AmazonKMS Component

Properties   Methods   Events   Config Settings   Errors  

The AmazonKMS component provides an easy-to-use interface for Amazon's Key Management Service.

Syntax

nsoftware.CloudKeys.AmazonKMS

Remarks

The AmazonKMS component makes it easy to work with the Amazon Key Management Service (KMS) in a secure manner using TLS. Amazon KMS allows you to create, manage, and use KMS keys for cryptographic operations. You can also work with aliases, and generate data keys and data key pairs.

To begin, register for an AWS account and obtain an AccessKey and SecretKey to use for authentication. Once one or more KMS keys have been created, either via the AWS console (recommended) or this API, you'll be ready to start using the component to manage and use the KMS keys.

Resource Terminology

As implied above, there are three kinds of resources associated with Amazon KMS. The primary resource type is the AWS KMS key, or "KMS key". KMS keys can be symmetric or asymmetric, and can be used either for encryption and decryption, or signing and verification. KMS keys themselves can never leave the Amazon cloud, they are used for server-side cryptographic operations only. This is a security feature, but it does mean that the amount of data that can be processed in a KMS key-based cryptographic operation is relatively small.

To work around the small server-side cryptographic operation data limit, Amazon KMS also supports the generation of data keys (symmetric) and data key pairs (asymmetric), which can then be used outside of Amazon KMS in order to encrypt/decrypt and sign/verify larger amounts data. KMS itself only generates these keys, it does not track them or make use of them for cryptographic operations. However, it does encrypt the data key (or, for data key pairs, the private key) using a KMS key when it is generated, which means that the key must be decrypted using a KMS key each time it needs to be used. For more information, refer to Amazon's Envelope Encryption description, which details the many security benefits of this strategy.

The last resource is called an alias. Aliases provide friendly names for KMS keys, which can otherwise only be identified by their Id or Amazon resource name (ARN). Since an alias is a standalone resource, it can be created and deleted without affecting the KMS key it refers to. It can also be updated to refer to a different KMS key at any time.

Note: KMS keys and aliases are region-specific resources. That is, KMS keys and aliases cannot be accessed or used outside of the region that they reside in.

Using the Component

KMS keys can be created using the CreateKey method. A KMS key's key spec (i.e., whether it is symmetric or asymmetric, and in the latter case, what kind of asymmetric) and usage (i.e., whether it is for encryption/decryption or signing/verification) must be set at the time of creation, and they cannot be changed later. A description of the KMS key can also be provided when it is created, and can be changed at any time using the UpdateKeyDescription method.

When a KMS key will no longer be used, it can be scheduled for deletion using the ScheduleKeyDeletion method. AWS requires that KMS keys remain in a "pending deletion" state for at least seven days to help ensure that they are truly no longer needed. If at any time during the waiting period it is discovered that the KMS key is still needed, the deletion can be canceled using the CancelKeyDeletion method (KMS keys cannot be used while they are pending deletion). // The CreateKey method returns the Amazon resource name of the newly-created KMS key. string keyArn = kms.CreateKey("SYMMETRIC_DEFAULT", false, "Test key"); // ... Some time later ... // Schedules the KMS key for deletion in 15 days. kms.ScheduleKeyDeletion(keyArn, 15);

Aliases can be created and deleted using the CreateAlias and DeleteAlias methods. Also, while aliases can be updated to refer to a different KMS key at any time during their lifetime. Note that all alias names must begin with the prefix alias/ (but cannot begin with alias/aws/, which is a reserved prefix). kms.CreateAlias("alias/MyTestKey", keyArn); kms.UpdateAlias("alias/MyTestKey", otherKeyArn); kms.DeleteAlias("alias/MyTestKey"); // Only deletes the alias; the KMS key it refers to is unaffected.

To list KMS keys or aliases, use the ListKeys and ListAliases methods. For the former, the IncludeKeyDetails property can optionally be enabled to have the component attempt to retrieve the full information for each KMS key (Amazon only returns the KMS key's ARN and Id while listing). // If there are many KMS keys to list, there may be multiple pages of results. This will // cause all pages of results to be accumulated into the Keys collection property. do { kms.ListKeys(); } while (!string.IsNullOrEmpty(kms.KeyMarker)); foreach (AWSKey key in kms.Keys) { Console.WriteLine(key.ARN); }

Depending on a KMS key's usage, it can be used to perform different cryptographic operations. KMS keys with encryption/decryption usage can be used in Encrypt, Decrypt, and ReEncrypt operations. KMS keys with sign/verify usage can be used in Sign and Verify operations. To perform a cryptographic operation, use InputData, InputFile, or SetInputStream to supply the input data that should be processed. All operations will output the result data to OutputData, OutputFile, or SetOutputStream (except Verify; refer to its documentation for more information). // Create an asymmetric KMS key with encrypt/decrypt usage. string keyArn = kms.CreateKey("RSA_4096", false, "Encryption Key #237"); // Encrypt the string "Test123" and write the encrypted data to an output file. kms.InputData = "Test123"; kms.OutputFile = "C:/temp/enc.dat"; kms.Encrypt(keyArn, "RSAES_OAEP_SHA_256"); // ...Later, decrypt the data again. kms.InputFile = "C:/temp/enc.dat"; kms.OutputFile = ""; // So that the data will be output to the OutputData property. kms.Decrypt(keyArn, "RSAES_OAEP_SHA_256");

It's important to note that the amount of data that can be processed in server-side cryptographic operations is very small. For signing operations, it is limited to 4096 bytes; for encryption operations, the limit varies based on the selected KMS key's key spec and the selected encryption algorithm (see the Encrypt method's documentation for more information).

To work around this issue, Amazon KMS supports the generation of data keys and data key pairs (described above) which can be used locally to encrypt/decrypt or sign/verify large amounts of data. To generate a data key or a data key pair, call the GenerateDataKey and GenerateDataKeyPair methods. // Generates a data key, including a plaintext copy. // The encrypted copy is encrypted by the specified KMS key. kms.GenerateDataKey("AES_256", keyArn, true); // The resulting information is stored in the following properties: // kms.KeyData.ARN: The ARN of the KMS key used to encrypt the data key. // kms.KeyData.EncryptedKey: The encrypted copy of the data key. // kms.KeyData.KeySpec: The spec of the generated data key. // kms.KeyData.PlaintextKey: The plaintext copy of the data key (if it was requested). // Generates a data key pair, including plaintext copy. // The encrypted copy of the private key is encrypted by the specified KMS key. kms.GenerateDataKeyPair("ECC_NIST_P384", keyArn, true); // The resulting information is stored in the following properties: // kms.KeyData.ARN: The ARN of the KMS key used to encrypt the data key pair's private key. // kms.KeyData.EncryptedKey: The encrypted copy of the private key. // kms.KeyData.KeySpec: The spec of the generated data key pair. // kms.KeyData.PlaintextKey: The plaintext copy of the private key (if it was requested). // kms.KeyData.PublicKey: The data key pair's public key.

The component also supports a variety of other functionality, including:

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

AccessKeyThe access key to use for authentication.
AliasesA collection of aliases.
AliasMarkerA marker indicating what page of aliases to return next.
EncryptionContextA collection of encryption context items.
FirewallA set of properties related to firewall access.
IdleThe current status of the component.
IncludeKeyDetailsWhether to attempt to retrieve full details when listing KMS keys.
InputDataThe data to process.
InputFileThe file whose data should be processed.
KeyDataThe downloaded key information.
KeyMarkerA marker indicating what page of KMS keys to return next.
KeysA collection of keys.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
OtherHeadersOther headers as determined by the user (optional).
OutputDataThe output data.
OutputFileThe file to which output data should be written.
OverwriteWhether the output file should be overwritten if necessary.
ParsedHeadersThis property includes a collection of headers returned from the last request.
ProxyA set of properties related to proxy access.
QueryParamsAdditional query parameters to be included in the request.
RegionThe region that the component will make requests against.
SecretKeyThe secret key to use for authentication.
SSLAcceptServerCertInstructs the component to unconditionally accept the server certificate that matches the supplied certificate.
SSLCertThe certificate to be used during Secure Sockets Layer (SSL) negotiation.
SSLProviderThe Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
SSLServerCertThe server certificate for the last established connection.
TimeoutThe timeout for the component.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

AddEncryptionContextItemAdds an item to the EncryptionContext properties.
AddQueryParamAdds a query parameter to the QueryParams properties.
CancelKeyDeletionCancels the deletion of the specified KMS key.
ClearKeyDataClears information stored in the KeyData properties.
ConfigSets or retrieves a configuration setting.
CreateAliasCreates a new alias.
CreateKeyCreates a new KMS key.
DecryptDecrypts data using a KMS key.
DeleteAliasDeletes an alias.
DoEventsThis method processes events from the internal message queue.
EncryptEncrypts data using a KMS key.
GenerateDataKeyGenerates a data key that can be used outside of Amazon KMS.
GenerateDataKeyPairGenerates a data key pair that can be used outside of Amazon KMS.
GenerateRandomBytesGenerates a cryptographically-secure random byte string.
GetKeyInfoGets information about a KMS key.
GetKeyRotationStatusRetrieves the key rotation status for a KMS key.
GetPublicKeyRetrieves the public key of an asymmetric KMS key.
ListAliasesLists aliases in the current account and region.
ListKeysLists KMS keys in the current account and region.
ReEncryptDecrypts data using one KMS key and re-encrypts it using another KMS key.
ResetResets the component to its initial state.
ScheduleKeyDeletionSchedules the deletion of a KMS key.
SendCustomRequestSends a custom request to the server.
SetInputStreamSets the stream whose data should be processed.
SetKeyEnabledEnables or disables a KMS key.
SetKeyRotationStatusEnables or disables automatic key rotation for a KMS key.
SetOutputStreamSets the stream to which output data should be written.
SignSigns a message using a KMS key.
UpdateAliasUpdates an alias to refer to a different KMS key.
UpdateKeyDescriptionUpdates a KMS key's description.
VerifyVerifies a digital signature using a KMS key.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

AliasListFires once for each alias when listing aliases.
EndTransferThis event fires when a document finishes transferring.
ErrorFired when information is available about errors during data delivery.
HeaderFired every time a header line comes in.
KeyListFires once for each KMS key when listing KMS keys.
LogFired once for each log message.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.
StartTransferThis event fires when a document starts transferring (after the headers).
TransferFired while a document transfers (delivers document).

Config Settings


The following is a list of config settings for the component with short descriptions. Click on the links for further details.

AccumulatePagesWhether the component should accumulate subsequent pages of results when listing them.
AWSProfileThe name of the AWS CLI profile that the component should use to obtain authentication and region information.
AWSProfileDirThe location of the AWS CLI credentials and config files.
CloseInputStreamAfterProcessingWhether the specified input stream should be closed after data is read from it.
CloseOutputStreamAfterProcessingWhether the specified output stream should be closed after data is written to it.
CreateKeyPolicyThe key policy JSON to send when creating a new KMS key.
CustomKeyStoreIdThe Id of the custom key store that the KMS key should be created in.
IMDSv2SessionTokenDurationThe maximum duration of the session token.
IMDSVersionThe version of Instance Metadata Service to use when accessing role credentials.
MaxAliasesThe maximum number of results to return when listing aliases.
MaxKeysThe maximum number of results to return when listing KMS keys.
MessageDigestThe message digest computed by the component during the last sign or verify operation, if any.
NewEncryptionContextThe new encryption context to use when re-encrypting data.
RawRequestReturns the data that was sent to the server.
RawResponseReturns the data that was received from the server.
SessionTokenThe session token to send in the request when using temporary credentials.
UseEC2RoleCredentialsWhether to authenticate requests with credentials obtained from the IAM role attached to the EC2 instance.
UseFIPSEndpointWhether to use the FIPs endpoint to communicate with the server.
XChildCountThe number of child elements of the current element.
XChildName[i]The name of the child element.
XChildXText[i]The inner text of the child element.
XElementThe name of the current element.
XParentThe parent of the current element.
XPathProvides a way to point to a specific element in the returned XML or JSON response.
XSubTreeA snapshot of the current element in the document.
XTextThe text of the current element.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AllowNTLMFallbackWhether to allow fallback from Negotiate to NTLM when authenticating.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the component.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the component will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the component.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxHeadersInstructs component to save the amount of headers specified that are returned by the server after a Header event has been fired.
MaxHTTPCookiesInstructs component to save the amount of cookies specified that are returned by the server when a SetCookie event is fired.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the component.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UsePlatformDeflateWhether to use the platform implementation to decompress compressed responses.
UsePlatformHTTPClientWhether or not to use the platform HTTP client.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
CloseStreamAfterTransferIf true, the component will close the upload or download stream after the transfer.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the component whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallListenerIf true, the component binds to a SOCKS firewall as a server (TCPClient only).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the component binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
UseNTLMv2Whether to use NTLM V2.
CACertFilePathsThe paths to CA certificate files when using Mono on Unix/Linux.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
GUIAvailableWhether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
UseFIPSCompliantAPITells the component whether or not to use FIPS certified APIs.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

AccessKey Property (AmazonKMS Component)

The access key to use for authentication.

Syntax

public string AccessKey { get; set; }
Public Property AccessKey As String

Default Value

""

Remarks

This property specifies the access key that should be used for authentication. Both this property and SecretKey must be set before attempting any operations which connect to the server.

Aliases Property (AmazonKMS Component)

A collection of aliases.

Syntax

public AWSAliasList Aliases { get; }
Public ReadOnly Property Aliases As AWSAliasList

Remarks

This collection holds a list of AWSAlias items.

Calling ListAliases will populate this collection.

This property is read-only and not available at design time.

Please refer to the AWSAlias type for a complete list of fields.

AliasMarker Property (AmazonKMS Component)

A marker indicating what page of aliases to return next.

Syntax

public string AliasMarker { get; set; }
Public Property AliasMarker As String

Default Value

""

Remarks

This property will be populated when ListAliases is called if the results are pages and there are more pages. To list all aliases, continue to call ListAliases until this property returns empty string.

Refer to ListAliases for more information.

This property is not available at design time.

EncryptionContext Property (AmazonKMS Component)

A collection of encryption context items.

Syntax

public AWSContextItemList EncryptionContext { get; }
Public Property EncryptionContext As AWSContextItemList

Remarks

This collection holds a list of AWSContextItem items.

Calling AddEncryptionContextItem will populate this collection. The items in this collection are used when Encrypt, Decrypt, GenerateDataKey, or GenerateDataKeyPair is called.

This property is not available at design time.

Please refer to the AWSContextItem type for a complete list of fields.

Firewall Property (AmazonKMS Component)

A set of properties related to firewall access.

Syntax

public Firewall Firewall { get; set; }
Public Property Firewall As Firewall

Remarks

This is a Firewall-type property, which contains fields describing the firewall through which the component will attempt to connect.

Please refer to the Firewall type for a complete list of fields.

Idle Property (AmazonKMS Component)

The current status of the component.

Syntax

public bool Idle { get; }
Public ReadOnly Property Idle As Boolean

Default Value

True

Remarks

This property will be False if the component is currently busy (communicating or waiting for an answer), and True at all other times.

This property is read-only.

IncludeKeyDetails Property (AmazonKMS Component)

Whether to attempt to retrieve full details when listing KMS keys.

Syntax

public bool IncludeKeyDetails { get; set; }
Public Property IncludeKeyDetails As Boolean

Default Value

False

Remarks

This property specifies whether the component should make additional requests when ListKeys is called in order to retrieve full information for each KMS key. By default, Amazon will only return the ARN and Id of each KMS key.

If this property is enabled, then after the initial listing is returned, the component will call GetKeyInfo internally for each KMS key returned. For all KMS keys for which this call is successful, the additional information will be used to populate the Keys collection. Any KMS keys for which the GetKeyInfo call fails will only have their ARN and Id fields populated, as usual.

This property is not available at design time.

InputData Property (AmazonKMS Component)

The data to process.

Syntax

public string InputData { get; set; }
public byte[] InputDataB { get; set; }
Public Property InputData As String
Public Property InputDataB As Byte()

Default Value

""

Remarks

This property specifies the data that should be processed in a cryptographic operation.

Input Sources & Output Destinations

The component automatically determines the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

  1. An input stream supplied via the SetInputStream method
  2. The InputFile property
  3. The InputData property

The first valid input source found is used. The order in which the output properties are considered is as follows:

  1. An output stream supplied via the SetOutputStream method
  2. The OutputFile property
  3. The OutputData property

This property is not available at design time.

InputFile Property (AmazonKMS Component)

The file whose data should be processed.

Syntax

public string InputFile { get; set; }
Public Property InputFile As String

Default Value

""

Remarks

This property specifies the file whose data should be processed in a cryptographic operation. It accepts both absolute and relative file paths.

Setting this property to a non-empty value will discard any stream set using the SetInputStream method. Similarly, passing a non-null value to the aforementioned method will clear this property.

Input Sources & Output Destinations

The component automatically determines the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

  1. An input stream supplied via the SetInputStream method
  2. The InputFile property
  3. The InputData property

The first valid input source found is used. The order in which the output properties are considered is as follows:

  1. An output stream supplied via the SetOutputStream method
  2. The OutputFile property
  3. The OutputData property

KeyData Property (AmazonKMS Component)

The downloaded key information.

Syntax

public AWSKeyData KeyData { get; }
Public ReadOnly Property KeyData As AWSKeyData

Remarks

This property holds an AWSKeyData object. It may represent any of the following, depending on which method was called:

  • When GetPublicKey is called, it will contain the specified KMS key's public key, plus additional information about it.
  • When GenerateDataKey is called, it will contain the data key and information about it.
  • When GenerateDataKeyPair is called, it will contain the data key pair and information about it.

This property is read-only and not available at design time.

Please refer to the AWSKeyData type for a complete list of fields.

KeyMarker Property (AmazonKMS Component)

A marker indicating what page of KMS keys to return next.

Syntax

public string KeyMarker { get; set; }
Public Property KeyMarker As String

Default Value

""

Remarks

This property will be populated when ListKeys is called if the results are paged and there are more pages. To list all KMS keys, continue to call ListKeys until this property returns empty string.

Refer to ListKeys for more information.

This property is not available at design time.

Keys Property (AmazonKMS Component)

A collection of keys.

Syntax

public AWSKeyList Keys { get; }
Public ReadOnly Property Keys As AWSKeyList

Remarks

This collection holds a list of AWSKey items.

Calling ListKeys will populate this collection.

This property is read-only and not available at design time.

Please refer to the AWSKey type for a complete list of fields.

LocalHost Property (AmazonKMS Component)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

public string LocalHost { get; set; }
Public Property LocalHost As String

Default Value

""

Remarks

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the component initiate connections (or accept in the case of server components) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: LocalHost is not persistent. You must always set it in code, and never in the property window.

OtherHeaders Property (AmazonKMS Component)

Other headers as determined by the user (optional).

Syntax

public string OtherHeaders { get; set; }
Public Property OtherHeaders As String

Default Value

""

Remarks

This property can be set to a string of headers to be appended to the HTTP request headers created from other properties like ContentType and From.

The headers must follow the format Header: Value as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this property with caution. If this property contains invalid headers, HTTP requests may fail.

This property is useful for extending the functionality of the component beyond what is provided.

This property is not available at design time.

OutputData Property (AmazonKMS Component)

The output data.

Syntax

public string OutputData { get; set; }
public byte[] OutputDataB { get; set; }
Public Property OutputData As String
Public Property OutputDataB As Byte()

Default Value

""

Remarks

This property is populated with the data that was output from a successful cryptographic operation.

Note: For the Verify operation, this property functions as a secondary input property instead (along with InputData); refer to the Verify method for more information.

Input Sources & Output Destinations

The component automatically determines the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

  1. An input stream supplied via the SetInputStream method
  2. The InputFile property
  3. The InputData property

The first valid input source found is used. The order in which the output properties are considered is as follows:

  1. An output stream supplied via the SetOutputStream method
  2. The OutputFile property
  3. The OutputData property

This property is not available at design time.

OutputFile Property (AmazonKMS Component)

The file to which output data should be written.

Syntax

public string OutputFile { get; set; }
Public Property OutputFile As String

Default Value

""

Remarks

This property specifies the file to which data output from a successful cryptographic operation should be written.

Setting this property to a non-empty value will discard any stream set using the SetOutputStream method. Similarly, passing a non-null value to the aforementioned method will clear this property.

Note: For the Verify operation, the specified file functions as a secondary input file instead (along with InputFile); refer to the Verify method for more information.

Input Sources & Output Destinations

The component automatically determines the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

  1. An input stream supplied via the SetInputStream method
  2. The InputFile property
  3. The InputData property

The first valid input source found is used. The order in which the output properties are considered is as follows:

  1. An output stream supplied via the SetOutputStream method
  2. The OutputFile property
  3. The OutputData property

Overwrite Property (AmazonKMS Component)

Whether the output file should be overwritten if necessary.

Syntax

public bool Overwrite { get; set; }
Public Property Overwrite As Boolean

Default Value

False

Remarks

This property controls whether the specified OutputFile should be overwritten if it already exists.

ParsedHeaders Property (AmazonKMS Component)

This property includes a collection of headers returned from the last request.

Syntax

public HeaderList ParsedHeaders { get; }
Public ReadOnly Property ParsedHeaders As HeaderList

Remarks

This property contains a collection of headers returned from the last request. Whenever headers are returned from the server, the headers are parsed into a collection of headers. Each Header in this collection contains information describing that header.

MaxHeaders can be used to control the maximum number of headers saved.

This collection is indexed from 0 to count -1.

This property is read-only and not available at design time.

Please refer to the Header type for a complete list of fields.

Proxy Property (AmazonKMS Component)

A set of properties related to proxy access.

Syntax

public Proxy Proxy { get; set; }
Public Property Proxy As Proxy

Remarks

This property contains fields describing the proxy through which the component will attempt to connect.

Please refer to the Proxy type for a complete list of fields.

QueryParams Property (AmazonKMS Component)

Additional query parameters to be included in the request.

Syntax

public QueryParamList QueryParams { get; }
Public Property QueryParams As QueryParamList

Remarks

This is a collection of query parameters that will be added to the request. Parameters can be added via the AddQueryParam method.

Please refer to the QueryParam type for a complete list of fields.

Region Property (AmazonKMS Component)

The region that the component will make requests against.

Syntax

public string Region { get; set; }
Public Property Region As String

Default Value

"us-east-1"

Remarks

This property controls which region the component will make requests against. By default the component uses us-east-1, the US East (N. Virginia) region. This property should be changed in order to create or access resources in other regions, as KMS keys and aliases are region-specific resources.

Regions:

Value Region
us-east-1 (Default) US East (N. Virginia)
us-east-2 US East (Ohio)
us-west-1 US West (N. California)
us-west-2 US West (Oregon)
af-south-1 Africa (Cape Town)
ap-east-1 Asia Pacific (Hong Kong)
ap-northeast-1 Asia Pacific (Tokyo)
ap-northeast-2 Asia Pacific (Seoul)
ap-northeast-3 Asia Pacific (Osaka-Local)
ap-south-1 Asia Pacific (Mumbai)
ap-southeast-1 Asia Pacific (Singapore)
ap-southeast-2 Asia Pacific (Sydney)
ca-central-1 Canada (Central)
cn-north-1 China (Beijing)
cn-northwest-1 China (Ningxia)
eu-central-1 Europe (Frankfurt)
eu-north-1 Europe (Stockholm)
eu-south-1 Europe (Milan)
eu-west-1 Europe (Ireland)
eu-west-2 Europe (London)
eu-west-3 Europe (Paris)
me-south-1 Middle East (Bahrain)
sa-east-1 South America (Sao Paulo)
us-gov-east-1 AWS GovCloud (US East)
us-gov-west-1 AWS GovCloud (US West)

The component will always convert this property's value to lowercase. If this property is cleared, the component will reset it to the default value.

SecretKey Property (AmazonKMS Component)

The secret key to use for authentication.

Syntax

public string SecretKey { get; set; }
Public Property SecretKey As String

Default Value

""

Remarks

This property specifies the secret key that should be used for authentication. Both this property and AccessKey must be set before attempting any operations which connect to the server.

SSLAcceptServerCert Property (AmazonKMS Component)

Instructs the component to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

public Certificate SSLAcceptServerCert { get; set; }
Public Property SSLAcceptServerCert As Certificate

Remarks

If it finds any issues with the certificate presented by the server, the component will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Note: This functionality is provided only for cases in which you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

Please refer to the Certificate type for a complete list of fields.

SSLCert Property (AmazonKMS Component)

The certificate to be used during Secure Sockets Layer (SSL) negotiation.

Syntax

public Certificate SSLCert { get; set; }
Public Property SSLCert As Certificate

Remarks

This property includes the digital certificate that the component will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

Please refer to the Certificate type for a complete list of fields.

SSLProvider Property (AmazonKMS Component)

The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.

Syntax

public AmazonKMSSSLProviders SSLProvider { get; set; }

enum AmazonKMSSSLProviders { sslpAutomatic, sslpPlatform, sslpInternal }
Public Property SSLProvider As AmazonkmsSSLProviders

Enum AmazonKMSSSLProviders sslpAutomatic sslpPlatform sslpInternal End Enum

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the component will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are as follows:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The component will select a provider depending on the current platform.

When Automatic is selected, on Windows, the component will use the platform implementation. On Linux/macOS, the component will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used on all platforms.

The .NET Standard library will always use the internal implementation on all platforms.

SSLServerCert Property (AmazonKMS Component)

The server certificate for the last established connection.

Syntax

public Certificate SSLServerCert { get; }
Public ReadOnly Property SSLServerCert As Certificate

Remarks

This property contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

Please refer to the Certificate type for a complete list of fields.

Timeout Property (AmazonKMS Component)

The timeout for the component.

Syntax

public int Timeout { get; set; }
Public Property Timeout As Integer

Default Value

60

Remarks

If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If Timeout is set to a positive value, the component will wait for the operation to complete before returning control.

The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.

If Timeout expires, and the operation is not yet complete, the component throws an exception.

Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

AddEncryptionContextItem Method (AmazonKMS Component)

Adds an item to the EncryptionContext properties.

Syntax

public void AddEncryptionContextItem(string name, string value);

Async Version
public async Task AddEncryptionContextItem(string name, string value);
public async Task AddEncryptionContextItem(string name, string value, CancellationToken cancellationToken);
Public Sub AddEncryptionContextItem(ByVal Name As String, ByVal Value As String)

Async Version
Public Sub AddEncryptionContextItem(ByVal Name As String, ByVal Value As String) As Task
Public Sub AddEncryptionContextItem(ByVal Name As String, ByVal Value As String, cancellationToken As CancellationToken) As Task

Remarks

This method adds an item to the EncryptionContext collection. Name specifies the name of the item, and Value specifies the value of the item.

AddQueryParam Method (AmazonKMS Component)

Adds a query parameter to the QueryParams properties.

Syntax

public void AddQueryParam(string name, string value);

Async Version
public async Task AddQueryParam(string name, string value);
public async Task AddQueryParam(string name, string value, CancellationToken cancellationToken);
Public Sub AddQueryParam(ByVal Name As String, ByVal Value As String)

Async Version
Public Sub AddQueryParam(ByVal Name As String, ByVal Value As String) As Task
Public Sub AddQueryParam(ByVal Name As String, ByVal Value As String, cancellationToken As CancellationToken) As Task

Remarks

This method is used to add a query parameter to the QueryParams collection. Name specifies the name of the parameter, and Value specifies the value of the parameter.

All specified Values will be URL encoded by the component automatically. Consult the service documentation for details on the available parameters.

CancelKeyDeletion Method (AmazonKMS Component)

Cancels the deletion of the specified KMS key.

Syntax

public void CancelKeyDeletion(string keyId);

Async Version
public async Task CancelKeyDeletion(string keyId);
public async Task CancelKeyDeletion(string keyId, CancellationToken cancellationToken);
Public Sub CancelKeyDeletion(ByVal KeyId As String)

Async Version
Public Sub CancelKeyDeletion(ByVal KeyId As String) As Task
Public Sub CancelKeyDeletion(ByVal KeyId As String, cancellationToken As CancellationToken) As Task

Remarks

This method cancels the deletion of the KMS key specified by KeyId. Refer to the ScheduleKeyDeletion method for more information.

The value passed for the KeyId parameter must be the Id or ARN of a KMS key in the current account and Region.

ClearKeyData Method (AmazonKMS Component)

Clears information stored in the KeyData properties.

Syntax

public void ClearKeyData(bool plaintextOnly);

Async Version
public async Task ClearKeyData(bool plaintextOnly);
public async Task ClearKeyData(bool plaintextOnly, CancellationToken cancellationToken);
Public Sub ClearKeyData(ByVal PlaintextOnly As Boolean)

Async Version
Public Sub ClearKeyData(ByVal PlaintextOnly As Boolean) As Task
Public Sub ClearKeyData(ByVal PlaintextOnly As Boolean, cancellationToken As CancellationToken) As Task

Remarks

This method clears the information stored in the KeyData fields, removing it from memory. If the PlaintextOnly parameter is true, only the PlaintextKey field is cleared.

Config Method (AmazonKMS Component)

Sets or retrieves a configuration setting.

Syntax

public string Config(string configurationString);

Async Version
public async Task<string> Config(string configurationString);
public async Task<string> Config(string configurationString, CancellationToken cancellationToken);
Public Function Config(ByVal ConfigurationString As String) As String

Async Version
Public Function Config(ByVal ConfigurationString As String) As Task(Of String)
Public Function Config(ByVal ConfigurationString As String, cancellationToken As CancellationToken) As Task(Of String)

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

CreateAlias Method (AmazonKMS Component)

Creates a new alias.

Syntax

public void CreateAlias(string name, string keyId);

Async Version
public async Task CreateAlias(string name, string keyId);
public async Task CreateAlias(string name, string keyId, CancellationToken cancellationToken);
Public Sub CreateAlias(ByVal Name As String, ByVal KeyId As String)

Async Version
Public Sub CreateAlias(ByVal Name As String, ByVal KeyId As String) As Task
Public Sub CreateAlias(ByVal Name As String, ByVal KeyId As String, cancellationToken As CancellationToken) As Task

Remarks

This method creates a new alias with the given Name and associates it with the KMS key specified by KeyId.

The value passed for Name must begin with alias/, and must consist solely of alphanumeric characters, forward slashes /, underscores _, and hyphens -. The final name must not begin with alias/aws/, which is a reserved prefix.

The value passed for the KeyId parameter must be the Id or ARN of a KMS key in the current account and Region.

CreateKey Method (AmazonKMS Component)

Creates a new KMS key.

Syntax

public string CreateKey(string keySpec, bool forSigning, string description);

Async Version
public async Task<string> CreateKey(string keySpec, bool forSigning, string description);
public async Task<string> CreateKey(string keySpec, bool forSigning, string description, CancellationToken cancellationToken);
Public Function CreateKey(ByVal KeySpec As String, ByVal ForSigning As Boolean, ByVal Description As String) As String

Async Version
Public Function CreateKey(ByVal KeySpec As String, ByVal ForSigning As Boolean, ByVal Description As String) As Task(Of String)
Public Function CreateKey(ByVal KeySpec As String, ByVal ForSigning As Boolean, ByVal Description As String, cancellationToken As CancellationToken) As Task(Of String)

Remarks

This method creates a new KMS key of the specified KeySpec, and returns its Amazon resource name (ARN). The new KMS key's Id is the last part of the returned ARN; for example, if the ARN is arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab, then the KMS key's Id is 1234abcd-12ab-34cd-56ef-1234567890ab.

The KeySpec parameter specifies the type of KMS key that should be created. To create a symmetric key, pass SYMMETRIC_DEFAULT (or empty string); this will create a key using a symmetric algorithm based on AES-256-GCM. To create an asymmetric key, pass one of the following strings instead:

  • RSA_2048
  • RSA_3072
  • RSA_4096
  • ECC_NIST_P256 (secp256r1)
  • ECC_NIST_P384 (secp384r1)
  • ECC_NIST_P521 (secp521r1)
  • ECC_SECG_P256K1 (secp256k1)

The ForSigning parameter specifies whether the new KMS key should be for encryption and decryption (false) or signing and verification (true). However, this is only applicable for RSA key specs; symmetric keys are always for encryption/decryption, and elliptic curve key specs are always for signing/verification, so this parameter is ignored if one of those specs is passed for KeySpec.

The Description parameter specifies the KMS key's description. This description can be changed at any time using the UpdateKeyDescription method.

To create the KMS key in a custom key store, set the CustomKeyStoreId configuration setting before calling this method. To set the KMS key's key policy, set the CreateKeyPolicy configuration setting before calling this method. Refer to these configuration settings for more information.

Decrypt Method (AmazonKMS Component)

Decrypts data using a KMS key.

Syntax

public void Decrypt(string keyId, string algorithm);

Async Version
public async Task Decrypt(string keyId, string algorithm);
public async Task Decrypt(string keyId, string algorithm, CancellationToken cancellationToken);
Public Sub Decrypt(ByVal KeyId As String, ByVal Algorithm As String)

Async Version
Public Sub Decrypt(ByVal KeyId As String, ByVal Algorithm As String) As Task
Public Sub Decrypt(ByVal KeyId As String, ByVal Algorithm As String, cancellationToken As CancellationToken) As Task

Remarks

This method decrypts data using the KMS key specified by KeyId and the given Algorithm. The data to decrypt is taken from the input stream supplied via the SetInputStream method, the specified InputFile, or the InputData property. The decrypted data is output to the output stream supplied via the SetOutputStream method, the specified OutputFile, or the OutputData property.

The value passed for the KeyId parameter must be the Id or ARN of a KMS key, or the name or ARN of an alias, in the current Region. If an ARN is provided, it can be for a KMS key or alias in another account so long as the appropriate permissions are in place.

The Algorithm parameter specifies which algorithm to use to decrypt the data; it must match the algorithm used to encrypt the data previously. Possible values vary depending on the specified KMS key's key spec:

KMS key's Key Spec Valid Algorithms
SYMMETRIC_DEFAULT SYMMETRIC_DEFAULT (default if empty)
RSA_2048 RSAES_OAEP_SHA_1

RSAES_OAEP_SHA_256

RSA_3072 RSAES_OAEP_SHA_1

RSAES_OAEP_SHA_256

RSA_4096 RSAES_OAEP_SHA_1

RSAES_OAEP_SHA_256

If Algorithm is SYMMETRIC_DEFAULT, the encryption context items in the EncryptionContext collection will be included in the request. Keep in mind that in order to successfully decrypt the data, the exact same encryption context items that were present when the data was encrypted must be supplied again. Encryption context items are case-sensitive, but not order-sensitive.

This method will fail if any of the following are true regarding the specified KMS key:

  • Its State is anything other than aksEnabled (0).
  • It is for signing/verification instead of encryption/decryption (see ForSigning).
  • It is an AWS-managed KMS key (see AWSManaged).

DeleteAlias Method (AmazonKMS Component)

Deletes an alias.

Syntax

public void DeleteAlias(string aliasName);

Async Version
public async Task DeleteAlias(string aliasName);
public async Task DeleteAlias(string aliasName, CancellationToken cancellationToken);
Public Sub DeleteAlias(ByVal AliasName As String)

Async Version
Public Sub DeleteAlias(ByVal AliasName As String) As Task
Public Sub DeleteAlias(ByVal AliasName As String, cancellationToken As CancellationToken) As Task

Remarks

This method deletes the alias with the given AliasName.

The value passed for the AliasName parameter must include the alias/ prefix, and must be the name of an alias in the current account and Region

DoEvents Method (AmazonKMS Component)

This method processes events from the internal message queue.

Syntax

public void DoEvents();

Async Version
public async Task DoEvents();
public async Task DoEvents(CancellationToken cancellationToken);
Public Sub DoEvents()

Async Version
Public Sub DoEvents() As Task
Public Sub DoEvents(cancellationToken As CancellationToken) As Task

Remarks

When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.

Encrypt Method (AmazonKMS Component)

Encrypts data using a KMS key.

Syntax

public void Encrypt(string keyId, string algorithm);

Async Version
public async Task Encrypt(string keyId, string algorithm);
public async Task Encrypt(string keyId, string algorithm, CancellationToken cancellationToken);
Public Sub Encrypt(ByVal KeyId As String, ByVal Algorithm As String)

Async Version
Public Sub Encrypt(ByVal KeyId As String, ByVal Algorithm As String) As Task
Public Sub Encrypt(ByVal KeyId As String, ByVal Algorithm As String, cancellationToken As CancellationToken) As Task

Remarks

This method encrypts data using the KMS key specified by KeyId and the given Algorithm. The data to encrypt is taken from the input stream supplied via the SetInputStream method, the specified InputFile, or the InputData property. The encrypted data is output to the output stream supplied via the SetOutputStream method, the specified OutputFile, or the OutputData property.

The value passed for the KeyId parameter must be the Id or ARN of a KMS key, or the name or ARN of an alias, in the current Region. If an ARN is provided, it can be for a KMS key or alias in another account so long as the appropriate permissions are in place.

The Algorithm parameter specifies which algorithm to use to encrypt the data. Possible values vary depending on the specified KMS key's key spec. The KMS key's key spec and the selected algorithm together dictate the maximum size of the input data.

KMS key's Key Spec Valid Algorithms Max Bytes
SYMMETRIC_DEFAULT SYMMETRIC_DEFAULT (default if empty) 4096
RSA_2048 RSAES_OAEP_SHA_1

RSAES_OAEP_SHA_256

214

190

RSA_3072 RSAES_OAEP_SHA_1

RSAES_OAEP_SHA_256

342

318

RSA_4096 RSAES_OAEP_SHA_1

RSAES_OAEP_SHA_256

470

446

Note that it is important to keep track of the encryption algorithm used, since it must be specified again when calling Decrypt (or ReEncrypt) later.

If Algorithm is SYMMETRIC_DEFAULT, the encryption context items in the EncryptionContext collection will be included in the request. Including an encryption context when encrypting data means that the exact same encryption context must be supplied again in order to decrypt the data. Encryption context items are case-sensitive, but not order-sensitive.

This method will fail if any of the following are true regarding the specified KMS key:

  • Its State is anything other than aksEnabled (0).
  • It is for signing/verification instead of encryption/decryption (see ForSigning).
  • It is an AWS-managed KMS key (see AWSManaged).

GenerateDataKey Method (AmazonKMS Component)

Generates a data key that can be used outside of Amazon KMS.

Syntax

public void GenerateDataKey(string keySpec, string keyId, bool includePlaintext);

Async Version
public async Task GenerateDataKey(string keySpec, string keyId, bool includePlaintext);
public async Task GenerateDataKey(string keySpec, string keyId, bool includePlaintext, CancellationToken cancellationToken);
Public Sub GenerateDataKey(ByVal KeySpec As String, ByVal KeyId As String, ByVal IncludePlaintext As Boolean)

Async Version
Public Sub GenerateDataKey(ByVal KeySpec As String, ByVal KeyId As String, ByVal IncludePlaintext As Boolean) As Task
Public Sub GenerateDataKey(ByVal KeySpec As String, ByVal KeyId As String, ByVal IncludePlaintext As Boolean, cancellationToken As CancellationToken) As Task

Remarks

This method generates a data key that can be used outside of Amazon KMS for encryption and decryption. The generated data key will be encrypted using the KMS key specified by KeyId before it is returned. The key and its related information will be downloaded to the following KeyData fields, refer to their documentation for more information:

The KeySpec parameter specifies either the spec of the data key, or the size of the data key in bytes. Valid values are:

  • AES_128
  • AES_256
  • Some number of bytes in the range 1 to 1024 (e.g., 64)

The value passed for the KeyId parameter must be the Id or ARN of a KMS key, or the name or ARN of an alias, in the current Region. If an ARN is provided, it can be for a KMS key or alias in another account so long as the appropriate permissions are in place. The specified KMS key must be symmetric. Any encryption context items present in the EncryptionContext collection will be included in the request and used when encrypting the data key; they must be supplied again in order to decrypt it.

The IncludePlaintext parameter specifies whether the server should return a plaintext (i.e., unencrypted) copy of the data key in addition to the encrypted copy. This can be useful if the data key will be used immediately.

This method will fail if any of the following are true regarding the specified KMS key:

  • Its State is anything other than aksEnabled (0).
  • It is asymmetric (see KeySpec).
  • It is for signing/verification instead of encryption/decryption (see ForSigning).
  • It is an AWS-managed KMS key (see AWSManaged).

GenerateDataKeyPair Method (AmazonKMS Component)

Generates a data key pair that can be used outside of Amazon KMS.

Syntax

public void GenerateDataKeyPair(string keyPairSpec, string keyId, bool includePlaintext);

Async Version
public async Task GenerateDataKeyPair(string keyPairSpec, string keyId, bool includePlaintext);
public async Task GenerateDataKeyPair(string keyPairSpec, string keyId, bool includePlaintext, CancellationToken cancellationToken);
Public Sub GenerateDataKeyPair(ByVal KeyPairSpec As String, ByVal KeyId As String, ByVal IncludePlaintext As Boolean)

Async Version
Public Sub GenerateDataKeyPair(ByVal KeyPairSpec As String, ByVal KeyId As String, ByVal IncludePlaintext As Boolean) As Task
Public Sub GenerateDataKeyPair(ByVal KeyPairSpec As String, ByVal KeyId As String, ByVal IncludePlaintext As Boolean, cancellationToken As CancellationToken) As Task

Remarks

This method generates a data key pair that can be used outside of Amazon KMS for encryption and decryption, or signing and verification. The private key of the generated key pair will be encrypted using the KMS key specified by KeyId before it is returned. The key and its related information will be downloaded to the following KeyData fields, refer to their documentation for more information:

The KeySpec parameter specifies the spec of the data key pair. Valid values are:

  • RSA_2048
  • RSA_3072
  • RSA_4096
  • ECC_NIST_P256 (secp256r1)
  • ECC_NIST_P384 (secp384r1)
  • ECC_NIST_P521 (secp521r1)
  • ECC_SECG_P256K1 (secp256k1)

The value passed for the KeyId parameter must be the Id or ARN of a KMS key, or the name or ARN of an alias, in the current Region. If an ARN is provided, it can be for a KMS key or alias in another account so long as the appropriate permissions are in place. The specified KMS key must be symmetric. Any encryption context items present in the EncryptionContext collection will be included in the request and used when encrypting the private key; they must be supplied again in order to decrypt it.

The IncludePlaintext parameter specifies whether the server should return a plaintext (i.e., unencrypted) copy of the data key pair's private key in addition to the encrypted copy. This can be useful if the private key will be used immediately.

This method will fail if any of the following are true regarding the specified KMS key:

  • Its State is anything other than aksEnabled (0).
  • It is asymmetric (see KeySpec).
  • It is for signing/verification instead of encryption/decryption (see ForSigning).
  • It is an AWS-managed KMS key (see AWSManaged).

GenerateRandomBytes Method (AmazonKMS Component)

Generates a cryptographically-secure random byte string.

Syntax

public void GenerateRandomBytes(int numBytes);

Async Version
public async Task GenerateRandomBytes(int numBytes);
public async Task GenerateRandomBytes(int numBytes, CancellationToken cancellationToken);
Public Sub GenerateRandomBytes(ByVal NumBytes As Integer)

Async Version
Public Sub GenerateRandomBytes(ByVal NumBytes As Integer) As Task
Public Sub GenerateRandomBytes(ByVal NumBytes As Integer, cancellationToken As CancellationToken) As Task

Remarks

This method uses Amazon KMS to generate a cryptographically-secure random byte string of the specified length (measured in bytes). The random bytes are output to the output stream supplied via the SetOutputStream method, the OutputFile, or the OutputData property.

The value passed for NumBytes must be in the range 1 to 1024.

GetKeyInfo Method (AmazonKMS Component)

Gets information about a KMS key.

Syntax

public void GetKeyInfo(string keyId);

Async Version
public async Task GetKeyInfo(string keyId);
public async Task GetKeyInfo(string keyId, CancellationToken cancellationToken);
Public Sub GetKeyInfo(ByVal KeyId As String)

Async Version
Public Sub GetKeyInfo(ByVal KeyId As String) As Task
Public Sub GetKeyInfo(ByVal KeyId As String, cancellationToken As CancellationToken) As Task

Remarks

This method gets information about the KMS key specified by KeyId. When the information is returned, the component clears the Keys collection and repopulates it with a single item that contains the KMS key's information. The KeyList event is also fired.

The value passed for the KeyId parameter must be the Id or ARN of a KMS key, or the name or ARN of an alias, in the current Region. If an ARN is provided, it can be for a KMS key or alias in another account so long as the appropriate permissions are in place.

GetKeyRotationStatus Method (AmazonKMS Component)

Retrieves the key rotation status for a KMS key.

Syntax

public bool GetKeyRotationStatus(string keyId);

Async Version
public async Task<bool> GetKeyRotationStatus(string keyId);
public async Task<bool> GetKeyRotationStatus(string keyId, CancellationToken cancellationToken);
Public Function GetKeyRotationStatus(ByVal KeyId As String) As Boolean

Async Version
Public Function GetKeyRotationStatus(ByVal KeyId As String) As Task(Of Boolean)
Public Function GetKeyRotationStatus(ByVal KeyId As String, cancellationToken As CancellationToken) As Task(Of Boolean)

Remarks

This method retrieves the key rotation status for the KMS key specified by KeyId; it will return true if the KMS key's key material is set to be automatically rotated, or false if not.

The value passed for the KeyId parameter must be the Id or ARN of a KMS key in the current Region. If an ARN is provided, it can be for a KMS key in another account so long as the appropriate permissions are in place.

This method will always return false for asymmetric KMS keys, KMS keys with imported key material, and KMS keys that reside in a custom key store, as such KMS keys do not support automatic key rotation. This method will also return false if the server returns an error for any other reason.

GetPublicKey Method (AmazonKMS Component)

Retrieves the public key of an asymmetric KMS key.

Syntax

public void GetPublicKey(string keyId);

Async Version
public async Task GetPublicKey(string keyId);
public async Task GetPublicKey(string keyId, CancellationToken cancellationToken);
Public Sub GetPublicKey(ByVal KeyId As String)

Async Version
Public Sub GetPublicKey(ByVal KeyId As String) As Task
Public Sub GetPublicKey(ByVal KeyId As String, cancellationToken As CancellationToken) As Task

Remarks

This method retrieves the public key of the asymmetric KMS key specified by KeyId. The public key and its related information will be downloaded to the following KeyData fields, refer to their documentation for more information:

This method will fail if any of the following are true regarding the specified KMS key:

  • Its State is anything other than aksEnabled (0).
  • It is symmetric (see KeySpec).
  • It is an AWS-managed KMS key (see AWSManaged).

ListAliases Method (AmazonKMS Component)

Lists aliases in the current account and region.

Syntax

public void ListAliases(string forKeyId);

Async Version
public async Task ListAliases(string forKeyId);
public async Task ListAliases(string forKeyId, CancellationToken cancellationToken);
Public Sub ListAliases(ByVal ForKeyId As String)

Async Version
Public Sub ListAliases(ByVal ForKeyId As String) As Task
Public Sub ListAliases(ByVal ForKeyId As String, cancellationToken As CancellationToken) As Task

Remarks

This method lists the aliases in the current account and Region. Optionally, aliases for a specific KMS key (in the current account and Region) can be listed by passing its Id or ARN for the ForKeyId parameter.

Calling this method will fire the AliasList event once for each alias, and will also populate the Aliases collection.

If there are still more aliases available to list when this method returns, the AliasMarker property will be populated. Continue to call this method until AliasMarker is empty to accumulate all pages of results in the Aliases collection.

The MaxAliases configuration setting can be used to control the maximum number of results to return at once.

ListKeys Method (AmazonKMS Component)

Lists KMS keys in the current account and region.

Syntax

public void ListKeys();

Async Version
public async Task ListKeys();
public async Task ListKeys(CancellationToken cancellationToken);
Public Sub ListKeys()

Async Version
Public Sub ListKeys() As Task
Public Sub ListKeys(cancellationToken As CancellationToken) As Task

Remarks

This method lists the KMS keys in the current account and Region.

Calling this method will fire the KeyList event once for each KMS key, and will also populate the Keys collection. However, note that by default only the ARN and Id fields will be populated, since the server does not return full information for KMS keys when listing them. The IncludeKeyDetails property can be enabled to have the component attempt to retrieve full information for each KMS key; refer to its documentation for more information.

If there are still more KMS keys available to list when this method returns, the KeyMarker property will be populated. Continue to call this method until KeyMarker is empty to accumulate all pages of results in the Keys collection.

The MaxKeys configuration setting can be used to control the maximum number of results to return at once.

ReEncrypt Method (AmazonKMS Component)

Decrypts data using one KMS key and re-encrypts it using another KMS key.

Syntax

public void ReEncrypt(string oldKeyId, string oldAlgorithm, string newKeyId, string newAlgorithm);

Async Version
public async Task ReEncrypt(string oldKeyId, string oldAlgorithm, string newKeyId, string newAlgorithm);
public async Task ReEncrypt(string oldKeyId, string oldAlgorithm, string newKeyId, string newAlgorithm, CancellationToken cancellationToken);
Public Sub ReEncrypt(ByVal OldKeyId As String, ByVal OldAlgorithm As String, ByVal NewKeyId As String, ByVal NewAlgorithm As String)

Async Version
Public Sub ReEncrypt(ByVal OldKeyId As String, ByVal OldAlgorithm As String, ByVal NewKeyId As String, ByVal NewAlgorithm As String) As Task
Public Sub ReEncrypt(ByVal OldKeyId As String, ByVal OldAlgorithm As String, ByVal NewKeyId As String, ByVal NewAlgorithm As String, cancellationToken As CancellationToken) As Task

Remarks

This method decrypts data using the KMS key specified by OldKeyId and re-encrypts it using the KMS key specified by NewKeyId. This process happens completely on the server; at no point is the unencrypted data transferred over the wire.

The encrypted data is taken from the input stream supplied via the SetInputStream method, the specified InputFile, or the InputData property. The re-encrypted data is output to the output stream supplied via the SetOutputStream method, the specified OutputFile, or the OutputData property.

The values passed for the OldKeyId and NewKeyId parameters must be the Id or ARN of a KMS key, or the name or ARN of an alias, in the current Region. For either or both parameters, if an ARN is provided, it can be for a KMS key or alias in another account so long as the appropriate permissions are in place.

The OldAlgorithm and NewAlgorithm parameters specify the encryption algorithm currently in use, and the new encryption algorithm, respectively. Valid values vary depending on the old and new KMS keys key specs:

KMS key's Key Spec Valid Algorithms
SYMMETRIC_DEFAULT SYMMETRIC_DEFAULT (default if empty)
RSA_2048 RSAES_OAEP_SHA_1

RSAES_OAEP_SHA_256

RSA_3072 RSAES_OAEP_SHA_1

RSAES_OAEP_SHA_256

RSA_4096 RSAES_OAEP_SHA_1

RSAES_OAEP_SHA_256

Note that it is important to keep track of the new encryption algorithm used, since it must be specified again when calling Decrypt (or ReEncrypt) later.

If OldAlgorithm is SYMMETRIC_DEFAULT, the encryption context items in the EncryptionContext collection will be included in the request for use with decryption. Keep in mind that in order to successfully decrypt the data, the exact same encryption context items that were present when the data was encrypted must be supplied again. Encryption context items are case-sensitive, but not order-sensitive.

If NewAlgorithm is SYMMETRIC_DEFAULT, the encryption context items in the EncryptionContext collection will also be included in the request for use with re-encryption, effectively causing the encryption context to be transferred to the re-encrypted data. Alternatively, the NewEncryptionContext configuration setting can be set before calling this method in order to supply a new encryption context (or, if set to {}, to "remove" the existing one).

This method will fail if any of the following are true regarding either of the specified KMS keys:

  • Its State is anything other than aksEnabled (0).
  • It is for signing/verification instead of encryption/decryption (see ForSigning).
  • It is an AWS-managed KMS key (see AWSManaged).

Reset Method (AmazonKMS Component)

Resets the component to its initial state.

Syntax

public void Reset();

Async Version
public async Task Reset();
public async Task Reset(CancellationToken cancellationToken);
Public Sub Reset()

Async Version
Public Sub Reset() As Task
Public Sub Reset(cancellationToken As CancellationToken) As Task

Remarks

This method resets the component to its initial state.

ScheduleKeyDeletion Method (AmazonKMS Component)

Schedules the deletion of a KMS key.

Syntax

public void ScheduleKeyDeletion(string keyId, int daysToWait);

Async Version
public async Task ScheduleKeyDeletion(string keyId, int daysToWait);
public async Task ScheduleKeyDeletion(string keyId, int daysToWait, CancellationToken cancellationToken);
Public Sub ScheduleKeyDeletion(ByVal KeyId As String, ByVal DaysToWait As Integer)

Async Version
Public Sub ScheduleKeyDeletion(ByVal KeyId As String, ByVal DaysToWait As Integer) As Task
Public Sub ScheduleKeyDeletion(ByVal KeyId As String, ByVal DaysToWait As Integer, cancellationToken As CancellationToken) As Task

Remarks

This method schedules the deletion of the KMS key specified by KeyId. The DaysToWait parameter specifies the length of the waiting period; it must be a value between 7 and 30.

When a KMS key is scheduled for deletion, it cannot be used. This is a safety feature designed to help identify any code that still relies on the KMS key.

SendCustomRequest Method (AmazonKMS Component)

Sends a custom request to the server.

Syntax

public void SendCustomRequest(string action);

Async Version
public async Task SendCustomRequest(string action);
public async Task SendCustomRequest(string action, CancellationToken cancellationToken);
Public Sub SendCustomRequest(ByVal Action As String)

Async Version
Public Sub SendCustomRequest(ByVal Action As String) As Task
Public Sub SendCustomRequest(ByVal Action As String, cancellationToken As CancellationToken) As Task

Remarks

This method can be used to send arbitrary requests to the server. The value passed for the Action parameter must be one of the actions described in the Amazon KMS documentation.

When this method is called, the component does the following:

  1. Builds a request URL, including query parameters, based on the following:
  2. Adds request headers from OtherHeaders.
  3. Adds any request body supplied via the stream specified using SetInputStream, the specified InputFile, or InputData.
  4. Signs the request.
  5. Sends the request to the server.
  6. Stores the response headers in the ParsedHeaders collection; and the response body in the stream specified using SetOutputStream, the specified OutputFile, or OutputData.

If the response body is JSON data, the XPath, XText, and other X* configuration settings can then be used to navigate and extract information from it.

SetInputStream Method (AmazonKMS Component)

Sets the stream whose data should be processed.

Syntax

public void SetInputStream(System.IO.Stream inputStream);

Async Version
public async Task SetInputStream(System.IO.Stream inputStream);
public async Task SetInputStream(System.IO.Stream inputStream, CancellationToken cancellationToken);
Public Sub SetInputStream(ByVal InputStream As System.IO.Stream)

Async Version
Public Sub SetInputStream(ByVal InputStream As System.IO.Stream) As Task
Public Sub SetInputStream(ByVal InputStream As System.IO.Stream, cancellationToken As CancellationToken) As Task

Remarks

This method sets the stream whose data should be processed in a cryptographic operation.

Passing a non-null value for InputStream will cause the InputFile property to be cleared. Similarly, setting InputFile to a non-empty value will discard any stream set using this method.

Input Sources & Output Destinations

The component automatically determines the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

  1. An input stream supplied via the SetInputStream method
  2. The InputFile property
  3. The InputData property

The first valid input source found is used. The order in which the output properties are considered is as follows:

  1. An output stream supplied via the SetOutputStream method
  2. The OutputFile property
  3. The OutputData property

SetKeyEnabled Method (AmazonKMS Component)

Enables or disables a KMS key.

Syntax

public void SetKeyEnabled(string keyId, bool enabled);

Async Version
public async Task SetKeyEnabled(string keyId, bool enabled);
public async Task SetKeyEnabled(string keyId, bool enabled, CancellationToken cancellationToken);
Public Sub SetKeyEnabled(ByVal KeyId As String, ByVal Enabled As Boolean)

Async Version
Public Sub SetKeyEnabled(ByVal KeyId As String, ByVal Enabled As Boolean) As Task
Public Sub SetKeyEnabled(ByVal KeyId As String, ByVal Enabled As Boolean, cancellationToken As CancellationToken) As Task

Remarks

This method enables or disables the KMS key specified by KeyId.

The value passed for the KeyId parameter must be the Id or ARN of a KMS key in the current account and Region.

This method will fail if any of the following are true regarding the specified KMS key:

  • Its State is aksPendingDeletion (2) or aksPendingImport (3).
  • It is an AWS-managed KMS key (see AWSManaged).

SetKeyRotationStatus Method (AmazonKMS Component)

Enables or disables automatic key rotation for a KMS key.

Syntax

public void SetKeyRotationStatus(string keyId, bool enabled);

Async Version
public async Task SetKeyRotationStatus(string keyId, bool enabled);
public async Task SetKeyRotationStatus(string keyId, bool enabled, CancellationToken cancellationToken);
Public Sub SetKeyRotationStatus(ByVal KeyId As String, ByVal Enabled As Boolean)

Async Version
Public Sub SetKeyRotationStatus(ByVal KeyId As String, ByVal Enabled As Boolean) As Task
Public Sub SetKeyRotationStatus(ByVal KeyId As String, ByVal Enabled As Boolean, cancellationToken As CancellationToken) As Task

Remarks

This method enables or disables automatic key material rotation for the KMS key specified by KeyId.

The value passed for the KeyId parameter must be the Id or ARN of a KMS key in the current account and Region.

This method will fail if any of the following are true regarding the specified KMS key:

  • Its State is anything other than aksEnabled (0).
  • It is asymmetric (see KeySpec).
  • It has imported key material (see Origin).
  • It resides in a custom key store (see CustomKeyStoreId).
  • It is an AWS-managed KMS key (see AWSManaged).

SetOutputStream Method (AmazonKMS Component)

Sets the stream to which output data should be written.

Syntax

public void SetOutputStream(System.IO.Stream outputStream);

Async Version
public async Task SetOutputStream(System.IO.Stream outputStream);
public async Task SetOutputStream(System.IO.Stream outputStream, CancellationToken cancellationToken);
Public Sub SetOutputStream(ByVal OutputStream As System.IO.Stream)

Async Version
Public Sub SetOutputStream(ByVal OutputStream As System.IO.Stream) As Task
Public Sub SetOutputStream(ByVal OutputStream As System.IO.Stream, cancellationToken As CancellationToken) As Task

Remarks

This method sets the stream to which data output from a successful cryptographic operation should be written.

Passing a non-null value for OutputStream will cause the OutputFile property to be cleared. Similarly, setting OutputFile to a non-empty value will discard any stream set using this method.

Input Sources & Output Destinations

The component automatically determines the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

  1. An input stream supplied via the SetInputStream method
  2. The InputFile property
  3. The InputData property

The first valid input source found is used. The order in which the output properties are considered is as follows:

  1. An output stream supplied via the SetOutputStream method
  2. The OutputFile property
  3. The OutputData property

Sign Method (AmazonKMS Component)

Signs a message using a KMS key.

Syntax

public void Sign(string keyId, string algorithm, bool isDigest);

Async Version
public async Task Sign(string keyId, string algorithm, bool isDigest);
public async Task Sign(string keyId, string algorithm, bool isDigest, CancellationToken cancellationToken);
Public Sub Sign(ByVal KeyId As String, ByVal Algorithm As String, ByVal IsDigest As Boolean)

Async Version
Public Sub Sign(ByVal KeyId As String, ByVal Algorithm As String, ByVal IsDigest As Boolean) As Task
Public Sub Sign(ByVal KeyId As String, ByVal Algorithm As String, ByVal IsDigest As Boolean, cancellationToken As CancellationToken) As Task

Remarks

This method signs a message using the KMS key specified by KeyId and the given Algorithm. The message data to sign is taken from the input stream supplied via the SetInputStream method, the specified InputFile, or the InputData property. The signature data is output to the output stream supplied via the SetOutputStream method, the specified OutputFile, or the OutputData property.

The value passed for the KeyId parameter must be the Id or ARN of a KMS key, or the name or ARN of an alias, in the current Region. If an ARN is provided, it can be for a KMS key or alias in another account so long as the appropriate permissions are in place.

The Algorithm parameter specifies which algorithm to use to sign the data. Possible values are:

  • RSASSA_PSS_SHA_256
  • RSASSA_PSS_SHA_384
  • RSASSA_PSS_SHA_512
  • RSASSA_PKCS1_V1_5_SHA_256
  • RSASSA_PKCS1_V1_5_SHA_384
  • RSASSA_PKCS1_V1_5_SHA_512
  • ECDSA_SHA_256
  • ECDSA_SHA_384
  • ECDSA_SHA_512

The IsDigest parameter specifies whether the message data is the original message (false) or a message digest (true). When supplying a message digest, keep in mind that the same digest will need to be provided in order to Verify the signature later.

Note that a maximum of 4096 bytes of message data can be sent to the server. If IsDigest is false, and more than 4096 bytes of message data are provided, the component will automatically compute an appropriate message digest and send it instead. In such cases, the computed digest is made available via the MessageDigest configuration setting.

This method will fail if any of the following are true regarding the specified KMS key:

  • Its State is anything other than aksEnabled (0).
  • It is symmetric (see KeySpec).
  • It is for encryption/decryption instead of signing/verification (see ForSigning).
  • It is an AWS-managed KMS key (see AWSManaged).

UpdateAlias Method (AmazonKMS Component)

Updates an alias to refer to a different KMS key.

Syntax

public void UpdateAlias(string aliasName, string newKeyId);

Async Version
public async Task UpdateAlias(string aliasName, string newKeyId);
public async Task UpdateAlias(string aliasName, string newKeyId, CancellationToken cancellationToken);
Public Sub UpdateAlias(ByVal AliasName As String, ByVal NewKeyId As String)

Async Version
Public Sub UpdateAlias(ByVal AliasName As String, ByVal NewKeyId As String) As Task
Public Sub UpdateAlias(ByVal AliasName As String, ByVal NewKeyId As String, cancellationToken As CancellationToken) As Task

Remarks

This method updates the alias named AliasName, changing it so that it refers to the KMS key specified by NewKeyId.

The value passed for the AliasName parameter must include the alias/ prefix, and must be the name of an alias in the current account and Region

The value passed for the NewKeyId parameter must be the Id or ARN of a KMS key in the current account and Region. The specified KMS key must be of the same type (i.e., symmetric or asymmetric) and have the same usage (i.e., encryption/decryption or signing/verification) as the KMS key that the alias currently refers to.

This method will fail if the specified alias is AWS-managed (i.e., its name begins with alias/aws/). This method will also fail if the specified KMS key's state is aksPendingDeletion (2), or if it is AWS-managed (see AWSManaged).

UpdateKeyDescription Method (AmazonKMS Component)

Updates a KMS key's description.

Syntax

public void UpdateKeyDescription(string keyId, string newDescription);

Async Version
public async Task UpdateKeyDescription(string keyId, string newDescription);
public async Task UpdateKeyDescription(string keyId, string newDescription, CancellationToken cancellationToken);
Public Sub UpdateKeyDescription(ByVal KeyId As String, ByVal NewDescription As String)

Async Version
Public Sub UpdateKeyDescription(ByVal KeyId As String, ByVal NewDescription As String) As Task
Public Sub UpdateKeyDescription(ByVal KeyId As String, ByVal NewDescription As String, cancellationToken As CancellationToken) As Task

Remarks

This method updates the description of the KMS key specified by KeyId.

The value passed for the KeyId parameter must be the Id or ARN of a KMS key in the current account and Region.

This method will fail if the specified KMS key's state is aksPendingDeletion (2), or if it is AWS-managed (see AWSManaged).

Verify Method (AmazonKMS Component)

Verifies a digital signature using a KMS key.

Syntax

public bool Verify(string keyId, string algorithm, bool isDigest);

Async Version
public async Task<bool> Verify(string keyId, string algorithm, bool isDigest);
public async Task<bool> Verify(string keyId, string algorithm, bool isDigest, CancellationToken cancellationToken);
Public Function Verify(ByVal KeyId As String, ByVal Algorithm As String, ByVal IsDigest As Boolean) As Boolean

Async Version
Public Function Verify(ByVal KeyId As String, ByVal Algorithm As String, ByVal IsDigest As Boolean) As Task(Of Boolean)
Public Function Verify(ByVal KeyId As String, ByVal Algorithm As String, ByVal IsDigest As Boolean, cancellationToken As CancellationToken) As Task(Of Boolean)

Remarks

This method verifies a digital signature using the KMS key specified by KeyId and the given Algorithm. The message data is taken from the input stream supplied via the SetInputStream method, the specified InputFile, or the InputData property. The digital signature data is taken from the specified OutputFile or the OutputData property. If the signature is successfully verified, this method returns true, otherwise it returns false.

The value passed for the KeyId parameter must be the Id or ARN of a KMS key, or the name or ARN of an alias, in the current Region. If an ARN is provided, it can be for a KMS key or alias in another account so long as the appropriate permissions are in place.

The Algorithm parameter specifies which algorithm was used to sign the data. Possible values are:

  • RSASSA_PSS_SHA_256
  • RSASSA_PSS_SHA_384
  • RSASSA_PSS_SHA_512
  • RSASSA_PKCS1_V1_5_SHA_256
  • RSASSA_PKCS1_V1_5_SHA_384
  • RSASSA_PKCS1_V1_5_SHA_512
  • ECDSA_SHA_256
  • ECDSA_SHA_384
  • ECDSA_SHA_512

The IsDigest parameter specifies whether the data whose signature is being verified is the original message (false) or a message digest (true). When a message digest is supplied, keep in mind that it must be the exact same digest that was used at signing time, regardless of whether it has been recomputed.

Note that, as with the Sign method, a maximum of 4096 bytes of message data can be sent to the server. If IsDigest is false, and more than 4096 bytes of message data are provided, the component will automatically compute an appropriate message digest and send it instead. In such cases, the computed digest is made available via the MessageDigest configuration setting.

This method will fail if any of the following are true regarding the specified KMS key:

  • Its State is anything other than aksEnabled (0).
  • It is symmetric (see KeySpec).
  • It is for encryption/decryption instead of signing/verification (see ForSigning).
  • It is an AWS-managed KMS key (see AWSManaged).

AliasList Event (AmazonKMS Component)

Fires once for each alias when listing aliases.

Syntax

public event OnAliasListHandler OnAliasList;

public delegate void OnAliasListHandler(object sender, AmazonKMSAliasListEventArgs e);

public class AmazonKMSAliasListEventArgs : EventArgs {
  public string ARN { get; }
  public string Name { get; }
  public string KeyId { get; }
}
Public Event OnAliasList As OnAliasListHandler

Public Delegate Sub OnAliasListHandler(sender As Object, e As AmazonKMSAliasListEventArgs)

Public Class AmazonKMSAliasListEventArgs Inherits EventArgs
  Public ReadOnly Property ARN As String
  Public ReadOnly Property Name As String
  Public ReadOnly Property KeyId As String
End Class

Remarks

This event fires once for each alias returned when ListAliases is called.

ARN reflects the Amazon resource name of the alias.

Name reflects the name of the alias, including the alias/ prefix.

KeyId reflects the Id of the KMS key that the alias refers to.

EndTransfer Event (AmazonKMS Component)

This event fires when a document finishes transferring.

Syntax

public event OnEndTransferHandler OnEndTransfer;

public delegate void OnEndTransferHandler(object sender, AmazonKMSEndTransferEventArgs e);

public class AmazonKMSEndTransferEventArgs : EventArgs {
  public int Direction { get; }
}
Public Event OnEndTransfer As OnEndTransferHandler

Public Delegate Sub OnEndTransferHandler(sender As Object, e As AmazonKMSEndTransferEventArgs)

Public Class AmazonKMSEndTransferEventArgs Inherits EventArgs
  Public ReadOnly Property Direction As Integer
End Class

Remarks

The EndTransfer event is fired when the document text finishes transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Error Event (AmazonKMS Component)

Fired when information is available about errors during data delivery.

Syntax

public event OnErrorHandler OnError;

public delegate void OnErrorHandler(object sender, AmazonKMSErrorEventArgs e);

public class AmazonKMSErrorEventArgs : EventArgs {
  public int ErrorCode { get; }
  public string Description { get; }
}
Public Event OnError As OnErrorHandler

Public Delegate Sub OnErrorHandler(sender As Object, e As AmazonKMSErrorEventArgs)

Public Class AmazonKMSErrorEventArgs Inherits EventArgs
  Public ReadOnly Property ErrorCode As Integer
  Public ReadOnly Property Description As String
End Class

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the component throws an exception.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Header Event (AmazonKMS Component)

Fired every time a header line comes in.

Syntax

public event OnHeaderHandler OnHeader;

public delegate void OnHeaderHandler(object sender, AmazonKMSHeaderEventArgs e);

public class AmazonKMSHeaderEventArgs : EventArgs {
  public string Field { get; }
  public string Value { get; }
}
Public Event OnHeader As OnHeaderHandler

Public Delegate Sub OnHeaderHandler(sender As Object, e As AmazonKMSHeaderEventArgs)

Public Class AmazonKMSHeaderEventArgs Inherits EventArgs
  Public ReadOnly Property Field As String
  Public ReadOnly Property Value As String
End Class

Remarks

The Field parameter contains the name of the HTTP header (which is the same as it is delivered). The Value parameter contains the header contents.

If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).

KeyList Event (AmazonKMS Component)

Fires once for each KMS key when listing KMS keys.

Syntax

public event OnKeyListHandler OnKeyList;

public delegate void OnKeyListHandler(object sender, AmazonKMSKeyListEventArgs e);

public class AmazonKMSKeyListEventArgs : EventArgs {
  public string ARN { get; }
  public string Id { get; }
  public string AccountId { get; }
  public string Description { get; }
  public bool Enabled { get; }
  public bool AWSManaged { get; }
  public bool ForSigning { get; }
  public string KeySpec { get; }
  public string Algorithms { get; }
  public int State { get; }
  public string CreationDate { get; }
  public string DeletionDate { get; }
}
Public Event OnKeyList As OnKeyListHandler

Public Delegate Sub OnKeyListHandler(sender As Object, e As AmazonKMSKeyListEventArgs)

Public Class AmazonKMSKeyListEventArgs Inherits EventArgs
  Public ReadOnly Property ARN As String
  Public ReadOnly Property Id As String
  Public ReadOnly Property AccountId As String
  Public ReadOnly Property Description As String
  Public ReadOnly Property Enabled As Boolean
  Public ReadOnly Property AWSManaged As Boolean
  Public ReadOnly Property ForSigning As Boolean
  Public ReadOnly Property KeySpec As String
  Public ReadOnly Property Algorithms As String
  Public ReadOnly Property State As Integer
  Public ReadOnly Property CreationDate As String
  Public ReadOnly Property DeletionDate As String
End Class

Remarks

This event fires once for each KMS key returned when ListKeys or GetKeyInfo is called. However, note that only ARN and Id are populated when ListKeys is called (unless the IncludeKeyDetails property is enabled; refer to its documentation for more information).

ARN reflects the Amazon resource name of the KMS key.

Id reflects the Id of the KMS key.

AccountId reflects the Id of the AWS account that owns the KMS key.

Description reflects the KMS key's description.

Enabled reflects whether the KMS key is currently enabled.

AWSManaged reflects whether the KMS key is AWS-managed (true) or customer-managed (false).

ForSigning reflects whether the KMS key's usage is signing/verification (true) or encryption/decryption (false).

KeySpec reflects the key spec of the KMS key. For symmetric KMS keys, the only possible value is SYMMETRIC_DEFAULT which, according to the Amazon KMS documentation, is based on AES-256-GCM. For asymmetric KMS keys, possible values are:

  • RSA_2048
  • RSA_3072
  • RSA_4096
  • ECC_NIST_P256 (secp256r1)
  • ECC_NIST_P384 (secp384r1)
  • ECC_NIST_P521 (secp521r1)
  • ECC_SECG_P256K1 (secp256k1)

Algorithms reflects a comma-separated list of algorithms that the KMS key supports. If ForSigning is false, possible values are:

  • SYMMETRIC_DEFAULT
  • RSAES_OAEP_SHA_1
  • RSAES_OAEP_SHA_256

If ForSigning is true, possible values are:

  • RSASSA_PSS_SHA_256
  • RSASSA_PSS_SHA_384
  • RSASSA_PSS_SHA_512
  • RSASSA_PKCS1_V1_5_SHA_256
  • RSASSA_PKCS1_V1_5_SHA_384
  • RSASSA_PKCS1_V1_5_SHA_512
  • ECDSA_SHA_256
  • ECDSA_SHA_384
  • ECDSA_SHA_512

State reflects the KMS key's state. Possible values are:

  • aksEnabled (0): The KMS key is enabled and ready for use. (Also the default value used when ListKeys is called.)
  • aksDisabled (1): The KMS key is disabled and cannot be used until it is enabled again.
  • aksPendingDeletion (2): The KMS key is pending deletion and cannot be used unless the deletion is canceled.
  • aksPendingImport (3): The KMS key has been created, but external key material has not yet been imported into it, so it cannot be used.
  • aksUnavailable (4): The KMS key is currently unavailable because the CloudHSM cluster that contains its key material has been disconnected from Amazon KMS.

CreationDate reflects the creation date of the KMS key, in seconds since the Unix epoch (including fractional seconds).

If the KMS key's state is aksPendingDeletion (2), DeletionDate reflects the deletion date, in seconds since the Unix epoch (including fractional seconds)

Log Event (AmazonKMS Component)

Fired once for each log message.

Syntax

public event OnLogHandler OnLog;

public delegate void OnLogHandler(object sender, AmazonKMSLogEventArgs e);

public class AmazonKMSLogEventArgs : EventArgs {
  public int LogLevel { get; }
  public string Message { get; }
  public string LogType { get; }
}
Public Event OnLog As OnLogHandler

Public Delegate Sub OnLogHandler(sender As Object, e As AmazonKMSLogEventArgs)

Public Class AmazonKMSLogEventArgs Inherits EventArgs
  Public ReadOnly Property LogLevel As Integer
  Public ReadOnly Property Message As String
  Public ReadOnly Property LogType As String
End Class

Remarks

This event is fired once for each log message generated by the component. The verbosity is controlled by the LogLevel setting.

LogLevel indicates the level of message. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

Message is the log entry.

LogType identifies the type of log entry. Possible values are as follows:

  • "Info"
  • "RequestHeaders"
  • "ResponseHeaders"
  • "RequestBody"
  • "ResponseBody"
  • "ProxyRequest"
  • "ProxyResponse"
  • "FirewallRequest"
  • "FirewallResponse"

SSLServerAuthentication Event (AmazonKMS Component)

Fired after the server presents its certificate to the client.

Syntax

public event OnSSLServerAuthenticationHandler OnSSLServerAuthentication;

public delegate void OnSSLServerAuthenticationHandler(object sender, AmazonKMSSSLServerAuthenticationEventArgs e);

public class AmazonKMSSSLServerAuthenticationEventArgs : EventArgs {
  public string CertEncoded { get; }
public byte[] CertEncodedB { get; } public string CertSubject { get; } public string CertIssuer { get; } public string Status { get; } public bool Accept { get; set; } }
Public Event OnSSLServerAuthentication As OnSSLServerAuthenticationHandler

Public Delegate Sub OnSSLServerAuthenticationHandler(sender As Object, e As AmazonKMSSSLServerAuthenticationEventArgs)

Public Class AmazonKMSSSLServerAuthenticationEventArgs Inherits EventArgs
  Public ReadOnly Property CertEncoded As String
Public ReadOnly Property CertEncodedB As Byte() Public ReadOnly Property CertSubject As String Public ReadOnly Property CertIssuer As String Public ReadOnly Property Status As String Public Property Accept As Boolean End Class

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (AmazonKMS Component)

Fired when secure connection progress messages are available.

Syntax

public event OnSSLStatusHandler OnSSLStatus;

public delegate void OnSSLStatusHandler(object sender, AmazonKMSSSLStatusEventArgs e);

public class AmazonKMSSSLStatusEventArgs : EventArgs {
  public string Message { get; }
}
Public Event OnSSLStatus As OnSSLStatusHandler

Public Delegate Sub OnSSLStatusHandler(sender As Object, e As AmazonKMSSSLStatusEventArgs)

Public Class AmazonKMSSSLStatusEventArgs Inherits EventArgs
  Public ReadOnly Property Message As String
End Class

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

StartTransfer Event (AmazonKMS Component)

This event fires when a document starts transferring (after the headers).

Syntax

public event OnStartTransferHandler OnStartTransfer;

public delegate void OnStartTransferHandler(object sender, AmazonKMSStartTransferEventArgs e);

public class AmazonKMSStartTransferEventArgs : EventArgs {
  public int Direction { get; }
}
Public Event OnStartTransfer As OnStartTransferHandler

Public Delegate Sub OnStartTransferHandler(sender As Object, e As AmazonKMSStartTransferEventArgs)

Public Class AmazonKMSStartTransferEventArgs Inherits EventArgs
  Public ReadOnly Property Direction As Integer
End Class

Remarks

The StartTransfer event is fired when the document text starts transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Transfer Event (AmazonKMS Component)

Fired while a document transfers (delivers document).

Syntax

public event OnTransferHandler OnTransfer;

public delegate void OnTransferHandler(object sender, AmazonKMSTransferEventArgs e);

public class AmazonKMSTransferEventArgs : EventArgs {
  public int Direction { get; }
  public long BytesTransferred { get; }
  public int PercentDone { get; }
  public string Text { get; }
public byte[] TextB { get; } }
Public Event OnTransfer As OnTransferHandler

Public Delegate Sub OnTransferHandler(sender As Object, e As AmazonKMSTransferEventArgs)

Public Class AmazonKMSTransferEventArgs Inherits EventArgs
  Public ReadOnly Property Direction As Integer
  Public ReadOnly Property BytesTransferred As Long
  Public ReadOnly Property PercentDone As Integer
  Public ReadOnly Property Text As String
Public ReadOnly Property TextB As Byte() End Class

Remarks

The Text parameter contains the portion of the document text being received. It is empty if data are being posted to the server.

The BytesTransferred parameter contains the number of bytes transferred in this Direction since the beginning of the document text (excluding HTTP response headers).

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.

Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.

AWSAlias Type

An Amazon KMS alias.

Remarks

This type represents an Amazon KMS alias.

The following fields are available:

Fields

ARN
string (read-only)

Default: ""

The Amazon resource name (ARN) of the alias.

This field reflects the Amazon resource name (ARN) of the alias.

KeyId
string (read-only)

Default: ""

The Id of the KMS key that the alias is associated with.

This field reflects the Id of the KMS key that the alias is associated with.

Note that AWS pre-creates certain aliases, so it is possible for this field to be empty.

Name
string (read-only)

Default: ""

The name of the alias.

This field reflects the name of the alias, including the alias/ prefix.

AWSContextItem Type

An Amazon KMS encryption context item.

Remarks

This type represents an Amazon KMS encryption context item.

The following fields are available:

Fields

Name
string

Default: ""

The name of the context item.

This field specifies the name of the context item.

Value
string

Default: ""

The value of the context item.

This field specifies the value of the context item.

Constructors

public AWSContextItem();
Public AWSContextItem()
public AWSContextItem(string name, string value);
Public AWSContextItem(ByVal Name As String, ByVal Value As String)

AWSKey Type

An AWS KMS key.

Remarks

This type represents an AWS KMS key.

The following fields are available:

Fields

AccountId
string (read-only)

Default: ""

The Id of the AWS account that owns the KMS key.

This field reflects the Id of the AWS account that owns the KMS key.

Algorithms
string (read-only)

Default: ""

A comma-separated list of algorithms that the KMS key supports.

This field reflects a comma-separated list of algorithms that the KMS key supports.

If ForSigning is false, possible values are:

  • SYMMETRIC_DEFAULT
  • RSAES_OAEP_SHA_1
  • RSAES_OAEP_SHA_256

If ForSigning is true, possible values are:

  • RSASSA_PSS_SHA_256
  • RSASSA_PSS_SHA_384
  • RSASSA_PSS_SHA_512
  • RSASSA_PKCS1_V1_5_SHA_256
  • RSASSA_PKCS1_V1_5_SHA_384
  • RSASSA_PKCS1_V1_5_SHA_512
  • ECDSA_SHA_256
  • ECDSA_SHA_384
  • ECDSA_SHA_512

ARN
string (read-only)

Default: ""

The Amazon resource name (ARN) of the KMS key.

This field reflects the Amazon resource name (ARN) of the KMS key.

AWSManaged
bool (read-only)

Default: False

Whether the KMS key is AWS-managed.

This field reflects whether the KMS key is AWS-managed (true) or customer-managed (false).

CloudHSMClusterId
string (read-only)

Default: ""

The Id of the CloudHSM cluster the KMS key's key material resides in, if applicable.

If the KMS key resides in a custom key store, this field reflects the Id of the CloudHSM that the KMS key's key material resides in.

CreationDate
string (read-only)

Default: ""

The creation date of the KMS key.

This field reflects the creation date of the KMS key, in seconds since the Unix epoch (including fractional seconds).

CustomKeyStoreId
string (read-only)

Default: ""

The Id of the custom key store that the KMS key resides in, if applicable.

If the KMS key resides in a custom key store, this field reflects the Id of said custom key store.

DeletionDate
string (read-only)

Default: ""

The date at which the KMS key will be deleted, if applicable.

If the KMS key's State is aksPendingDeletion (2), this field will reflect the deletion date, in seconds since the Unix epoch (including fractional seconds).

Description
string (read-only)

Default: ""

The KMS key's description.

This field reflects the KMS key's description. To change a KMS key's description, use the UpdateKeyDescription method.

Enabled
bool (read-only)

Default: False

Whether the KMS key is enabled.

This field reflects whether the KMS key is currently enabled.

ExpirationDate
string (read-only)

Default: ""

The date at which the KMS key's key material will expire, if applicable.

If the KMS key's key material Origin is akoExternal (1), and the external key material has an expiration date, this field will reflect said date, in seconds since the Unix epoch (including fractional seconds).

ForSigning
bool (read-only)

Default: False

Whether the KMS key is for signing or encryption.

This field reflects whether the KMS key's usage is signing/verification (true) or encryption/decryption (false).

A KMS key's usage determines which cryptographic operations it can be used for. For example, a KMS key with signing/verification usage can be used for Sign and Verify operations, but not for Encrypt, Decrypt or ReEncrypt operations.

Id
string (read-only)

Default: ""

The Id of the KMS key.

This field reflects the Id of the KMS key.

KeySpec
string (read-only)

Default: ""

The key spec of the KMS key.

This field reflects the key spec of the KMS key. For symmetric KMS keys, the only possible value is SYMMETRIC_DEFAULT which, according to the Amazon KMS documentation, is based on AES-256-GCM. For asymmetric KMS keys, possible values are:

  • RSA_2048
  • RSA_3072
  • RSA_4096
  • ECC_NIST_P256 (secp256r1)
  • ECC_NIST_P384 (secp384r1)
  • ECC_NIST_P521 (secp521r1)
  • ECC_SECG_P256K1 (secp256k1)

Origin
AWSKeyOrigins (read-only)

Default: 0

The origin of the KMS key's key material.

This field reflects the origin of the KMS key's key material. Possible values are:

  • akoKMS (0): Key material from Amazon KMS. (Also the default value used when ListKeys is called.)
  • akoExternal (1): External key material imported into Amazon KMS.
  • akoCloudHSM (2): Key material from an Amazon CloudHSM cluster.

State
AWSKeyStates (read-only)

Default: 0

The KMS key's state.

This field reflects the KMS key's state. Possible values are:

  • aksEnabled (0): The KMS key is enabled and ready for use. (Also the default value used when ListKeys is called.)
  • aksDisabled (1): The KMS key is disabled and cannot be used until it is enabled again.
  • aksPendingDeletion (2): The KMS key is pending deletion and cannot be used unless the deletion is canceled.
  • aksPendingImport (3): The KMS key has been created, but external key material has not yet been imported into it, so it cannot be used.
  • aksUnavailable (4): The KMS key is currently unavailable because the CloudHSM cluster that contains its key material has been disconnected from Amazon KMS.

AWSKeyData Type

Key information downloaded from Amazon KMS.

Remarks

This type represents a KMS key's public key, a data key, or a data key pair downloaded from Amazon KMS.

The following fields are available:

Fields

Algorithms
string (read-only)

Default: ""

The algorithms supported by the public key.

When GetPublicKey is called, this field will contain a comma-separated list of algorithms that the PublicKey can be used with. Always empty when GenerateDataKey or GenerateDataKeyPair is called.

If ForSigning is false, possible values are:

  • SYMMETRIC_DEFAULT
  • RSAES_OAEP_SHA_1
  • RSAES_OAEP_SHA_256

If ForSigning is true, possible values are:

  • RSASSA_PSS_SHA_256
  • RSASSA_PSS_SHA_384
  • RSASSA_PSS_SHA_512
  • RSASSA_PKCS1_V1_5_SHA_256
  • RSASSA_PKCS1_V1_5_SHA_384
  • RSASSA_PKCS1_V1_5_SHA_512
  • ECDSA_SHA_256
  • ECDSA_SHA_384
  • ECDSA_SHA_512

ARN
string (read-only)

Default: ""

The Amazon resource name (ARN) of the associated KMS key.

When GetPublicKey is called, this field reflects the Amazon resource name (ARN) of the KMS key whose PublicKey was downloaded.

When GenerateDataKey or GenerateDataKeyPair is called, this field reflects the ARN of the KMS key that encrypted the data key or the data key pair's private key (respectively) that is stored in EncryptedKey.

EncryptedKey
string (read-only)

Default: ""

The encrypted key or private key data.

When GenerateDataKey is called, this field reflects the encrypted data key that was downloaded. When GenerateDataKeyPair is called, this field reflects the encrypted private key of the data key pair that was downloaded.

In the case of GenerateDataKeyPair, note that the actual private key data will be in DER format upon decryption. It is up to the application to convert it to another format after decryption if necessary.

Always empty when GetPublicKey is called.

EncryptedKeyB
byte [] (read-only)

Default: ""

The encrypted key or private key data.

When GenerateDataKey is called, this field reflects the encrypted data key that was downloaded. When GenerateDataKeyPair is called, this field reflects the encrypted private key of the data key pair that was downloaded.

In the case of GenerateDataKeyPair, note that the actual private key data will be in DER format upon decryption. It is up to the application to convert it to another format after decryption if necessary.

Always empty when GetPublicKey is called.

ForSigning
bool (read-only)

Default: False

Whether the public key is for signing or encryption.

When GetPublicKey is called, this field reflects whether the downloaded PublicKey is to be used for verification (true) or encryption (false).

Always false when GenerateDataKey or GenerateDataKeyPair is called.

KeySpec
string (read-only)

Default: ""

The key spec of the downloaded key data.

When GetPublicKey is called, this field reflects the spec of the KMS key whose PublicKey was downloaded, and the possible values are:

  • RSA_2048
  • RSA_3072
  • RSA_4096
  • ECC_NIST_P256 (secp256r1)
  • ECC_NIST_P384 (secp384r1)
  • ECC_NIST_P521 (secp521r1)
  • ECC_SECG_P256K1 (secp256k1)

When GenerateDataKey is called, this field reflects either the spec of the data key or the size of the data key in bytes (whichever was passed to the method); one of:

  • AES_128
  • AES_256
  • Some number of bytes in the range 1 to 1024 (e.g., 64)

When GenerateDataKeyPair is called, this field reflects the spec of the data key pair, and the possible values are the same as they are for GetPublicKey.

PlaintextKey
string (read-only)

Default: ""

The plaintext key or private key data.

If, when GenerateDataKey or GenerateDataKeyPair is called, the IncludePlaintext parameter was true, this field will reflect the plaintext data key or private key of the data key pair (respectively) that was downloaded. Otherwise, it will be empty.

In the case of GenerateDataKeyPair, this field exposes the private key in PEM format for convenience.

Always empty when GetPublicKey is called.

PlaintextKeyB
byte [] (read-only)

Default: ""

The plaintext key or private key data.

If, when GenerateDataKey or GenerateDataKeyPair is called, the IncludePlaintext parameter was true, this field will reflect the plaintext data key or private key of the data key pair (respectively) that was downloaded. Otherwise, it will be empty.

In the case of GenerateDataKeyPair, this field exposes the private key in PEM format for convenience.

Always empty when GetPublicKey is called.

PublicKey
string (read-only)

Default: ""

The public key.

When GetPublicKey is called, this field will reflect the public key of the KMS key. When GenerateDataKeyPair is called, this field will reflect the public key of the data key pair. The public key is exposed in PEM format for convenience.

Always empty when GenerateDataKey is called.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

The following fields are available:

Fields

EffectiveDate
string (read-only)

Default: ""

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

ExpirationDate
string (read-only)

Default: ""

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
string (read-only)

Default: ""

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
string (read-only)

Default: ""

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
string (read-only)

Default: ""

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
string (read-only)

Default: ""

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
string (read-only)

Default: ""

The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

PrivateKey
string (read-only)

Default: ""

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
bool (read-only)

Default: False

Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
string (read-only)

Default: ""

The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
string (read-only)

Default: ""

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
string (read-only)

Default: ""

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default: 0

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
string (read-only)

Default: ""

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
string (read-only)

Default: ""

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
string

Default: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StoreB
byte []

Default: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
string

Default: ""

If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.

StoreType
CertStoreTypes

Default: 0

The type of certificate store for this certificate.

The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CERTMGR component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

SubjectAltNames
string (read-only)

Default: ""

Comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
string (read-only)

Default: ""

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
string (read-only)

Default: ""

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
string (read-only)

Default: ""

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
string (read-only)

Default: ""

The text description of UsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int (read-only)

Default: 0

The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
string (read-only)

Default: ""

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Subject
string

Default: ""

The subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate, the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Encoded
string

Default: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
byte []

Default: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

Constructors

public Certificate();
Public Certificate()

Creates a instance whose properties can be set. This is useful for use with when generating new certificates.

public Certificate(string certificateFile);
Public Certificate(ByVal CertificateFile As String)

Opens CertificateFile and reads out the contents as an X.509 public key.

public Certificate(byte[] encoded);
Public Certificate(ByVal Encoded As Byte())

Parses Encoded as an X.509 public key.

public Certificate(CertStoreTypes storeType, string store, string storePassword, string subject);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String)

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate(CertStoreTypes storeType, string store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

ConfigurationString is a newline-separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to the cstUser , cstMachine , cstPublicKeyFile , and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations.

After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate(CertStoreTypes storeType, string store, string storePassword, byte[] encoded);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Encoded As Byte())

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

public Certificate(CertStoreTypes storeType, byte[] store, string storePassword, string subject);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As Byte(), ByVal StorePassword As String, ByVal Subject As String)

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate(CertStoreTypes storeType, byte[] store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As Byte(), ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate(CertStoreTypes storeType, byte[] store, string storePassword, byte[] encoded);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As Byte(), ByVal StorePassword As String, ByVal Encoded As Byte())

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

Firewall Type

The firewall the component will connect through.

Remarks

When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.

The following fields are available:

Fields

AutoDetect
bool

Default: False

Whether to automatically detect and use firewall system settings, if available.

FirewallType
FirewallTypes

Default: 0

The type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. Port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. Port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. Port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. Port is set to 1080.

Host
string

Default: ""

The name or IP address of the firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the component throws an exception.

Password
string

Default: ""

A password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the component throws an exception.

Port
int

Default: 0

The Transmission Control Protocol (TCP) port for the firewall Host. See the description of the Host field for details.

Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.

User
string

Default: ""

A username if authentication is to be used when connecting through a firewall. If Host is specified, this field and the Password field are used to connect and authenticate to the given Firewall. If the authentication fails, the component throws an exception.

Constructors

public Firewall();
Public Firewall()

Header Type

This is an HTTP header as it is received from the server.

Remarks

When a header is received through a Header event, it is parsed into a Header type. This type contains a Field, and its corresponding Value.

The following fields are available:

Fields

Field
string

Default: ""

This field contains the name of the HTTP Header (this is the same case as it is delivered).

Value
string

Default: ""

This field contains the Header contents.

Constructors

public Header();
Public Header()
public Header(string field, string value);
Public Header(ByVal Field As String, ByVal Value As String)

Proxy Type

The proxy the component will connect to.

Remarks

When connecting through a proxy, this type is used to specify different properties of the proxy, such as the Server and the AuthScheme.

The following fields are available:

Fields

AuthScheme
ProxyAuthSchemes

Default: 0

The type of authorization to perform when connecting to the proxy. This is used only when the User and Password fields are set.

AuthScheme should be set to authNone (3) when no authentication is expected.

By default, AuthScheme is authBasic (0), and if the User and Password fields are set, the component will attempt basic authentication.

If AuthScheme is set to authDigest (1), digest authentication will be attempted instead.

If AuthScheme is set to authProprietary (2), then the authorization token will not be generated by the component. Look at the configuration file for the component being used to find more information about manually setting this token.

If AuthScheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this field will clear the values of User and Password.

AutoDetect
bool

Default: False

Whether to automatically detect and use proxy system settings, if available. The default value is false.

Password
string

Default: ""

A password if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password fields are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password fields are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password fields are used to authenticate through NTLM negotiation.

Port
int

Default: 80

The Transmission Control Protocol (TCP) port for the proxy Server (default 80). See the description of the Server field for details.

Server
string

Default: ""

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the Server field is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the Server field is set to the corresponding address. If the search is not successful, an error is returned.

SSL
ProxySSLTypes

Default: 0

When to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the component will use the psTunnel option. If the URL is an http URL, the component will use the psNever option.
psAlways (1)The connection is always SSL-enabled.
psNever (2)The connection is not SSL-enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

User
string

Default: ""

A username if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password fields are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password fields are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password fields are used to authenticate through NTLM negotiation.

Constructors

public Proxy();
Public Proxy()
public Proxy(string server, int port);
Public Proxy(ByVal Server As String, ByVal Port As Integer)
public Proxy(string server, int port, string user, string password);
Public Proxy(ByVal Server As String, ByVal Port As Integer, ByVal User As String, ByVal Password As String)

QueryParam Type

A query parameter to send in the request.

Remarks

This type represents a query parameter to send in the request.

The following fields are available:

Fields

Name
string

Default: ""

The name of the query parameter.

This field specifies the name of the query parameter.

Value
string

Default: ""

The value of the query parameter.

This field specifies the value of the query parameter. The component will automatically URL-encode this value when sending the request.

Constructors

public QueryParam();
Public QueryParam()
public QueryParam(string name, string value);
Public QueryParam(ByVal Name As String, ByVal Value As String)

Config Settings (AmazonKMS Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

AmazonKMS Config Settings

AccumulatePages:   Whether the component should accumulate subsequent pages of results when listing them.

This setting controls how the component behaves when listing multiple pages of results. If this setting is enabled, each successive page of results will be appended to the appropriate collection property until the last page of results has been listed (at which point the next list call will cause said collection to be cleared first). If this setting is disabled, the collection will be cleared every time a page of results is returned.

By default, this setting is enabled, allowing all pages of results to be accumulated in the appropriate collection property.

AWSProfile:   The name of the AWS CLI profile that the component should use to obtain authentication and region information.

This setting, if non-empty, must contain the name of the AWS CLI profile whose authentication and (optionally) region information the component should use to communicate with the server. To use the default profile, set this setting to default. Refer to the following pages of the AWS CLI documentation for more information about AWS profiles, and the credentials and config files used to store them:

The component supports key-based credential profiles; i.e., those which include the aws_access_key_id, aws_secret_access_key, and (optionally) aws_session_token elements. Role-based profiles are not supported at this time.

In addition to the authentication-related elements mentioned above, the component also supports the region element, if it is present in the specified profile.

The component searches for the specified profile's information in the credentials and config files. The AWSProfileDir setting can be used to configure the directory where the component looks for these files. If the aforementioned files do not exist, or the specified profile cannot be found or is missing information, an error will occur.

AWSProfileDir:   The location of the AWS CLI credentials and config files.

This setting specifies the directory that the component should check when attempting to locate the AWS CLI credentials and config files. This setting is only used if the AWSProfile setting is non-empty.

By default, this setting is empty, which will cause the component to check the default location used by the AWS CLI: an .aws directory in the current user's home directory; i.e., %UserProfile%\.aws (Windows) or ~/.aws (Linux/macOS).

CloseInputStreamAfterProcessing:   Whether the specified input stream should be closed after data is read from it.

This setting specifies whether the component should close the input stream supplied via the SetInputStream method after its data has been read and processed.

By default, this setting is disabled, and the input stream will remain open.

CloseOutputStreamAfterProcessing:   Whether the specified output stream should be closed after data is written to it.

This setting specifies whether the component should close the output stream supplied via the SetOutputStream method after data has been written to it.

By default, this setting is disabled, and the output stream will remain open.

CreateKeyPolicy:   The key policy JSON to send when creating a new KMS key.

This setting can be set to a fully-formed key policy JSON object before calling CreateKey in order to specify the key policy of the new KMS key.

Note that this setting's value, if non-empty, is included in the request as-is without any validation; it must be a valid key policy JSON object structured according the Amazon KMS documentation.

CustomKeyStoreId:   The Id of the custom key store that the KMS key should be created in.

This setting can be set to the Id of a custom key store before calling CreateKey in order to have the KMS key be created in that custom key store. Refer to the Amazon KMS documentation for more information.

IMDSv2SessionTokenDuration:   The maximum duration of the session token.

This setting allows configuring the session time to live header sent to the metadata service. It governs the amount of time which the same session token can be used for subsequent requests. The default is 21600 seconds.

Note: This setting is ignored if IMDSVersion is 1.

IMDSVersion:   The version of Instance Metadata Service to use when accessing role credentials.

When the component is using the IAM role attached to the instance as security credentials, this configuration setting allows specifying the Instance Metadata Service version.

The default value is 2 and a session-oriented method will be used to retrieve temporary security credentials. When this setting is set to 1, a request/response model will be used instead. Please see "Configuring Instance Metadata Service" in the Amazon AWS Documentation for more information.

In the session-oriented model, the session time to live can be specified in the IMDSv2SessionTokenDuration configuration setting.

MaxAliases:   The maximum number of results to return when listing aliases.

This setting specifies the maximum number of results that should be returned by a call to ListAliases.

If this setting is -1 (default), the server's default (50) is used. Acceptable values are 1 to 100 (inclusive).

MaxKeys:   The maximum number of results to return when listing KMS keys.

This setting specifies the maximum number of results that should be returned by a call to ListKeys.

If this setting is -1 (default), the server's default (100) is used. Acceptable values are 1 to 1000 (inclusive).

MessageDigest:   The message digest computed by the component during the last sign or verify operation, if any.

This setting can be queried after calling Sign or Verify to obtain the (hex-encoded) message digest computed by the component during the call. If the component did not generate a message digest as part of the call, an empty string will be returned.

NewEncryptionContext:   The new encryption context to use when re-encrypting data.

This setting can be set to a JSON object with string properties before calling ReEncrypt in order to have the server change the encryption context when re-encrypting (assuming SYMMETRIC_DEFAULT is passed for the NewAlgorithm parameter; other encryption algorithms do not support encryption contexts).

If this setting is empty when ReEncrypt is called, the existing encryption context specified by the EncryptionContext collection is maintained (if possible). To explicitly remove the existing encryption context, set this setting to {}.

Note that this setting's value, if non-empty and not {}, is included in the request as-is without any validation; it must be a valid JSON object with only string-typed properties.

RawRequest:   Returns the data that was sent to the server.

This setting may be queried after calling any method that sends data to the server to obtain the request data that was transmitted. Such data may be useful for troubleshooting purposes.

RawResponse:   Returns the data that was received from the server.

This setting may be queried after calling any method that sends data to the server to obtain the response data that was received. Such data may be useful for troubleshooting purposes.

SessionToken:   The session token to send in the request when using temporary credentials.

When using temporary credentials, AWS requires you to send the session token provided with the temporary access and secret key in every request.

UseEC2RoleCredentials:   Whether to authenticate requests with credentials obtained from the IAM role attached to the EC2 instance.

When the component is running within an Amazon EC2 instance, this setting can be set to authenticate requests using the IAM role attached to the instance using temporary credentials obtained from the instance metadata service. The IMDSv2 protocol is used by default. Please see the IMDSVersion configuration setting for more information.

In order for the component to be able to auto-obtain authentication credentials, the EC2 instance must have an "instance profile" with an appropriate IAM role attached to it. Refer to the "Using an IAM Role to Grant Permissions to Applications Running on Amazon EC2 Instances" page in the Amazon IAM documentation for more information.

By default, this setting is false. When set to true the component will do the following before each request:

  1. Make a request against the EC2 instance to get the name of the role attached to it.
  2. Make a request against the metadata service to initiate a session. The request returns a token that must be included in subsequent requests.
  3. Parse the response, automatically populating the AccessKey and SecretKey properties and the SessionToken configuration setting.
  4. Execute the original request using the temporary security credentials that were acquired.

Note: This setting is ignored if the AWSProfile setting is set to a profile that includes credential information.

UseFIPSEndpoint:   Whether to use the FIPs endpoint to communicate with the server.

This setting specifies whether the component should use the FIPS endpoint for the currently-selected Region when communicating with the server.

By default, this setting is disabled, and the normal (non-FIPS) endpoint is used.

XChildCount:   The number of child elements of the current element.

This configuration settings specifies the number of child attributes of the current element. The XChild configuration settings will be indexed from 0 to (XChildCount - 1).

The current element is specified through the XPath configuration setting. This configuration setting is read-only.

XChildName[i]:   The name of the child element.

This configuration setting provides the name of the i-th child element of the current element.

The current element is specified through the XPath configuration setting. This configuration setting is read-only.

XChildXText[i]:   The inner text of the child element.

This configuration setting provides the inner text of the i-th child element of the current element.

The current element is specified through the XPath configuration setting. This configuration setting is read-only.

XElement:   The name of the current element.

This configuration setting provides the name of the current element.

The current element is specified through the XPath configuration setting. This configuration setting is read-only.

XParent:   The parent of the current element.

This configuration setting provides the parent of the current element.

The current element is specified through the XPath configuration setting. This configuration setting is read-only.

XPath:   Provides a way to point to a specific element in the returned XML or JSON response.

The XPath setting allows you to point to specific elements in the XML or JSON response.

When XPath is set to a valid path, XElement points to the name of the element, with XText, XParent, XSubTree, XChildCount, XChildName[i], and XChildXText[i] providing other properties of the element.

XPath syntax is available for both XML and JSON documents. An XPath is a series of one or more element accessors separated by the / character, for example, /A/B/C/D. An XPath can be absolute (i.e., it starts with /), or it can be relative to the current XPath location.

The following are possible values for an element accessor, which operates relative to the current location specified by the XPath accessors, which proceed it in the overall XPath string:

Accessor Description
name The first element with a particular name. Can be *.
[i] The i-th element.
name[i] The i-th element with a particular name.
[last()] The last element.
[last()-i] The element i before the last element.
name[@attrname="attrvalue"]The first element with a particular name that contains the specified attribute-value pair.

Supports single and double quotes. (XML Only)

. The current element.
.. The parent element.
Note: XPath indices are 1-based.

For example, assume the following XML and JSON responses.

XML:

<firstlevel>
  <one>value</one>
  <two>
    <item>first</item>
    <item>second</item>
  </two>
  <three>value three</three>
</firstlevel>

JSON:

{
  "firstlevel": {
    "one": "value",
    "two": ["first", "second"],
    "three": "value three"
  }
}

The following are examples of valid XPaths for these responses:

DescriptionXML XPath JSON XPath
Document root / /json
Specific element /firstlevel/one /json/firstlevel/one
i-th child /firstlevel/two/item[2]/json/firstlevel/two/[2]

This list is not exhaustive, but it provides a general idea of the possibilities.

XSubTree:   A snapshot of the current element in the document.

This configuration setting provides the entirety of the current element (including its subelements).

The current element is specified through the XPath configuration setting. This configuration setting is read-only.

XText:   The text of the current element.

This configuration setting provides the inner text of the current element.

The current element is specified in the XPath configuration setting. This configuration setting is read-only.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the component adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The component only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the component will accept compressed data. It then will uncompress the data it has received. The component will handle data compressed by both gzip and deflate compression algorithms.

When True, the component adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when HTTPVersion is set to "2.0".

If set to True (default), the component will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the component throws an exception if the server does not support HTTP/2.

The default value is True.

AllowNTLMFallback:   Whether to allow fallback from Negotiate to NTLM when authenticating.

This configuration setting applies only when AuthScheme is set to Negotiate. If set to True, the component will automatically use New Technology LAN Manager (NTLM) if the server does not support Negotiate authentication. Note: The server must indicate that it supports NTLM authentication through the WWW-Authenticate header for the fallback from Negotiate to NTLM to take place. The default value is False.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to LocalFile. When set to True, downloaded data will be appended to LocalFile. This may be used in conjunction with Range to resume a failed download. This is applicable only when LocalFile is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP component can be extended with other security schemes in addition to the authorization schemes already implemented by the component.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the Transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the component.

If set to True, the URL passed to the component will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the component returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new URL for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the component throws an exception.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the component throws an exception instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the component will perform a GET on the new location.

The default value is False. If set to True, the component will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the component.

This property specifies the HTTP version used by the component. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the component will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/2 is supported on all versions of Windows. If the Windows version is an earlier version than Windows 8.1/Windows Server 2012 R2, the internal security implementation will be used. If the Windows version is Window 8.1/Windows Server 2012 R2 or later, the system security libraries will be used by default.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If true, the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If false, the connection will be closed immediately after the server response is received.

The default value for KeepAlive is false.

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the Log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxHeaders:   Instructs component to save the amount of headers specified that are returned by the server after a Header event has been fired.

This configuration setting should be set when the TransferredHeaders collection is to be populated when a Header event has been fired. This value represents the number of headers that are to be saved in the collection.

To save all items to the collection, set this configuration setting to -1. If no items are wanted, set this to 0, which will not save any items to the collection. The default for this configuration setting is -1, so all items will be included in the collection.

MaxHTTPCookies:   Instructs component to save the amount of cookies specified that are returned by the server when a SetCookie event is fired.

This configuration setting should be set when populating the Cookies collection as a result of an HTTP request. This value represents the number of cookies that are to be saved in the collection.

To save all items to the collection, set this configuration setting to -1. If no items are wanted, set this to 0, which will not save any items to the collection. The default for this configuration setting is -1, so all items will be included in the collection.

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When FollowRedirects is set to any value other than frNever, the component will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When HTTPVersion is set to "2.0" (if the server does not support "2.0"), then the component will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the component beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If User and Password are specified, this value is calculated using the algorithm specified by AuthScheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by components that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by components that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by components that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by components that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by components that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the component.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the component.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the component will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the component will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified.

UsePlatformDeflate:   Whether to use the platform implementation to decompress compressed responses.

This configuration setting specifies whether the platform's deflate-algorithm implementation is used to decompress responses that use compression. If set to True (default), the platform implementation is used. If set to False, an internal implementation is used.

UsePlatformHTTPClient:   Whether or not to use the platform HTTP client.

When using this configuration setting, if True, the component will use the default HTTP client for the platform (URLConnection in Java, WebRequest in .NET, or CFHTTPMessage in Mac/iOS) instead of the internal HTTP implementation. This is important for environments in which direct access to sockets is limited or not allowed (e.g., in the Google AppEngine).

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the component will attempt to use the Proxy auto-config URL when establishing a connection and AutoDetect is set to True.

When True (default), the component will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

CloseStreamAfterTransfer:   If true, the component will close the upload or download stream after the transfer.

This configuration setting determines whether the input or output stream is closed after the transfer completes. When set to True (default), all streams will be closed after a transfer is completed. To keep streams open after the transfer of data, set this to False. The default value is True.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the component will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the component whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by components that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallListener:   If true, the component binds to a SOCKS firewall as a server (TCPClient only).

This entry is for TCPClient only and does not work for other components that descend from TCPClient.

If this entry is set, the component acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.

RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.

The connection to the firewall is made by calling the Connect method.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the component throws an exception.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by components that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

Possible values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the component throws an exception.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the component binds.

This configuration setting must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the component will use IPv4 exclusively. When set to 1, the component will use IPv6 exclusively. To instruct the component to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback
UseNTLMv2:   Whether to use NTLM V2.

When authenticating with NTLM, this setting specifies whether NTLM V2 is used. By default this value is False and NTLM V1 will be used. Set this to True to use NTLM V2.

SSL Config Settings

CACertFilePaths:   The paths to CA certificate files when using Mono on Unix/Linux.

This configuration setting specifies the paths on disk to certificate authority (CA) certificate files when using Mono on Unix/Linux. It is not applicable in any other circumstances.

The value is formatted as a list of paths separated by semicolons. The component will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is as follows:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if SSLProvider is set to Platform.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the component will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the component is the same.

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This configuration setting specifies whether the component will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the component will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The component will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component throws an exception.

When set to 0 (default), the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This configuration setting specifies whether the component will use OCSP to check the validity of the server certificate. If set to 1 or 2, the component will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The component will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the component throws an exception.

When set to 0 (default), the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform include the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include the following:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internalinclude the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include the following:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is false by default, but it can be set to true to enable the extension.

This configuration setting is applicable only when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the component will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown certificate authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown certificate authority revocation status.
0x00000800Ignore unknown root revocation status.
0x00008000Allow test root certificate.
0x00004000Trust test root certificate.
0x80000000Ignore non-matching CN (certificate CN non-matching server name).

This functionality is currently not available in Java or when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the component will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the component throws an exception.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The component will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the component does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a component is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseFIPSCompliantAPI:   Tells the component whether or not to use FIPS certified APIs.

When set to true, the component will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle Federal Information Processing Standards (FIPS), while all other Windows editions make use of Microsoft security libraries.

FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all components of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.

For more details, please see the FIPS 140-2 Compliance article.

Note: This setting is applicable only on Windows.

Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the component will use the system security libraries by default to perform cryptographic functions where applicable. In this case, calls to unmanaged code will be made. In certain environments, this is not desirable. To use a completely managed security implementation, set this setting to true.

Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.

If using the .NET Standard Library, this setting will be true on all platforms. The .NET Standard library does not support using the system security libraries.

Note: This setting is static. The value set is applicable to all components used in the application.

When this value is set, the product's system dynamic link library (DLL) is no longer required as a reference, as all unmanaged code is stored in that file.

Trappable Errors (AmazonKMS Component)

Common Errors

600   A server error occurred, and/or the component was unable to process the server's response. Please refer to the error message for more information.
601   An unsupported operation or action was attempted.
602   The RawRequest or RawResponse configuration setting was queried without first setting the TransferredRequest configuration setting to ON.
603   The login credentials specified were invalid. Please refer to the error message for more information.
604   An invalid remote resource identifier (i.e., a name, path, Id, etc.) was specified.
605   An invalid index was specified.
606   An operation failed because the specified OutputFile already exists and Overwrite is false.
607   An exception occurred while working with the specified InputFile or OutputFile (or the current value of one of those properties is invalid). Please refer to the error message for more information.
608   An exception occurred while working with the specified input or output stream. Please refer to the error message for more information.

The component may also return one of the following error codes, which are inherited from other components.

HTTP Errors

118   Firewall error. The error description contains the detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in URL.
153   Specified URLScheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Cannot open AttachedFile.

The component may also return one of the following error codes, which are inherited from other components.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the component is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
303   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on nonsocket.
10039   [10039] Destination address required.
10040   [10040] Message is too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol is not supported.
10044   [10044] Socket type is not supported.
10045   [10045] Operation is not supported on socket.
10046   [10046] Protocol family is not supported.
10047   [10047] Address family is not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Cannot assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Cannot send after socket shutdown.
10059   [10059] Too many references, cannot splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name is too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory is not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock is not loaded yet.
11001   [11001] Host not found.
11002   [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).