PDFVerify Module
Properties Methods Events Config Settings Errors
The PDFVerify module verifies PDF signatures.
Syntax
SecurePDF.PDFVerify
Remarks
The PDFVerify class verifies electronic signatures over PDF documents. Basic Adobe and PAdES signatures are supported.
PDFVerify validates each signature from two perspectives: the integrity and validity of the signature itself (i.e., its correspondence to the document data it covers), and the validity and trustworthiness of the signing certificate chain. These two signature aspects are generally independent of each other - the signature may be valid but the chain may not be trusted, or the chain may be trusted but the integrity of the signature may be violated. Under normal circumstances, both the signature and the chain must be valid for the signature to be considered good.
Preparing the Validation
To initiate the validation, first provide the signed PDF document as a file (InputFile), byte array (InputData), or stream (SetInputStream). Then adjust any chain validation parameters as necessary (please see the Chain Validation Setup section for more details) and call the Verify method.For every signature in the document, PDFVerify will fire the SignatureInfo event, allowing you to specify whether you want the component to validate the signature, the chain, or both.
Once SignatureInfo returns, PDFVerify proceeds to the signature validation routine in accordance with the provided settings.
Validation Results
Upon completion of the validation, the SignatureProcessed event is fired, and the validation results are published here as well as in the following properties of the associated PDFSignature object:
- contains the outcome of the signature validation: valid, corrupted, the signing certificate was missing, or failed.
- contains the primary result of the chain validation routine: valid, valid but untrusted, invalid, or undefined.
- provides the details of the factors that contributed to the chain validation result, such as an outdated certificate, a missing CRL, or a missing CA certificate.
Checking Signature Coverage
The PDF format uses incremental updates to introduce changes to the document. This implies that a signature may not cover the whole document, but rather a certain revision of it. Strictly speaking, every signature in a PDF document, apart from potentially the last one, covers just some part of the document. In most cases, that part matches the revision of the document that existed before all the subsequent signatures were added.Because of these specifics of the PDF format, it is crucially important to understand which part of the document is covered by a specific signature. Use the property of the associated PDFSignature object to establish the scope of a signature. The revision of the document covered by that specific signature ranges from byte 0 to . Alternatively, you can use the GetSignedVersion method to extract the signed revision to a file.
Chain Validation Setup
Chain validation is a sophisticated, multi-faceted procedure that involves a lot of variables. Depending on the configuration of your operating environment, the specifics of the PKI framework being used, and the validation policy you need to follow, you may want to adjust your chain validation parameters to best fit your requirements. A summary of these parameters is given below.Note that these parameters apply to the Sign and Update methods in PDFSign as well as the Verify method in PDFVerify, as all three methods execute the chain validation procedure (if it is enabled).
Validation Policy
The ValidationPolicy property dictates how thoroughly the chain will be validated. It includes options to control which checks the class will perform, allowing you to tailor the validation process to meet your specific security needs. For example, if it is not essential to check each certificate's revocation status, set this property to vpFullNoRevocation.
Revocation
The revocation aspect of chain validation is controlled by the RevocationCheck property, which allows you to choose between and prioritize revocation origins. Note that OCSP sources are often preferred to CRL endpoints because of their real-time capability and the smaller size of the responses they produce.
Trust
The trust aspect of chain validation is controlled by the TrustSources property, which allows you to specify the locations in which the class will search for trust anchors. Local system stores, your own trusted root certificates (via the TrustedCerts property), and Trusted Lists (via the TrustedLists property) are all supported.
Offline Mode
The OfflineMode property provides the ability to sign or verify the document without contacting online sources. If this property is enabled, the class will only use KnownCerts, TrustedCerts, data structures within the document itself, and revocation and Trusted List data that it previously saved to its internal cache when looking for missing validation material.
Property List
The following is the full list of the properties of the module with short descriptions. Click on the links for further details.
Attachments | A collection of all attached files found in the PDF document. |
BlockedCerts | The certificates that must be rejected as trust anchors. |
DecryptionCert | The decryption certificate. |
DocumentCerts | A collection of certificates read from the document during processing. |
Firewall | A set of properties related to firewall access. |
InputData | A byte array containing the PDF document to process. |
InputFile | The PDF file to process. |
KnownCerts | A collection of additional certificates for chain validation. |
OfflineMode | Whether the module is operating in offline mode. |
OutputData | A byte array containing the PDF document after processing. |
OutputFile | The path to a local file where the output will be written. |
Overwrite | Whether or not the module should overwrite files. |
Password | The password to decrypt the document with. |
Proxy | A set of properties related to proxy access. |
RevocationCheck | The kind(s) of revocation check to perform for all chain certificates. |
Signatures | A collection of all the signatures and empty fields found in the PDF document. |
TrustedCerts | A collection of trusted certificates for chain validation. |
TrustedLists | A list of known Trusted Lists for chain validation. |
TrustSources | The trust sources to use during chain validation. |
ValidationFlags | Additional chain validation settings. |
ValidationPolicy | The level at which to perform chain validation. |
ValidationTime | The time point at which the signature should be validated. |
Method List
The following is the full list of the methods of the module with short descriptions. Click on the links for further details.
Close | Closes an opened PDF document. |
Config | Sets or retrieves a configuration setting. |
Encrypted | Checks whether a PDF document is encrypted. |
GetPageProperty | Retrieves the value of a page property. |
GetSignedVersion | Returns the part of a signed PDF document that is covered by the signature. |
Interrupt | Interrupts the current action. |
Open | Opens a PDF document for processing. |
Reset | Resets the module. |
SaveAttachment | Saves a PDF attachment to a file. |
Signed | Checks whether a PDF document is signed. |
Unsign | Removes a signature from a PDF document. |
Verify | Verifies a signed PDF document. |
Event List
The following is the full list of the events fired by the module with short descriptions. Click on the links for further details.
ChainCert | Fired when the module encounters a chain certificate. |
DocumentInfo | Fired when the document has been loaded into memory. |
Error | Fired when information is available about errors during data delivery. |
Log | Fired once for each log message. |
Password | Fired when the module detects that the PDF document is encrypted with a password. |
RecipientInfo | Fired for each recipient certificate of the encrypted PDF document. |
SignatureInfo | Fired when the module finds a signature in the document. |
SignatureProcessed | Fired after a signature has been processed. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
Config Settings
The following is a list of config settings for the module with short descriptions. Click on the links for further details.
CacheRevocationInfo | Whether to cache revocation information. |
CloseInputStreamAfterProcessing | Whether to close the input stream after processing. |
CloseOutputStreamAfterProcessing | Whether to close the output stream after processing. |
ContactInfo[Index] | The signer's contact information. |
FilterName[Index] | The signature filter name. |
FullSignatureName[Index] | The full name of the signature field. |
HTTPRetryCount | The number of HTTP request retries. |
HTTPRetryInterval | A time interval to apply between HTTP request retries. |
LogLevel | The level of detail that is logged. |
OwnerPassword | The owner password to decrypt the document with. |
Permissions | The document permissions associated with the encryption. |
PreferEmbeddedRevocationInfo | Whether to prioritize revocation information that is embedded into the document. |
SaveChanges | Whether to save changes made to the PDF document. |
SignatureData[Index] | The hex-encoded representation of the underlying PKCS#7 signature blob. |
TempPath | The location where temporary files are stored. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
Attachments Property (PDFVerify Module)
A collection of all attached files found in the PDF document.
Syntax
public var attachments: Array<PDFAttachment> { get {...} }
@property (nonatomic,readwrite,assign,getter=attachmentCount,setter=setAttachmentCount:) int attachmentCount; - (int)attachmentCount; - (void)setAttachmentCount :(int)newAttachmentCount; - (NSString*)attachmentContentType:(int)attachmentIndex; - (void)setAttachmentContentType:(int)attachmentIndex :(NSString*)newAttachmentContentType; - (NSString*)attachmentCreationDate:(int)attachmentIndex; - (void)setAttachmentCreationDate:(int)attachmentIndex :(NSString*)newAttachmentCreationDate; - (NSString*)attachmentData:(int)attachmentIndex; - (void)setAttachmentData:(int)attachmentIndex :(NSString*)newAttachmentData; - (NSData*)attachmentDataB:(int)attachmentIndex; - (void)setAttachmentDataB:(int)attachmentIndex :(NSData*)newAttachmentData; - (NSString*)attachmentDescription:(int)attachmentIndex; - (void)setAttachmentDescription:(int)attachmentIndex :(NSString*)newAttachmentDescription; - (NSString*)attachmentFileName:(int)attachmentIndex; - (void)setAttachmentFileName:(int)attachmentIndex :(NSString*)newAttachmentFileName; - (NSString*)attachmentModificationDate:(int)attachmentIndex; - (void)setAttachmentModificationDate:(int)attachmentIndex :(NSString*)newAttachmentModificationDate; - (NSString*)attachmentName:(int)attachmentIndex; - (void)setAttachmentName:(int)attachmentIndex :(NSString*)newAttachmentName; - (long long)attachmentSize:(int)attachmentIndex;
Default Value
""
Remarks
This property is used to access the details of all the attached files identified in the document. Use the SaveAttachment method to save attachments from this properties.
BlockedCerts Property (PDFVerify Module)
The certificates that must be rejected as trust anchors.
Syntax
public var blockedCerts: Array<Certificate> { get {...} }
@property (nonatomic,readwrite,assign,getter=blockedCertCount,setter=setBlockedCertCount:) int blockedCertCount; - (int)blockedCertCount; - (void)setBlockedCertCount :(int)newBlockedCertCount; - (NSString*)blockedCertEffectiveDate:(int)blockedCertIndex; - (NSString*)blockedCertExpirationDate:(int)blockedCertIndex; - (NSString*)blockedCertExtendedKeyUsage:(int)blockedCertIndex; - (NSString*)blockedCertFingerprint:(int)blockedCertIndex; - (NSString*)blockedCertFingerprintSHA1:(int)blockedCertIndex; - (NSString*)blockedCertFingerprintSHA256:(int)blockedCertIndex; - (NSString*)blockedCertIssuer:(int)blockedCertIndex; - (NSString*)blockedCertPrivateKey:(int)blockedCertIndex; - (BOOL)blockedCertPrivateKeyAvailable:(int)blockedCertIndex; - (NSString*)blockedCertPrivateKeyContainer:(int)blockedCertIndex; - (NSString*)blockedCertPublicKey:(int)blockedCertIndex; - (NSString*)blockedCertPublicKeyAlgorithm:(int)blockedCertIndex; - (int)blockedCertPublicKeyLength:(int)blockedCertIndex; - (NSString*)blockedCertSerialNumber:(int)blockedCertIndex; - (NSString*)blockedCertSignatureAlgorithm:(int)blockedCertIndex; - (NSString*)blockedCertStore:(int)blockedCertIndex; - (void)setBlockedCertStore:(int)blockedCertIndex :(NSString*)newBlockedCertStore; - (NSData*)blockedCertStoreB:(int)blockedCertIndex; - (void)setBlockedCertStoreB:(int)blockedCertIndex :(NSData*)newBlockedCertStore; - (NSString*)blockedCertStorePassword:(int)blockedCertIndex; - (void)setBlockedCertStorePassword:(int)blockedCertIndex :(NSString*)newBlockedCertStorePassword; - (int)blockedCertStoreType:(int)blockedCertIndex; - (void)setBlockedCertStoreType:(int)blockedCertIndex :(int)newBlockedCertStoreType; - (NSString*)blockedCertSubjectAltNames:(int)blockedCertIndex; - (NSString*)blockedCertThumbprintMD5:(int)blockedCertIndex; - (NSString*)blockedCertThumbprintSHA1:(int)blockedCertIndex; - (NSString*)blockedCertThumbprintSHA256:(int)blockedCertIndex; - (NSString*)blockedCertUsage:(int)blockedCertIndex; - (int)blockedCertUsageFlags:(int)blockedCertIndex; - (NSString*)blockedCertVersion:(int)blockedCertIndex; - (NSString*)blockedCertSubject:(int)blockedCertIndex; - (void)setBlockedCertSubject:(int)blockedCertIndex :(NSString*)newBlockedCertSubject; - (NSString*)blockedCertEncoded:(int)blockedCertIndex; - (void)setBlockedCertEncoded:(int)blockedCertIndex :(NSString*)newBlockedCertEncoded; - (NSData*)blockedCertEncodedB:(int)blockedCertIndex; - (void)setBlockedCertEncodedB:(int)blockedCertIndex :(NSData*)newBlockedCertEncoded;
Default Value
""
Remarks
This property is used to supply a list of compromised or blocked certificates to the class. Note that any chain containing a blocked certificate will fail validation.
DecryptionCert Property (PDFVerify Module)
The decryption certificate.
Syntax
public var decryptionCert: Certificate { get {...} set {...} }
@property (nonatomic,readonly,assign,getter=decryptionCertEffectiveDate) NSString* decryptionCertEffectiveDate; - (NSString*)decryptionCertEffectiveDate; @property (nonatomic,readonly,assign,getter=decryptionCertExpirationDate) NSString* decryptionCertExpirationDate; - (NSString*)decryptionCertExpirationDate; @property (nonatomic,readonly,assign,getter=decryptionCertExtendedKeyUsage) NSString* decryptionCertExtendedKeyUsage; - (NSString*)decryptionCertExtendedKeyUsage; @property (nonatomic,readonly,assign,getter=decryptionCertFingerprint) NSString* decryptionCertFingerprint; - (NSString*)decryptionCertFingerprint; @property (nonatomic,readonly,assign,getter=decryptionCertFingerprintSHA1) NSString* decryptionCertFingerprintSHA1; - (NSString*)decryptionCertFingerprintSHA1; @property (nonatomic,readonly,assign,getter=decryptionCertFingerprintSHA256) NSString* decryptionCertFingerprintSHA256; - (NSString*)decryptionCertFingerprintSHA256; @property (nonatomic,readonly,assign,getter=decryptionCertIssuer) NSString* decryptionCertIssuer; - (NSString*)decryptionCertIssuer; @property (nonatomic,readonly,assign,getter=decryptionCertPrivateKey) NSString* decryptionCertPrivateKey; - (NSString*)decryptionCertPrivateKey; @property (nonatomic,readonly,assign,getter=decryptionCertPrivateKeyAvailable) BOOL decryptionCertPrivateKeyAvailable; - (BOOL)decryptionCertPrivateKeyAvailable; @property (nonatomic,readonly,assign,getter=decryptionCertPrivateKeyContainer) NSString* decryptionCertPrivateKeyContainer; - (NSString*)decryptionCertPrivateKeyContainer; @property (nonatomic,readonly,assign,getter=decryptionCertPublicKey) NSString* decryptionCertPublicKey; - (NSString*)decryptionCertPublicKey; @property (nonatomic,readonly,assign,getter=decryptionCertPublicKeyAlgorithm) NSString* decryptionCertPublicKeyAlgorithm; - (NSString*)decryptionCertPublicKeyAlgorithm; @property (nonatomic,readonly,assign,getter=decryptionCertPublicKeyLength) int decryptionCertPublicKeyLength; - (int)decryptionCertPublicKeyLength; @property (nonatomic,readonly,assign,getter=decryptionCertSerialNumber) NSString* decryptionCertSerialNumber; - (NSString*)decryptionCertSerialNumber; @property (nonatomic,readonly,assign,getter=decryptionCertSignatureAlgorithm) NSString* decryptionCertSignatureAlgorithm; - (NSString*)decryptionCertSignatureAlgorithm; @property (nonatomic,readwrite,assign,getter=decryptionCertStore,setter=setDecryptionCertStore:) NSString* decryptionCertStore; - (NSString*)decryptionCertStore; - (void)setDecryptionCertStore :(NSString*)newDecryptionCertStore; @property (nonatomic,readwrite,assign,getter=decryptionCertStoreB,setter=setDecryptionCertStoreB:) NSData* decryptionCertStoreB; - (NSData*)decryptionCertStoreB; - (void)setDecryptionCertStoreB :(NSData*)newDecryptionCertStore; @property (nonatomic,readwrite,assign,getter=decryptionCertStorePassword,setter=setDecryptionCertStorePassword:) NSString* decryptionCertStorePassword; - (NSString*)decryptionCertStorePassword; - (void)setDecryptionCertStorePassword :(NSString*)newDecryptionCertStorePassword; @property (nonatomic,readwrite,assign,getter=decryptionCertStoreType,setter=setDecryptionCertStoreType:) int decryptionCertStoreType; - (int)decryptionCertStoreType; - (void)setDecryptionCertStoreType :(int)newDecryptionCertStoreType; @property (nonatomic,readonly,assign,getter=decryptionCertSubjectAltNames) NSString* decryptionCertSubjectAltNames; - (NSString*)decryptionCertSubjectAltNames; @property (nonatomic,readonly,assign,getter=decryptionCertThumbprintMD5) NSString* decryptionCertThumbprintMD5; - (NSString*)decryptionCertThumbprintMD5; @property (nonatomic,readonly,assign,getter=decryptionCertThumbprintSHA1) NSString* decryptionCertThumbprintSHA1; - (NSString*)decryptionCertThumbprintSHA1; @property (nonatomic,readonly,assign,getter=decryptionCertThumbprintSHA256) NSString* decryptionCertThumbprintSHA256; - (NSString*)decryptionCertThumbprintSHA256; @property (nonatomic,readonly,assign,getter=decryptionCertUsage) NSString* decryptionCertUsage; - (NSString*)decryptionCertUsage; @property (nonatomic,readonly,assign,getter=decryptionCertUsageFlags) int decryptionCertUsageFlags; - (int)decryptionCertUsageFlags; @property (nonatomic,readonly,assign,getter=decryptionCertVersion) NSString* decryptionCertVersion; - (NSString*)decryptionCertVersion; @property (nonatomic,readwrite,assign,getter=decryptionCertSubject,setter=setDecryptionCertSubject:) NSString* decryptionCertSubject; - (NSString*)decryptionCertSubject; - (void)setDecryptionCertSubject :(NSString*)newDecryptionCertSubject; @property (nonatomic,readwrite,assign,getter=decryptionCertEncoded,setter=setDecryptionCertEncoded:) NSString* decryptionCertEncoded; - (NSString*)decryptionCertEncoded; - (void)setDecryptionCertEncoded :(NSString*)newDecryptionCertEncoded; @property (nonatomic,readwrite,assign,getter=decryptionCertEncodedB,setter=setDecryptionCertEncodedB:) NSData* decryptionCertEncodedB; - (NSData*)decryptionCertEncodedB; - (void)setDecryptionCertEncodedB :(NSData*)newDecryptionCertEncoded;
Default Value
""
Remarks
This property is used to provide the certificate used for decryption. Note that this certificate must have a private key associated with it.
DocumentCerts Property (PDFVerify Module)
A collection of certificates read from the document during processing.
Syntax
public var documentCerts: Array<Certificate> { get {...} }
@property (nonatomic,readonly,assign,getter=documentCertCount) int documentCertCount; - (int)documentCertCount; - (NSString*)documentCertEffectiveDate:(int)documentCertIndex; - (NSString*)documentCertExpirationDate:(int)documentCertIndex; - (NSString*)documentCertExtendedKeyUsage:(int)documentCertIndex; - (NSString*)documentCertFingerprint:(int)documentCertIndex; - (NSString*)documentCertFingerprintSHA1:(int)documentCertIndex; - (NSString*)documentCertFingerprintSHA256:(int)documentCertIndex; - (NSString*)documentCertIssuer:(int)documentCertIndex; - (NSString*)documentCertPrivateKey:(int)documentCertIndex; - (BOOL)documentCertPrivateKeyAvailable:(int)documentCertIndex; - (NSString*)documentCertPrivateKeyContainer:(int)documentCertIndex; - (NSString*)documentCertPublicKey:(int)documentCertIndex; - (NSString*)documentCertPublicKeyAlgorithm:(int)documentCertIndex; - (int)documentCertPublicKeyLength:(int)documentCertIndex; - (NSString*)documentCertSerialNumber:(int)documentCertIndex; - (NSString*)documentCertSignatureAlgorithm:(int)documentCertIndex; - (NSString*)documentCertStore:(int)documentCertIndex; - (NSData*)documentCertStoreB:(int)documentCertIndex; - (NSString*)documentCertStorePassword:(int)documentCertIndex; - (int)documentCertStoreType:(int)documentCertIndex; - (NSString*)documentCertSubjectAltNames:(int)documentCertIndex; - (NSString*)documentCertThumbprintMD5:(int)documentCertIndex; - (NSString*)documentCertThumbprintSHA1:(int)documentCertIndex; - (NSString*)documentCertThumbprintSHA256:(int)documentCertIndex; - (NSString*)documentCertUsage:(int)documentCertIndex; - (int)documentCertUsageFlags:(int)documentCertIndex; - (NSString*)documentCertVersion:(int)documentCertIndex; - (NSString*)documentCertSubject:(int)documentCertIndex; - (NSString*)documentCertEncoded:(int)documentCertIndex; - (NSData*)documentCertEncodedB:(int)documentCertIndex;
Default Value
""
Remarks
This property is used to access all certificates encountered during document processing and embedded into the signature(s). When signing or verifying, this properties will be populated automatically during chain validation.
Firewall Property (PDFVerify Module)
A set of properties related to firewall access.
Syntax
public var firewall: Firewall { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=firewallAutoDetect,setter=setFirewallAutoDetect:) BOOL firewallAutoDetect; - (BOOL)firewallAutoDetect; - (void)setFirewallAutoDetect :(BOOL)newFirewallAutoDetect; @property (nonatomic,readwrite,assign,getter=firewallType,setter=setFirewallType:) int firewallType; - (int)firewallType; - (void)setFirewallType :(int)newFirewallType; @property (nonatomic,readwrite,assign,getter=firewallHost,setter=setFirewallHost:) NSString* firewallHost; - (NSString*)firewallHost; - (void)setFirewallHost :(NSString*)newFirewallHost; @property (nonatomic,readwrite,assign,getter=firewallPassword,setter=setFirewallPassword:) NSString* firewallPassword; - (NSString*)firewallPassword; - (void)setFirewallPassword :(NSString*)newFirewallPassword; @property (nonatomic,readwrite,assign,getter=firewallPort,setter=setFirewallPort:) int firewallPort; - (int)firewallPort; - (void)setFirewallPort :(int)newFirewallPort; @property (nonatomic,readwrite,assign,getter=firewallUser,setter=setFirewallUser:) NSString* firewallUser; - (NSString*)firewallUser; - (void)setFirewallUser :(NSString*)newFirewallUser;
Default Value
""
Remarks
This is a Firewall-type property, which contains fields describing the firewall through which the class will attempt to connect.
InputData Property (PDFVerify Module)
A byte array containing the PDF document to process.
Syntax
public var inputData: Data { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=inputData,setter=setInputData:) NSData* inputData; - (NSData*)inputData; - (void)setInputData :(NSData*)newInputData;
Remarks
This property is used to assign a byte array containing the PDF document to be processed.
InputFile Property (PDFVerify Module)
The PDF file to process.
Syntax
public var inputFile: String { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=inputFile,setter=setInputFile:) NSString* inputFile; - (NSString*)inputFile; - (void)setInputFile :(NSString*)newInputFile;
Default Value
""
Remarks
This property is used to provide a path to the PDF document to be processed.
KnownCerts Property (PDFVerify Module)
A collection of additional certificates for chain validation.
Syntax
public var knownCerts: Array<Certificate> { get {...} }
@property (nonatomic,readwrite,assign,getter=knownCertCount,setter=setKnownCertCount:) int knownCertCount; - (int)knownCertCount; - (void)setKnownCertCount :(int)newKnownCertCount; - (NSString*)knownCertEffectiveDate:(int)knownCertIndex; - (NSString*)knownCertExpirationDate:(int)knownCertIndex; - (NSString*)knownCertExtendedKeyUsage:(int)knownCertIndex; - (NSString*)knownCertFingerprint:(int)knownCertIndex; - (NSString*)knownCertFingerprintSHA1:(int)knownCertIndex; - (NSString*)knownCertFingerprintSHA256:(int)knownCertIndex; - (NSString*)knownCertIssuer:(int)knownCertIndex; - (NSString*)knownCertPrivateKey:(int)knownCertIndex; - (BOOL)knownCertPrivateKeyAvailable:(int)knownCertIndex; - (NSString*)knownCertPrivateKeyContainer:(int)knownCertIndex; - (NSString*)knownCertPublicKey:(int)knownCertIndex; - (NSString*)knownCertPublicKeyAlgorithm:(int)knownCertIndex; - (int)knownCertPublicKeyLength:(int)knownCertIndex; - (NSString*)knownCertSerialNumber:(int)knownCertIndex; - (NSString*)knownCertSignatureAlgorithm:(int)knownCertIndex; - (NSString*)knownCertStore:(int)knownCertIndex; - (void)setKnownCertStore:(int)knownCertIndex :(NSString*)newKnownCertStore; - (NSData*)knownCertStoreB:(int)knownCertIndex; - (void)setKnownCertStoreB:(int)knownCertIndex :(NSData*)newKnownCertStore; - (NSString*)knownCertStorePassword:(int)knownCertIndex; - (void)setKnownCertStorePassword:(int)knownCertIndex :(NSString*)newKnownCertStorePassword; - (int)knownCertStoreType:(int)knownCertIndex; - (void)setKnownCertStoreType:(int)knownCertIndex :(int)newKnownCertStoreType; - (NSString*)knownCertSubjectAltNames:(int)knownCertIndex; - (NSString*)knownCertThumbprintMD5:(int)knownCertIndex; - (NSString*)knownCertThumbprintSHA1:(int)knownCertIndex; - (NSString*)knownCertThumbprintSHA256:(int)knownCertIndex; - (NSString*)knownCertUsage:(int)knownCertIndex; - (int)knownCertUsageFlags:(int)knownCertIndex; - (NSString*)knownCertVersion:(int)knownCertIndex; - (NSString*)knownCertSubject:(int)knownCertIndex; - (void)setKnownCertSubject:(int)knownCertIndex :(NSString*)newKnownCertSubject; - (NSString*)knownCertEncoded:(int)knownCertIndex; - (void)setKnownCertEncoded:(int)knownCertIndex :(NSString*)newKnownCertEncoded; - (NSData*)knownCertEncodedB:(int)knownCertIndex; - (void)setKnownCertEncodedB:(int)knownCertIndex :(NSData*)newKnownCertEncoded;
Default Value
""
Remarks
This property is used to supply a list of additional certificates to the class that might be needed for chain validation. For instance, intermediary CA certificates may be absent from the standard system locations (or there may be no standard system locations) and therefore should be supplied to the class manually.
The purpose of this certificate properties is roughly equivalent to that of the Intermediate Certification Authorities system store in Windows.
Note: Do not add trust anchors or root certificates to this properties; add them to TrustedCerts instead.
OfflineMode Property (PDFVerify Module)
Whether the module is operating in offline mode.
Syntax
public var offlineMode: Bool { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=offlineMode,setter=setOfflineMode:) BOOL offlineMode; - (BOOL)offlineMode; - (void)setOfflineMode :(BOOL)newOfflineMode;
Default Value
False
Remarks
This property indicates whether the class should operate in offline mode.
In offline mode, the class restricts itself from accessing online Trusted Lists and revocation information sources such as CRLs or OCSP responders. It may be useful to set this property to if there is a need to verify the completeness of the validation information included within the signature or provided via KnownCerts.
OutputData Property (PDFVerify Module)
A byte array containing the PDF document after processing.
Syntax
public var outputData: Data { get {...} }
@property (nonatomic,readonly,assign,getter=outputData) NSData* outputData; - (NSData*)outputData;
Remarks
This property is used to read the byte array containing the produced output after the operation has completed. It will only be set if an output file and output stream have not been assigned via OutputFile and SetOutputStream respectively.
This property is read-only.
OutputFile Property (PDFVerify Module)
The path to a local file where the output will be written.
Syntax
public var outputFile: String { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=outputFile,setter=setOutputFile:) NSString* outputFile; - (NSString*)outputFile; - (void)setOutputFile :(NSString*)newOutputFile;
Default Value
""
Remarks
This property is used to provide a path where the resulting PDF document will be saved after the operation has completed.
Overwrite Property (PDFVerify Module)
Whether or not the module should overwrite files.
Syntax
public var overwrite: Bool { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=overwrite,setter=setOverwrite:) BOOL overwrite; - (BOOL)overwrite; - (void)setOverwrite :(BOOL)newOverwrite;
Default Value
False
Remarks
This property indicates whether or not the class will overwrite OutputFile, OutputData, or the stream set in SetOutputStream. If set to , an error will be thrown whenever OutputFile, OutputData, or the stream set in SetOutputStream exists before an operation.
Password Property (PDFVerify Module)
The password to decrypt the document with.
Syntax
public var password: String { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=password,setter=setPassword:) NSString* password; - (NSString*)password; - (void)setPassword :(NSString*)newPassword;
Default Value
""
Remarks
This property is used to provide the user password for decryption. Though it may be different from OwnerPassword, most implementations use the same value for both.
Proxy Property (PDFVerify Module)
A set of properties related to proxy access.
Syntax
public var proxy: Proxy { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=proxyAuthScheme,setter=setProxyAuthScheme:) int proxyAuthScheme; - (int)proxyAuthScheme; - (void)setProxyAuthScheme :(int)newProxyAuthScheme; @property (nonatomic,readwrite,assign,getter=proxyAutoDetect,setter=setProxyAutoDetect:) BOOL proxyAutoDetect; - (BOOL)proxyAutoDetect; - (void)setProxyAutoDetect :(BOOL)newProxyAutoDetect; @property (nonatomic,readwrite,assign,getter=proxyPassword,setter=setProxyPassword:) NSString* proxyPassword; - (NSString*)proxyPassword; - (void)setProxyPassword :(NSString*)newProxyPassword; @property (nonatomic,readwrite,assign,getter=proxyPort,setter=setProxyPort:) int proxyPort; - (int)proxyPort; - (void)setProxyPort :(int)newProxyPort; @property (nonatomic,readwrite,assign,getter=proxyServer,setter=setProxyServer:) NSString* proxyServer; - (NSString*)proxyServer; - (void)setProxyServer :(NSString*)newProxyServer; @property (nonatomic,readwrite,assign,getter=proxySSL,setter=setProxySSL:) int proxySSL; - (int)proxySSL; - (void)setProxySSL :(int)newProxySSL; @property (nonatomic,readwrite,assign,getter=proxyUser,setter=setProxyUser:) NSString* proxyUser; - (NSString*)proxyUser; - (void)setProxyUser :(NSString*)newProxyUser;
Default Value
""
Remarks
This property contains fields describing the proxy through which the class will attempt to connect.
RevocationCheck Property (PDFVerify Module)
The kind(s) of revocation check to perform for all chain certificates.
Syntax
public var revocationCheck: PDFVerifyRevocationChecks { get {...} set {...} }
public enum PDFVerifyRevocationChecks: Int32 { case rcAllCRL = 0 case rcAllOCSP = 1 case rcAllCRLAndOCSP = 2 case rcAnyCRL = 3 case rcAnyOCSP = 4 case rcAnyCRLOrOCSP = 5 case rcAnyOCSPOrCRL = 6 }
@property (nonatomic,readwrite,assign,getter=revocationCheck,setter=setRevocationCheck:) int revocationCheck; - (int)revocationCheck; - (void)setRevocationCheck :(int)newRevocationCheck;
Default Value
6
Remarks
This property is used to specify the revocation sources and preferences the class will use during chain validation. Revocation checking is necessary to ensure the integrity of the chain and to obtain up-to-date certificate validity and trust information.
Certificate Revocation Lists (CRLs) and Online Certificate Status Protocol (OCSP) responses serve the same purpose of ensuring that the certificate has not been revoked by the Certificate Authority (CA) at the time of use. Depending on the circumstances and security policy requirements, either one or both of the revocation information source types may be used.
Possible values are:
0 (rcAllCRL) | All provided CRL endpoints will be checked, and all checks must succeed. |
1 (rcAllOCSP) | All provided OCSP endpoints will be checked, and all checks must succeed. |
2 (rcAllCRLAndOCSP) | All provided CRL and OCSP endpoints will be checked, and all checks must succeed. |
3 (rcAnyCRL) | All provided CRL endpoints will be checked, and at least one check must succeed. |
4 (rcAnyOCSP) | All provided OCSP endpoints will be checked, and at least one check must succeed. |
5 (rcAnyCRLOrOCSP) | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. CRL endpoints are checked first. |
6 (rcAnyOCSPOrCRL - default) | All provided CRL and OCSP endpoints will be checked, and at least one check must succeed. OCSP endpoints are checked first. |
This property controls the way revocation checks are performed for every certificate in the chain. Typically, certificates come with two types of revocation information sources: CRLs (Certificate Revocation Lists) and OCSP responses. CRLs are static objects periodically published by the CA at some online location. OCSP responders are active online services maintained by the CA that can provide up-to-date information on certificate statuses in near real time.
There are some conceptual differences between the two. CRLs are normally larger in size. Their use involves some latency because there is normally a delay between the time at which a certificate was revoked and the time at which the subsequent CRL mentioning that revocation is published. The benefits of CRLs are that the same object can provide statuses for all certificates issued by a particular CA, and that the whole technology is much simpler than OCSP (and thus is supported by more CAs).
This property allows the validation course to be adjusted by including or excluding certain types of revocation sources from the validation process. The rcAnyOCSPOrCRL setting (give preference to the faster OCSP route and only demand one source to succeed) is a good choice for most typical validation environments. The rcAll* modes are much stricter, and may be used in scenarios where bulletproof validity information is essential.
Note: If no CRL or OCSP endpoints are provided by the CA, the revocation check will be considered successful. This is because the CA chose not to supply revocation information for its certificates, meaning they are considered irrevocable.
Note: Within each of the above settings, if any retrieved CRL or OCSP response indicates that the certificate has been revoked, the revocation check fails.
Signatures Property (PDFVerify Module)
A collection of all the signatures and empty fields found in the PDF document.
Syntax
public var signatures: Array<PDFSignature> { get {...} }
@property (nonatomic,readonly,assign,getter=PDFSignatureCount) int PDFSignatureCount; - (int)PDFSignatureCount; - (NSString*)PDFSignatureAuthorName:(int)pDFSignatureIndex; - (int)PDFSignatureChainValidationDetails:(int)pDFSignatureIndex; - (int)PDFSignatureChainValidationResult:(int)pDFSignatureIndex; - (NSString*)PDFSignatureClaimedSigningTime:(int)pDFSignatureIndex; - (int)PDFSignatureCoverageEndsAt:(int)pDFSignatureIndex; - (NSString*)PDFSignatureHashAlgorithm:(int)pDFSignatureIndex; - (int)PDFSignatureProfile:(int)pDFSignatureIndex; - (NSString*)PDFSignatureReason:(int)pDFSignatureIndex; - (int)PDFSignatureType:(int)pDFSignatureIndex; - (int)PDFSignatureSignerCertIndex:(int)pDFSignatureIndex; - (int)PDFSignatureTimestampCertIndex:(int)pDFSignatureIndex; - (BOOL)PDFSignatureTimestamped:(int)pDFSignatureIndex; - (NSString*)PDFSignatureValidatedSigningTime:(int)pDFSignatureIndex; - (int)PDFSignatureValidationResult:(int)pDFSignatureIndex; - (NSString*)PDFSignatureWidgetHeight:(int)pDFSignatureIndex; - (NSString*)PDFSignatureWidgetOffsetX:(int)pDFSignatureIndex; - (NSString*)PDFSignatureWidgetOffsetY:(int)pDFSignatureIndex; - (NSString*)PDFSignatureWidgetPages:(int)pDFSignatureIndex; - (NSString*)PDFSignatureWidgetWidth:(int)pDFSignatureIndex;
Default Value
""
Remarks
This property is used to access the details of all the signatures and empty signature fields identified in the document.
TrustedCerts Property (PDFVerify Module)
A collection of trusted certificates for chain validation.
Syntax
public var trustedCerts: Array<Certificate> { get {...} }
@property (nonatomic,readwrite,assign,getter=trustedCertCount,setter=setTrustedCertCount:) int trustedCertCount; - (int)trustedCertCount; - (void)setTrustedCertCount :(int)newTrustedCertCount; - (NSString*)trustedCertEffectiveDate:(int)trustedCertIndex; - (NSString*)trustedCertExpirationDate:(int)trustedCertIndex; - (NSString*)trustedCertExtendedKeyUsage:(int)trustedCertIndex; - (NSString*)trustedCertFingerprint:(int)trustedCertIndex; - (NSString*)trustedCertFingerprintSHA1:(int)trustedCertIndex; - (NSString*)trustedCertFingerprintSHA256:(int)trustedCertIndex; - (NSString*)trustedCertIssuer:(int)trustedCertIndex; - (NSString*)trustedCertPrivateKey:(int)trustedCertIndex; - (BOOL)trustedCertPrivateKeyAvailable:(int)trustedCertIndex; - (NSString*)trustedCertPrivateKeyContainer:(int)trustedCertIndex; - (NSString*)trustedCertPublicKey:(int)trustedCertIndex; - (NSString*)trustedCertPublicKeyAlgorithm:(int)trustedCertIndex; - (int)trustedCertPublicKeyLength:(int)trustedCertIndex; - (NSString*)trustedCertSerialNumber:(int)trustedCertIndex; - (NSString*)trustedCertSignatureAlgorithm:(int)trustedCertIndex; - (NSString*)trustedCertStore:(int)trustedCertIndex; - (void)setTrustedCertStore:(int)trustedCertIndex :(NSString*)newTrustedCertStore; - (NSData*)trustedCertStoreB:(int)trustedCertIndex; - (void)setTrustedCertStoreB:(int)trustedCertIndex :(NSData*)newTrustedCertStore; - (NSString*)trustedCertStorePassword:(int)trustedCertIndex; - (void)setTrustedCertStorePassword:(int)trustedCertIndex :(NSString*)newTrustedCertStorePassword; - (int)trustedCertStoreType:(int)trustedCertIndex; - (void)setTrustedCertStoreType:(int)trustedCertIndex :(int)newTrustedCertStoreType; - (NSString*)trustedCertSubjectAltNames:(int)trustedCertIndex; - (NSString*)trustedCertThumbprintMD5:(int)trustedCertIndex; - (NSString*)trustedCertThumbprintSHA1:(int)trustedCertIndex; - (NSString*)trustedCertThumbprintSHA256:(int)trustedCertIndex; - (NSString*)trustedCertUsage:(int)trustedCertIndex; - (int)trustedCertUsageFlags:(int)trustedCertIndex; - (NSString*)trustedCertVersion:(int)trustedCertIndex; - (NSString*)trustedCertSubject:(int)trustedCertIndex; - (void)setTrustedCertSubject:(int)trustedCertIndex :(NSString*)newTrustedCertSubject; - (NSString*)trustedCertEncoded:(int)trustedCertIndex; - (void)setTrustedCertEncoded:(int)trustedCertIndex :(NSString*)newTrustedCertEncoded; - (NSData*)trustedCertEncodedB:(int)trustedCertIndex; - (void)setTrustedCertEncodedB:(int)trustedCertIndex :(NSData*)newTrustedCertEncoded;
Default Value
""
Remarks
This property is used to supply a list of trusted certificates to the class that might be needed for chain validation. For instance, root CA certificates may be absent from the standard system locations (or there may be no standard system locations) and therefore should be supplied to the class manually.
The purpose of this certificate properties is largely the same as that of the Windows Trusted Root Certification Authorities system store.
Use this property with extreme care as it directly affects chain verifiability; a wrong certificate added to the list of trusted certificates may result in bad chains being accepted and forfeited signatures being recognized as genuine. Only add certificates that originate from parties that are known and trusted.
TrustedLists Property (PDFVerify Module)
A list of known Trusted Lists for chain validation.
Syntax
public var trustedLists: String { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=trustedLists,setter=setTrustedLists:) NSString* trustedLists; - (NSString*)trustedLists; - (void)setTrustedLists :(NSString*)newTrustedLists;
Default Value
"%EUTL%"
Remarks
This property is used to supply a semicolon-separated list of URLs or paths of known Trusted Lists to the class for chain validation.
A Trusted List is an XML document that contains a government-issued list of CAs that have passed regulated compliance checks. When validating the chain, the class will consult the Trusted List to establish certificate trust, ensuring that the CA is legitimate and entitled to issue certificates of the kind being checked.
The default value is the special %EUTL% macro, which, if applicable, instructs the class to
check the root certificate against up-to-date versions of the primary EU Trusted Lists from the EU LOTL. Custom values can be appended:
component.TrustedLists = "%EUTL%;http://my.company/tsl;c:\tsls\mytsl.xml";
Note: The class will cache all Trusted Lists it downloads and uses during chain validation. This
cache is shared between class instances within the same process. If this property contains a URL that is
also present in the cache, the class will retrieve the cached data and reuse them in the current
validation. If the data are invalid, the class will download a fresh Trusted List and add it to the cache.
TrustSources Property (PDFVerify Module)
The trust sources to use during chain validation.
Syntax
public var trustSources: PDFVerifyTrustSources { get {...} set {...} }
public enum PDFVerifyTrustSources: Int32 { case tsManual = 0 case tsLocal = 1 case tsTrustedLists = 2 case tsLocalAndTrustedLists = 3 }
@property (nonatomic,readwrite,assign,getter=trustSources,setter=setTrustSources:) int trustSources; - (int)trustSources; - (void)setTrustSources :(int)newTrustSources;
Default Value
3
Remarks
This property is used to specify the sources the class will use to establish certificate trust during chain validation.
Establishing trust for a particular certificate, when either signing or verifying, involves building a chain up to a valid trust anchor. This trust anchor is a root certificate that typically resides on the local system. If the certificate does not eventually chain up to a valid trust anchor, the chain is considered untrusted and therefore invalid.
Possible values are:
0 (tsManual) | The class will consult the TrustedCerts property only. |
1 (tsLocal) | The class will consult local system stores (e.g., Windows Trusted Root Certification Authorities) as well as TrustedCerts. |
2 (tsTrustedLists) | The class will consult TrustedLists only. |
3 (tsLocalAndTrustedLists - default) | The class will consult local system stores, TrustedCerts, and TrustedLists. |
ValidationFlags Property (PDFVerify Module)
Additional chain validation settings.
Syntax
public var validationFlags: Int32 { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=validationFlags,setter=setValidationFlags:) int validationFlags; - (int)validationFlags; - (void)setValidationFlags :(int)newValidationFlags;
Default Value
0
Remarks
This property is used to specify additional settings that affect the overall flow of the chain validation.
Its value should be provided as a bitmask of the following flags:
0x001 (cvfForceCompleteChainValidationForTrusted) | Perform full chain validation for explicitly trusted intermediary or end-entity certificates. This may be useful when creating signatures to enforce the completeness of the collected revocation information. It often makes sense to omit this flag when validating signatures to reduce validation time and avoid issues with poorly configured environments. |
0x002 (cvfIgnoreChainLoops) | Currently unsupported. |
0x004 (cvfIgnoreOCSPNoCheckExtension) | Currently unsupported. |
0x008 (cvfTolerateMinorChainIssues) | Currently unsupported. |
ValidationPolicy Property (PDFVerify Module)
The level at which to perform chain validation.
Syntax
public var validationPolicy: PDFVerifyValidationPolicies { get {...} set {...} }
public enum PDFVerifyValidationPolicies: Int32 { case vpNone = 0 case vpFull = 1 case vpFullNoTrust = 2 case vpFullNoRevocation = 3 case vpBestEffort = 4 }
@property (nonatomic,readwrite,assign,getter=validationPolicy,setter=setValidationPolicy:) int validationPolicy; - (int)validationPolicy; - (void)setValidationPolicy :(int)newValidationPolicy;
Default Value
1
Remarks
This property is used to specify the overall validation policy the class will follow.
Possible values are:
0 (vpNone) | No chain validation is attempted at all. |
1 (vpFull - default) | Revocation and trust checks must succeed for all chains. |
2 (vpFullNoTrust) | Revocation checks must succeed, but trust checks will not occur. |
3 (vpFullNoRevocation) | Trust checks must succeed, but revocation checks will not occur. |
4 (vpBestEffort) | Currently unsupported. |
Validation Policy Heuristics
The choice of validation policy will depend on the scenario for which the chain is validated.Creating a new signature:
- For a basic signature with or without a timestamp, chain validation is not required, so it is recommended to use vpNone. This policy may also be used in test environments or on offline systems.
- For an LTV signature, use vpFull or vpFullNoTrust depending on whether trust checks are necessary in the current environment. If the signature is being created in an environment that does not match the prospective validation environment, consider vpFullNoTrust to validate the chain properly and fully without expecting good trust.
Updating or extending an existing signature:
- When updating a basic signature to LTV, similarly use vpFull or vpFullNoTrust as above.
- When extending an LTV signature, similarly use vpFull or vpFullNoTrust as above.
Validating an existing signature:
- For basic signature validation, use vpFullNoRevocation if trust checks, but not revocation checks, are necessary in the current environment. This policy may also be used on offline systems if the trust anchor is already available to the class.
- For archival validation, use vpFull to validate the chain properly and fully. This policy expects the trust anchor and all the revocation material to be available.
ValidationTime Property (PDFVerify Module)
The time point at which the signature should be validated.
Syntax
public var validationTime: String { get {...} set {...} }
@property (nonatomic,readwrite,assign,getter=validationTime,setter=setValidationTime:) NSString* validationTime; - (NSString*)validationTime; - (void)setValidationTime :(NSString*)newValidationTime;
Default Value
""
Remarks
This property is used to specify the moment in time at which the signature validity should be established. The time should be provided in UTC in yyyyMMddHHmmssZ format.
Leave this property empty to stick to the default time point. The class will then prioritize:
- The signature creation time if the signature contains a signature timestamp (), or
- The local time included in the signature by the signer ().
Close Method (PDFVerify Module)
Closes an opened PDF document.
Syntax
public func close() throws -> Void
- (void)close;
Remarks
This method is used to close the previously opened document specified in InputFile, InputData, or SetInputStream. It should always be preceded by a call to the Open method.
Example:
component.InputFile = "input.pdf";
component.Open();
// Some operation
component.Close();
If any changes are made to the document, they will be saved automatically to OutputFile, OutputData, or the stream set in SetOutputStream when this method is called. To configure this saving behavior, set the SaveChanges configuration setting.
Config Method (PDFVerify Module)
Sets or retrieves a configuration setting.
Syntax
- (NSString*)config:(NSString*)configurationString;
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Encrypted Method (PDFVerify Module)
Checks whether a PDF document is encrypted.
Syntax
public func encrypted() throws -> Bool
- (BOOL)encrypted;
Remarks
This method is used to determine whether or not the document specified in InputFile, InputData, or SetInputStream is encrypted. It will return if the document is pseudo-encrypted with an empty password.
Example:
component.InputFile = "input.pdf";
if (component.Encrypted())
{
// Set Password or DecryptionCert
}
component.Open();
// Some operation
component.Close();
Note: If the document is not already opened, this method will open it, perform the operation, then close it.
GetPageProperty Method (PDFVerify Module)
Retrieves the value of a page property.
Syntax
- (NSString*)getPageProperty:(int)page :(NSString*)pageProperty;
Remarks
This method is used to read general information about the pages of the document specified in InputFile, InputData, or SetInputStream, such as their dimensions and content positioning details.
The Page parameter specifies the page to read information about (with a valid range from 1 to PageCount), and the PageProperty parameter specifies the page property to read. The latter can take one of the following values:
Page property | Default value | Description |
CropLowerLeftX | 0 | The lower-left X coordinate of the page crop area in points. |
CropLowerLeftY | 0 | The lower-left Y coordinate of the page crop area in points. |
CropUpperRightX | 0 | The upper-right X coordinate of the page crop area in points. |
CropUpperRightY | 0 | The upper-right Y coordinate of the page crop area in points. |
Height | 0 | The height of the page in points. Both integer and decimal values are supported. |
MediaLowerLeftX | 0 | The lower-left X coordinate of the page media area in points. |
MediaLowerLeftY | 0 | The lower-left Y coordinate of the page media area in points. |
MediaUpperRightX | 0 | The upper-right X coordinate of the page media area in points. |
MediaUpperRightY | 0 | The upper-right Y coordinate of the page media area in points. |
Rotation | 0 | The rotation angle of the page in degrees. Possible values: 0, 90, 180, 270. |
Width | 0 | The width of the page in points. Both integer and decimal values are supported. |
Note: Each page property is only populated once the document has been loaded, which is reported by the DocumentInfo event.
Example:
int pageCount = 0;
component.OnDocumentInfo += (s, e) => { pageCount = e.PageCount; };
component.InputFile = "input.pdf";
component.Open();
for (int i = 1; i <= pageCount; i++) component.GetPageProperty(i, "Height");
component.Close();
The page properties can be used to adjust the position of the signature widget based on the page dimensions. For
example:
int x = int.Parse(pdfsign.GetPageProperty(1, "Width")) - 100;
int y = int.Parse(pdfsign.GetPageProperty(1, "Height")) - 100;
pdfsign.SetWidgetProperty("OffsetX", x.ToString());
pdfsign.SetWidgetProperty("OffsetY", y.ToString());
Note: If the document is not already opened, this method will open it, perform the operation, then close it.
GetSignedVersion Method (PDFVerify Module)
Returns the part of a signed PDF document that is covered by the signature.
Syntax
- (void)getSignedVersion:(int)signatureIndex;
Remarks
This method is used to retrieve the revision of the document specified in InputFile, InputData, or SetInputStream that is covered by the signature specified by SignatureIndex. The extracted revision will be saved to OutputFile, OutputData, or the stream set in SetOutputStream.
The SignatureIndex parameter is the index of the signature of interest in the Signatures properties.
Example:
pdfverify.InputFile = "signed.pdf";
pdfverify.OutputFile = "revision0.pdf";
pdfverify.GetSignedVersion(0);
PDF documents often use an incremental update approach, with any changes being appended to the document without
altering the existing revision. This may lead to situations where a signature only covers part of the document
(one of the past revisions), but not subsequent changes. This method provides a means to extract the revision
that is actually certified by the signature.
It is recommended to use this method when validating signatures to make sure the signature covers the byte range it is expected to cover.
An alternative to this method is to check the property of the signature object and match it to the document length.
Note: If the document is not already opened, this method will open it, perform the operation, then close it.
Interrupt Method (PDFVerify Module)
Interrupts the current action.
Syntax
public func interrupt() throws -> Void
- (void)interrupt;
Remarks
This method interrupts the current action. It can be used, for example, within the ChainCert event to abort the chain validation procedure.
If there is no action in progress, this method simply returns, doing nothing.
Open Method (PDFVerify Module)
Opens a PDF document for processing.
Syntax
public func open() throws -> Void
- (void)open;
Remarks
This method is used to open the document specified in InputFile, InputData, or SetInputStream before performing some operation on it, such as verifying or removing signatures. When finished, call Close to complete or discard the operation.
It is recommended to use this method (alongside Close) when performing multiple operations on the document at once.
Note: This method will populate the Attachments, DocumentCerts, and Signatures collections with any corresponding objects found in the document.
Automatic Decryption Functionality
If this method is called on an encrypted document, the Password or RecipientInfo event will fire (depending on the encryption type) as a notification that the document must be decrypted before processing can continue.Once the correct decryption material is supplied, the class will then attempt to decrypt the document automatically within this method. When this occurs, the decrypted content is kept in memory so that the document's encrypted status is preserved when it is saved later. Use the Decrypt method to save a decrypted copy of the document instead.
Reset Method (PDFVerify Module)
Resets the component.
Syntax
public func reset() throws -> Void
- (void)reset;
Remarks
This method is used to reset the class's properties and configuration settings to their default values.
SaveAttachment Method (PDFVerify Module)
Saves a PDF attachment to a file.
Syntax
- (void)saveAttachment:(int)index :(NSString*)fileName;
Remarks
This method is used to retrieve the contents of an attachment from the document specified in InputFile, InputData, or SetInputStream and save it to the file specified by FileName. It does not modify the existence of the Attachments properties's contents.
The Index parameter is the index of the attachment in the Attachments properties to be saved.
The FileName parameter specifies the filename that the attachment will be saved to.
Example:
component.InputFile = "input_with_attachment.pdf";
component.Open();
component.SaveAttachment(0, "a.dat");
component.Close();
Example (saving to a stream):
component.InputFile = "input_with_attachment.pdf";
component.Attachments[0].OutputStream = myStream;
component.SaveAttachment(0, null); // null means use the OutputStream property if it's set
Note: If the document is not already opened, this method will open it, perform the operation, then close it.
Signed Method (PDFVerify Module)
Checks whether a PDF document is signed.
Syntax
public func signed() throws -> Bool
- (BOOL)signed;
Remarks
This method is used to determine whether or not the document specified in InputFile, InputData, or SetInputStream is signed. It will return if the document contains only empty signature fields.
Example:
pdfverify.InputFile = "input.pdf";
if (pdfverify.Signed())
{
// Configure validation-related properties as desired
pdfverify.Verify();
}
Note: If the document is not already opened, this method will open it, perform the operation, then close it.
Unsign Method (PDFVerify Module)
Removes a signature from a PDF document.
Syntax
- (void)unsign:(int)signatureIndex :(int)unsignKind;
Remarks
This method is used to remove an existing signature specified by SignatureIndex from the document specified in InputFile, InputData, or SetInputStream. The document with the removed signature will be saved to OutputFile, OutputData, or the stream set in SetOutputStream.
The SignatureIndex parameter is the index of the signature in the Signatures properties to be removed.
The UnsignKind parameter specifies the kind of unsign to perform. Possible values are:
0 (uskFull) | Remove the signature fully. |
1 (uskKeepField) | Remove the signature, but keep the form field it is in. |
2 (uskKeepAppearance) | Remove the signature, but keep the form field and its widget. |
Example:
pdfverify.InputFile = "signed.pdf";
pdfverify.OutputFile = "unsigned.pdf";
pdfverify.Open();
int idx = pdfverify.Signatures.Count - 1;
pdfverify.Unsign(idx, 0); // uskFull
pdfverify.Close();
Note that unsigning is different from GetSignedVersion. The latter returns the revision of the document
including the mentioned signature (thus removing anything after that signature was created). Unsign
removes the signature completely by carving it out of the document.
Note: SignatureIndex set to -1 removes all signatures in the document.
Note: If the document is not already opened, this method will open it, perform the operation, then close it.
Verify Method (PDFVerify Module)
Verifies a signed PDF document.
Syntax
public func verify() throws -> Void
- (void)verify;
Remarks
This method is used to validate all signatures in the document specified in InputFile, InputData, or SetInputStream.
This method walks through the signed document and reports every signature via the SignatureInfo event. Subscribe to the event to be notified about the signatures and adjust validation settings on the fly.
Upon completion of this method, the signature details will be published in the Signatures property.
Example:
pdfverify.InputFile = "signed.pdf";
pdfverify.Verify();
PDFSignature signature = pdfverify.Signatures[0];
if (signature.ValidationResult == SignatureValidationResults.svrValid)
Console.WriteLine("Signature is good");
if (signature.ChainValidationResult == ChainValidationResults.cvrValid)
Console.WriteLine("Chain is good");
This method only validates the signatures and does not check their coverage. It is a good idea to use mechanisms
such as GetSignedVersion or to ensure that the
signature covers the expected document revision.
To control individual signature validation, subscribe to the SignatureInfo event and set the ValidateSignature and ValidateChain parameters accordingly. The results are reported via the SignatureProcessed event.
Use the following properties to adjust chain validation parameters:
- BlockedCerts
- KnownCerts
- OfflineMode
- RevocationCheck
- TrustedCerts
- TrustedLists
- TrustSources
- ValidationFlags
- ValidationPolicy
- ValidationTime
Note: If the document is not already opened, this method will open it, perform the operation, then close it.
ChainCert Event (PDFVerify Module)
Fired when the component encounters a chain certificate.
Syntax
func onChainCert(certEncoded: Data, certSubject: String, certIssuer: String, validationTime: String, validationResult: inout Int32, validationDetails: inout Int32)
- (void)onChainCert:(NSData*)certEncoded :(NSString*)certSubject :(NSString*)certIssuer :(NSString*)validationTime :(int*)validationResult :(int*)validationDetails;
Remarks
This event is fired once for each certificate encountered during chain validation to report that it is about to be processed. The class will try to retrieve all required chain certificates automatically.
The CertEncoded parameter specifies the PEM (Base64-encoded) public certificate.
The CertSubject and CertIssuer parameters specify the distinguished names of the certificate owner and issuer respectively.
The ValidationTime parameter specifies the time point (in UTC) at which the certificate validity was established.
The ValidationResult parameter reports the outcome of the individual certificate validation and can be one of the following values:
0 (cvrUnknown - default) | Certificate validity is unknown. |
1 (cvrValid) | The certificate is valid. |
2 (cvrValidButUntrusted) | The certificate is valid but not trusted. |
3 (cvrInvalid) | The certificate is not valid (it is revoked, expired, or contains an invalid signature). |
4 (cvrCantBeEstablished) | The validity of the certificate cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses). |
In the case of a failure, the ValidationDetails parameter provides more details on its reasons. Its value is a bitmask of the following flags:
0x001 (cvdRevoked) | The certificate is revoked. |
0x002 (cvdExpiredOrNotYetValid) | The certificate is expired or not yet valid. |
0x004 (cvdUnknownCA) | A CA certificate for the certificate has not been found, is not trusted, or has a wrong public key (chain incomplete). |
0x008 (cvdPolicyViolated) | One of the CA certificates is not authorized to act as a CA, a mandatory key usage is not enabled, or a weak algorithm is used in the certificate. |
0x010 (cvdRevocationCheckFailed) | One or more CRLs or OCSP responses could not be verified. |
0x020 (cvdBlocked) | The certificate is blocked. |
0x040 (cvdFailure) | General validation failure. |
Overridable Chain Validation
While the class will follow the validation rules defined by the X.509 standard to the best of its ability, minor technical issues may arise when validating the chain. The ValidationResult and ValidationDetails parameters can be overridden to relax such requirements on a per-certificate basis.For example, set ValidationResult to cvrValid and ValidationDetails to 0 in order to:
- Ignore CA or TLS key usage requirements
- Ignore the AuthorityKeyId extension in certificate-issuing CAs (helps with incorrectly renewed certificates)
- Ignore the Basic Constraints or Name Constraints extensions of CA certificates
- Tolerate some weaker algorithms
- Implicitly trust self-signed certificates
- Skip validity period checks for trusted certificates (helps with older devices that have expired root certificates)
- Ignore chain loops (helps with buggy CAs that include subchains that sign themselves)
Note: The user code is ultimately responsible for certificate validity decisions made via these two parameters. If their values are modified within this event, the resulting chain validation procedure may deviate from the standard.
DocumentInfo Event (PDFVerify Module)
Fired when the document has been loaded into memory.
Syntax
- (void)onDocumentInfo:(int)pageCount :(int)signatureCount;
Remarks
This event is fired once per document processing routine to report that the document has been processed and loaded into memory.
The handler for this event is a good place to check the document structure and access document-related information such as page number and document file details. These may be useful when preparing the signature. For example, the GetPageProperty method can be used to find the optimal position for the signature widget.
The PageCount parameter reports the number of pages in the document.
The SignatureCount parameter reports the number of signatures in the document.
This event is fired when the Open method is called, but only after Password or RecipientInfo is fired (if applicable) and the document has been decrypted.
Error Event (PDFVerify Module)
Fired when information is available about errors during data delivery.
Syntax
- (void)onError:(int)errorCode :(NSString*)description;
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class .
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Log Event (PDFVerify Module)
Fired once for each log message.
Syntax
- (void)onLog:(int)logLevel :(NSString*)message :(NSString*)logType;
Remarks
This event is fired once for each log message generated by the class. The verbosity is controlled by the LogLevel configuration setting.
The LogLevel parameter indicates the detail level of the message. Possible values are:
0 (None) | No messages are logged. |
1 (Info - default) | Informational events such as the basics of the chain validation procedure are logged. |
2 (Verbose) | Detailed data such as HTTP requests are logged. |
3 (Debug) | Debug data including the full chain validation procedure are logged. |
The Message parameter is the log message.
The LogType parameter identifies the type of log entry. Possible values are:
- CertValidator
- Font
- HTTP
- PDFInvalidSignature
- PDFRevocationInfo
- Timestamp
- TSL
Password Event (PDFVerify Module)
Fired when the component detects that the PDF document is encrypted with a password.
Syntax
func onPassword(available: Bool, cancel: inout Bool)
- (void)onPassword:(BOOL)available :(int*)cancel;
Remarks
This event is fired during document processing to report that the document is encrypted with a password. It may be used to supply the correct decryption password to the Password property.
The Available parameter indicates whether the decryption password is already available to the class or still needs to be set. If this parameter is set to , the correct password must be provided for the decryption attempt to succeed.
The Cancel parameter determines whether the class will stop firing this event to request a password.
RecipientInfo Event (PDFVerify Module)
Fired for each recipient certificate of the encrypted PDF document.
Syntax
func onRecipientInfo(issuer: String, serialNumber: String, subjectKeyIdentifier: String, available: Bool, cancel: inout Bool)
- (void)onRecipientInfo:(NSString*)issuer :(NSString*)serialNumber :(NSString*)subjectKeyIdentifier :(BOOL)available :(int*)cancel;
Remarks
This event is fired during document processing for each recipient certificate that the document has been encrypted for (if applicable). It may be used to identify the certificate(s) to load and supply to the DecryptionCert property.
The Issuer parameter specifies the subject of the issuer certificate.
The SerialNumber parameter specifies the serial number of the encryption certificate.
The SubjectKeyIdentifier parameter specifies the X.509 subjectKeyIdentifier extension value of the encryption certificate, encoded as a hex string.
The Available parameter indicates whether the decryption certificate is already available to the class or still needs to be set. If this parameter is set to , the correct certificate must be provided for the decryption attempt to succeed.
The Cancel parameter determines whether the class will stop firing this event to request a certificate.
Note: The document may be encrypted with more than one certificate (or have "more than one recipient"), in which case each certificate will cause its own invocation of this event.
SignatureInfo Event (PDFVerify Module)
Fired when the component finds a signature in the document.
Syntax
func onSignatureInfo(signatureIndex: Int32, validateSignature: inout Bool, validateChain: inout Bool)
- (void)onSignatureInfo:(int)signatureIndex :(int*)validateSignature :(int*)validateChain;
Remarks
This event is fired once for each signature found in the document to report that the signature specified by SignatureIndex is about to be validated.
The SignatureIndex parameter is the index of the signature in the Signatures properties.
Signature validation consists of two independent stages: cryptographic signature validation and chain validation. The ValidateSignature and ValidateChain parameters determine whether each stage should be included in the validation. They can be overridden to modify the validation policy on a per-signature basis, allowing signatures to be verified individually instead of all at once (via Verify). To skip validation entirely, set both parameters to .
Use the following properties to adjust chain validation parameters:
- BlockedCerts
- KnownCerts
- OfflineMode
- RevocationCheck
- TrustedCerts
- TrustedLists
- TrustSources
- ValidationFlags
- ValidationPolicy
- ValidationTime
SignatureProcessed Event (PDFVerify Module)
Fired after a signature has been processed.
Syntax
func onSignatureProcessed(signatureIndex: Int32, signatureValidationResult: Int32, chainValidationResult: Int32, chainValidationDetails: Int32)
- (void)onSignatureProcessed:(int)signatureIndex :(int)signatureValidationResult :(int)chainValidationResult :(int)chainValidationDetails;
Remarks
This event is fired once for each signature found in the document to report that the signature specified by SignatureIndex has completed validation. It is fired after SignatureInfo if that event's ValidateSignature parameter is set to .
The SignatureIndex parameter is the index of the signature in the Signatures properties.
Signature validation consists of two independent stages: cryptographic signature validation and chain validation. Separate validation results are reported for each in the SignatureValidationResult and ChainValidationResult parameters.
The former reports the validity of the signature and can be one of the following values:
0 (svrUnknown - default) | Signature validity is unknown. |
1 (svrValid) | The signature is valid. |
2 (svrCorrupted) | The signature is corrupted. |
3 (svrSignerNotFound) | Failed to acquire the signing certificate. The signature cannot be validated. |
4 (svrFailure) | General failure. |
The latter reports the validity of the chain and can be one of the following values:
0 (cvrUnknown - default) | Chain validity is unknown. |
1 (cvrValid) | The chain is valid. |
2 (cvrValidButUntrusted) | The chain is valid, but the root certificate is not trusted. |
3 (cvrInvalid) | The chain is not valid (some of the certificates are revoked, expired, or contain an invalid signature). |
4 (cvrCantBeEstablished) | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses). |
In the case of a failure, the ChainValidationDetails parameter provides more details on its reasons. Its value is a bitmask of the following flags:
0x001 (cvdRevoked) | One or more certificates are revoked. |
0x002 (cvdExpiredOrNotYetValid) | One or more certificates are expired or not yet valid. |
0x004 (cvdUnknownCA) | A CA certificate for one or more certificates has not been found, is not trusted, or has a wrong public key (chain incomplete). |
0x008 (cvdPolicyViolated) | One of the CA certificates is not authorized to act as a CA, a mandatory key usage is not enabled in one of the chain certificates, or a weak algorithm is used in one of the certificates or revocation elements. |
0x010 (cvdRevocationCheckFailed) | One or more CRLs or OCSP responses could not be verified. |
0x020 (cvdBlocked) | One or more certificates are blocked. |
0x040 (cvdFailure) | General validation failure. |
Note: SignatureValidationResult, ChainValidationResult, and ChainValidationDetails are also available as properties in the PDFSignature type.
SSLServerAuthentication Event (PDFVerify Module)
Fired after the server presents its certificate to the client.
Syntax
func onSSLServerAuthentication(certEncoded: Data, certSubject: String, certIssuer: String, status: String, accept: inout Bool)
- (void)onSSLServerAuthentication:(NSData*)certEncoded :(NSString*)certSubject :(NSString*)certIssuer :(NSString*)status :(int*)accept;
Remarks
This event is fired during timestamping or chain validation after the server presents its SSL/TLS certificate to the class. It only applies if the TSA, CRL, OCSP, or Trusted List endpoint operates over HTTPS.
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When the Accept parameter is , the Status parameter shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to .
SSLStatus Event (PDFVerify Module)
Fired when secure connection progress messages are available.
Syntax
func onSSLStatus(message: String)
- (void)onSSLStatus:(NSString*)message;
Remarks
This event is fired during timestamping or chain validation for informational and logging purposes only. This event tracks the progress of the SSL/TLS connection. It only applies if the TSA, CRL, OCSP, or Trusted List endpoint operates over HTTPS.
Certificate Type
This is the digital certificate being used.
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
effectiveDate
String (read-only)
Default Value: ""
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
expirationDate
String (read-only)
Default Value: ""
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
extendedKeyUsage
String (read-only)
Default Value: ""
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
fingerprint
String (read-only)
Default Value: ""
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
fingerprintSHA1
String (read-only)
Default Value: ""
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
fingerprintSHA256
String (read-only)
Default Value: ""
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
issuer
String (read-only)
Default Value: ""
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
privateKey
String (read-only)
Default Value: ""
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The may be available but not exportable. In this case, returns an empty string.
privateKeyAvailable
Bool (read-only)
Default Value: False
Whether a is available for the selected certificate. If is True, the certificate may be used for authentication purposes (e.g., server authentication).
privateKeyContainer
String (read-only)
Default Value: ""
The name of the container for the certificate (if available). This functionality is available only on Windows platforms.
publicKey
String (read-only)
Default Value: ""
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
publicKeyAlgorithm
String (read-only)
Default Value: ""
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
publicKeyLength
Int32 (read-only)
Default Value: 0
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
serialNumber
String (read-only)
Default Value: ""
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
signatureAlgorithm
String (read-only)
Default Value: ""
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
storeB
Data
Default Value: "MY"
The name of the certificate store for the client certificate.
The property denotes the type of the certificate store specified by . If the store is password-protected, specify the password in .
is used in conjunction with the property to specify client certificates. If has a value, and or is set, a search for a certificate is initiated. Please see the property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
store
String
Default Value: "MY"
The name of the certificate store for the client certificate.
The property denotes the type of the certificate store specified by . If the store is password-protected, specify the password in .
is used in conjunction with the property to specify client certificates. If has a value, and or is set, a search for a certificate is initiated. Please see the property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
storePassword
String
Default Value: ""
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
storeType
CertStoreTypes
Default Value: 0
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the and set to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
subjectAltNames
String (read-only)
Default Value: ""
Comma-separated lists of alternative subject names for the certificate.
thumbprintMD5
String (read-only)
Default Value: ""
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
thumbprintSHA1
String (read-only)
Default Value: ""
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
thumbprintSHA256
String (read-only)
Default Value: ""
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
usage
String (read-only)
Default Value: ""
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
usageFlags
Int32 (read-only)
Default Value: 0
The flags that show intended use for the certificate. The value of is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the property for a text representation of .
This functionality currently is not available when the provider is OpenSSL.
version
String (read-only)
Default Value: ""
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
subject
String
Default Value: ""
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
encodedB
Data
Default Value: ""
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The and properties also may be used to specify a certificate.
When is set, a search is initiated in the current for the private key of the certificate. If the key is found, is updated to reflect the full subject of the selected certificate; otherwise, is set to an empty string.
encoded
String
Default Value: ""
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The and properties also may be used to specify a certificate.
When is set, a search is initiated in the current for the private key of the certificate. If the key is found, is updated to reflect the full subject of the selected certificate; otherwise, is set to an empty string.
Constructors
public init()
Creates a instance whose properties can be set. This is useful for use with when generating new certificates.
public init(encoded: )
Parses Encoded as an X.509 public key.
public init(storeType: , store: , storePassword: , subject: )
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public init(storeType: , store: , storePassword: , subject: )
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
Firewall Type
The firewall the component will connect through.
Remarks
When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall and the .
Fields
autoDetect
Bool
Default Value: False
Whether to automatically detect and use firewall system settings, if available.
firewallType
FirewallTypes
Default Value: 0
The type of firewall to connect through. The applicable values are as follows:
host
String
Default Value: ""
The name or IP address of the firewall (optional). If a is given, the requested connections will be authenticated through the specified firewall when connecting.
If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class .
password
String
Default Value: ""
A password if authentication is to be used when connecting through the firewall. If is specified, the and properties are used to connect and authenticate to the given firewall. If the authentication fails, the class .
port
Int32
Default Value: 0
The Transmission Control Protocol (TCP) port for the firewall . See the description of the property for details.
Note: This property is set automatically when is set to a valid value. See the description of the property for details.
user
String
Default Value: ""
A username if authentication is to be used when connecting through a firewall. If is specified, this property and the property are used to connect and authenticate to the given Firewall. If the authentication fails, the class .
Constructors
public init()
PDFAttachment Type
This describes the file being attached to the PDF document.
Remarks
This type contains information about the file that is being attached to the document.
Fields
contentType
String
Default Value: ""
The content type of the attachment.
creationDate
String
Default Value: ""
The creation date of the attachment.
dataB
Data
Default Value: ""
The raw data of the attachment.
If is not set to a valid stream, the class will write to this property when an empty string is passed to the SaveAttachment method.
data
String
Default Value: ""
The raw data of the attachment.
If is not set to a valid stream, the class will write to this property when an empty string is passed to the SaveAttachment method.
description_
String
Default Value: ""
A textual description of the attachment.
fileName
String
Default Value: ""
The path and filename of the attachment.
modificationDate
String
Default Value: ""
The date and time of the file's last modification.
name
String
Default Value: ""
The name of the attachment.
size
Int64 (read-only)
Default Value: 0
The attachment's size in bytes.
Constructors
public init()
public init(fileName: )
public init(fileName: , description: )
public init(data: , name: , description: )
PDFSignature Type
A container for PDF signature details.
Remarks
This type contains details about the signature. Use it to read information about the signature when processing it.
Fields
authorName
String (read-only)
Default Value: ""
The human-readable name of the signer.
chainValidationDetails
Int32 (read-only)
Default Value: 0
The details of the certificate chain validation outcome. They may often suggest the reasons that contributed to the overall validation result in .
The value of this property is a bitmask of the following flags:
0x001 (cvdRevoked) | One or more certificates are revoked. |
0x002 (cvdExpiredOrNotYetValid) | One or more certificates are expired or not yet valid. |
0x004 (cvdUnknownCA) | A CA certificate for one or more certificates has not been found, is not trusted, or has a wrong public key (chain incomplete). |
0x008 (cvdPolicyViolated) | One of the CA certificates is not authorized to act as a CA, a mandatory key usage is not enabled in one of the chain certificates, or a weak algorithm is used in one of the certificates or revocation elements. |
0x010 (cvdRevocationCheckFailed) | One or more CRLs or OCSP responses could not be verified. |
0x020 (cvdBlocked) | One or more certificates are blocked. |
0x040 (cvdFailure) | General validation failure. |
Subscribe to the Log event to access the detailed validation log. This property is also available as a parameter of the SignatureProcessed event.
chainValidationResult
ChainValidationResults (read-only)
Default Value: 0
The outcome of the certificate chain validation routine.
Possible values are:
0 (cvrUnknown - default) | Chain validity is unknown. |
1 (cvrValid) | The chain is valid. |
2 (cvrValidButUntrusted) | The chain is valid, but the root certificate is not trusted. |
3 (cvrInvalid) | The chain is not valid (some of the certificates are revoked, expired, or contain an invalid signature). |
4 (cvrCantBeEstablished) | The validity of the chain cannot be established because of missing or unavailable validation information (certificates, CRLs, or OCSP responses). |
Subscribe to the Log event to access the detailed validation log. This property is also available as a parameter of the SignatureProcessed event.
claimedSigningTime
String (read-only)
Default Value: ""
The signature's creation time in UTC.
Use this property to get the signature creation time from the signer's computer. Note that the claimed time, unlike , does not originate from a trusted TSA and may be forfeited or wrong.
coverageEndsAt
Int32 (read-only)
Default Value: 0
The offset in the PDF file where the signature coverage ends.
PDF generators often use incremental updates to make changes in documents. This may result in the signature only covering a part of the document (one of the past revisions), but not the subsequent changes.
Use this property to identify the offset where the signature coverage ends. One option is to compare it to the length of the whole document to ensure that the signature covers the entire document. Alternatively, use the GetSignedVersion method to extract the exact revision that was signed.
hashAlgorithm
String (read-only)
Default Value: "SHA256"
The hash algorithm that was used for signing.
Possible values are:
- SHA1
- SHA224
- SHA256
- SHA384
- SHA512
- MD5
profile
PDFSignatureProfiles (read-only)
Default Value: 0
The pre-defined PAdES profile that was applied when creating the signature, as defined by ETSI.
Advanced signatures come in many variants, and they are often defined by parties that need to process them or by local standards. Profiles are sets of pre-defined configurations that correspond to particular signature variants.
Possible values are:
0 (pfNone - default) | No profile |
1 (pfBaselineB) | PAdES B-B profile |
2 (pfBaselineT) | PAdES B-T profile |
3 (pfBaselineLT) | PAdES B-LT profile |
4 (pfBaselineLTA) | PAdES B-LTA profile |
Note that when verifying a signature, the LTV modifier may be affected by the validation settings. These include OfflineMode (set it to to obtain the clean LTV capability) and CacheRevocationInfo (set it to to prevent earlier validations from affecting the current validation).
reason
String (read-only)
Default Value: ""
The reason for signing.
signatureType
PDFSignatureTypes (read-only)
Default Value: 0
The type of the signature that was created.
Possible values are:
0 (stLegacy - default) | Legacy Adobe signature (adbe.pkcs7.detached) |
1 (stAdvanced) | PAdES-compliant signature (ETSI.CAdES.detached) |
2 (stDTS) | Document timestamp (ETSI.RFC3161) |
3 (stEmptyField) | Empty signature field (signature placeholder) |
signerCertIndex
Int32 (read-only)
Default Value: -1
The index of the signer certificate in the DocumentCerts properties.
timestampCertIndex
Int32 (read-only)
Default Value: -1
The index of the timestamping certificate in the DocumentCerts properties (if applicable).
timestamped
Bool (read-only)
Default Value: False
Whether the signature contains an embedded timestamp.
validatedSigningTime
String (read-only)
Default Value: ""
The certified signing time in UTC.
Use this property to obtain the signing time as certified by a timestamp from a trusted timestamping authority. This property is only nonempty if there is a valid timestamp included in the signature.
Note that the validated time, unlike , is the trusted signing time.
validationResult
SignatureValidationResults (read-only)
Default Value: 0
The outcome of the cryptographic signature validation.
Possible values are:
0 (svrUnknown - default) | Signature validity is unknown. |
1 (svrValid) | The signature is valid. |
2 (svrCorrupted) | The signature is corrupted. |
3 (svrSignerNotFound) | Failed to acquire the signing certificate. The signature cannot be validated. |
4 (svrFailure) | General failure. |
This property is also available as the SignatureValidationResult parameter of the SignatureProcessed event.
widgetHeight
String (read-only)
Default Value: "70"
The height of the signature widget in points. Both integer and decimal values are supported.
widgetOffsetX
String (read-only)
Default Value: "0"
The signature widget offset from the left-hand page border in points. Both integer and decimal values are supported.
widgetOffsetY
String (read-only)
Default Value: "0"
The signature widget offset from the bottom page border in points. Both integer and decimal values are supported.
widgetPages
String (read-only)
Default Value: ""
The pages that the signature and its widget are placed on.
widgetWidth
String (read-only)
Default Value: "70"
The width of the signature widget in points. Both integer and decimal values are supported.
Constructors
public init()
Proxy Type
The proxy the component will connect to.
Remarks
When connecting through a proxy, this type is used to specify different properties of the proxy, such as the and the .
Fields
authScheme
ProxyAuthSchemes
Default Value: 0
The type of authorization to perform when connecting to the proxy. This is used only when the and properties are set.
should be set to authNone (3) when no authentication is expected.
By default, is authBasic (0), and if the and properties are set, the class will attempt basic authentication.
If is set to authDigest (1), digest authentication will be attempted instead.
If is set to authProprietary (2), then the authorization token will not be generated by the class. Look at the configuration file for the class being used to find more information about manually setting this token.
If is set to authNtlm (4), NTLM authentication will be used.
For security reasons, setting this property will clear the values of and .
autoDetect
Bool
Default Value: False
Whether to automatically detect and use proxy system settings, if available. The default value is .
password
String
Default Value: ""
A password if authentication is to be used for the proxy.
If is set to Basic Authentication, the and properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If is set to Digest Authentication, the and properties are used to respond to the Digest Authentication challenge from the server.
If is set to NTLM Authentication, the and properties are used to authenticate through NTLM negotiation.
port
Int32
Default Value: 80
The Transmission Control Protocol (TCP) port for the proxy (default 80). See the description of the property for details.
server
String
Default Value: ""
If a proxy is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
If the property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the property is set to the corresponding address. If the search is not successful, an error is returned.
ssl
ProxySSLTypes
Default Value: 0
When to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:
psAutomatic (0) | Default setting. If the URL is an https URL, the class will use the psTunnel option. If the URL is an http URL, the class will use the psNever option. |
psAlways (1) | The connection is always SSL-enabled. |
psNever (2) | The connection is not SSL-enabled. |
psTunnel (3) | The connection is made through a tunneling (HTTP) proxy. |
user
String
Default Value: ""
A username if authentication is to be used for the proxy.
If is set to Basic Authentication, the and properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If is set to Digest Authentication, the and properties are used to respond to the Digest Authentication challenge from the server.
If is set to NTLM Authentication, the and properties are used to authenticate through NTLM negotiation.
Constructors
public init()
public init(server: , port: )
public init(server: , port: , user: , password: )
Config Settings (PDFVerify Module)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.PDFVerify Config Settings
Index is the index of the signature in the Signatures properties. This setting is read-only.
0 (None) | No messages are logged. |
1 (Info - default) | Informational events such as the basics of the chain validation procedure are logged. |
2 (Verbose) | Detailed data such as HTTP requests are logged. |
3 (Debug) | Debug data including the full chain validation procedure are logged. |
This setting is read-only. Its value is a bitmask of the following flags:
0x001 (pepAnnotations) | Annotating is allowed. |
0x002 (pepAssemble) | Assembling a new document on the basis of the processed one is allowed. |
0x004 (pepExtract) | Extraction/copying of the pictures and text from the document is allowed. |
0x008 (pepExtractAcc) | Content extraction is allowed for accessibility purposes only. |
0x010 (pepFillInForms) | Filling in forms is allowed. |
0x020 (pepHighQualityPrint) | High quality printing is allowed. |
0x040 (pepLowQualityPrint) | Low quality printing is allowed. |
0x080 (pepModify) | Modifications are allowed. |
0 | Discard all changes. |
1 | Save the document to OutputFile, OutputData, or the stream set in SetOutputStream, even if it has not been modified. |
2 (default) | Save the document to OutputFile, OutputData, or the stream set in SetOutputStream, but only if it has been modified. |
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to tells the class to use the internal implementation instead of using the system security libraries.
This setting is set to by default on all platforms.
Trappable Errors (PDFVerify Module)
PDFVerify Errors
802 | HTTP download failed. The error description contains the detailed message. |
803 | The document is not signed. |
816 | Invalid signature. The error description contains the detailed message. |
827 | Invalid timestamp data. The error description contains the detailed message. |
829 | Bad signing certificate attribute. |
830 | Chain validation failed. The error description contains the detailed message. |
833 | Trusted List processing error. The error description contains the detailed message. |
834 | Cannot parse Trusted List data. |
837 | Invalid revocation information. |
839 | Failed to process Trusted List. The error description contains the detailed message. |
844 | No signer certificate found. |
845 | Invalid signing certificate chain. The error description contains the detailed message. |
851 | Unsupported hash algorithm. |
853 | Invalid digest. |
854 | Invalid signature reference. |
855 | Invalid signature contents. |
856 | Invalid signature byte range. |
857 | Byte range does not cover the entire document. |
PDF Errors
804 | PDF decompression failed. |
805 | Cannot add entry to cross-reference table. |
806 | Unsupported field size. |
807 | Unsupported Encoding filter. |
808 | Unsupported predictor algorithm. |
809 | Unsupported document version. |
812 | Cannot read PDF file stream. |
813 | Cannot write to PDF file stream. |
814 | OutputFile already exists and Overwrite is . |
815 | Invalid parameter. |
817 | Bad cross-reference entry. |
818 | Invalid object or generation number. |
819 | Invalid object stream. |
820 | Invalid stream dictionary. |
821 | Invalid AcroForm entry. |
822 | Invalid Root entry. |
823 | Invalid annotation. |
824 | The input document is empty. |
826 | OpenType font error. The error description contains the detailed message. |
828 | Invalid CMS data. The error description contains the detailed message. |
835 | Cannot change decryption mode for opened document. |
836 | Unsupported Date string. |
838 | Cryptographic error. The error description contains the detailed message. |
840 | No decryption key found. |
841 | Encryption failed. The error description contains the detailed message. |
842 | No proper certificate for encryption found. |
846 | Unsupported revision. |
847 | Unsupported security handler SubFilter. |
848 | Failed to verify permissions. |
849 | Invalid password. |
850 | Invalid password information. |
852 | Unsupported encryption algorithm. |
859 | Cannot encrypt encrypted document. |
864 | Cannot modify document after signature update. |
868 | Cannot encrypt or decrypt object. |
869 | Invalid security handler information. |
870 | Invalid encrypted data. |
871 | Invalid block cipher padding. |
872 | Failed to reload signature. |
873 | Object is not encrypted. |
874 | Unexpected cipher information. |
877 | Invalid document. Bad document catalog. |
878 | Invalid document Id. |
880 | Invalid document. Invalid requirements dictionary. |
881 | Invalid linearization dictionary. |
882 | Invalid signature information. |
883 | Unsupported document format. |
890 | Unsupported feature. |
891 | Internal error. The error description contains the detailed message. |
Parsing Errors
1001 | Bad object. |
1002 | Bad document trailer. |
1003 | Illegal stream dictionary. |
1004 | Illegal string. |
1005 | Indirect object expected. |
1007 | Invalid reference. |
1008 | Invalid reference table. |
1009 | Invalid stream data. |
1010 | Unexpected character. |
1011 | Unexpected EOF. |
1012 | Unexpected indirect object in cross-reference table. |
1021 | Invalid type in Root object list. |
HTTP Errors
118 | Firewall error. The error description contains the detailed message. |
143 | Busy executing current method. |
151 | HTTP protocol error. The error message has the server response. |
152 | No server specified in URL. |
153 | Specified URLScheme is invalid. |
155 | Range operation is not supported by server. |
156 | Invalid cookie index (out of range). |
301 | Interrupted. |
302 | Cannot open AttachedFile. |
TCPClient Errors
100 | You cannot change the RemotePort at this time. A connection is in progress. |
101 | You cannot change the RemoteHost (Server) at this time. A connection is in progress. |
102 | The RemoteHost address is invalid (0.0.0.0). |
104 | Already connected. If you want to reconnect, close the current connection first. |
106 | You cannot change the LocalPort at this time. A connection is in progress. |
107 | You cannot change the LocalHost at this time. A connection is in progress. |
112 | You cannot change MaxLineLength at this time. A connection is in progress. |
116 | RemotePort cannot be zero. Please specify a valid service port number. |
117 | You cannot change the UseConnection option while the class is active. |
135 | Operation would block. |
201 | Timeout. |
211 | Action impossible in control's present state. |
212 | Action impossible while not connected. |
213 | Action impossible while listening. |
301 | Timeout. |
302 | Could not open file. |
434 | Unable to convert string to selected CodePage. |
1105 | Already connecting. If you want to reconnect, close the current connection first. |
1117 | You need to connect first. |
1119 | You cannot change the LocalHost at this time. A connection is in progress. |
1120 | Connection dropped by remote host. |
SSL Errors
270 | Cannot load specified security library. |
271 | Cannot open certificate store. |
272 | Cannot find specified certificate. |
273 | Cannot acquire security credentials. |
274 | Cannot find certificate chain. |
275 | Cannot verify certificate chain. |
276 | Error during handshake. |
280 | Error verifying certificate. |
281 | Could not find client certificate. |
282 | Could not find server certificate. |
283 | Error encrypting data. |
284 | Error decrypting data. |
TCP/IP Errors
10004 | [10004] Interrupted system call. |
10009 | [10009] Bad file number. |
10013 | [10013] Access denied. |
10014 | [10014] Bad address. |
10022 | [10022] Invalid argument. |
10024 | [10024] Too many open files. |
10035 | [10035] Operation would block. |
10036 | [10036] Operation now in progress. |
10037 | [10037] Operation already in progress. |
10038 | [10038] Socket operation on nonsocket. |
10039 | [10039] Destination address required. |
10040 | [10040] Message is too long. |
10041 | [10041] Protocol wrong type for socket. |
10042 | [10042] Bad protocol option. |
10043 | [10043] Protocol is not supported. |
10044 | [10044] Socket type is not supported. |
10045 | [10045] Operation is not supported on socket. |
10046 | [10046] Protocol family is not supported. |
10047 | [10047] Address family is not supported by protocol family. |
10048 | [10048] Address already in use. |
10049 | [10049] Cannot assign requested address. |
10050 | [10050] Network is down. |
10051 | [10051] Network is unreachable. |
10052 | [10052] Net dropped connection or reset. |
10053 | [10053] Software caused connection abort. |
10054 | [10054] Connection reset by peer. |
10055 | [10055] No buffer space available. |
10056 | [10056] Socket is already connected. |
10057 | [10057] Socket is not connected. |
10058 | [10058] Cannot send after socket shutdown. |
10059 | [10059] Too many references, cannot splice. |
10060 | [10060] Connection timed out. |
10061 | [10061] Connection refused. |
10062 | [10062] Too many levels of symbolic links. |
10063 | [10063] File name is too long. |
10064 | [10064] Host is down. |
10065 | [10065] No route to host. |
10066 | [10066] Directory is not empty |
10067 | [10067] Too many processes. |
10068 | [10068] Too many users. |
10069 | [10069] Disc Quota Exceeded. |
10070 | [10070] Stale NFS file handle. |
10071 | [10071] Too many levels of remote in path. |
10091 | [10091] Network subsystem is unavailable. |
10092 | [10092] WINSOCK DLL Version out of range. |
10093 | [10093] Winsock is not loaded yet. |
11001 | [11001] Host not found. |
11002 | [11002] Nonauthoritative 'Host not found' (try again or check DNS setup). |
11003 | [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP. |
11004 | [11004] Valid name, no data record (check DNS setup). |