate becomes valid.
SSLServerCertExpirationDateThe date on which the certificate expires.
SSLServerCertExtendedKeyUsageA comma-delimited list of extended key usage identifiers.
SSLServerCertFingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
SSLServerCertFingerprintSHA1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
SSLServerCertFingerprintSHA256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
SSLServerCertIssuerThe issuer of the certificate.
SSLServerCertPrivateKeyThe private key of the certificate (if available).
SSLServerCertPrivateKeyAvailableWhether a PrivateKey is available for the selected certificate.
SSLServerCertPrivateKeyContainerThe name of the PrivateKey container for the certificate (if available).
SSLServerCertPublicKeyThe public key of the certificate.
SSLServerCertPublicKeyAlgorithmThe textual description of the certificate's public key algorithm.
SSLServerCertPublicKeyLengthThe length of the certificate's public key (in bits).
SSLServerCertSerialNumberThe serial number of the certificate encoded as a string.
SSLServerCertSignatureAlgorithmThe text description of the certificate's signature algorithm.
SSLServerCertStoreThe name of the certificate store for the client certificate.
SSLServerCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SSLServerCertStoreTypeThe type of certificate store for this certificate.
SSLServerCertSubjectAltNamesComma-separated lists of alternative subject names for the certificate.
SSLServerCertThumbprintMD5The MD5 hash of the certificate.
SSLServerCertThumbprintSHA1The SHA-1 hash of the certificate.
SSLServerCertThumbprintSHA256The SHA-256 hash of the certificate.
SSLServerCertUsageThe text description of UsageFlags .
SSLServerCertUsageFlagsThe flags that show intended use for the certificate.
SSLServerCertVersionThe certificate's version number.
SSLServerCertSubjectThe subject of the certificate used for client authentication.
SSLServerCertEncodedThe certificate (PEM/Base64 encoded).
TagCountThe number of records in the Tag arrays.
TagNameThe name of the tag.
TagValueThe value of the tag.
TimeoutThe timeout for the control.
VaultSelects a vault for the control to interact with.
VersionMarkerA marker indicating what page of secret versions to return next.

Method List


The following is the full list of the methods of the control with short descriptions. Click on the links for further details.

AddQueryParamAdds a query parameter to the QueryParams properties.
AddTagAdds an item to the Tags properties.
AuthorizeGet the authorization string required to access the protected resource.
BackupSecretBacks up a secret.
ConfigSets or retrieves a configuration setting.
CreateSecretCreates a new secret.
DeleteSecretDeletes a secret.
DoEventsThis method processes events from the internal message queue.
GetSecretGets a secret's value and information.
ListSecretsLists the secrets in the currently-selected vault.
ListVersionsLists versions of a secret.
PurgeSecretPermanently deletes a soft-deleted secret.
RecoverSecretRecovers a soft-deleted secret.
ResetResets the control to its initial state.
RestoreSecretRestores a previously backed-up secret to the vault.
SetSecretEnabledEnables or disables a secret.
UpdateSecretUpdates a secret's information.

Event List


The following is the full list of the events fired by the control with short descriptions. Click on the links for further details.

EndTransferThis event fires when a document finishes transferring.
ErrorFired when information is available about errors during data delivery.
HeaderFired every time a header line comes in.
LogFired once for each log message.
SecretListFires once for each secret when listing secrets.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.
StartTransferThis event fires when a document starts transferring (after the headers).
TagListFires once for each tag returned when a secret is retrieved.
TransferFired while a document transfers (delivers document).

Config Settings


The following is a list of config settings for the control with short descriptions. Click on the links for further details.

AccumulatePagesWhether the control should accumulate subsequent pages of results when listing them.
APIVersionThe Azure Key Vault API version that the control conforms to.
CreateSecretEnabledWhether new secrets should be created in an enabled or disabled state.
ExpiryDateThe expiry date to send for the secret.
GetDeletedWhether the control should retrieve information about soft-deleted secrets.
MaxSecretsThe maximum number of results to return when listing secrets.
NotBeforeDateThe 'not before' date to send for the secret.
RawRequestReturns the data that was sent to the server.
RawResponseReturns the data that was received from the server.
VersionIdThe Id of the secret version that the control should make requests against.
XChildCountThe number of child elements of the current element.
XChildName[i]The name of the child element.
XChildXText[i]The inner text of the child element.
XElementThe name of the current element.
XParentThe parent of the current element.
XPathProvides a way to point to a specific element in the returned XML or JSON response.
XSubTreeA snapshot of the current element in the document.
XTextThe text of the current element.
OAuthAccessTokenExpirationThe lifetime of the access token.
OAuthAuthorizationTokenTypeThe type of access token returned.
OAuthAutomaticRefreshWhether or not to refresh an expired access token automatically.
OAuthBrowserResponseTimeoutSpecifies the amount of time to wait for a response from the browser.
OAuthIncludeEmptyRedirectURIWhether an empty redirect_uri parameter is included in requests.
OAuthJWTPayloadThe payload of the JWT access token if present.
OAuthJWTXChildCountThe number of child elements of the current element.
OauthJWTXChildName[i]The name of the child element.
OAuthJWTXChildXText[i]The inner text of the child element.
OAuthJWTXElementThe name of the current element.
OauthJWTXParentThe parent of the current element.
OAuthJWTXPathProvides a way to point to a specific element in the returned payload of a JWT based access token.
OAuthJWTXSubTreeA snapshot of the current element in the document.
OAuthJWTXTextThe text of the current element.
OAuthParamCountSpecifies the number of additional parameters variables to include in the request.
OAuthParamName[i]Specifies the parameter name at the specified index.
OAuthParamValue[i]Specifies the parameter value at the specified index.
OAuthPasswordGrantUsernameUsed in the Resource Owner Password grant type.
OAuthPKCEChallengeEncodingThe PKCE code challenge method to use.
OAuthPKCEVerifierThe PKCE verifier used to generate the challenge.
OAuthResetDataDetermines if the Reset method applies to the OAuth settings.
OAuthReUseWebServerDetermines if the same server instance is used between requests.
OAuthTransferredRequestThe full OAuth request last sent by the client.
OAuthUsePKCESpecifies if PKCE should be used.
OAuthWebServerActiveSpecifies and controls whether the embedded web server is active.
OAuthWebServerCertStoreThe certificate with private key to use when SSL is enabled.
OAuthWebServerCertStorePasswordThe certificate with private key to use when SSL is enabled.
OAuthWebServerCertStoreTypeThe certificate with private key to use when SSL is enabled.
OAuthWebServerCertSubjectThe certificate with private key to use when SSL is enabled.
OAuthWebServerFailedResponseThe custom response that will be displayed to the user if authentication failed.
OAuthWebServerHostThe hostname used by the embedded web server displayed in the ReturnURL.
OAuthWebServerPortThe local port on which the embedded web server listens.
OAuthWebServerResponseThe custom response that will be displayed to the user.
OAuthWebServerSSLEnabledWhether the web server requires SSL connections.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the control.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the control will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the control.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the control.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the control whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the control binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
CodePageThe system code page used for Unicode to Multibyte translations.
MaskSensitiveDataWhether sensitive data is masked in log messages.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

Authorization Property (AzureSecrets Control)

OAuth 2.0 Authorization Token.

Syntax

azuresecretscontrol.Authorization[=string]

Default Value

""

Remarks

This control supports authentication via OAuth 2.0. First, perform OAuth authentication using the OAuth control or a separate process. Once complete you should have an authorization string which looks like:

Bearer ACCESS_TOKEN
Assign this value to the Authorization property before attempting any operations. Consult the documentation for the service for more information about supported scope values and more details on OAuth authentication.

Data Type

String

EncodeData Property (AzureSecrets Control)

Whether to automatically base64-encode and -decode secret data.

Syntax

azuresecretscontrol.EncodeData[=boolean]

Default Value

False

Remarks

This property specifies whether the control should automatically base64-encode secret data when it is uploaded by CreateSecret, and base64-decode it when it is downloaded with GetSecret.

Secrets are stored on the server as strings, and are transported via a JSON string property, so binary values must be encoded in some way; this property is provided as a convenience.

This property is not available at design time.

Data Type

Boolean

FirewallAutoDetect Property (AzureSecrets Control)

Whether to automatically detect and use firewall system settings, if available.

Syntax

azuresecretscontrol.FirewallAutoDetect[=boolean]

Default Value

False

Remarks

Whether to automatically detect and use firewall system settings, if available.

Data Type

Boolean

FirewallType Property (AzureSecrets Control)

The type of firewall to connect through.

Syntax

azuresecretscontrol.FirewallType[=integer]

Possible Values

fwNone(0), 
fwTunnel(1), 
fwSOCKS4(2), 
fwSOCKS5(3), 
fwSOCKS4A(10)

Default Value

0

Remarks

The type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. FirewallPort is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Data Type

Integer

FirewallHost Property (AzureSecrets Control)

The name or IP address of the firewall (optional).

Syntax

azuresecretscontrol.FirewallHost[=string]

Default Value

""

Remarks

The name or IP address of the firewall (optional). If a FirewallHost is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the control fails with an error.

Data Type

String

FirewallPassword Property (AzureSecrets Control)

A password if authentication is to be used when connecting through the firewall.

Syntax

azuresecretscontrol.FirewallPassword[=string]

Default Value

""

Remarks

A password if authentication is to be used when connecting through the firewall. If FirewallHost is specified, the FirewallUser and FirewallPassword properties are used to connect and authenticate to the given firewall. If the authentication fails, the control fails with an error.

Data Type

String

FirewallPort Property (AzureSecrets Control)

The Transmission Control Protocol (TCP) port for the firewall Host .

Syntax

azuresecretscontrol.FirewallPort[=integer]

Default Value

0

Remarks

The Transmission Control Protocol (TCP) port for the firewall FirewallHost. See the description of the FirewallHost property for details.

Note: This property is set automatically when FirewallType is set to a valid value. See the description of the FirewallType property for details.

Data Type

Integer

FirewallUser Property (AzureSecrets Control)

A username if authentication is to be used when connecting through a firewall.

Syntax

azuresecretscontrol.FirewallUser[=string]

Default Value

""

Remarks

A username if authentication is to be used when connecting through a firewall. If FirewallHost is specified, this property and the FirewallPassword property are used to connect and authenticate to the given Firewall. If the authentication fails, the control fails with an error.

Data Type

String

Idle Property (AzureSecrets Control)

The current status of the control.

Syntax

azuresecretscontrol.Idle

Default Value

True

Remarks

This property will be False if the component is currently busy (communicating or waiting for an answer), and True at all other times.

This property is read-only.

Data Type

Boolean

LocalFile Property (AzureSecrets Control)

The local file to write data to, or whose data should be sent.

Syntax

azuresecretscontrol.LocalFile[=string]

Default Value

""

Remarks

This property specifies the location of a local file on disk. This is used as the source file when calling CreateSecret, and as the destination file when calling GetSecret.

Data Type

String

LocalHost Property (AzureSecrets Control)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

azuresecretscontrol.LocalHost[=string]

Default Value

""

Remarks

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the control is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: LocalHost is not persistent. You must always set it in code, and never in the property window.

Data Type

String

OAuthAccessToken Property (AzureSecrets Control)

The access token returned by the authorization server.

Syntax

azuresecretscontrol.OAuthAccessToken[=string]

Default Value

""

Remarks

The access token returned by the authorization server. This is set when the control makes a request to the token server.

This property is not available at design time.

Data Type

String

OAuthAuthorizationCode Property (AzureSecrets Control)

The authorization code that is exchanged for an access token.

Syntax

azuresecretscontrol.OAuthAuthorizationCode[=string]

Default Value

""

Remarks

The authorization code that is exchanged for an access token. This is required to be set when the OAuthClientProfile property is set to the Web profile. Otherwise, this field is for information purposes only.

This property is not available at design time.

Data Type

String

OAuthAuthorizationScope Property (AzureSecrets Control)

The scope request or response parameter used during authorization.

Syntax

azuresecretscontrol.OAuthAuthorizationScope[=string]

Default Value

""

Remarks

The scope request or response parameter used during authorization.

This property is not available at design time.

Data Type

String

OAuthClientId Property (AzureSecrets Control)

The id of the client assigned when registering the application.

Syntax

azuresecretscontrol.OAuthClientId[=string]

Default Value

""

Remarks

The id of the client assigned when registering the application.

This property is not available at design time.

Data Type

String

OAuthClientProfile Property (AzureSecrets Control)

The type of client that is requesting authorization.

Syntax

azuresecretscontrol.OAuthClientProfile[=integer]

Possible Values

cocpApplication(0), 
cocpWeb(1)

Default Value

0

Remarks

The type of client that is requesting authorization. See the introduction section for more information. Possible values are:

0 (cocpApplication - Default)The application profile is applicable to applications that are run by the user directly. For instance a windows form application would use the application profile. To authorize your application (client) using the application profile see the introduction section.
1 (cocpWeb)The Web profile is applicable to applications that are run on the server side where the user uses the application from a web browser. To authorize your application (client) using this profile follow see the introduction section.

This property is not available at design time.

Data Type

Integer

OAuthClientSecret Property (AzureSecrets Control)

The secret value for the client assigned when registering the application.

Syntax

azuresecretscontrol.OAuthClientSecret[=string]

Default Value

""

Remarks

The secret value for the client assigned when registering the application.

This property is not available at design time.

Data Type

String

OAuthGrantType Property (AzureSecrets Control)

The OAuth grant type used to acquire an OAuth access token.

Syntax

azuresecretscontrol.OAuthGrantType[=integer]

Possible Values

cogtAuthorizationCode(0), 
cogtImplicit(1), 
cogtPassword(2), 
cogtClientCredentials(3)

Default Value

0

Remarks

The OAuth grant type used to acquire an OAuth access token. See the introduction section for more information. Possible values are:

0 (cogtAuthorizationCode - Default) Authorization Code grant type
1 (cogtImplicit) Implicit grant type
2 (cogtPassword) Resource Owner Password Credentials grant type
3 (cogtClientCredentials) Client Credentials grant type

This property is not available at design time.

Data Type

Integer

OAuthRefreshToken Property (AzureSecrets Control)

Specifies the refresh token received from or sent to the authorization server.

Syntax

azuresecretscontrol.OAuthRefreshToken[=string]

Default Value

""

Remarks

Specifies the refresh token received from or sent to the authorization server. This property is set automatically if a refresh token is retrieved from the token server. If the OAuthAutomaticRefresh configuration setting is set to true, and the OAuthGrantType property is set to a grant that can use refresh tokens.

This property is not available at design time.

Data Type

String

OAuthRequestRefreshToken Property (AzureSecrets Control)

Specifies whether the control will request a refresh token during authorization.

Syntax

azuresecretscontrol.OAuthRequestRefreshToken[=boolean]

Default Value

True

Remarks

Specifies whether the control will request a refresh token during authorization. By default, this value is True.

When True, the control will automatically add the necessary scopes or parameters to obtain a refresh token. When False, this property will have no effect. If the necessary scopes or parameters are specified manually, a refresh token can still be obtained.

Note: This property is only applicable when the OAuthGrantType property is set to cogtAuthorizationCode.

This property is not available at design time.

Data Type

Boolean

OAuthReturnURL Property (AzureSecrets Control)

The URL where the user (browser) returns after authenticating.

Syntax

azuresecretscontrol.OAuthReturnURL[=string]

Default Value

""

Remarks

The URL where the user (browser) returns after authenticating. This property is mapped to the redirect_uri parameter when making a request to the authorization server. Typically, this is automatically set by the control when using the embedded web server. If the OAuthWebServerPort or OAuthWebServerHost configuration settings is set, then this property should be set to match. If using the Web client profile, this should be set to the place where the authorization code will be parsed out of the response after the user finishes authorizing.

This property is not available at design time.

Data Type

String

OAuthServerAuthURL Property (AzureSecrets Control)

The URL of the authorization server.

Syntax

azuresecretscontrol.OAuthServerAuthURL[=string]

Default Value

""

Remarks

The URL of the authorization server.

This property is not available at design time.

Data Type

String

OAuthServerTokenURL Property (AzureSecrets Control)

The URL of the token server used to obtain the access token.

Syntax

azuresecretscontrol.OAuthServerTokenURL[=string]

Default Value

""

Remarks

The URL of the token server used to obtain the access token.

This property is not available at design time.

Data Type

String

OAuthWebAuthURL Property (AzureSecrets Control)

The URL to which the user should be re-directed for authorization.

Syntax

azuresecretscontrol.OAuthWebAuthURL

Default Value

""

Remarks

The URL to which the user should be re-directed for authorization. This field is used to get the URL that the user should be redirected to when using the Web client profile. See introduction section for more information.

This property is read-only and not available at design time.

Data Type

String

OtherHeaders Property (AzureSecrets Control)

Other headers as determined by the user (optional).

Syntax

azuresecretscontrol.OtherHeaders[=string]

Default Value

""

Remarks

This property can be set to a string of headers to be appended to the HTTP request headers created from other properties like ContentType and From.

The headers must follow the format Header: Value as described in the HTTP specifications. Header lines should be separated by CRLF (Chr$(13) & Chr$(10)) .

Use this property with caution. If this property contains invalid headers, HTTP requests may fail.

This property is useful for extending the functionality of the control beyond what is provided.

This property is not available at design time.

Data Type

String

Overwrite Property (AzureSecrets Control)

Whether the local file should be overwritten if necessary.

Syntax

azuresecretscontrol.Overwrite[=boolean]

Default Value

False

Remarks

This property controls whether the specified LocalFile should be overwritten if it already exists.

This property is not available at design time.

Data Type

Boolean

ParsedHeaderCount Property (AzureSecrets Control)

The number of records in the ParsedHeader arrays.

Syntax

azuresecretscontrol.ParsedHeaderCount

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at ParsedHeaderCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

ParsedHeaderField Property (AzureSecrets Control)

This property contains the name of the HTTP header (this is the same case as it is delivered).

Syntax

azuresecretscontrol.ParsedHeaderField(ParsedHeaderIndex)

Default Value

""

Remarks

This property contains the name of the HTTP Header (this is the same case as it is delivered).

The ParsedHeaderIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ParsedHeaderCount property.

This property is read-only and not available at design time.

Data Type

String

ParsedHeaderValue Property (AzureSecrets Control)

This property contains the header contents.

Syntax

azuresecretscontrol.ParsedHeaderValue(ParsedHeaderIndex)

Default Value

""

Remarks

This property contains the Header contents.

The ParsedHeaderIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ParsedHeaderCount property.

This property is read-only and not available at design time.

Data Type

String

ProxyAuthScheme Property (AzureSecrets Control)

The type of authorization to perform when connecting to the proxy.

Syntax

azuresecretscontrol.ProxyAuthScheme[=integer]

Possible Values

authBasic(0), 
authDigest(1), 
authProprietary(2), 
authNone(3), 
authNtlm(4), 
authNegotiate(5)

Default Value

0

Remarks

The type of authorization to perform when connecting to the proxy. This is used only when the ProxyUser and ProxyPassword properties are set.

ProxyAuthScheme should be set to authNone (3) when no authentication is expected.

By default, ProxyAuthScheme is authBasic (0), and if the ProxyUser and ProxyPassword properties are set, the control will attempt basic authentication.

If ProxyAuthScheme is set to authDigest (1), digest authentication will be attempted instead.

If ProxyAuthScheme is set to authProprietary (2), then the authorization token will not be generated by the control. Look at the configuration file for the control being used to find more information about manually setting this token.

If ProxyAuthScheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this property will clear the values of ProxyUser and ProxyPassword.

Data Type

Integer

ProxyAutoDetect Property (AzureSecrets Control)

Whether to automatically detect and use proxy system settings, if available.

Syntax

azuresecretscontrol.ProxyAutoDetect[=boolean]

Default Value

False

Remarks

Whether to automatically detect and use proxy system settings, if available. The default value is .

Data Type

Boolean

ProxyPassword Property (AzureSecrets Control)

A password if authentication is to be used for the proxy.

Syntax

azuresecretscontrol.ProxyPassword[=string]

Default Value

""

Remarks

A password if authentication is to be used for the proxy.

If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.

If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.

Data Type

String

ProxyPort Property (AzureSecrets Control)

The Transmission Control Protocol (TCP) port for the proxy Server (default 80).

Syntax

azuresecretscontrol.ProxyPort[=integer]

Default Value

80

Remarks

The Transmission Control Protocol (TCP) port for the proxy ProxyServer (default 80). See the description of the ProxyServer property for details.

Data Type

Integer

ProxyServer Property (AzureSecrets Control)

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

Syntax

azuresecretscontrol.ProxyServer[=string]

Default Value

""

Remarks

If a proxy ProxyServer is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the ProxyServer property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the ProxyServer property is set to the corresponding address. If the search is not successful, an error is returned.

Data Type

String

ProxySSL Property (AzureSecrets Control)

When to use a Secure Sockets Layer (SSL) for the connection to the proxy.

Syntax

azuresecretscontrol.ProxySSL[=integer]

Possible Values

psAutomatic(0), 
psAlways(1), 
psNever(2), 
psTunnel(3)

Default Value

0

Remarks

When to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the control will use the psTunnel option. If the URL is an http URL, the control will use the psNever option.
psAlways (1)The connection is always SSL-enabled.
psNever (2)The connection is not SSL-enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

Data Type

Integer

ProxyUser Property (AzureSecrets Control)

A username if authentication is to be used for the proxy.

Syntax

azuresecretscontrol.ProxyUser[=string]

Default Value

""

Remarks

A username if authentication is to be used for the proxy.

If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.

If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.

Data Type

String

QueryParamCount Property (AzureSecrets Control)

The number of records in the QueryParam arrays.

Syntax

azuresecretscontrol.QueryParamCount[=integer]

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at QueryParamCount - 1.

This property is not available at design time.

Data Type

Integer

QueryParamName Property (AzureSecrets Control)

The name of the query parameter.

Syntax

azuresecretscontrol.QueryParamName(QueryParamIndex)[=string]

Default Value

""

Remarks

The name of the query parameter.

This property specifies the name of the query parameter.

The QueryParamIndex parameter specifies the index of the item in the array. The size of the array is controlled by the QueryParamCount property.

This property is not available at design time.

Data Type

String

QueryParamValue Property (AzureSecrets Control)

The value of the query parameter.

Syntax

azuresecretscontrol.QueryParamValue(QueryParamIndex)[=string]

Default Value

""

Remarks

The value of the query parameter.

This property specifies the value of the query parameter. The control will automatically URL-encode this value when sending the request.

The QueryParamIndex parameter specifies the index of the item in the array. The size of the array is controlled by the QueryParamCount property.

This property is not available at design time.

Data Type

String

SecretData Property (AzureSecrets Control)

The secret data that was retrieved, or that should be sent.

Syntax

azuresecretscontrol.SecretData[=string]

Default Value

""

Remarks

This property is populated with secret data after calling GetSecret if LocalFile is not set.

This property can also be set before calling CreateSecret; its data will be sent if LocalFile is not set.

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SecretDataB.

This property is not available at design time.

Data Type

Binary String

SecretMarker Property (AzureSecrets Control)

A marker indicating what page of secrets to return next.

Syntax

azuresecretscontrol.SecretMarker[=string]

Default Value

""

Remarks

This property will be populated when ListSecrets is called if the results are paged and there are more pages. To list all secrets, continue to call ListSecrets until this property returns empty string.

Refer to ListSecrets for more information.

This property is not available at design time.

Data Type

String

SecretCount Property (AzureSecrets Control)

The number of records in the Secret arrays.

Syntax

azuresecretscontrol.SecretCount

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at SecretCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

SecretContentType Property (AzureSecrets Control)

The content type of the secret.

Syntax

azuresecretscontrol.SecretContentType(SecretIndex)

Default Value

""

Remarks

The content type of the secret.

This property reflects the content type of the secret.

The SecretIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecretCount property.

This property is read-only and not available at design time.

Data Type

String

SecretCreationDate Property (AzureSecrets Control)

The creation date of the secret.

Syntax

azuresecretscontrol.SecretCreationDate(SecretIndex)

Default Value

-1

Remarks

The creation date of the secret.

This property reflects the creation date of the secret, in seconds since the Unix epoch.

The SecretIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecretCount property.

This property is read-only and not available at design time.

Data Type

Long64

SecretDeletionDate Property (AzureSecrets Control)

The deletion date of the secret.

Syntax

azuresecretscontrol.SecretDeletionDate(SecretIndex)

Default Value

-1

Remarks

The deletion date of the secret.

This property reflects the deletion date of the secret, in seconds since the Unix epoch, or -1 if the secret has not been deleted.

The SecretIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecretCount property.

This property is read-only and not available at design time.

Data Type

Long64

SecretEnabled Property (AzureSecrets Control)

Whether the secret is enabled.

Syntax

azuresecretscontrol.SecretEnabled(SecretIndex)

Default Value

False

Remarks

Whether the secret is enabled.

This property reflects whether the secret is currently enabled.

The SecretIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecretCount property.

This property is read-only and not available at design time.

Data Type

Boolean

SecretExpiryDate Property (AzureSecrets Control)

The expiration date of the secret.

Syntax

azuresecretscontrol.SecretExpiryDate(SecretIndex)

Default Value

-1

Remarks

The expiration date of the secret.

This property reflects the expiration date of the secret, in seconds since the Unix epoch, or -1 if the secret does not expire.

Note that this property is purely informational; Azure does not enforce any additional restrictions based on whether the secret has expired.

The SecretIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecretCount property.

This property is read-only and not available at design time.

Data Type

Long64

SecretName Property (AzureSecrets Control)

The name of the secret.

Syntax

azuresecretscontrol.SecretName(SecretIndex)

Default Value

""

Remarks

The name of the secret.

This property reflects the name of the secret.

The SecretIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecretCount property.

This property is read-only and not available at design time.

Data Type

String

SecretNotBeforeDate Property (AzureSecrets Control)

The 'not before' date of the secret.

Syntax

azuresecretscontrol.SecretNotBeforeDate(SecretIndex)

Default Value

-1

Remarks

The 'not before' date of the secret.

This property reflects the "not before" date of the secret, in seconds since the Unix epoch, or -1 if the secret doesn't have an explicit "not before" date.

Note that this property is purely informational; Azure does not enforce any additional restrictions based on whether the secret is awaiting its "not before" date.

The SecretIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecretCount property.

This property is read-only and not available at design time.

Data Type

Long64

SecretPurgeDate Property (AzureSecrets Control)

The purge date of the secret.

Syntax

azuresecretscontrol.SecretPurgeDate(SecretIndex)

Default Value

-1

Remarks

The purge date of the secret.

This property reflects the purge (i.e., permanent deletion) date of the secret, in seconds since the Unix epoch, or -1 if the secret has not been deleted.

The SecretIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecretCount property.

This property is read-only and not available at design time.

Data Type

Long64

SecretRecoverableDays Property (AzureSecrets Control)

The number of days the secret will be recoverable if it gets deleted.

Syntax

azuresecretscontrol.SecretRecoverableDays(SecretIndex)

Default Value

0

Remarks

The number of days the secret will be recoverable if it gets deleted.

This property reflects the number of days that the secret will be recoverable for if it gets deleted.

Note that this property's value is based on the retention policy of the currently-selected Vault; it will not change after the secret has actually been deleted.

The SecretIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecretCount property.

This property is read-only and not available at design time.

Data Type

Integer

SecretRecoveryLevel Property (AzureSecrets Control)

The secret's ability to be recovered and/or purged if it gets deleted.

Syntax

azuresecretscontrol.SecretRecoveryLevel(SecretIndex)

Default Value

""

Remarks

The secret's ability to be recovered and/or purged if it gets deleted.

This property reflects the secret's ability to be recovered and/or purged (i.e., permanently deleted) if it gets deleted. Possible values are as follows; please refer to this part of the Azure Key Vault documentation for more information about each one:

  • CustomizedRecoverable
  • CustomizedRecoverable+ProtectedSubscription
  • CustomizedRecoverable+Purgeable
  • Purgeable
  • Recoverable
  • Recoverable+ProtectedSubscription
  • Recoverable+Purgeable

The SecretIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecretCount property.

This property is read-only and not available at design time.

Data Type

String

SecretUpdateDate Property (AzureSecrets Control)

The update date of the secret.

Syntax

azuresecretscontrol.SecretUpdateDate(SecretIndex)

Default Value

-1

Remarks

The update date of the secret.

This property reflects the update date of the secret, in seconds since the Unix epoch.

The SecretIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecretCount property.

This property is read-only and not available at design time.

Data Type

Long64

SecretVersionId Property (AzureSecrets Control)

The version Id of the secret.

Syntax

azuresecretscontrol.SecretVersionId(SecretIndex)

Default Value

""

Remarks

The version Id of the secret.

This property reflects the version Id of the secret.

The SecretIndex parameter specifies the index of the item in the array. The size of the array is controlled by the SecretCount property.

This property is read-only and not available at design time.

Data Type

String

SSLAcceptServerCertEffectiveDate Property (AzureSecrets Control)

The date on which this certificate becomes valid.

Syntax

azuresecretscontrol.SSLAcceptServerCertEffectiveDate

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

Data Type

String

SSLAcceptServerCertExpirationDate Property (AzureSecrets Control)

The date on which the certificate expires.

Syntax

azuresecretscontrol.SSLAcceptServerCertExpirationDate

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

Data Type

String

SSLAcceptServerCertExtendedKeyUsage Property (AzureSecrets Control)

A comma-delimited list of extended key usage identifiers.

Syntax

azuresecretscontrol.SSLAcceptServerCertExtendedKeyUsage

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

Data Type

String

SSLAcceptServerCertFingerprint Property (AzureSecrets Control)

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertFingerprint

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

Data Type

String

SSLAcceptServerCertFingerprintSHA1 Property (AzureSecrets Control)

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertFingerprintSHA1

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

Data Type

String

SSLAcceptServerCertFingerprintSHA256 Property (AzureSecrets Control)

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertFingerprintSHA256

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

Data Type

String

SSLAcceptServerCertIssuer Property (AzureSecrets Control)

The issuer of the certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertIssuer

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

Data Type

String

SSLAcceptServerCertPrivateKey Property (AzureSecrets Control)

The private key of the certificate (if available).

Syntax

azuresecretscontrol.SSLAcceptServerCertPrivateKey

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The SSLAcceptServerCertPrivateKey may be available but not exportable. In this case, SSLAcceptServerCertPrivateKey returns an empty string.

This property is read-only.

Data Type

String

SSLAcceptServerCertPrivateKeyAvailable Property (AzureSecrets Control)

Whether a PrivateKey is available for the selected certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertPrivateKeyAvailable

Default Value

False

Remarks

Whether a SSLAcceptServerCertPrivateKey is available for the selected certificate. If SSLAcceptServerCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

Data Type

Boolean

SSLAcceptServerCertPrivateKeyContainer Property (AzureSecrets Control)

The name of the PrivateKey container for the certificate (if available).

Syntax

azuresecretscontrol.SSLAcceptServerCertPrivateKeyContainer

Default Value

""

Remarks

The name of the SSLAcceptServerCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

Data Type

String

SSLAcceptServerCertPublicKey Property (AzureSecrets Control)

The public key of the certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertPublicKey

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

Data Type

String

SSLAcceptServerCertPublicKeyAlgorithm Property (AzureSecrets Control)

The textual description of the certificate's public key algorithm.

Syntax

azuresecretscontrol.SSLAcceptServerCertPublicKeyAlgorithm

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

Data Type

String

SSLAcceptServerCertPublicKeyLength Property (AzureSecrets Control)

The length of the certificate's public key (in bits).

Syntax

azuresecretscontrol.SSLAcceptServerCertPublicKeyLength

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

Data Type

Integer

SSLAcceptServerCertSerialNumber Property (AzureSecrets Control)

The serial number of the certificate encoded as a string.

Syntax

azuresecretscontrol.SSLAcceptServerCertSerialNumber

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

Data Type

String

SSLAcceptServerCertSignatureAlgorithm Property (AzureSecrets Control)

The text description of the certificate's signature algorithm.

Syntax

azuresecretscontrol.SSLAcceptServerCertSignatureAlgorithm

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

Data Type

String

SSLAcceptServerCertStore Property (AzureSecrets Control)

The name of the certificate store for the client certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertStore[=string]

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The SSLAcceptServerCertStoreType property denotes the type of the certificate store specified by SSLAcceptServerCertStore. If the store is password-protected, specify the password in SSLAcceptServerCertStorePassword.

SSLAcceptServerCertStore is used in conjunction with the SSLAcceptServerCertSubject property to specify client certificates. If SSLAcceptServerCertStore has a value, and SSLAcceptServerCertSubject or SSLAcceptServerCertEncoded is set, a search for a certificate is initiated. Please see the SSLAcceptServerCertSubject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLAcceptServerCertStoreB.

Data Type

Binary String

SSLAcceptServerCertStorePassword Property (AzureSecrets Control)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

azuresecretscontrol.SSLAcceptServerCertStorePassword[=string]

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Data Type

String

SSLAcceptServerCertStoreType Property (AzureSecrets Control)

The type of certificate store for this certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertStoreType[=integer]

Possible Values

cstUser(0), 
cstMachine(1), 
cstPFXFile(2), 
cstPFXBlob(3), 
cstJKSFile(4), 
cstJKSBlob(5), 
cstPEMKeyFile(6), 
cstPEMKeyBlob(7), 
cstPublicKeyFile(8), 
cstPublicKeyBlob(9), 
cstSSHPublicKeyBlob(10), 
cstP7BFile(11), 
cstP7BBlob(12), 
cstSSHPublicKeyFile(13), 
cstPPKFile(14), 
cstPPKBlob(15), 
cstXMLFile(16), 
cstXMLBlob(17), 
cstJWKFile(18), 
cstJWKBlob(19), 
cstSecurityKey(20), 
cstBCFKSFile(21), 
cstBCFKSBlob(22), 
cstPKCS11(23), 
cstAuto(99)

Default Value

0

Remarks

The type of certificate store for this certificate.

The control supports both public and private keys in a variety of formats. When the cstAuto value is used, the control will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CERTMGR control. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the SSLAcceptServerCertStore and set SSLAcceptServerCertStorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Data Type

Integer

SSLAcceptServerCertSubjectAltNames Property (AzureSecrets Control)

Comma-separated lists of alternative subject names for the certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertSubjectAltNames

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

Data Type

String

SSLAcceptServerCertThumbprintMD5 Property (AzureSecrets Control)

The MD5 hash of the certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertThumbprintMD5

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLAcceptServerCertThumbprintSHA1 Property (AzureSecrets Control)

The SHA-1 hash of the certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertThumbprintSHA1

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLAcceptServerCertThumbprintSHA256 Property (AzureSecrets Control)

The SHA-256 hash of the certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertThumbprintSHA256

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLAcceptServerCertUsage Property (AzureSecrets Control)

The text description of UsageFlags .

Syntax

azuresecretscontrol.SSLAcceptServerCertUsage

Default Value

""

Remarks

The text description of SSLAcceptServerCertUsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

Data Type

String

SSLAcceptServerCertUsageFlags Property (AzureSecrets Control)

The flags that show intended use for the certificate.

Syntax

azuresecretscontrol.SSLAcceptServerCertUsageFlags

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of SSLAcceptServerCertUsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the SSLAcceptServerCertUsage property for a text representation of SSLAcceptServerCertUsageFlags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

Data Type

Integer

SSLAcceptServerCertVersion Property (AzureSecrets Control)

The certificate's version number.

Syntax

azuresecretscontrol.SSLAcceptServerCertVersion

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

Data Type

String

SSLAcceptServerCertSubject Property (AzureSecrets Control)

The subject of the certificate used for client authentication.

Syntax

azuresecretscontrol.SSLAcceptServerCertSubject[=string]

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Data Type

String

SSLAcceptServerCertEncoded Property (AzureSecrets Control)

The certificate (PEM/Base64 encoded).

Syntax

azuresecretscontrol.SSLAcceptServerCertEncoded[=string]

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.

When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLAcceptServerCertEncodedB.

This property is not available at design time.

Data Type

Binary String

SSLCertEffectiveDate Property (AzureSecrets Control)

The date on which this certificate becomes valid.

Syntax

azuresecretscontrol.SSLCertEffectiveDate

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

Data Type

String

SSLCertExpirationDate Property (AzureSecrets Control)

The date on which the certificate expires.

Syntax

azuresecretscontrol.SSLCertExpirationDate

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

Data Type

String

SSLCertExtendedKeyUsage Property (AzureSecrets Control)

A comma-delimited list of extended key usage identifiers.

Syntax

azuresecretscontrol.SSLCertExtendedKeyUsage

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

Data Type

String

SSLCertFingerprint Property (AzureSecrets Control)

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

azuresecretscontrol.SSLCertFingerprint

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

Data Type

String

SSLCertFingerprintSHA1 Property (AzureSecrets Control)

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

azuresecretscontrol.SSLCertFingerprintSHA1

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

Data Type

String

SSLCertFingerprintSHA256 Property (AzureSecrets Control)

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

azuresecretscontrol.SSLCertFingerprintSHA256

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

Data Type

String

SSLCertIssuer Property (AzureSecrets Control)

The issuer of the certificate.

Syntax

azuresecretscontrol.SSLCertIssuer

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

Data Type

String

SSLCertPrivateKey Property (AzureSecrets Control)

The private key of the certificate (if available).

Syntax

azuresecretscontrol.SSLCertPrivateKey

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The SSLCertPrivateKey may be available but not exportable. In this case, SSLCertPrivateKey returns an empty string.

This property is read-only.

Data Type

String

SSLCertPrivateKeyAvailable Property (AzureSecrets Control)

Whether a PrivateKey is available for the selected certificate.

Syntax

azuresecretscontrol.SSLCertPrivateKeyAvailable

Default Value

False

Remarks

Whether a SSLCertPrivateKey is available for the selected certificate. If SSLCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

Data Type

Boolean

SSLCertPrivateKeyContainer Property (AzureSecrets Control)

The name of the PrivateKey container for the certificate (if available).

Syntax

azuresecretscontrol.SSLCertPrivateKeyContainer

Default Value

""

Remarks

The name of the SSLCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

Data Type

String

SSLCertPublicKey Property (AzureSecrets Control)

The public key of the certificate.

Syntax

azuresecretscontrol.SSLCertPublicKey

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

Data Type

String

SSLCertPublicKeyAlgorithm Property (AzureSecrets Control)

The textual description of the certificate's public key algorithm.

Syntax

azuresecretscontrol.SSLCertPublicKeyAlgorithm

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

Data Type

String

SSLCertPublicKeyLength Property (AzureSecrets Control)

The length of the certificate's public key (in bits).

Syntax

azuresecretscontrol.SSLCertPublicKeyLength

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

Data Type

Integer

SSLCertSerialNumber Property (AzureSecrets Control)

The serial number of the certificate encoded as a string.

Syntax

azuresecretscontrol.SSLCertSerialNumber

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

Data Type

String

SSLCertSignatureAlgorithm Property (AzureSecrets Control)

The text description of the certificate's signature algorithm.

Syntax

azuresecretscontrol.SSLCertSignatureAlgorithm

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

Data Type

String

SSLCertStore Property (AzureSecrets Control)

The name of the certificate store for the client certificate.

Syntax

azuresecretscontrol.SSLCertStore[=string]

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password-protected, specify the password in SSLCertStorePassword.

SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLCertStoreB.

Data Type

Binary String

SSLCertStorePassword Property (AzureSecrets Control)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

azuresecretscontrol.SSLCertStorePassword[=string]

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Data Type

String

SSLCertStoreType Property (AzureSecrets Control)

The type of certificate store for this certificate.

Syntax

azuresecretscontrol.SSLCertStoreType[=integer]

Possible Values

cstUser(0), 
cstMachine(1), 
cstPFXFile(2), 
cstPFXBlob(3), 
cstJKSFile(4), 
cstJKSBlob(5), 
cstPEMKeyFile(6), 
cstPEMKeyBlob(7), 
cstPublicKeyFile(8), 
cstPublicKeyBlob(9), 
cstSSHPublicKeyBlob(10), 
cstP7BFile(11), 
cstP7BBlob(12), 
cstSSHPublicKeyFile(13), 
cstPPKFile(14), 
cstPPKBlob(15), 
cstXMLFile(16), 
cstXMLBlob(17), 
cstJWKFile(18), 
cstJWKBlob(19), 
cstSecurityKey(20), 
cstBCFKSFile(21), 
cstBCFKSBlob(22), 
cstPKCS11(23), 
cstAuto(99)

Default Value

0

Remarks

The type of certificate store for this certificate.

The control supports both public and private keys in a variety of formats. When the cstAuto value is used, the control will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CERTMGR control. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Data Type

Integer

SSLCertSubjectAltNames Property (AzureSecrets Control)

Comma-separated lists of alternative subject names for the certificate.

Syntax

azuresecretscontrol.SSLCertSubjectAltNames

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

Data Type

String

SSLCertThumbprintMD5 Property (AzureSecrets Control)

The MD5 hash of the certificate.

Syntax

azuresecretscontrol.SSLCertThumbprintMD5

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLCertThumbprintSHA1 Property (AzureSecrets Control)

The SHA-1 hash of the certificate.

Syntax

azuresecretscontrol.SSLCertThumbprintSHA1

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLCertThumbprintSHA256 Property (AzureSecrets Control)

The SHA-256 hash of the certificate.

Syntax

azuresecretscontrol.SSLCertThumbprintSHA256

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLCertUsage Property (AzureSecrets Control)

The text description of UsageFlags .

Syntax

azuresecretscontrol.SSLCertUsage

Default Value

""

Remarks

The text description of SSLCertUsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

Data Type

String

SSLCertUsageFlags Property (AzureSecrets Control)

The flags that show intended use for the certificate.

Syntax

azuresecretscontrol.SSLCertUsageFlags

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of SSLCertUsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the SSLCertUsage property for a text representation of SSLCertUsageFlags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

Data Type

Integer

SSLCertVersion Property (AzureSecrets Control)

The certificate's version number.

Syntax

azuresecretscontrol.SSLCertVersion

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

Data Type

String

SSLCertSubject Property (AzureSecrets Control)

The subject of the certificate used for client authentication.

Syntax

azuresecretscontrol.SSLCertSubject[=string]

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Data Type

String

SSLCertEncoded Property (AzureSecrets Control)

The certificate (PEM/Base64 encoded).

Syntax

azuresecretscontrol.SSLCertEncoded[=string]

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.

When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLCertEncodedB.

This property is not available at design time.

Data Type

Binary String

SSLProvider Property (AzureSecrets Control)

The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.

Syntax

azuresecretscontrol.SSLProvider[=integer]

Possible Values

sslpAutomatic(0), 
sslpPlatform(1), 
sslpInternal(2)

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the control will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are as follows:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The control will select a provider depending on the current platform.

When Automatic is selected, the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used.

Data Type

Integer

SSLServerCertEffectiveDate Property (AzureSecrets Control)

The date on which this certificate becomes valid.

Syntax

azuresecretscontrol.SSLServerCertEffectiveDate

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

Data Type

String

SSLServerCertExpirationDate Property (AzureSecrets Control)

The date on which the certificate expires.

Syntax

azuresecretscontrol.SSLServerCertExpirationDate

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

Data Type

String

SSLServerCertExtendedKeyUsage Property (AzureSecrets Control)

A comma-delimited list of extended key usage identifiers.

Syntax

azuresecretscontrol.SSLServerCertExtendedKeyUsage

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

Data Type

String

SSLServerCertFingerprint Property (AzureSecrets Control)

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

azuresecretscontrol.SSLServerCertFingerprint

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

Data Type

String

SSLServerCertFingerprintSHA1 Property (AzureSecrets Control)

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

azuresecretscontrol.SSLServerCertFingerprintSHA1

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

Data Type

String

SSLServerCertFingerprintSHA256 Property (AzureSecrets Control)

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

azuresecretscontrol.SSLServerCertFingerprintSHA256

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

Data Type

String

SSLServerCertIssuer Property (AzureSecrets Control)

The issuer of the certificate.

Syntax

azuresecretscontrol.SSLServerCertIssuer

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

Data Type

String

SSLServerCertPrivateKey Property (AzureSecrets Control)

The private key of the certificate (if available).

Syntax

azuresecretscontrol.SSLServerCertPrivateKey

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The SSLServerCertPrivateKey may be available but not exportable. In this case, SSLServerCertPrivateKey returns an empty string.

This property is read-only.

Data Type

String

SSLServerCertPrivateKeyAvailable Property (AzureSecrets Control)

Whether a PrivateKey is available for the selected certificate.

Syntax

azuresecretscontrol.SSLServerCertPrivateKeyAvailable

Default Value

False

Remarks

Whether a SSLServerCertPrivateKey is available for the selected certificate. If SSLServerCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

Data Type

Boolean

SSLServerCertPrivateKeyContainer Property (AzureSecrets Control)

The name of the PrivateKey container for the certificate (if available).

Syntax

azuresecretscontrol.SSLServerCertPrivateKeyContainer

Default Value

""

Remarks

The name of the SSLServerCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

Data Type

String

SSLServerCertPublicKey Property (AzureSecrets Control)

The public key of the certificate.

Syntax

azuresecretscontrol.SSLServerCertPublicKey

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

Data Type

String

SSLServerCertPublicKeyAlgorithm Property (AzureSecrets Control)

The textual description of the certificate's public key algorithm.

Syntax

azuresecretscontrol.SSLServerCertPublicKeyAlgorithm

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

Data Type

String

SSLServerCertPublicKeyLength Property (AzureSecrets Control)

The length of the certificate's public key (in bits).

Syntax

azuresecretscontrol.SSLServerCertPublicKeyLength

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

Data Type

Integer

SSLServerCertSerialNumber Property (AzureSecrets Control)

The serial number of the certificate encoded as a string.

Syntax

azuresecretscontrol.SSLServerCertSerialNumber

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

Data Type

String

SSLServerCertSignatureAlgorithm Property (AzureSecrets Control)

The text description of the certificate's signature algorithm.

Syntax

azuresecretscontrol.SSLServerCertSignatureAlgorithm

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

Data Type

String

SSLServerCertStore Property (AzureSecrets Control)

The name of the certificate store for the client certificate.

Syntax

azuresecretscontrol.SSLServerCertStore

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The SSLServerCertStoreType property denotes the type of the certificate store specified by SSLServerCertStore. If the store is password-protected, specify the password in SSLServerCertStorePassword.

SSLServerCertStore is used in conjunction with the SSLServerCertSubject property to specify client certificates. If SSLServerCertStore has a value, and SSLServerCertSubject or SSLServerCertEncoded is set, a search for a certificate is initiated. Please see the SSLServerCertSubject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLServerCertStoreB.

This property is read-only.

Data Type

Binary String

SSLServerCertStorePassword Property (AzureSecrets Control)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

azuresecretscontrol.SSLServerCertStorePassword

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

This property is read-only.

Data Type

String

SSLServerCertStoreType Property (AzureSecrets Control)

The type of certificate store for this certificate.

Syntax

azuresecretscontrol.SSLServerCertStoreType

Possible Values

cstUser(0), 
cstMachine(1), 
cstPFXFile(2), 
cstPFXBlob(3), 
cstJKSFile(4), 
cstJKSBlob(5), 
cstPEMKeyFile(6), 
cstPEMKeyBlob(7), 
cstPublicKeyFile(8), 
cstPublicKeyBlob(9), 
cstSSHPublicKeyBlob(10), 
cstP7BFile(11), 
cstP7BBlob(12), 
cstSSHPublicKeyFile(13), 
cstPPKFile(14), 
cstPPKBlob(15), 
cstXMLFile(16), 
cstXMLBlob(17), 
cstJWKFile(18), 
cstJWKBlob(19), 
cstSecurityKey(20), 
cstBCFKSFile(21), 
cstBCFKSBlob(22), 
cstPKCS11(23), 
cstAuto(99)

Default Value

0

Remarks

The type of certificate store for this certificate.

The control supports both public and private keys in a variety of formats. When the cstAuto value is used, the control will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CERTMGR control. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the SSLServerCertStore and set SSLServerCertStorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

This property is read-only.

Data Type

Integer

SSLServerCertSubjectAltNames Property (AzureSecrets Control)

Comma-separated lists of alternative subject names for the certificate.

Syntax

azuresecretscontrol.SSLServerCertSubjectAltNames

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

Data Type

String

SSLServerCertThumbprintMD5 Property (AzureSecrets Control)

The MD5 hash of the certificate.

Syntax

azuresecretscontrol.SSLServerCertThumbprintMD5

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLServerCertThumbprintSHA1 Property (AzureSecrets Control)

The SHA-1 hash of the certificate.

Syntax

azuresecretscontrol.SSLServerCertThumbprintSHA1

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLServerCertThumbprintSHA256 Property (AzureSecrets Control)

The SHA-256 hash of the certificate.

Syntax

azuresecretscontrol.SSLServerCertThumbprintSHA256

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLServerCertUsage Property (AzureSecrets Control)

The text description of UsageFlags .

Syntax

azuresecretscontrol.SSLServerCertUsage

Default Value

""

Remarks

The text description of SSLServerCertUsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

Data Type

String

SSLServerCertUsageFlags Property (AzureSecrets Control)

The flags that show intended use for the certificate.

Syntax

azuresecretscontrol.SSLServerCertUsageFlags

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of SSLServerCertUsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the SSLServerCertUsage property for a text representation of SSLServerCertUsageFlags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

Data Type

Integer

SSLServerCertVersion Property (AzureSecrets Control)

The certificate's version number.

Syntax

azuresecretscontrol.SSLServerCertVersion

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

Data Type

String

SSLServerCertSubject Property (AzureSecrets Control)

The subject of the certificate used for client authentication.

Syntax

azuresecretscontrol.SSLServerCertSubject

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

This property is read-only.

Data Type

String

SSLServerCertEncoded Property (AzureSecrets Control)

The certificate (PEM/Base64 encoded).

Syntax

azuresecretscontrol.SSLServerCertEncoded

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLServerCertStore and SSLServerCertSubject properties also may be used to specify a certificate.

When SSLServerCertEncoded is set, a search is initiated in the current SSLServerCertStore for the private key of the certificate. If the key is found, SSLServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLServerCertSubject is set to an empty string.

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLServerCertEncodedB.

This property is read-only and not available at design time.

Data Type

Binary String

TagCount Property (AzureSecrets Control)

The number of records in the Tag arrays.

Syntax

azuresecretscontrol.TagCount[=integer]

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at TagCount - 1.

This property is not available at design time.

Data Type

Integer

TagName Property (AzureSecrets Control)

The name of the tag.

Syntax

azuresecretscontrol.TagName(TagIndex)[=string]

Default Value

""

Remarks

The name of the tag.

This property specifies the name of the tag.

The TagIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TagCount property.

This property is not available at design time.

Data Type

String

TagValue Property (AzureSecrets Control)

The value of the tag.

Syntax

azuresecretscontrol.TagValue(TagIndex)[=string]

Default Value

""

Remarks

The value of the tag.

This property specifies the value of the tag.

The TagIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TagCount property.

This property is not available at design time.

Data Type

String

Timeout Property (AzureSecrets Control)

The timeout for the control.

Syntax

azuresecretscontrol.Timeout[=integer]

Default Value

60

Remarks

If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If Timeout is set to a positive value, the control will wait for the operation to complete before returning control.

The control will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.

If Timeout expires, and the operation is not yet complete, the control fails with an error.

Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

Data Type

Integer

Vault Property (AzureSecrets Control)

Selects a vault for the control to interact with.

Syntax

azuresecretscontrol.Vault[=string]

Default Value

""

Remarks

This property specifies the Azure Key Vault vault, by name, that the control should interact with.

Data Type

String

VersionMarker Property (AzureSecrets Control)

A marker indicating what page of secret versions to return next.

Syntax

azuresecretscontrol.VersionMarker[=string]

Default Value

""

Remarks

This property will be populated when ListVersions is called if the results are paged and there are more pages. To list all secret versions, continue to call ListVersions until this property returns empty string.

Refer to ListVersions for more information.

This property is not available at design time.

Data Type

String

AddQueryParam Method (AzureSecrets Control)

Adds a query parameter to the QueryParams properties.

Syntax

azuresecretscontrol.AddQueryParam Name, Value

Remarks

This method is used to add a query parameter to the QueryParams properties. Name specifies the name of the parameter, and Value specifies the value of the parameter.

All specified Values will be URL encoded by the control automatically. Consult the service documentation for details on the available parameters.

AddTag Method (AzureSecrets Control)

Adds an item to the Tags properties.

Syntax

azuresecretscontrol.AddTag Name, Value

Remarks

This method adds an item to the Tags properties. Name specifies the name of the item, and Value specifies the value of the item.

Authorize Method (AzureSecrets Control)

Get the authorization string required to access the protected resource.

Syntax

azuresecretscontrol.Authorize 

Remarks

This method is used to get an access token that is required to access the protected resource. The method will act differently based on what is set in the OAuthClientProfile property and the OAuthGrantType property. This method is not to be used in conjunction with the Authorization property. It should instead be used when setting the OAuth property.

For more information, see the introduction section.

BackupSecret Method (AzureSecrets Control)

Backs up a secret.

Syntax

azuresecretscontrol.BackupSecret SecretName

Remarks

This method backs up the secret specified by SecretName, returning it in a protected form via the the specified LocalFile or the SecretData property.

Note that the protected secret cannot be used outside of Azure Key Vault, it must be restored to another vault using the RestoreSecret method in order to be used.

Config Method (AzureSecrets Control)

Sets or retrieves a configuration setting.

Syntax

azuresecretscontrol.Config ConfigurationString

Remarks

Config is a generic method available in every control. It is used to set and retrieve configuration settings for the control.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the control, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

CreateSecret Method (AzureSecrets Control)

Creates a new secret.

Syntax

azuresecretscontrol.CreateSecret SecretName, ContentType

Remarks

This method creates a new secret with the given SecretName. If a secret with the specified SecretName already exists, a new version of it is created. The version Id of the newly-created secret is returned.

The secret value is taken from the specified LocalFile or the SecretData property. If the EncodeData property is enabled, the value will be base64-encoded before it is sent.

The value passed for SecretName must consist solely of alphanumeric characters and hyphens (-).

The ContentType parameter is optional, and can be set to any string value.

If there are any items in the Tags properties, they will be applied to the newly-created secret. Secrets may have up to 15 tags.

The following configuration settings can also be used to send additional values when creating the secret, refer to their documentation for more information:

Note: If there is already a soft-deleted secret with the specified SecretName in the currently-selected Vault, then a new secret cannot be created with the same name. To resolve such a situation, the soft-deleted secret would need to be recovered (using RecoverSecret) or permanently deleted (using PurgeSecret) first.

DeleteSecret Method (AzureSecrets Control)

Deletes a secret.

Syntax

azuresecretscontrol.DeleteSecret SecretName

Remarks

This method deletes the secret specified by SecretName. If there are multiple versions of the secret, all of them are deleted.

Note that the secret is only soft-deleted; it can be recovered during the retention period using the RecoverSecret method, or permanently deleted using the PurgeSecret method. The length of the retention period depends on the configuration of the currently-selected Vault, refer to the Azure Key Vault documentation for more information.

DoEvents Method (AzureSecrets Control)

This method processes events from the internal message queue.

Syntax

azuresecretscontrol.DoEvents 

Remarks

When DoEvents is called, the control processes any available events. If no events are available, it waits for a preset period of time, and then returns.

GetSecret Method (AzureSecrets Control)

Gets a secret's value and information.

Syntax

azuresecretscontrol.GetSecret SecretName

Remarks

This method gets the value and information for the secret specified by SecretName. The VersionId configuration setting can be used to target a specific secret version. The secret's value is returned via the specified LocalFile or the SecretData property.

Alternatively, the GetDeleted configuration setting can be enabled to get a soft-deleted secret's information (but not its value).

When the information is returned, the control clears the Secrets properties and repopulates it properties with the secret's tags. The SecretList and TagList events are also fired.

ListSecrets Method (AzureSecrets Control)

Lists the secrets in the currently-selected vault.

Syntax

azuresecretscontrol.ListSecrets 

Remarks

This method lists the secrets in the currently-selected Vault. If the GetDeleted configuration setting is enabled, it lists the soft-deleted secrets in the vault instead.

Calling this method will fire the SecretList event once for each secret, and will also populate the Secrets properties.

If there are still more secrets available to list when this method returns, the SecretMarker property will be populated. Continue to call this method until SecretMarker is empty to accumulate all pages of results in the Secrets properties.

The MaxSecrets configuration setting can be used to control the maximum number of results to return at once.

ListVersions Method (AzureSecrets Control)

Lists versions of a secret.

Syntax

azuresecretscontrol.ListVersions SecretName

Remarks

This method lists the versions of the secret specified by SecretName.

Calling this method will fire the SecretList event once for each secret version, and will also populate the Secrets properties.

If there are still more secret versions available to list when this method returns, the VersionMarker property will be populated. Continue to call this method until VersionMarker is empty to accumulate all pages of results in the Secrets properties.

The MaxSecrets configuration setting can be used to control the maximum number of results to return at once.

PurgeSecret Method (AzureSecrets Control)

Permanently deletes a soft-deleted secret.

Syntax

azuresecretscontrol.PurgeSecret SecretName

Remarks

This method permanently deletes the soft-deleted secret specified by SecretName.

RecoverSecret Method (AzureSecrets Control)

Recovers a soft-deleted secret.

Syntax

azuresecretscontrol.RecoverSecret SecretName

Remarks

This method recovers the soft-deleted secret specified by SecretName.

Reset Method (AzureSecrets Control)

Resets the control to its initial state.

Syntax

azuresecretscontrol.Reset 

Remarks

This method resets the control to its initial state.

RestoreSecret Method (AzureSecrets Control)

Restores a previously backed-up secret to the vault.

Syntax

azuresecretscontrol.RestoreSecret 

Remarks

This method restores a secret previously backed up using BackupSecret to the currently-selected Vault. The secret is restored in its entirety, with all of its versions intact. However, note that the restore will fail if the secret's name is already in use. The name of the restored secret is returned.

The protected secret data to restore is taken from the the specified LocalFile or the SecretData property.

Note: There are certain restrictions on which vaults a secret can be restored to. In particular, a secret must be restored to a vault owned by the same Azure subscription that owned its original vault, and must be restored to a vault in the same geolocation as its original vault. Refer to the Azure Key Vault documentation for more information.

SetSecretEnabled Method (AzureSecrets Control)

Enables or disables a secret.

Syntax

azuresecretscontrol.SetSecretEnabled SecretName, Enabled

Remarks

This method enables or disables the secret specified by SecretName.

UpdateSecret Method (AzureSecrets Control)

Updates a secret's information.

Syntax

azuresecretscontrol.UpdateSecret SecretName, ContentType, UpdateTags

Remarks

This method updates the information for the secret specified by SecretName. The VersionId configuration setting can be used to target a specific secret version.

The ContentType parameter, if non-empty, can be any string value. If empty, the secret's current content type is left unchanged. (To explicitly clear the secret's content type, pass %CLEAR%).

The UpdateTags parameter determines whether the control replaces the secret's current tags with the items in the Tags properties (which may be empty). Secrets may have up to 15 tags.

The ExpiryDate and NotBeforeDate configuration settings may also be used to send additional values, refer to their documentation for more information.

EndTransfer Event (AzureSecrets Control)

This event fires when a document finishes transferring.

Syntax

Sub azuresecretscontrol_EndTransfer(Direction As Integer)

Remarks

The EndTransfer event is fired when the document text finishes transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Error Event (AzureSecrets Control)

Fired when information is available about errors during data delivery.

Syntax

Sub azuresecretscontrol_Error(ErrorCode As Integer, Description As String)

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the control fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Header Event (AzureSecrets Control)

Fired every time a header line comes in.

Syntax

Sub azuresecretscontrol_Header(Field As String, Value As String)

Remarks

The Field parameter contains the name of the HTTP header (which is the same as it is delivered). The Value parameter contains the header contents.

If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).

Log Event (AzureSecrets Control)

Fired once for each log message.

Syntax

Sub azuresecretscontrol_Log(LogLevel As Integer, Message As String, LogType As String)

Remarks

This event is fired once for each log message generated by the control. The verbosity is controlled by the LogLevel setting.

LogLevel indicates the level of message. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

Message is the log entry.

LogType identifies the type of log entry. Possible values are as follows:

  • "Info"
  • "RequestHeaders"
  • "ResponseHeaders"
  • "RequestBody"
  • "ResponseBody"
  • "ProxyRequest"
  • "ProxyResponse"
  • "FirewallRequest"
  • "FirewallResponse"

SecretList Event (AzureSecrets Control)

Fires once for each secret when listing secrets.

Syntax

Sub azuresecretscontrol_SecretList(Name As String, VersionId As String, ContentType As String, Enabled As Boolean, CreationDate As Long64, UpdateDate As Long64, DeletionDate As Long64, PurgeDate As Long64)

Remarks

This event fires once for each secret (or secret version) returned when ListSecrets, ListVersions, or GetSecret is called.

Name reflects the name of the secret.

VersionId reflects the Id of the secret version.

ContentType reflects the secret's content type.

Enabled reflects whether the secret is currently enabled.

CreationDate reflects the secret's creation date, in seconds since the Unix epoch.

UpdateDate reflects the secret's update date, in seconds since the Unix epoch.

DeletionDate reflects the secret's deletion date, in seconds since the Unix epoch, or -1 if the secret has not been deleted.

PurgeDate reflects the secret's purge (i.e., permanent deletion) date, in seconds since the Unix epoch, or -1 if the secret has not been deleted.

SSLServerAuthentication Event (AzureSecrets Control)

Fired after the server presents its certificate to the client.

Syntax

Sub azuresecretscontrol_SSLServerAuthentication(CertEncoded As String, CertSubject As String, CertIssuer As String, Status As String, Accept As Boolean)

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (AzureSecrets Control)

Fired when secure connection progress messages are available.

Syntax

Sub azuresecretscontrol_SSLStatus(Message As String)

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

StartTransfer Event (AzureSecrets Control)

This event fires when a document starts transferring (after the headers).

Syntax

Sub azuresecretscontrol_StartTransfer(Direction As Integer)

Remarks

The StartTransfer event is fired when the document text starts transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

TagList Event (AzureSecrets Control)

Fires once for each tag returned when a secret is retrieved.

Syntax

Sub azuresecretscontrol_TagList(SecretName As String, VersionId As String, Name As String, Value As String)

Remarks

This event fires once for each tag returned when GetSecret is called.

SecretName reflects the name of the secret.

VersionId reflects the Id of the secret version.

Name reflects the name of the tag.

Value reflects the value of the tag.

Transfer Event (AzureSecrets Control)

Fired while a document transfers (delivers document).

Syntax

Sub azuresecretscontrol_Transfer(Direction As Integer, BytesTransferred As Long64, PercentDone As Integer, Text As String)

Remarks

The Text parameter contains the portion of the document text being received. It is empty if data are being posted to the server.

The BytesTransferred parameter contains the number of bytes transferred in this Direction since the beginning of the document text (excluding HTTP response headers).

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.

Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.

Config Settings (AzureSecrets Control)

The control accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the control, access to these internal properties is provided through the Config method.

AzureSecrets Config Settings

AccumulatePages:   Whether the control should accumulate subsequent pages of results when listing them.

This setting controls how the control behaves when listing multiple pages of results. If this setting is enabled, each successive page of results will be appended to the appropriate collection properties until the last page of results has been listed (at which point the next list call will cause said collection to be cleared first). If this setting is disabled, the collection will be cleared every time a page of results is returned.

By default, this setting is enabled, allowing all pages of results to be accumulated in the appropriate collection properties.

APIVersion:   The Azure Key Vault API version that the control conforms to.

This setting can be queried to obtain the Azure Key Vault API version that the control conforms to; it cannot be changed.

CreateSecretEnabled:   Whether new secrets should be created in an enabled or disabled state.

This setting specifies whether new secrets created using the CreateSecret method should be created in an enabled or disabled state.

By default, this setting is enabled, and secrets are created in an enabled state.

ExpiryDate:   The expiry date to send for the secret.

This setting specifies the expiry date that should be sent when a secret is created using CreateSecret or updated using UpdateSecret. The date should be specified in seconds since the Unix epoch.

Note that expiry dates are purely informational; Azure does not enforce any additional restrictions based on whether a secret has expired.

By default, this setting is set to -1, and no expiry date is sent.

GetDeleted:   Whether the control should retrieve information about soft-deleted secrets.

This setting specifies whether the control should retrieve information about soft-deleted secrets when ListSecrets or GetSecret is called.

By default, this setting is disabled, and the control requests information about active secrets.

MaxSecrets:   The maximum number of results to return when listing secrets.

This setting specifies the maximum number of results that should be returned by a call to ListSecrets or ListVersions.

If this setting is -1 (default), the server's default (25) is used. Otherwise, the setting must be set to a value greater than or equal to 1.

NotBeforeDate:   The 'not before' date to send for the secret.

This setting specifies the "not before" date that should be sent when a secret is created using CreateSecret or updated using UpdateSecret. The date should be specified in seconds since the Unix epoch.

Note that "not before" dates are purely informational; Azure does not enforce any additional restrictions based on whether a secret is awaiting its "not before" date.

By default, this setting is set to -1, and no "not before" date is sent.

RawRequest:   Returns the data that was sent to the server.

This setting may be queried after calling any method that sends data to the server to obtain the request data that was transmitted. Such data may be useful for troubleshooting purposes.

RawResponse:   Returns the data that was received from the server.

This setting may be queried after calling any method that sends data to the server to obtain the response data that was received. Such data may be useful for troubleshooting purposes.

VersionId:   The Id of the secret version that the control should make requests against.

This setting can be set to the Id of a specific secret version before calling the GetSecret or UpdateSecret method in order to have the control make the request against the specified version rather than the latest version.

Note that, in the case of GetSecret, this setting is ignored if the GetDeleted setting is enabled.

XChildCount:   The number of child elements of the current element.

This configuration settings specifies the number of child attributes of the current element. The XChild configuration settings will be indexed from 0 to (XChildCount - 1).

The current element is specified through the XPath configuration setting. This configuration setting is read-only.

XChildName[i]:   The name of the child element.

This configuration setting provides the name of the i-th child element of the current element.

The current element is specified through the XPath configuration setting. This configuration setting is read-only.

XChildXText[i]:   The inner text of the child element.

This configuration setting provides the inner text of the i-th child element of the current element.

The current element is specified through the XPath configuration setting. This configuration setting is read-only.

XElement:   The name of the current element.

This configuration setting provides the name of the current element.

The current element is specified through the XPath configuration setting. This configuration setting is read-only.

XParent:   The parent of the current element.

This configuration setting provides the parent of the current element.

The current element is specified through the XPath configuration setting. This configuration setting is read-only.

XPath:   Provides a way to point to a specific element in the returned XML or JSON response.

The XPath setting allows you to point to specific elements in the XML or JSON response.

When XPath is set to a valid path, XElement points to the name of the element, with XText, XParent, XSubTree, XChildCount, XChildName[i], and XChildXText[i] providing other properties of the element.

XPath syntax is available for both XML and JSON documents. An XPath is a series of one or more element accessors separated by the / character, for example, /A/B/C/D. An XPath can be absolute (i.e., it starts with /), or it can be relative to the current XPath location.

The following are possible values for an element accessor, which operates relative to the current location specified by the XPath accessors, which proceed it in the overall XPath string:

Accessor Description
name The first element with a particular name. Can be *.
[i] The i-th element.
name[i] The i-th element with a particular name.
[last()] The last element.
[last()-i] The element i before the last element.
name[@attrname="attrvalue"]The first element with a particular name that contains the specified attribute-value pair.

Supports single and double quotes. (XML Only)

. The current element.
.. The parent element.
Note: XPath indices are 1-based.

For example, assume the following XML and JSON responses.

XML:

<firstlevel>
  <one>value</one>
  <two>
    <item>first</item>
    <item>second</item>
  </two>
  <three>value three</three>
</firstlevel>

JSON:

{
  "firstlevel": {
    "one": "value",
    "two": ["first", "second"],
    "three": "value three"
  }
}

The following are examples of valid XPaths for these responses:

DescriptionXML XPath JSON XPath
Document root / /json
Specific element /firstlevel/one /json/firstlevel/one
i-th child /firstlevel/two/item[2]/json/firstlevel/two/[2]

This list is not exhaustive, but it provides a general idea of the possibilities.

XSubTree:   A snapshot of the current element in the document.

This configuration setting provides the entirety of the current element (including its subelements).

The current element is specified through the XPath configuration setting. This configuration setting is read-only.

XText:   The text of the current element.

This configuration setting provides the inner text of the current element.

The current element is specified in the XPath configuration setting. This configuration setting is read-only.

OAuth Config Settings

OAuthAccessTokenExpiration:   The lifetime of the access token.

This setting holds the lifetime of the access token in seconds. For instance the value 3600 indicates that the token will expire in one hour from the time it was generated.

OAuthAuthorizationTokenType:   The type of access token returned.

The applicable values include the following:

Bearer (default)When the access token returned by the server is a Bearer type, the authorization string returned by Authorize will be in the format "Bearer access_token". This can be supplied as the value of the HTTP Authorization header.
OAuthAutomaticRefresh:   Whether or not to refresh an expired access token automatically.

When this setting is set to and the Authorization property is not set, the control will automatically get a new access token if it has the necessary properties to do so without user interaction.

For example, when using the Authorization Code grant type, the OAuthRefreshToken property should be set to a valid refresh token. When using the Client Credential grant type however, the control does not need any additional properties set as it can already get a new access token without user interaction.

OAuthBrowserResponseTimeout:   Specifies the amount of time to wait for a response from the browser.

This setting specifies the amount of time (in seconds) the control will wait for a response from the browser when requesting user authentication. The default value is 0, meaning that the control will wait indefinitely.

OAuthIncludeEmptyRedirectURI:   Whether an empty redirect_uri parameter is included in requests.

This setting specifies whether redirect_uri is included in the request made by Authorize if it is empty.

If set to (default) the redirect_uri will be sent in all cases. If set to the redirect_uri will only be sent if it has a value.

OAuthJWTPayload:   The payload of the JWT access token if present.

This configuration setting provides the payload section of a JWT access token if the access token is a JWT and the control is able to parse out the payload section. This setting only applies to access tokens that are returned from a service provider after successfully authorizing and authenticating with the service.

To parse the payload for specific claims, see OAuthJWTXPath.

OAuthJWTXChildCount:   The number of child elements of the current element.

The number of child attributes of the current element. The OAuthJWTXChildCount configuration settings will be indexed from 0 to (OAuthJWTXChildCount - 1).

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OauthJWTXChildName[i]:   The name of the child element.

Provides the name of the i'th child element of the current element.

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OAuthJWTXChildXText[i]:   The inner text of the child element.

Provides the inner text of the i'th child element of the current element.

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OAuthJWTXElement:   The name of the current element.

Provides the name of the current element.

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OauthJWTXParent:   The parent of the current element.

Provides the parent of the current element.

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OAuthJWTXPath:   Provides a way to point to a specific element in the returned payload of a JWT based access token.

The OAuthJWTXPath setting allows you to point to specific claims within the payload of a JWT based access token.

XPath syntax is available for the payload of JWT based access tokens if available. An XPath is a series of one or more element accessors separated by the / character, for example: /A/B/C/D.

The following are possible values for an element accessor, which operates relative to the current location specified by the XPath accessors which proceed it in the overall XPath string:

Accessor Description
name The first element with a particular name. Can be *.
[i] The i-th element.
name[i] The i-th element with a particular name.
[last()] The last element.
[last()-i] The element i before the last element.
Here are some examples of valid XPaths and some common claims:
DescriptionJSON XPath
Document root /json
Specific element /json/element_one
Username Claim (Microsoft Specific) /json/preferred_username
Registered Application Name Claim (Microsoft Specific) /json/app_displayname

This is not an exhaustive list by any means, but should provide a general idea of the possibilities. To get the text of the specified element, see OAuthJWTXText.

OAuthJWTXSubTree:   A snapshot of the current element in the document.

Provides the entirety of the current element (including its sub-elements).

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OAuthJWTXText:   The text of the current element.

Provides the inner text of the current element.

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OAuthParamCount:   Specifies the number of additional parameters variables to include in the request.

This setting can be used to add query string parameters to the outgoing request. One common use for this method would be to add the "state" parameter to the request, which can be used when the OAuthClientProfile is cocpWeb to add user defined data. The authorization server will include the "state" parameter in the response and will be available in the post back to your server which will allow you to maintain state in your application. This is used in conjunction with OAuthParamName[i] and OAuthParamValue[i]. For instance:

component.Config("OAuthParamCount=2"); component.Config("OAuthParamName[0]=myvar"); component.Config("OAuthParamValue[0]=myvalue"); component.Config("OAuthParamName[1]=testname"); component.Config("OAuthParamValue[1]=testvalue");

Additionally, this will also be updated to hold the parameters returned in the response.

for (int i = 0; i < int.Parse(component.Config("OAuthParamCount")); i++) { string name = component.Config("OAuthParamName[" + i + "]"); string value = component.Config("OAuthParamValue[" + i + "]"); }

OAuthParamName[i]:   Specifies the parameter name at the specified index.

This setting can be used to retrieve or specify the parameter variable name at the index specified. See OAuthParamCount for details.

OAuthParamValue[i]:   Specifies the parameter value at the specified index.

This setting can be used to retrieve or specify the parameter variable value at the index specified. See OAuthParamCount for details.

OAuthPasswordGrantUsername:   Used in the Resource Owner Password grant type.

Used to set the username property when the OAuthGrantType is set to the password grant type and Authorize is called.

OAuthPKCEChallengeEncoding:   The PKCE code challenge method to use.

This setting controls the PKCE code challenge method used when OAuthUsePKCE is set to . Possible values are:

  • 1 (Plain)
  • 2 (S256/SHA256 - default)
OAuthPKCEVerifier:   The PKCE verifier used to generate the challenge.

This configuration setting when queried provides the PKCE verifier that is used to generate the PKCE challenge for the Authorize method and the OAuthWebAuthURL field when OAuthUsePKCE is set to true. When using the cocpWeb OAuthClientProfile, the configuration setting can be set instead to allow the authorization request to be made from a different instance than the authentication (token) request.

OAuthResetData:   Determines if the Reset method applies to the OAuth settings.

If set to (default), the Reset method will reset the OAuth settings including any authorization fields like OAuthAccessToken and OAuthRefreshToken. This means the Authorize method must be called again to get new authorization information. When set to , the Reset method will not reset the OAuth property and the OAuth* configuration settings. This allows for the control to be reset without having to get authorization again.

OAuthReUseWebServer:   Determines if the same server instance is used between requests.

If set to (default), the same embedded web server instance will be used for multiple requests. If set to the embedded web server will be created and destroyed on each call to Authorize

OAuthTransferredRequest:   The full OAuth request last sent by the client.

This configuration setting returns the full OAuth request last sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Gmail gmail = new Gmail(); gmail.Config("OAuthTransferredRequest=on"); gmail.Authorize(); Console.WriteLine(gmail.Config("OAuthTransferredRequest")); C++ Gmail gmail; gmail.Config("OAuthTransferredRequest=on"); gmail.Authorize(); printf("%s\r\n", gmail.Config("OAuthTransferredRequest"));

OAuthUsePKCE:   Specifies if PKCE should be used.

If set to (default), Proof Key for Code Exchange (PKCE) defined by RFC 7636 will be used when performing authorization. This setting applies when using the Authorization Code OAuthGrantType. The OAuthPKCEChallengeEncoding configuration setting can be used to control the code challenge method that will be used.

OAuthWebServerActive:   Specifies and controls whether the embedded web server is active.

The setting when queried will return the current state of the web server. If the webserver is active, it will return "true" and if it is inactive it will return "false".

This setting can also be set to activate or deactivate the web server. Under normal circumstances, this would not be required as the control will automatically start and stop the web server when Authorize is called. In certain cases, it is required to start the webserver before calling Authorize. For example, if the OAuthReturnURL needs to be set to a relay server, then you will need to start the web server manually. Another example would be when the OAuthReUseWebServer is set to true, the server will not be automatically stopped, and this configuration setting must be set to "false" to stop the embedded web server.

OAuthWebServerCertStore:   The certificate with private key to use when SSL is enabled.

The name of the certificate store used for the embedded web server's SSL.

The OAuthWebServerCertStoreType property specifies the type of the certificate store specified by OAuthWebServerCertStore. If the store is password protected, specify the password in OAuthWebServerCertStorePassword.

OAuthWebServerCertStore is used in conjunction with the OAuthWebServerCertSubject property in order to specify the certificate to be used during SSL.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

Note: This is required when OAuthWebServerSSLEnabled is set to .

OAuthWebServerCertStorePassword:   The certificate with private key to use when SSL is enabled.

If the certificate store is of a type that requires a password, this property is used to specify that password in order to open the certificate store.

Note: This is only applicable when OAuthWebServerSSLEnabled is set to .

OAuthWebServerCertStoreType:   The certificate with private key to use when SSL is enabled.

This specifies the type of certificate store. Possible values are:

0 User - This is the default for Windows. This specifies that the certificate store is a certificate store owned by the current user. Note: This store type is not available in Java.
1 Machine - For Windows, this specifies that the certificate store is a machine store. Note: This store type is not available in Java.
2 PFXFile - The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 PFXBlob - The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 JKSFile - The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: This store type is available only in Java.
5 JKSBlob - The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: This store type is available only in Java.
6 PEMKeyFile - The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 PEMKeyBlob - The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
14 PPKFile - The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 PPKBlob - The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 XMLFile - The certificate store is the name of a file that contains a certificate in XML format.
17 XMLBlob - The certificate store is a string that contains a certificate in XML format.
Note: This is required when OAuthWebServerSSLEnabled is set to .
OAuthWebServerCertSubject:   The certificate with private key to use when SSL is enabled.

The subject of the SSL certificate.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Note: This is required when OAuthWebServerSSLEnabled is set to .

OAuthWebServerFailedResponse:   The custom response that will be displayed to the user if authentication failed.

When Authorize is called the user will be redirected to the embedded web server upon completing authentication with the authorization server. If authentication failed, the HTML specified here will be sent to the user's browser.

OAuthWebServerHost:   The hostname used by the embedded web server displayed in the ReturnURL.

This setting specifies the hostname used by the embedded web server when OAuthClientProfile is set to cocpApplication. This specifies the interface on which the embedded web server listens, and also the value displayed in the OAuthReturnURL. This should be set to the hostname only, not the full URL.

The default value is localhost.

OAuthWebServerPort:   The local port on which the embedded web server listens.

This property specifies the port on which the embedded web server listens. Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be returned when this setting is queried after the server has started listening.This is only applicable when using the embedded web server.

OAuthWebServerResponse:   The custom response that will be displayed to the user.

When Authorize is called the user will be redirected to the embedded web server upon completing authentication with the authorization server. This setting allows you to specify the HTML that will be sent to the user's browser.

OAuthWebServerSSLEnabled:   Whether the web server requires SSL connections.

This setting specifies whether the embedded web server will use SSL. If set to True OAuthWebServerCert* configs are required and the server will only accept SSL connections. If set to False only plaintext connects are supported.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the control adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The control only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the control will accept compressed data. It then will uncompress the data it has received. The control will handle data compressed by both gzip and deflate compression algorithms.

When True, the control adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when HTTPVersion is set to "2.0".

If set to True (default), the control will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the control fails with an error if the server does not support HTTP/2.

The default value is True.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to LocalFile. When set to True, downloaded data will be appended to LocalFile. This may be used in conjunction with Range to resume a failed download. This is applicable only when LocalFile is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP control can be extended with other security schemes in addition to the authorization schemes already implemented by the control.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the Transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the control.

If set to True, the URL passed to the control will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the control returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new URL for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the control fails with an error.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the control fails with an error instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the control will perform a GET on the new location.

The default value is False. If set to True, the control will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the control.

This property specifies the HTTP version used by the control. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the control will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If , the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If , the connection will be closed immediately after the server response is received.

The default value for KeepAlive is .

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the Log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When FollowRedirects is set to any value other than frNever, the control will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When HTTPVersion is set to "2.0" (if the server does not support "2.0"), then the control will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF (Chr$(13) & Chr$(10)) .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the control beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If ProxyUser and ProxyPassword are specified, this value is calculated using the algorithm specified by ProxyAuthScheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by controls that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by controls that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by controls that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by controls that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by controls that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the control.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the control.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the control will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the control will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001.

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the control will attempt to use the Proxy auto-config URL when establishing a connection and ProxyAutoDetect is set to True.

When True (default), the control will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the control will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the control whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by controls that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the control fails with an error.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by controls that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

Possible values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the control fails with an error.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the control returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.

If the control is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the control binds.

This configuration setting must be set before a connection is attempted. It instructs the control to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the control will use IPv4 exclusively. When set to 1, the control will use IPv6 exclusively. To instruct the control to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the control will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the control is the same.

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This configuration setting specifies whether the control will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the control will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The control will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.

When set to 0 (default), the CRL check will not be performed by the control. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This configuration setting specifies whether the control will use OCSP to check the validity of the server certificate. If set to 1 or 2, the control will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The control will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the control fails with an error.

When set to 0 (default), the control will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the control will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform include the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include the following:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internalinclude the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include the following:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the control will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the control when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is by default, but it can be set to to enable the extension.

This configuration setting is applicable only when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the control will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the control will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown certificate authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown certificate authority revocation status.
0x00000800Ignore unknown root revocation status.
0x00008000Allow test root certificate.
0x00004000Trust test root certificate.
0x80000000Ignore non-matching CN (certificate CN non-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the control will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the control fails with an error.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to to mask sensitive data. The default is .

This setting only works on these controls: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to , the control will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to tells the control to use the internal implementation instead of using the system security libraries.

This setting is set to by default on all platforms.

Trappable Errors (AzureSecrets Control)

Common Errors

20601    A server error occurred, and/or the control was unable to process the server's response. Please refer to the error message for more information.
20602    An unsupported operation or action was attempted.
20603    The RawRequest or RawResponse configuration setting was queried without first setting the TransferredRequest configuration setting to ON.
20604    The login credentials specified were invalid. Please refer to the error message for more information.
20605    An invalid remote resource identifier (i.e., a name, path, Id, etc.) was specified.
20606    An invalid index was specified.
20607    An operation failed because the specified OutputFile already exists and Overwrite is .
20608    An exception occurred while working with the specified InputFile or OutputFile (or the current value of one of those properties is invalid). Please refer to the error message for more information.
20609    An exception occurred while working with the specified input or output stream. Please refer to the error message for more information.

The control may also return one of the following error codes, which are inherited from other controls.

HTTP Errors

20119    Firewall error. The error description contains the detailed message.
20144    Busy executing current method.
20152    HTTP protocol error. The error message has the server response.
20153    No server specified in URL.
20154    Specified URLScheme is invalid.
20156    Range operation is not supported by server.
20157    Invalid cookie index (out of range).
20302    Interrupted.
20303    Cannot open AttachedFile.

The control may also return one of the following error codes, which are inherited from other controls.

TCPClient Errors

20101    You cannot change the RemotePort at this time. A connection is in progress.
20102    You cannot change the RemoteHost (Server) at this time. A connection is in progress.
20103    The RemoteHost address is invalid (0.0.0.0).
20105    Already connected. If you want to reconnect, close the current connection first.
20107    You cannot change the LocalPort at this time. A connection is in progress.
20108    You cannot change the LocalHost at this time. A connection is in progress.
20113    You cannot change MaxLineLength at this time. A connection is in progress.
20117    RemotePort cannot be zero. Please specify a valid service port number.
20118    You cannot change the UseConnection option while the control is active.
20136    Operation would block.
20202    Timeout.
20212    Action impossible in control's present state.
20213    Action impossible while not connected.
20214    Action impossible while listening.
20302    Timeout.
20303    Could not open file.
20435    Unable to convert string to selected CodePage.
21106    Already connecting. If you want to reconnect, close the current connection first.
21118    You need to connect first.
21120    You cannot change the LocalHost at this time. A connection is in progress.
21121    Connection dropped by remote host.

SSL Errors

20271    Cannot load specified security library.
20272    Cannot open certificate store.
20273    Cannot find specified certificate.
20274    Cannot acquire security credentials.
20275    Cannot find certificate chain.
20276    Cannot verify certificate chain.
20277    Error during handshake.
20281    Error verifying certificate.
20282    Could not find client certificate.
20283    Could not find server certificate.
20284    Error encrypting data.
20285    Error decrypting data.

TCP/IP Errors

25005    [10004] Interrupted system call.
25010    [10009] Bad file number.
25014    [10013] Access denied.
25015    [10014] Bad address.
25023    [10022] Invalid argument.
25025    [10024] Too many open files.
25036    [10035] Operation would block.
25037    [10036] Operation now in progress.
25038    [10037] Operation already in progress.
25039    [10038] Socket operation on nonsocket.
25040    [10039] Destination address required.
25041    [10040] Message is too long.
25042    [10041] Protocol wrong type for socket.
25043    [10042] Bad protocol option.
25044    [10043] Protocol is not supported.
25045    [10044] Socket type is not supported.
25046    [10045] Operation is not supported on socket.
25047    [10046] Protocol family is not supported.
25048    [10047] Address family is not supported by protocol family.
25049    [10048] Address already in use.
25050    [10049] Cannot assign requested address.
25051    [10050] Network is down.
25052    [10051] Network is unreachable.
25053    [10052] Net dropped connection or reset.
25054    [10053] Software caused connection abort.
25055    [10054] Connection reset by peer.
25056    [10055] No buffer space available.
25057    [10056] Socket is already connected.
25058    [10057] Socket is not connected.
25059    [10058] Cannot send after socket shutdown.
25060    [10059] Too many references, cannot splice.
25061    [10060] Connection timed out.
25062    [10061] Connection refused.
25063    [10062] Too many levels of symbolic links.
25064    [10063] File name is too long.
25065    [10064] Host is down.
25066    [10065] No route to host.
25067    [10066] Directory is not empty
25068    [10067] Too many processes.
25069    [10068] Too many users.
25070    [10069] Disc Quota Exceeded.
25071    [10070] Stale NFS file handle.
25072    [10071] Too many levels of remote in path.
25092    [10091] Network subsystem is unavailable.
25093    [10092] WINSOCK DLL Version out of range.
25094    [10093] Winsock is not loaded yet.
26002    [11001] Host not found.
26003    [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
26004    [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
26005    [11004] Valid name, no data record (check DNS setup).