AmazonGlacier Component

Properties   Methods   Events   Config Settings   Errors  

The AmazonGlacier component provides a quick way to interface with Amazon's Glacier service.

Syntax

nsoftware.CloudStorage.Amazonglacier

Remarks

The AmazonGlacier component allows you to simply access Amazon's Glacier service. Glacier allows you to create vaults and store archives.

Before using the component you must first have an AWS account and sign up for the Glacier service. To use the component first set AccessKey and SecretKey.

To create a vault call CreateVault. Once the vault is created you are ready to upload archives to store in the vault. Set LocalFile to the file you want to upload and call UploadArchive.

To retrieve an archive you must create a job. Jobs are long running operations and Amazon will notify you when the job is complete. To create a job call CreateJob. Use the SetNotificationInfo method to set notification options at the vault level. You may also supply an Amazon SNS topic to CreateJob to which Amazon will publish notification about the job status.

You can also call CreateJob to create an Inventory Retrieval job to list the contents of a vault.

After the job is complete use GetJobOutput to retrieve the data.

Additionally, multipart uploads are supported through the StartMultipartUpload and CompleteMultipartUpload methods. Various other operations such as DeleteArchive, GetJobInfo, ListJobs, ListMultipartUploads, ListVaults, and more provide additional functionality.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

AccessKeyThe access key to use for authentication.
ArchiveDataHolds the archive data.
EncryptionAlgorithmThe encryption algorithm.
EncryptionPasswordThe encryption password.
FirewallA set of properties related to firewall access.
IdleThe current status of the component.
InventoryDataHolds the inventory data.
JobMarkerA marker used to get the next page of results.
JobsA collection providing details about the jobs.
LocalFileThe path to a local file for uploading or downloading.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
MultipartUploadMarkerA marker used to get the next page of results.
MultipartUploadsA collection of multipart upload details.
NotificationInfoHolds information about the notification settings for a vault.
OtherHeadersThis property includes other headers as determined by the user (optional).
OverwriteWhether or not the component should overwrite files during transfer.
ParsedHeadersThis property includes a collection of headers returned from the last request.
PartMarkerA marker used to get the next page of results.
PartsA collection of multipart upload parts.
ProxyA set of properties related to proxy access.
RegionThe region the component will make requests against.
SecretKeyThe secret key to use for authentication.
SSLAcceptServerCertInstructs the component to unconditionally accept the server certificate that matches the supplied certificate.
SSLCertThe certificate to be used during SSL negotiation.
SSLProviderThis specifies the SSL/TLS implementation to use.
SSLServerCertThe server certificate for the last established connection.
TimeoutA timeout for the component.
UseSSLWhether to use SSL/TLS when connecting.
VaultMarkerA marker used to get the next page of results.
VaultsA collection of vault information.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

AbortMultipartUploadAborts a multipart upload.
CompleteMultipartUploadCompletes a multipart upload.
ConfigSets or retrieves a configuration setting.
CreateJobCreates a new job.
CreateVaultCreates a new vault.
DeleteArchiveDeletes an archive.
DeleteNotificationInfoDeletes the notification information for the vault.
DeleteVaultDeletes the specified vault.
DoEventsProcesses events from the internal message queue.
GetJobInfoRetrieves information about the specified job.
GetJobOutputRetrieves the output from the job.
GetNotificationInfoRetrieves the notification information for the vault.
GetVaultInfoRetrieves vault details.
InterruptInterrupt the current method.
ListJobsLists the jobs in a vault.
ListMultipartUploadsLists multipart uploads.
ListPartsLists the parts of a multipart upload.
ListVaultsLists the vaults.
ResetResets the component to its initial state.
SetDownloadStreamSets the stream to which the downloaded data from the server will be written.
SetNotificationInfoSets notification information for a vault.
SetUploadStreamSets the stream to be uploaded to the server.
StartMultipartUploadStarts a multipart upload.
UploadArchiveUploads an archive to a vault.
UploadPartUploads a single part in a multipart upload.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

EndTransferThis event fires when a document finishes transferring.
ErrorFired when information is available about errors during data delivery.
HeaderThis event is fired every time a header line comes in.
JobListFires once for each job returned when calling ListJobs or GetJobInfo.
LogThis event fires once for each log message.
MultipartUploadListFires once for each multipart upload when ListMultipartUploads is called.
PartListFires once for each part when calling ListParts.
ProgressFires during an upload or download to indicate transfer progress.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.
StartTransferThis event fires when a document starts transferring (after the headers).
TransferThis event is fired while a document transfers (delivers document).
VaultListFires once for each vault returned when calling ListVaults.

Config Settings


The following is a list of config settings for the component with short descriptions. Click on the links for further details.

AccumulatePagesWhether the component should accumulate subsequent pages of results when listing them.
EncryptionIVThe initialization vector to be used for encryption/decryption.
EncryptionKeyThe key to use during encryption/decryption.
EncryptionPasswordKDFThe KDF algorithm to use during password based encryption and decryption.
IsJobPagedWhether or not the ListJobs results are paged.
IsMultipartUploadPagedWhether or not the ListMultipartUploads results are paged.
IsPartPagedWhether or not the ListParts results are paged.
IsVaultPagedWhether or not the ListVaults results are paged.
JobCompletionFilterSpecifies the state of jobs to return when calling ListJobs.
JobDescriptionThe description for the job.
JobInventoryFormatThe format of data returned from an inventory retrieval.
JobOutputByteRangeThe byte range to retrieve.
JobRetrievalByteRangeA range of bytes to retrieve.
JobStatusFilterSpecifies the status of jobs to return when calling ListJobs.
LocationURIThe relative URI of the resource.
MaxListJobResultsThe maximum number of Jobs to return.
MaxListMultipartUploadResultsThe maximum number of Multipart Uploads to return.
MaxListPartResultsThe maximum number of Parts to return.
MaxListVaultResultsThe maximum number of Vaults to return.
PartSizeThe size in megabytes of each part in a multipart upload.
ProgressAbsoluteWhether the component should track transfer progress absolutely.
ProgressStepHow often the progress event should be fired, in terms of percentage.
RequestIdThe Amazon generated RequestId.
TransferredDataReturns the entire XML response received from the server.
URLIf set, the default URL will be overridden by this value.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AllowNTLMFallbackWhether to allow fallback from Negotiate to NTLM when authenticating.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the component.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the component will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the component.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxHeadersInstructs component to save the amount of headers specified that are returned by the server after a Header event has been fired.
MaxHTTPCookiesInstructs component to save the amount of cookies specified that are returned by the server when a SetCookie event is fired.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the component.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UsePlatformDeflateWhether to use the platform implementation to decompress compressed responses.
UsePlatformHTTPClientWhether or not to use the platform HTTP client.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
CloseStreamAfterTransferIf true, the component will close the upload or download stream after the transfer.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the component whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallListenerIf true, the component binds to a SOCKS firewall as a server (TCPClient only).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the component binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
UseNTLMv2Whether to use NTLM V2.
CACertFilePathsThe paths to CA certificate files when using Mono on Unix/Linux.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
GUIAvailableWhether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
UseFIPSCompliantAPITells the component whether or not to use FIPS certified APIs.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

AccessKey Property (AmazonGlacier Component)

The access key to use for authentication.

Syntax

public string AccessKey { get; set; }
Public Property AccessKey As String

Default Value

""

Remarks

This property specifies the access key that should be used for authentication. Both this property and SecretKey must be set before attempting any operations which connect to the server.

ArchiveData Property (AmazonGlacier Component)

Holds the archive data.

Syntax

public string ArchiveData { get; set; }
public byte[] ArchiveDataB { get; set; }
Public Property ArchiveData As String
Public Property ArchiveDataB As Byte()

Default Value

""

Remarks

This property holds the archive data. It is populated after calling GetJobOutput when the job is an archive retrieval. It may be set to archive data before calling UploadArchive.

This property is not available at design time.

EncryptionAlgorithm Property (AmazonGlacier Component)

The encryption algorithm.

Syntax

public AmazonglacierEncryptionAlgorithms EncryptionAlgorithm { get; set; }

enum AmazonglacierEncryptionAlgorithms { eaAES, eaBlowfish, eaCAST, eaDES, eaIDEA, eaRC2, eaRC4, eaTEA, eaTripleDES, eaTwofish, eaRijndael, eaChaCha, eaXSalsa20 }
Public Property EncryptionAlgorithm As AmazonglacierEncryptionAlgorithms

Enum AmazonglacierEncryptionAlgorithms eaAES eaBlowfish eaCAST eaDES eaIDEA eaRC2 eaRC4 eaTEA eaTripleDES eaTwofish eaRijndael eaChaCha eaXSalsa20 End Enum

Default Value

0

Remarks

This property specifies the encryption algorithm to be used. The maximum allowable key size is automatically used for the selected algorithm. Possible values are:

Algorithm Key Size
0 (eaAES - default) 256
1 (eaBlowfish) 448
2 (eaCAST) 128
3 (eaDES) 64
4 (eaIDEA) 128
5 (eaRC2) 128
6 (eaRC4) 2048
7 (eaTEA) 128
8 (eaTripleDES) 192
9 (eaTwofish) 256
10 (eaRijndael) 256
11 (eaChaCha) 256
12 (eaXSalsa20) 256

EncryptionPassword Property (AmazonGlacier Component)

The encryption password.

Syntax

public string EncryptionPassword { get; set; }
Public Property EncryptionPassword As String

Default Value

""

Remarks

If this property is populated when UploadFile or DownloadFile is called, the component will attempt to encrypt or decrypt the data before uploading or after downloading it.

The component uses the value specified here to generate the necessary encryption Key and IV values using the PKCS5 password digest algorithm. This provides a simpler alternative to creating and managing Key and IV values directly.

However, it is also possible to explicitly specify the Key and IV values to use by setting the EncryptionKey and EncryptionIV configuration settings. This may be necessary if, e.g., the data needs to be encrypted/decrypted by another utility which generates Key and IV values differently.

This property is not available at design time.

Firewall Property (AmazonGlacier Component)

A set of properties related to firewall access.

Syntax

public Firewall Firewall { get; set; }
Public Property Firewall As Firewall

Remarks

This is a Firewall-type property, which contains fields describing the firewall through which the component will attempt to connect.

Please refer to the Firewall type for a complete list of fields.

Idle Property (AmazonGlacier Component)

The current status of the component.

Syntax

public bool Idle { get; }
Public ReadOnly Property Idle As Boolean

Default Value

True

Remarks

Idle will be False if the component is currently busy (communicating and/or waiting for an answer), and True at all other times.

This property is read-only.

InventoryData Property (AmazonGlacier Component)

Holds the inventory data.

Syntax

public string InventoryData { get; }
public byte[] InventoryDataB { get; }
Public ReadOnly Property InventoryData As String
Public ReadOnly Property InventoryDataB As Byte()

Default Value

""

Remarks

This property holds the inventory data and is populated after calling GetJobOutput if the job is an inventory retrieval job.

This property is read-only and not available at design time.

JobMarker Property (AmazonGlacier Component)

A marker used to get the next page of results.

Syntax

public string JobMarker { get; set; }
Public Property JobMarker As String

Default Value

""

Remarks

This property is populated after calling ListJobs if the results are paged. This property holds the marker that will be sent in the next call to ListJobs to get the next page of results.

This property is not available at design time.

Jobs Property (AmazonGlacier Component)

A collection providing details about the jobs.

Syntax

public GlacierJobList Jobs { get; }
Public ReadOnly Property Jobs As GlacierJobList

Remarks

This collection is populated after calling GetJobInfo or ListJobs. It holds details about the jobs.

This property is read-only and not available at design time.

Please refer to the GlacierJob type for a complete list of fields.

LocalFile Property (AmazonGlacier Component)

The path to a local file for uploading or downloading.

Syntax

public string LocalFile { get; set; }
Public Property LocalFile As String

Default Value

""

Remarks

This property is used to specify a local file that will be used for uploading or downloading. Set this to a local file before calling GetJobOutput. Set this to a local file to upload before calling UploadArchive.

This property is not available at design time.

LocalHost Property (AmazonGlacier Component)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

public string LocalHost { get; set; }
Public Property LocalHost As String

Default Value

""

Remarks

The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.

MultipartUploadMarker Property (AmazonGlacier Component)

A marker used to get the next page of results.

Syntax

public string MultipartUploadMarker { get; set; }
Public Property MultipartUploadMarker As String

Default Value

""

Remarks

This property is populated after calling ListMultipartUploads if the results are paged. This property holds the marker that will be sent in the next call to ListMultipartUploads to get the next page of results.

This property is not available at design time.

MultipartUploads Property (AmazonGlacier Component)

A collection of multipart upload details.

Syntax

public GlacierMultipartUploadList MultipartUploads { get; }
Public ReadOnly Property MultipartUploads As GlacierMultipartUploadList

Remarks

This collection is populated after calling ListMultipartUploads. It holds information about the current multipart uploads.

This property is read-only and not available at design time.

Please refer to the GlacierMultipartUpload type for a complete list of fields.

NotificationInfo Property (AmazonGlacier Component)

Holds information about the notification settings for a vault.

Syntax

public GlacierNotification NotificationInfo { get; set; }
Public Property NotificationInfo As GlacierNotification

Remarks

This property holds notification settings for a vault. It is populated automatically after calling GetNotificationInfo. When calling SetNotificationInfo this specifies the values that will be set.

This property is not available at design time.

Please refer to the GlacierNotification type for a complete list of fields.

OtherHeaders Property (AmazonGlacier Component)

This property includes other headers as determined by the user (optional).

Syntax

public string OtherHeaders { get; set; }
Public Property OtherHeaders As String

Default Value

""

Remarks

This property can be set to a string of headers to be appended to the HTTP request headers created from other properties like ContentType and From.

The headers must follow the format Header: Value as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this property with caution. If this property contains invalid headers, HTTP requests may fail.

This property is useful for extending the functionality of the component beyond what is provided.

This property is not available at design time.

Overwrite Property (AmazonGlacier Component)

Whether or not the component should overwrite files during transfer.

Syntax

public bool Overwrite { get; set; }
Public Property Overwrite As Boolean

Default Value

False

Remarks

This property is a indicates whether or not the component should overwrite downloaded data. If Overwrite is false, the component throws an exception whenever LocalFile exists and GetJobOutput is called.

ParsedHeaders Property (AmazonGlacier Component)

This property includes a collection of headers returned from the last request.

Syntax

public HeaderList ParsedHeaders { get; }
Public ReadOnly Property ParsedHeaders As HeaderList

Remarks

This property contains a collection of headers returned from the last request. Whenever headers are returned from the server, the headers are parsed into a collection of headers. Each Header in this collection contains information describing that header.

MaxHeaders can be used to control the maximum number of headers saved.

This collection is indexed from 0 to count -1.

This property is read-only and not available at design time.

Please refer to the Header type for a complete list of fields.

PartMarker Property (AmazonGlacier Component)

A marker used to get the next page of results.

Syntax

public string PartMarker { get; set; }
Public Property PartMarker As String

Default Value

""

Remarks

This property is populated after calling ListParts if the results are paged. This property holds the marker that will be sent in the next call to ListParts to get the next page of results.

This property is not available at design time.

Parts Property (AmazonGlacier Component)

A collection of multipart upload parts.

Syntax

public GlacierPartList Parts { get; }
Public ReadOnly Property Parts As GlacierPartList

Remarks

This collection holds details about each of the parts in a multipart upload. It is populated after a call to ListParts.

This property is read-only and not available at design time.

Please refer to the GlacierPart type for a complete list of fields.

Proxy Property (AmazonGlacier Component)

A set of properties related to proxy access.

Syntax

public Proxy Proxy { get; set; }
Public Property Proxy As Proxy

Remarks

This property contains fields describing the proxy through which the component will attempt to connect.

Please refer to the Proxy type for a complete list of fields.

Region Property (AmazonGlacier Component)

The region the component will make requests against.

Syntax

public string Region { get; set; }
Public Property Region As String

Default Value

"us-east-1"

Remarks

This property controls which region the component will make requests against. By default the component uses us-east-1, the US East (N. Virginia) region. This property should be changed to create or access resources in other regions.

Regions:

Value Region
us-east-1 (Default) US East (N. Virginia)
us-east-2 US East (Ohio)
us-west-1 US West (N. California)
us-west-2 US West (Oregon)
ap-east-1 Asia Pacific (Hong Kong)
ap-northeast-1 Asia Pacific (Tokyo)
ap-northeast-2 Asia Pacific (Seoul)
ap-northeast-3 Asia Pacific (Osaka-Local)
ap-south-1 Asia Pacific (Mumbai)
ap-southeast-1 Asia Pacific (Singapore)
ap-southeast-2 Asia Pacific (Sydney)
ca-central-1 Canada (Central)
cn-north-1 China (Beijing)
cn-northwest-1 China (Ningxia)
eu-central-1 Europe (Frankfurt)
eu-north-1 Europe (Stockholm)
eu-south-1 Europe (Milan)
eu-west-1 Europe (Ireland)
eu-west-2 Europe (London)
eu-west-3 Europe (Paris)
me-south-1 Middle East (Bahrain)
sa-east-1 South America (Sao Paulo)

The component will always convert this property's value to lowercase. If this property is cleared, the component will reset it to the default value.

SecretKey Property (AmazonGlacier Component)

The secret key to use for authentication.

Syntax

public string SecretKey { get; set; }
Public Property SecretKey As String

Default Value

""

Remarks

This property specifies the secret key that should be used for authentication. Both this property and AccessKey must be set before attempting any operations which connect to the server.

SSLAcceptServerCert Property (AmazonGlacier Component)

Instructs the component to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

public Certificate SSLAcceptServerCert { get; set; }
Public Property SSLAcceptServerCert As Certificate

Remarks

If it finds any issues with the certificate presented by the server, the component will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Please note that this functionality is provided only for cases where you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

Please refer to the Certificate type for a complete list of fields.

SSLCert Property (AmazonGlacier Component)

The certificate to be used during SSL negotiation.

Syntax

public Certificate SSLCert { get; set; }
Public Property SSLCert As Certificate

Remarks

The digital certificate that the component will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

Please refer to the Certificate type for a complete list of fields.

SSLProvider Property (AmazonGlacier Component)

This specifies the SSL/TLS implementation to use.

Syntax

public AmazonglacierSSLProviders SSLProvider { get; set; }

enum AmazonglacierSSLProviders { sslpAutomatic, sslpPlatform, sslpInternal }
Public Property SSLProvider As AmazonglacierSSLProviders

Enum AmazonglacierSSLProviders sslpAutomatic sslpPlatform sslpInternal End Enum

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the component will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The component will select a provider depending on the current platform.

When Automatic is selected, on Windows the component will use the platform implementation. On Linux/macOS the component will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used on all platforms.

The .NET Standard library will always use the internal implementation on all platforms.

SSLServerCert Property (AmazonGlacier Component)

The server certificate for the last established connection.

Syntax

public Certificate SSLServerCert { get; }
Public ReadOnly Property SSLServerCert As Certificate

Remarks

SSLServerCert contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

Please refer to the Certificate type for a complete list of fields.

Timeout Property (AmazonGlacier Component)

A timeout for the component.

Syntax

public int Timeout { get; set; }
Public Property Timeout As Integer

Default Value

60

Remarks

If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If Timeout is set to a positive value, the component will wait for the operation to complete before returning control.

The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.

If Timeout expires, and the operation is not yet complete, the component throws an exception.

Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

UseSSL Property (AmazonGlacier Component)

Whether to use SSL/TLS when connecting.

Syntax

public bool UseSSL { get; set; }
Public Property UseSSL As Boolean

Default Value

True

Remarks

This property specifies whether the component should use SSL/TLS when connecting.

This property is not available at design time.

VaultMarker Property (AmazonGlacier Component)

A marker used to get the next page of results.

Syntax

public string VaultMarker { get; set; }
Public Property VaultMarker As String

Default Value

""

Remarks

This property is populated after calling ListVaults if the results are paged. This property holds the marker that will be sent in the next call to ListVaults to get the next page of results.

This property is not available at design time.

Vaults Property (AmazonGlacier Component)

A collection of vault information.

Syntax

public GlacierVaultList Vaults { get; }
Public ReadOnly Property Vaults As GlacierVaultList

Remarks

This collection is populated after calling ListVaults and GetVaultInfo.

This property is read-only and not available at design time.

Please refer to the GlacierVault type for a complete list of fields.

AbortMultipartUpload Method (AmazonGlacier Component)

Aborts a multipart upload.

Syntax

public void AbortMultipartUpload(string vaultName, string uploadId);

Async Version
public async Task AbortMultipartUpload(string vaultName, string uploadId);
public async Task AbortMultipartUpload(string vaultName, string uploadId, CancellationToken cancellationToken);
Public Sub AbortMultipartUpload(ByVal VaultName As String, ByVal UploadId As String)

Async Version
Public Sub AbortMultipartUpload(ByVal VaultName As String, ByVal UploadId As String) As Task
Public Sub AbortMultipartUpload(ByVal VaultName As String, ByVal UploadId As String, cancellationToken As CancellationToken) As Task

Remarks

This method aborts a multipart upload specified by UploadId. UploadId is returned from the StartMultipartUpload method.

VaultName specifies the vault in which the archive is created.

Only multipart uploads that are not yet completed can be aborted.

CompleteMultipartUpload Method (AmazonGlacier Component)

Completes a multipart upload.

Syntax

public string CompleteMultipartUpload(string vaultName, string uploadId);

Async Version
public async Task<string> CompleteMultipartUpload(string vaultName, string uploadId);
public async Task<string> CompleteMultipartUpload(string vaultName, string uploadId, CancellationToken cancellationToken);
Public Function CompleteMultipartUpload(ByVal VaultName As String, ByVal UploadId As String) As String

Async Version
Public Function CompleteMultipartUpload(ByVal VaultName As String, ByVal UploadId As String) As Task(Of String)
Public Function CompleteMultipartUpload(ByVal VaultName As String, ByVal UploadId As String, cancellationToken As CancellationToken) As Task(Of String)

Remarks

This method completes the current multipart upload specified by UploadId.

VaultName specifies the vault in which the archive was created.

This method returns the ArchiveId which identifies the newly created archive. If you call this method twice for the same multipart upload within a short period of time, the same ArchiveId will be returned.

If parts of the archive were uploaded using separate instances of the component you must first list all parts of the archive by calling ListParts until PartMarker is empty (all parts are returned). Information about the parts is required when completing the multipart upload.

Config Method (AmazonGlacier Component)

Sets or retrieves a configuration setting.

Syntax

public string Config(string configurationString);

Async Version
public async Task<string> Config(string configurationString);
public async Task<string> Config(string configurationString, CancellationToken cancellationToken);
Public Function Config(ByVal ConfigurationString As String) As String

Async Version
Public Function Config(ByVal ConfigurationString As String) As Task(Of String)
Public Function Config(ByVal ConfigurationString As String, cancellationToken As CancellationToken) As Task(Of String)

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

CreateJob Method (AmazonGlacier Component)

Creates a new job.

Syntax

public string CreateJob(string vaultName, int jobType, string archiveId, string SNSTopic);

Async Version
public async Task<string> CreateJob(string vaultName, int jobType, string archiveId, string SNSTopic);
public async Task<string> CreateJob(string vaultName, int jobType, string archiveId, string SNSTopic, CancellationToken cancellationToken);
Public Function CreateJob(ByVal VaultName As String, ByVal JobType As Integer, ByVal ArchiveId As String, ByVal SNSTopic As String) As String

Async Version
Public Function CreateJob(ByVal VaultName As String, ByVal JobType As Integer, ByVal ArchiveId As String, ByVal SNSTopic As String) As Task(Of String)
Public Function CreateJob(ByVal VaultName As String, ByVal JobType As Integer, ByVal ArchiveId As String, ByVal SNSTopic As String, cancellationToken As CancellationToken) As Task(Of String)

Remarks

This method creates a new job. There are two types of jobs, archive retrieval and inventory retrieval. After the job is created this method will return the JobId. Amazon will then execute the job (which may take hours) and then notify you when it is complete.

VaultName specifies the name of the vault.

JobType specifies the operation. Possible values are:

0Archive Retrieval
1Inventory Retrieval

ArchiveId specifies the archive to retrieve when JobType is set to 0 (archive retrieval).

SNSTopic specifies the SNS topic to which the notification will be posted when the operation is complete.

The GetJobInfo method may be called with the returned JobId to check the status of the job. Once the job is completed use the GetJobOutput method to retrieve the data.

Note: JobDescription may optionally be set. JobRetrievalByteRange may be set when JobType is 0 (archive retrieval). JobInventoryFormat may be set when JobType is set to 1 (inventory retrieval).

CreateVault Method (AmazonGlacier Component)

Creates a new vault.

Syntax

public void CreateVault(string vaultName);

Async Version
public async Task CreateVault(string vaultName);
public async Task CreateVault(string vaultName, CancellationToken cancellationToken);
Public Sub CreateVault(ByVal VaultName As String)

Async Version
Public Sub CreateVault(ByVal VaultName As String) As Task
Public Sub CreateVault(ByVal VaultName As String, cancellationToken As CancellationToken) As Task

Remarks

This method creates a new vault with the name specified by the VaultName parameter.

Names can be between 1 and 255 characters long. Allowed characters are a-z, A-Z, 0-9, '_' (underscore), '-' (hyphen), and '.' (period).

The region in which the vault is created is controlled by the Region property.

DeleteArchive Method (AmazonGlacier Component)

Deletes an archive.

Syntax

public void DeleteArchive(string vaultName, string archiveId);

Async Version
public async Task DeleteArchive(string vaultName, string archiveId);
public async Task DeleteArchive(string vaultName, string archiveId, CancellationToken cancellationToken);
Public Sub DeleteArchive(ByVal VaultName As String, ByVal ArchiveId As String)

Async Version
Public Sub DeleteArchive(ByVal VaultName As String, ByVal ArchiveId As String) As Task
Public Sub DeleteArchive(ByVal VaultName As String, ByVal ArchiveId As String, cancellationToken As CancellationToken) As Task

Remarks

This method deletes the archive specified by the ArchiveId parameter.

DeleteNotificationInfo Method (AmazonGlacier Component)

Deletes the notification information for the vault.

Syntax

public void DeleteNotificationInfo(string vaultName);

Async Version
public async Task DeleteNotificationInfo(string vaultName);
public async Task DeleteNotificationInfo(string vaultName, CancellationToken cancellationToken);
Public Sub DeleteNotificationInfo(ByVal VaultName As String)

Async Version
Public Sub DeleteNotificationInfo(ByVal VaultName As String) As Task
Public Sub DeleteNotificationInfo(ByVal VaultName As String, cancellationToken As CancellationToken) As Task

Remarks

This method deletes the notification information associated with the vault specified by VaultName.

DeleteVault Method (AmazonGlacier Component)

Deletes the specified vault.

Syntax

public void DeleteVault(string vaultName);

Async Version
public async Task DeleteVault(string vaultName);
public async Task DeleteVault(string vaultName, CancellationToken cancellationToken);
Public Sub DeleteVault(ByVal VaultName As String)

Async Version
Public Sub DeleteVault(ByVal VaultName As String) As Task
Public Sub DeleteVault(ByVal VaultName As String, cancellationToken As CancellationToken) As Task

Remarks

This method deletes the vault specified by VaultName. If the vault is not empty Amazon will return an error.

Call GetVaultInfo to get information about the archive including the number of archives it contains.

DoEvents Method (AmazonGlacier Component)

Processes events from the internal message queue.

Syntax

public void DoEvents();

Async Version
public async Task DoEvents();
public async Task DoEvents(CancellationToken cancellationToken);
Public Sub DoEvents()

Async Version
Public Sub DoEvents() As Task
Public Sub DoEvents(cancellationToken As CancellationToken) As Task

Remarks

When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.

GetJobInfo Method (AmazonGlacier Component)

Retrieves information about the specified job.

Syntax

public void GetJobInfo(string vaultName, string jobId);

Async Version
public async Task GetJobInfo(string vaultName, string jobId);
public async Task GetJobInfo(string vaultName, string jobId, CancellationToken cancellationToken);
Public Sub GetJobInfo(ByVal VaultName As String, ByVal JobId As String)

Async Version
Public Sub GetJobInfo(ByVal VaultName As String, ByVal JobId As String) As Task
Public Sub GetJobInfo(ByVal VaultName As String, ByVal JobId As String, cancellationToken As CancellationToken) As Task

Remarks

This method retrieves information about the job specified by JobId. The Jobs collection will be populated with information about the job.

GetJobOutput Method (AmazonGlacier Component)

Retrieves the output from the job.

Syntax

public void GetJobOutput(string vaultName, string jobId);

Async Version
public async Task GetJobOutput(string vaultName, string jobId);
public async Task GetJobOutput(string vaultName, string jobId, CancellationToken cancellationToken);
Public Sub GetJobOutput(ByVal VaultName As String, ByVal JobId As String)

Async Version
Public Sub GetJobOutput(ByVal VaultName As String, ByVal JobId As String) As Task
Public Sub GetJobOutput(ByVal VaultName As String, ByVal JobId As String, cancellationToken As CancellationToken) As Task

Remarks

This method retrieves the output from a completed job. If SetDownloadStream has been called the data will be written to the stream. If LocalFile is set, the data will be written to the specified file. If LocalFile is not set the data will be written to either InventoryData or ArchiveData depending on the type of job.

GetNotificationInfo Method (AmazonGlacier Component)

Retrieves the notification information for the vault.

Syntax

public void GetNotificationInfo(string vaultName);

Async Version
public async Task GetNotificationInfo(string vaultName);
public async Task GetNotificationInfo(string vaultName, CancellationToken cancellationToken);
Public Sub GetNotificationInfo(ByVal VaultName As String)

Async Version
Public Sub GetNotificationInfo(ByVal VaultName As String) As Task
Public Sub GetNotificationInfo(ByVal VaultName As String, cancellationToken As CancellationToken) As Task

Remarks

This method retrieves the notification information for the vault specified by VaultName. After this method returns, the results will be available in the NotificationInfo property.

If no notification settings exist for the vault the component throws an exception.

GetVaultInfo Method (AmazonGlacier Component)

Retrieves vault details.

Syntax

public void GetVaultInfo(string vaultName);

Async Version
public async Task GetVaultInfo(string vaultName);
public async Task GetVaultInfo(string vaultName, CancellationToken cancellationToken);
Public Sub GetVaultInfo(ByVal VaultName As String)

Async Version
Public Sub GetVaultInfo(ByVal VaultName As String) As Task
Public Sub GetVaultInfo(ByVal VaultName As String, cancellationToken As CancellationToken) As Task

Remarks

This method gets information about the vault specified by VaultName. The Vaults property will be populated with the results. The following fields are populated:

Interrupt Method (AmazonGlacier Component)

Interrupt the current method.

Syntax

public void Interrupt();

Async Version
public async Task Interrupt();
public async Task Interrupt(CancellationToken cancellationToken);
Public Sub Interrupt()

Async Version
Public Sub Interrupt() As Task
Public Sub Interrupt(cancellationToken As CancellationToken) As Task

Remarks

If there is no method in progress, Interrupt simply returns, doing nothing.

ListJobs Method (AmazonGlacier Component)

Lists the jobs in a vault.

Syntax

public void ListJobs(string vaultName);

Async Version
public async Task ListJobs(string vaultName);
public async Task ListJobs(string vaultName, CancellationToken cancellationToken);
Public Sub ListJobs(ByVal VaultName As String)

Async Version
Public Sub ListJobs(ByVal VaultName As String) As Task
Public Sub ListJobs(ByVal VaultName As String, cancellationToken As CancellationToken) As Task

Remarks

This method lists the jobs in the vault specified by VaultName.

The JobList event will fire once for each Job returned. In addition, the Jobs collection will be populated.

By default up to 1000 jobs will be returned in a single set of results. The maximum number of results can be specified by setting MaxListJobResults. If the number of results exceeds the maximum the results are paged. The IsJobPaged setting will be set to true and JobMarker will be populated.

To get all results simply call ListJobs again until IsJobPaged returns False and JobMarker is empty string.

Note: The settings JobCompletionFilter and JobStatusFilter may be set to control what type of jobs are returned.

ListMultipartUploads Method (AmazonGlacier Component)

Lists multipart uploads.

Syntax

public void ListMultipartUploads(string vaultName);

Async Version
public async Task ListMultipartUploads(string vaultName);
public async Task ListMultipartUploads(string vaultName, CancellationToken cancellationToken);
Public Sub ListMultipartUploads(ByVal VaultName As String)

Async Version
Public Sub ListMultipartUploads(ByVal VaultName As String) As Task
Public Sub ListMultipartUploads(ByVal VaultName As String, cancellationToken As CancellationToken) As Task

Remarks

This method lists the current multipart uploads for the vault specified by VaultName. The MultipartUploadList event will fire once for each multipart upload returned. In addition, the MultipartUploads collection will be populated.

By default up to 1000 multipart uploads will be returned in a single set of results. The maximum number of results can be specified by setting MaxListMultipartUploadResults. If the number of results exceeds the maximum the results are paged. The IsMultipartUploadPaged setting will be set to true and MultipartUploadMarker will be populated.

To get all results simply call ListMultipartUploads again until IsMultipartUploadPaged returns False and MultipartUploadMarker is empty string.

ListParts Method (AmazonGlacier Component)

Lists the parts of a multipart upload.

Syntax

public void ListParts(string vaultName, string uploadId);

Async Version
public async Task ListParts(string vaultName, string uploadId);
public async Task ListParts(string vaultName, string uploadId, CancellationToken cancellationToken);
Public Sub ListParts(ByVal VaultName As String, ByVal UploadId As String)

Async Version
Public Sub ListParts(ByVal VaultName As String, ByVal UploadId As String) As Task
Public Sub ListParts(ByVal VaultName As String, ByVal UploadId As String, cancellationToken As CancellationToken) As Task

Remarks

This method lists the parts of a multipart upload specified by UploadId.

VaultName identifies the vault in which the archive is created.

The PartList event will fire once for each Part returned. In addition, the Parts collection will be populated.

By default up to 1000 parts will be returned in a single set of results. The maximum number of results can be specified by setting MaxListPartResults. If the number of results exceeds the maximum the results are paged. The IsPartPaged setting will be set to true and PartMarker will be populated.

To get all results simply call ListParts again until IsPartPaged returns False and PartMarker is empty string.

ListVaults Method (AmazonGlacier Component)

Lists the vaults.

Syntax

public void ListVaults();

Async Version
public async Task ListVaults();
public async Task ListVaults(CancellationToken cancellationToken);
Public Sub ListVaults()

Async Version
Public Sub ListVaults() As Task
Public Sub ListVaults(cancellationToken As CancellationToken) As Task

Remarks

This method lists the vaults for an account.

By default up to 1000 vaults will be returned in a single set of results. This maximum number of results can be specified by setting MaxListVaultResults. If the number of results exceeds the maximum the results are paged. The IsVaultPaged setting will be set to true and VaultMarker will be populated.

To get all results simply call ListVaults again until IsVaultPaged returns False and VaultMarker is empty string.

Reset Method (AmazonGlacier Component)

Resets the component to its initial state.

Syntax

public void Reset();

Async Version
public async Task Reset();
public async Task Reset(CancellationToken cancellationToken);
Public Sub Reset()

Async Version
Public Sub Reset() As Task
Public Sub Reset(cancellationToken As CancellationToken) As Task

Remarks

This method resets the component to its initial state.

SetDownloadStream Method (AmazonGlacier Component)

Sets the stream to which the downloaded data from the server will be written.

Syntax

public void SetDownloadStream(System.IO.Stream downloadStream);

Async Version
public async Task SetDownloadStream(System.IO.Stream downloadStream);
public async Task SetDownloadStream(System.IO.Stream downloadStream, CancellationToken cancellationToken);
Public Sub SetDownloadStream(ByVal DownloadStream As System.IO.Stream)

Async Version
Public Sub SetDownloadStream(ByVal DownloadStream As System.IO.Stream) As Task
Public Sub SetDownloadStream(ByVal DownloadStream As System.IO.Stream, cancellationToken As CancellationToken) As Task

Remarks

If a download stream is set before calling GetJobOutput the downloaded data will be written to the stream. The stream should be open and normally set to position 0.

SetNotificationInfo Method (AmazonGlacier Component)

Sets notification information for a vault.

Syntax

public void SetNotificationInfo(string vaultName);

Async Version
public async Task SetNotificationInfo(string vaultName);
public async Task SetNotificationInfo(string vaultName, CancellationToken cancellationToken);
Public Sub SetNotificationInfo(ByVal VaultName As String)

Async Version
Public Sub SetNotificationInfo(ByVal VaultName As String) As Task
Public Sub SetNotificationInfo(ByVal VaultName As String, cancellationToken As CancellationToken) As Task

Remarks

This method sets the notification settings for the vault specified by VaultName. The SNSTopic field must be set before calling this method. Optionally, the EventType may also be set.

SetUploadStream Method (AmazonGlacier Component)

Sets the stream to be uploaded to the server.

Syntax

public void SetUploadStream(System.IO.Stream uploadStream);

Async Version
public async Task SetUploadStream(System.IO.Stream uploadStream);
public async Task SetUploadStream(System.IO.Stream uploadStream, CancellationToken cancellationToken);
Public Sub SetUploadStream(ByVal UploadStream As System.IO.Stream)

Async Version
Public Sub SetUploadStream(ByVal UploadStream As System.IO.Stream) As Task
Public Sub SetUploadStream(ByVal UploadStream As System.IO.Stream, cancellationToken As CancellationToken) As Task

Remarks

If an upload stream is set before calling UploadArchive the data will be read from this stream. The stream should be open and normally set to position 0.

StartMultipartUpload Method (AmazonGlacier Component)

Starts a multipart upload.

Syntax

public string StartMultipartUpload(string vaultName, string archiveDesc);

Async Version
public async Task<string> StartMultipartUpload(string vaultName, string archiveDesc);
public async Task<string> StartMultipartUpload(string vaultName, string archiveDesc, CancellationToken cancellationToken);
Public Function StartMultipartUpload(ByVal VaultName As String, ByVal ArchiveDesc As String) As String

Async Version
Public Function StartMultipartUpload(ByVal VaultName As String, ByVal ArchiveDesc As String) As Task(Of String)
Public Function StartMultipartUpload(ByVal VaultName As String, ByVal ArchiveDesc As String, cancellationToken As CancellationToken) As Task(Of String)

Remarks

This method initiates a multipart upload operation. Multipart uploads are beneficial in situations where you wish to upload a large amount of data, or do not know how large the data will be when you begin uploading.

This method returns an UploadId that must be saved. This will be used to perform other operations with this upload.

ArchiveDesc may be set to a user friendly description of the archive, or empty string.

VaultName is the vault in which the archive will be created.

The data must be split into parts with a size (in megabytes) specified by PartSize. The part size must be a megabyte multiplied by a power of 2. For instance 1, 2, 4, and 8 are valid sizes. The minimum part size is 1, the maximum is 4096 (4GB). The default value of PartSize is 1.

Each part must be exactly PartSize megabytes in size except the last part. The last part will be smaller. For instance with a part size of 1, uploading a 10.2 megabyte file will have 11 parts. There will be 10 parts of size 1 MB, and 1 part of size .2 MB.

Parts may be uploaded in parallel by using separate component instances. When uploading a part with UploadPart a part number is specified so the data can be properly re-assembled in order when it reaches the server.

After all parts are uploaded call CompleteMultipartUpload to complete the operation. If parts of the archive were uploaded using separate instances of the component you must first list all parts of the archive by calling ListParts until PartMarker is empty (all parts are returned). Information about the parts is required when completing the multipart upload.

To cancel the operation, call AbortMultipartUpload.

UploadArchive Method (AmazonGlacier Component)

Uploads an archive to a vault.

Syntax

public string UploadArchive(string vaultName, string archiveDesc);

Async Version
public async Task<string> UploadArchive(string vaultName, string archiveDesc);
public async Task<string> UploadArchive(string vaultName, string archiveDesc, CancellationToken cancellationToken);
Public Function UploadArchive(ByVal VaultName As String, ByVal ArchiveDesc As String) As String

Async Version
Public Function UploadArchive(ByVal VaultName As String, ByVal ArchiveDesc As String) As Task(Of String)
Public Function UploadArchive(ByVal VaultName As String, ByVal ArchiveDesc As String, cancellationToken As CancellationToken) As Task(Of String)

Remarks

This method uploads an archive to the vault specified by VaultName. If SetUploadStream was used to specify a valid stream, the archive data will be read from there. If LocalFile is set, the archive data will be read from the specified file. If LocalFile is not set, the data set in ArchiveData will be used.

The ArchiveDesc parameter may be set to a user friendly description of the archive. The description must be less than or equal to 1,024 characters. The allowable characters are 7-bit ASCII without control codes, specifically ASCII values 32-126 decimal or 0x20-0x7E hexadecimal.

This method returns the ArchiveId if the data was successfully uploaded.

UploadPart Method (AmazonGlacier Component)

Uploads a single part in a multipart upload.

Syntax

public void UploadPart(string vaultName, string uploadId, int partNumber);

Async Version
public async Task UploadPart(string vaultName, string uploadId, int partNumber);
public async Task UploadPart(string vaultName, string uploadId, int partNumber, CancellationToken cancellationToken);
Public Sub UploadPart(ByVal VaultName As String, ByVal UploadId As String, ByVal PartNumber As Integer)

Async Version
Public Sub UploadPart(ByVal VaultName As String, ByVal UploadId As String, ByVal PartNumber As Integer) As Task
Public Sub UploadPart(ByVal VaultName As String, ByVal UploadId As String, ByVal PartNumber As Integer, cancellationToken As CancellationToken) As Task

Remarks

This method uploads a single part of the multipart upload specified by UploadId.

VaultName is the vault in which the archive is created.

PartNumber identifies this specific part. The first part number is 0. Amazon will re-assemble the archive in the order specified by part numbers.

If SetUploadStream was used to specify a valid stream, the part data will be read from there. If LocalFile is set, the part data will be read from the specified file. If LocalFile is not set, the data set in ArchiveData will be used.

EndTransfer Event (AmazonGlacier Component)

This event fires when a document finishes transferring.

Syntax

public event OnEndTransferHandler OnEndTransfer;

public delegate void OnEndTransferHandler(object sender, AmazonglacierEndTransferEventArgs e);

public class AmazonglacierEndTransferEventArgs : EventArgs {
  public int Direction { get; }
}
Public Event OnEndTransfer As OnEndTransferHandler

Public Delegate Sub OnEndTransferHandler(sender As Object, e As AmazonglacierEndTransferEventArgs)

Public Class AmazonglacierEndTransferEventArgs Inherits EventArgs
  Public ReadOnly Property Direction As Integer
End Class

Remarks

The EndTransfer event is fired when the document text finishes transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Error Event (AmazonGlacier Component)

Fired when information is available about errors during data delivery.

Syntax

public event OnErrorHandler OnError;

public delegate void OnErrorHandler(object sender, AmazonglacierErrorEventArgs e);

public class AmazonglacierErrorEventArgs : EventArgs {
  public int ErrorCode { get; }
  public string Description { get; }
}
Public Event OnError As OnErrorHandler

Public Delegate Sub OnErrorHandler(sender As Object, e As AmazonglacierErrorEventArgs)

Public Class AmazonglacierErrorEventArgs Inherits EventArgs
  Public ReadOnly Property ErrorCode As Integer
  Public ReadOnly Property Description As String
End Class

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the component throws an exception.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Header Event (AmazonGlacier Component)

This event is fired every time a header line comes in.

Syntax

public event OnHeaderHandler OnHeader;

public delegate void OnHeaderHandler(object sender, AmazonglacierHeaderEventArgs e);

public class AmazonglacierHeaderEventArgs : EventArgs {
  public string Field { get; }
  public string Value { get; }
}
Public Event OnHeader As OnHeaderHandler

Public Delegate Sub OnHeaderHandler(sender As Object, e As AmazonglacierHeaderEventArgs)

Public Class AmazonglacierHeaderEventArgs Inherits EventArgs
  Public ReadOnly Property Field As String
  Public ReadOnly Property Value As String
End Class

Remarks

The Field parameter contains the name of the HTTP header (which is the same as it is delivered). The Value parameter contains the header contents.

If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).

JobList Event (AmazonGlacier Component)

Fires once for each job returned when calling ListJobs or GetJobInfo.

Syntax

public event OnJobListHandler OnJobList;

public delegate void OnJobListHandler(object sender, AmazonglacierJobListEventArgs e);

public class AmazonglacierJobListEventArgs : EventArgs {
  public int JobType { get; }
  public string ArchiveId { get; }
  public long ArchiveSize { get; }
  public string ArchiveSHA256TreeHash { get; }
  public bool Completed { get; }
  public string CompletionDate { get; }
  public string CreationDate { get; }
  public string Description { get; }
  public string JobId { get; }
  public string SNSTopic { get; }
  public string SHA256TreeHash { get; }
  public int StatusCode { get; }
  public string StatusMessage { get; }
  public string VaultArn { get; }
  public long InventorySize { get; }
}
Public Event OnJobList As OnJobListHandler

Public Delegate Sub OnJobListHandler(sender As Object, e As AmazonglacierJobListEventArgs)

Public Class AmazonglacierJobListEventArgs Inherits EventArgs
  Public ReadOnly Property JobType As Integer
  Public ReadOnly Property ArchiveId As String
  Public ReadOnly Property ArchiveSize As Long
  Public ReadOnly Property ArchiveSHA256TreeHash As String
  Public ReadOnly Property Completed As Boolean
  Public ReadOnly Property CompletionDate As String
  Public ReadOnly Property CreationDate As String
  Public ReadOnly Property Description As String
  Public ReadOnly Property JobId As String
  Public ReadOnly Property SNSTopic As String
  Public ReadOnly Property SHA256TreeHash As String
  Public ReadOnly Property StatusCode As Integer
  Public ReadOnly Property StatusMessage As String
  Public ReadOnly Property VaultArn As String
  Public ReadOnly Property InventorySize As Long
End Class

Remarks

This event fires once for each job returned when calling ListJobs. When calling GetJobInfo this event will fire once since only one job is returned.

JobType indicates the type of job. Possible values are:

0Archive Retrieval
1Inventory Retrieval

ArchiveId is the Id of the archive associated with the job.

ArchiveSize is the size in bytes of the archive.

ArchiveSHA256TreeHash is the SHA256 tree hash of the entire archive for an archive retrieval job.

Completed indicates the status of the job.

CompletionDate is the UTC time that the job completed.

CreationDate is the UTC time that the job was created. This is a string representation of ISO 8601 date format, for example: "2012-03-20T17:03:43.221Z".

Description is the user supplied description. This is specified by the JobDescription setting before calling CreateJob.

JobId is the Amazon assigned Id for the job.

SNSTopic is the Amazon SNS topic that will receive notification about the job status.

SHA256TreeHash is the SHA256 tree hash value for the requested range of an archive. This is only applicable when JobType is 0 (archive retrieval) and a JobRetrievalByteRange is set to a tree-hash aligned range.

StatusCode is the current status of the job. Possible values are:

0 None
1 In Progress
2 Succeeded
3 Failed

StatusMessage is a user friendly description of the status.

VaultArn is the Amazon Resource Name (ARN) of the vault from which the archive retrieval or inventory retrieval was requested.

InventorySize is the size in bytes of the inventory data.

Log Event (AmazonGlacier Component)

This event fires once for each log message.

Syntax

public event OnLogHandler OnLog;

public delegate void OnLogHandler(object sender, AmazonglacierLogEventArgs e);

public class AmazonglacierLogEventArgs : EventArgs {
  public int LogLevel { get; }
  public string Message { get; }
  public string LogType { get; }
}
Public Event OnLog As OnLogHandler

Public Delegate Sub OnLogHandler(sender As Object, e As AmazonglacierLogEventArgs)

Public Class AmazonglacierLogEventArgs Inherits EventArgs
  Public ReadOnly Property LogLevel As Integer
  Public ReadOnly Property Message As String
  Public ReadOnly Property LogType As String
End Class

Remarks

This event fires once for each log message generated by the component. The verbosity is controlled by the LogLevel setting.

LogLevel indicates the level of message. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

Message is the log entry.

LogType identifies the type of log entry. Possible values are as follows:

  • "Info"
  • "RequestHeaders"
  • "ResponseHeaders"
  • "RequestBody"
  • "ResponseBody"
  • "ProxyRequest"
  • "ProxyResponse"
  • "FirewallRequest"
  • "FirewallResponse"

MultipartUploadList Event (AmazonGlacier Component)

Fires once for each multipart upload when ListMultipartUploads is called.

Syntax

public event OnMultipartUploadListHandler OnMultipartUploadList;

public delegate void OnMultipartUploadListHandler(object sender, AmazonglacierMultipartUploadListEventArgs e);

public class AmazonglacierMultipartUploadListEventArgs : EventArgs {
  public string ArchiveDescription { get; }
  public string CreationDate { get; }
  public string UploadId { get; }
  public string VaultArn { get; }
  public int PartSize { get; }
}
Public Event OnMultipartUploadList As OnMultipartUploadListHandler

Public Delegate Sub OnMultipartUploadListHandler(sender As Object, e As AmazonglacierMultipartUploadListEventArgs)

Public Class AmazonglacierMultipartUploadListEventArgs Inherits EventArgs
  Public ReadOnly Property ArchiveDescription As String
  Public ReadOnly Property CreationDate As String
  Public ReadOnly Property UploadId As String
  Public ReadOnly Property VaultArn As String
  Public ReadOnly Property PartSize As Integer
End Class

Remarks

This event fires for each multipart upload returned when calling ListMultipartUploads.

ArchiveDescription is the archive description (if any).

CreationDate is the UTC time that the multipart upload was started. This is a string representation of ISO 8601 date format. For example: "2012-03-20T17:03:43.221Z".

UploadId is the Id of the multipart upload.

VaultArn is the Amazon Resource Name (ARN) of the Vault in which the archive is created.

PartSize is the part size in bytes. This is specified by the PartSize setting and is used when StartMultipartUpload is called.

PartList Event (AmazonGlacier Component)

Fires once for each part when calling ListParts.

Syntax

public event OnPartListHandler OnPartList;

public delegate void OnPartListHandler(object sender, AmazonglacierPartListEventArgs e);

public class AmazonglacierPartListEventArgs : EventArgs {
  public string ArchiveDescription { get; }
  public string CreationDate { get; }
  public string UploadId { get; }
  public long StartPosition { get; }
  public long Size { get; }
  public string SHA256TreeHash { get; }
  public string VaultArn { get; }
}
Public Event OnPartList As OnPartListHandler

Public Delegate Sub OnPartListHandler(sender As Object, e As AmazonglacierPartListEventArgs)

Public Class AmazonglacierPartListEventArgs Inherits EventArgs
  Public ReadOnly Property ArchiveDescription As String
  Public ReadOnly Property CreationDate As String
  Public ReadOnly Property UploadId As String
  Public ReadOnly Property StartPosition As Long
  Public ReadOnly Property Size As Long
  Public ReadOnly Property SHA256TreeHash As String
  Public ReadOnly Property VaultArn As String
End Class

Remarks

This event fires once for each part when calling ListParts.

ArchiveDescription is the description of the archive (if any).

CreationDate is the UTC time that the multipart upload was started. This is a string representation of ISO 8601 date format. For example: "2012-03-20T17:03:43.221Z".

UploadId is the Id of the multipart upload associated with this part.

StartPosition is the byte offset in the archive of the current part.

Size is the part size in bytes.

SHA256TreeHash is the SHA256 tree hash value that Amazon calculated for the part.

VaultArn is the Amazon Resource Name (ARN) of the Vault in which the archive is created.

Progress Event (AmazonGlacier Component)

Fires during an upload or download to indicate transfer progress.

Syntax

public event OnProgressHandler OnProgress;

public delegate void OnProgressHandler(object sender, AmazonglacierProgressEventArgs e);

public class AmazonglacierProgressEventArgs : EventArgs {
  public int Direction { get; }
  public long BytesTransferred { get; }
  public long TotalBytes { get; }
  public int PercentDone { get; }
}
Public Event OnProgress As OnProgressHandler

Public Delegate Sub OnProgressHandler(sender As Object, e As AmazonglacierProgressEventArgs)

Public Class AmazonglacierProgressEventArgs Inherits EventArgs
  Public ReadOnly Property Direction As Integer
  Public ReadOnly Property BytesTransferred As Long
  Public ReadOnly Property TotalBytes As Long
  Public ReadOnly Property PercentDone As Integer
End Class

Remarks

This event fires during an upload or download to indicate the progress of the transfer of the entire request. By default, this event will fire each time PercentDone increases by one percent; the ProgressStep configuration setting can be used to alter this behavior.

Direction indicates whether the transfer is an upload (0) or a download (1).

BytesTransferred reflects the number of bytes that have been transferred so far, or 0 if the transfer is starting (however, see note below).

TotalBytes reflects the total number of bytes that are to be transferred, or -1 if the total is unknown. This amount includes the size of everything in the request like HTTP headers.

PercentDone reflects the overall progress of the transfer, or -1 if the progress cannot be calculated.

Note: By default, the component tracks transfer progress absolutely. If a transfer is interrupted and later resumed, the values reported by this event upon and after resumption will account for the data that was transferred before the interruption.

For example, if 10MB of data was successfully transferred before the interruption, then this event will fire with a BytesTransferred value of 10485760 (10MB) when the transfer is first resumed, and then continue to fire with successively greater values as usual.

This behavior can be changed by disabling the ProgressAbsolute configuration setting, in which case the component will treat resumed transfers as "new" transfers. In this case, the BytesTransferred parameter will always be 0 the first time this event fires, regardless of whether the transfer is new or being resumed.

SSLServerAuthentication Event (AmazonGlacier Component)

Fired after the server presents its certificate to the client.

Syntax

public event OnSSLServerAuthenticationHandler OnSSLServerAuthentication;

public delegate void OnSSLServerAuthenticationHandler(object sender, AmazonglacierSSLServerAuthenticationEventArgs e);

public class AmazonglacierSSLServerAuthenticationEventArgs : EventArgs {
  public string CertEncoded { get; }
public byte[] CertEncodedB { get; } public string CertSubject { get; } public string CertIssuer { get; } public string Status { get; } public bool Accept { get; set; } }
Public Event OnSSLServerAuthentication As OnSSLServerAuthenticationHandler

Public Delegate Sub OnSSLServerAuthenticationHandler(sender As Object, e As AmazonglacierSSLServerAuthenticationEventArgs)

Public Class AmazonglacierSSLServerAuthenticationEventArgs Inherits EventArgs
  Public ReadOnly Property CertEncoded As String
Public ReadOnly Property CertEncodedB As Byte() Public ReadOnly Property CertSubject As String Public ReadOnly Property CertIssuer As String Public ReadOnly Property Status As String Public Property Accept As Boolean End Class

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (AmazonGlacier Component)

Fired when secure connection progress messages are available.

Syntax

public event OnSSLStatusHandler OnSSLStatus;

public delegate void OnSSLStatusHandler(object sender, AmazonglacierSSLStatusEventArgs e);

public class AmazonglacierSSLStatusEventArgs : EventArgs {
  public string Message { get; }
}
Public Event OnSSLStatus As OnSSLStatusHandler

Public Delegate Sub OnSSLStatusHandler(sender As Object, e As AmazonglacierSSLStatusEventArgs)

Public Class AmazonglacierSSLStatusEventArgs Inherits EventArgs
  Public ReadOnly Property Message As String
End Class

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

StartTransfer Event (AmazonGlacier Component)

This event fires when a document starts transferring (after the headers).

Syntax

public event OnStartTransferHandler OnStartTransfer;

public delegate void OnStartTransferHandler(object sender, AmazonglacierStartTransferEventArgs e);

public class AmazonglacierStartTransferEventArgs : EventArgs {
  public int Direction { get; }
}
Public Event OnStartTransfer As OnStartTransferHandler

Public Delegate Sub OnStartTransferHandler(sender As Object, e As AmazonglacierStartTransferEventArgs)

Public Class AmazonglacierStartTransferEventArgs Inherits EventArgs
  Public ReadOnly Property Direction As Integer
End Class

Remarks

The StartTransfer event is fired when the document text starts transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Transfer Event (AmazonGlacier Component)

This event is fired while a document transfers (delivers document).

Syntax

public event OnTransferHandler OnTransfer;

public delegate void OnTransferHandler(object sender, AmazonglacierTransferEventArgs e);

public class AmazonglacierTransferEventArgs : EventArgs {
  public int Direction { get; }
  public long BytesTransferred { get; }
  public int PercentDone { get; }
  public string Text { get; }
public byte[] TextB { get; } }
Public Event OnTransfer As OnTransferHandler

Public Delegate Sub OnTransferHandler(sender As Object, e As AmazonglacierTransferEventArgs)

Public Class AmazonglacierTransferEventArgs Inherits EventArgs
  Public ReadOnly Property Direction As Integer
  Public ReadOnly Property BytesTransferred As Long
  Public ReadOnly Property PercentDone As Integer
  Public ReadOnly Property Text As String
Public ReadOnly Property TextB As Byte() End Class

Remarks

The Text parameter contains the portion of the document text being received. It is empty if data are being posted to the server.

The BytesTransferred parameter contains the number of bytes transferred in this Direction since the beginning of the document text (excluding HTTP response headers).

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.

Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.

VaultList Event (AmazonGlacier Component)

Fires once for each vault returned when calling ListVaults.

Syntax

public event OnVaultListHandler OnVaultList;

public delegate void OnVaultListHandler(object sender, AmazonglacierVaultListEventArgs e);

public class AmazonglacierVaultListEventArgs : EventArgs {
  public string CreationDate { get; }
  public string LastInventoryDate { get; }
  public string VaultArn { get; }
  public string VaultName { get; }
  public int ArchiveCount { get; }
  public long Size { get; }
}
Public Event OnVaultList As OnVaultListHandler

Public Delegate Sub OnVaultListHandler(sender As Object, e As AmazonglacierVaultListEventArgs)

Public Class AmazonglacierVaultListEventArgs Inherits EventArgs
  Public ReadOnly Property CreationDate As String
  Public ReadOnly Property LastInventoryDate As String
  Public ReadOnly Property VaultArn As String
  Public ReadOnly Property VaultName As String
  Public ReadOnly Property ArchiveCount As Integer
  Public ReadOnly Property Size As Long
End Class

Remarks

This event fires once for each vault returned when calling ListVaults.

CreationDate is the date the vault was created, in Coordinated Universal Time (UTC). This is a string representation of ISO 8601 date format, for example: 2012-03-20T17:03:43.221Z.

LastInventoryDate is the date of the last vault inventory, in Coordinated Universal Time (UTC). This is a string representation of ISO 8601 date format, for example: 2012-03-20T17:03:43.221Z.

VaultArn is the Amazon Resource Name (ARN) of the vault.

VaultName is the name of the vault.

ArchiveCount is the number of archives in the vault as of LastInventoryDate.

Size is the size of all the archives (including any per-archive overhead) in the vault, as of the last inventory date.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

Fields

EffectiveDate
string (read-only)

Default Value: ""

This is the date on which this certificate becomes valid. Before this date, it is not valid. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

Encoded
string

Default Value: ""

This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
byte []

Default Value: ""

This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

ExpirationDate
string (read-only)

Default Value: ""

This is the date the certificate expires. After this date, the certificate will no longer be valid. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
string

Default Value: ""

This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
string (read-only)

Default Value: ""

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
string (read-only)

Default Value: ""

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
string (read-only)

Default Value: ""

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
string (read-only)

Default Value: ""

This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

PrivateKey
string (read-only)

Default Value: ""

This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
bool (read-only)

Default Value: False

This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
string (read-only)

Default Value: ""

This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
string (read-only)

Default Value: ""

This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
string

Default Value: ""

This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default Value: 0

This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
string (read-only)

Default Value: ""

This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
string (read-only)

Default Value: ""

The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
string

Default Value: "MY"

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StoreB
byte []

Default Value: "MY"

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
string

Default Value: ""

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

StoreType
CertStoreTypes

Default Value: 0

This is the type of certificate store for this certificate.

The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Subject
string

Default Value: ""

This is the subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

SubjectAltNames
string (read-only)

Default Value: ""

This field contains comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
string (read-only)

Default Value: ""

This field contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
string (read-only)

Default Value: ""

This field contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
string (read-only)

Default Value: ""

This field contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
string

Default Value: ""

This field contains the text description of UsageFlags.

This value will be of one or more of the following strings and will be separated by commas:

  • Digital Signatures
  • Key Authentication
  • Key Encryption
  • Data Encryption
  • Key Agreement
  • Certificate Signing
  • Key Signing

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int

Default Value: 0

This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signatures
0x40Key Authentication (Non-Repudiation)
0x20Key Encryption
0x10Data Encryption
0x08Key Agreement
0x04Certificate Signing
0x02Key Signing

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
string (read-only)

Default Value: ""

This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Constructors

public Certificate();
Public Certificate()

Creates a Certificate instance whose properties can be set. This is useful for use with CERTMGR when generating new certificates.

public Certificate(string certificateFile);
Public Certificate(ByVal CertificateFile As String)

Opens CertificateFile and reads out the contents as an X.509 public key.

public Certificate(byte[] certificateData);
Public Certificate(ByVal CertificateData As Byte())

Parses CertificateData as an X.509 public key.

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. ConfigurationString is a newline separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to cstUser, cstMachine, cstPublicKeyFile, and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Encoded As Byte())

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Encoded As Byte())

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a string (binary- or Base64-encoded) containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

Firewall Type

The firewall the component will connect through.

Remarks

When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.

Fields

AutoDetect
bool

Default Value: False

This field tells the component whether or not to automatically detect and use firewall system settings, if available.

FirewallType
FirewallTypes

Default Value: 0

This field determines the type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. Port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. Port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. Port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. Port is set to 1080.

Host
string

Default Value: ""

This field contains the name or IP address of firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the component throws an exception.

Password
string

Default Value: ""

This field contains a password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the component throws an exception.

Port
int

Default Value: 0

This field contains the transmission control protocol (TCP) port for the firewall Host. See the description of the Host field for details.

Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.

User
string

Default Value: ""

This field contains a user name if authentication is to be used connecting through a firewall. If the Host is specified, this field and Password fields are used to connect and authenticate to the given Firewall. If the authentication fails, the component throws an exception.

Constructors

public Firewall();
Public Firewall()

GlacierJob Type

This type holds details about the job.

Remarks

This type holds details about the job.

Fields

ArchiveId
string (read-only)

Default Value: ""

This field is populated with the ArchiveId associated with the Job.

This is only applicable when Type is 0 (archive retrieval).

ArchiveSHA256TreeHash
string (read-only)

Default Value: ""

The SHA256 tree hash of the entire archive for an archive retrieval job.

This is only applicable when Type is 0 (archive retrieval).

ArchiveSize
long (read-only)

Default Value: 0

The size of the archive in bytes.

This is only applicable when Type is 0 (archive retrieval).

Completed
bool (read-only)

Default Value: False

Indicates the completion status of the job. By default both incomplete jobs and recently completed jobs are returned when calling ListJobs. See JobCompletionFilter for more options.

CompletionDate
string (read-only)

Default Value: ""

The UTC time that the job completed.

CreationDate
string (read-only)

Default Value: ""

The UTC time that the job was created. This is a string representation of ISO 8601 date format, for example: "2012-03-20T17:03:43.221Z".

Description
string (read-only)

Default Value: ""

The user supplied description. This is specified by the JobDescription setting before calling CreateJob.

InventorySize
long (read-only)

Default Value: 0

The size in bytes of the inventory data. This is only applicable when Type is 1 (inventory retrieval).

JobId
string (read-only)

Default Value: ""

The Amazon assigned JobId.

SHA256TreeHash
string (read-only)

Default Value: ""

The SHA256 tree hash value for the requested range of an archive. This is only applicable when Type is 0 (archive retrieval) and a JobRetrievalByteRange is set to a tree-hash aligned range.

When the whole archive is retrieved this values is the same as ArchiveSHA256TreeHash.

SNSTopic
string (read-only)

Default Value: ""

The Amazon SNS topic that will receive notifications about the job status.

StatusCode
GlacierJobStatusCodes (read-only)

Default Value: 0

The current status of the job. Possible values are:

  • jsNone (0)
  • jsInProgress (1)
  • jsSucceeded (2)
  • jsFailed (3)

StatusMessage
string (read-only)

Default Value: ""

A user friendly description of the status.

Type
GlacierJobTypes (read-only)

Default Value: 0

The type of the current job. Possible values are:

  • jtArchiveRetrieval (0)
  • jtInventoryRetrieval (1)

VaultArn
string (read-only)

Default Value: ""

The Amazon Resource Name (ARN) of the vault from which the archive retrieval or inventory retrieval was requested.

Constructors

public GlacierJob();
Public GlacierJob()
public GlacierJob(int type, string archiveId, long archiveSize, string archiveSHA256TreeHash, bool completed, string completionDate, string creationDate, string description, string jobId, string SNSTopic, string SHA256TreeHash, int statusCode, string statusMessage, string vaultArn, long inventorySize);
Public GlacierJob(ByVal Type As Integer, ByVal ArchiveId As String, ByVal ArchiveSize As Long, ByVal ArchiveSHA256TreeHash As String, ByVal Completed As Boolean, ByVal CompletionDate As String, ByVal CreationDate As String, ByVal Description As String, ByVal JobId As String, ByVal SNSTopic As String, ByVal SHA256TreeHash As String, ByVal StatusCode As Integer, ByVal StatusMessage As String, ByVal VaultArn As String, ByVal InventorySize As Long)

GlacierMultipartUpload Type

This type holds details about the multipart upload.

Remarks

This type holds details about the multipart upload.

Fields

ArchiveDescription
string (read-only)

Default Value: ""

The description of the archive (if any).

CreationDate
string (read-only)

Default Value: ""

The UTC time that the multipart upload was started. This is a string representation of ISO 8601 date format. For example: "2012-03-20T17:03:43.221Z".

PartSize
int (read-only)

Default Value: 0

The part size in bytes. This is specified by the PartSize setting and is used when StartMultipartUpload is called.

UploadId
string (read-only)

Default Value: ""

The Id of the multipart upload.

VaultArn
string (read-only)

Default Value: ""

The Amazon Resource Name (ARN) of the Vault in which the archive is created.

Constructors

public GlacierMultipartUpload(string archiveDescription, string creationDate, string uploadId, string vaultArn, int partSize);
Public GlacierMultipartUpload(ByVal ArchiveDescription As String, ByVal CreationDate As String, ByVal UploadId As String, ByVal VaultArn As String, ByVal PartSize As Integer)

GlacierNotification Type

This type holds notification information.

Remarks

This type holds notification information.

Fields

EventType
GlacierNotifyEventTypes

Default Value: 0

This field specifies the type of enabled notifications for the vault. Possible values are:

0 (etBoth - default) Notifications for both inventory and archive retrieval jobs.
1 (etArchiveRetrievalCompleted) Notifications are sent when an archive retrieval job is complete.
2 (etInventoryRetrievalCompleted) Notifications are sent when an inventory retrieval job is complete.

SNSTopic
string

Default Value: ""

This field specifies the Amazon SNS Topic ARN that is used to deliver notifications. The topic must already exist.

Constructors

public GlacierNotification(int eventType, string SNSTopic);
Public GlacierNotification(ByVal EventType As Integer, ByVal SNSTopic As String)

GlacierPart Type

This type holds details about the part.

Remarks

This type holds details about the part.

Fields

ArchiveDescription
string (read-only)

Default Value: ""

The description of the archive (if any).

CreationDate
string (read-only)

Default Value: ""

The UTC time that the multipart upload was started. This is a string representation of ISO 8601 date format. For example: "2012-03-20T17:03:43.221Z".

SHA256TreeHash
string (read-only)

Default Value: ""

The SHA256 tree hash value that Amazon calculated for the part.

Size
long (read-only)

Default Value: 0

The part size in bytes.

StartPosition
long (read-only)

Default Value: 0

The byte offset in the archive of the current part.

UploadId
string (read-only)

Default Value: ""

The Id of the multipart upload associated with this part.

VaultArn
string (read-only)

Default Value: ""

The Amazon Resource Name (ARN) of the Vault in which the archive is created.

Constructors

public GlacierPart();
Public GlacierPart()
public GlacierPart(string archiveDescription, string creationDate, string uploadId, long startPosition, long size, string SHA256TreeHash, string vaultArn);
Public GlacierPart(ByVal ArchiveDescription As String, ByVal CreationDate As String, ByVal UploadId As String, ByVal StartPosition As Long, ByVal Size As Long, ByVal SHA256TreeHash As String, ByVal VaultArn As String)

GlacierVault Type

This type holds vault information.

Remarks

This type holds vault information.

Fields

ArchiveCount
int (read-only)

Default Value: 0

The number of archives in the vault as of LastInventoryDate.

Arn
string (read-only)

Default Value: ""

The Amazon Resource Name (ARN) of the vault.

CreationDate
string (read-only)

Default Value: ""

The date the vault was created, in Coordinated Universal Time (UTC). This is a string representation of ISO 8601 date format, for example: 2012-03-20T17:03:43.221Z.

LastInventoryDate
string (read-only)

Default Value: ""

The date of the last vault inventory, in Coordinated Universal Time (UTC). This is a string representation of ISO 8601 date format, for example: 2012-03-20T17:03:43.221Z.

Name
string (read-only)

Default Value: ""

The name of the vault.

Size
long (read-only)

Default Value: 0

The size of all the archives (including any per-archive overhead) in the vault, as of the last inventory date.

Constructors

public GlacierVault();
Public GlacierVault()
public GlacierVault(string arn, string name, string creationDate, string lastInventoryDate, int archiveCount, long size);
Public GlacierVault(ByVal Arn As String, ByVal Name As String, ByVal CreationDate As String, ByVal LastInventoryDate As String, ByVal ArchiveCount As Integer, ByVal Size As Long)

Header Type

This is an HTTP header as it is received from the server.

Remarks

When a header is received through a Header event, it is parsed into a Header type. This type contains a Field, and its corresponding Value.

Fields

Field
string

Default Value: ""

This field contains the name of the HTTP Header (this is the same case as it is delivered).

Value
string

Default Value: ""

This field contains the Header contents.

Constructors

public Header();
Public Header()
public Header(string field, string value);
Public Header(ByVal Field As String, ByVal Value As String)

Proxy Type

The proxy the component will connect to.

Remarks

When connecting through a proxy, this type is used to specify different properties of the proxy, such as the Server and the AuthScheme.

Fields

AuthScheme
ProxyAuthSchemes

Default Value: 0

This field is used to tell the component which type of authorization to perform when connecting to the proxy. This is used only when the User and Password fields are set.

AuthScheme should be set to authNone (3) when no authentication is expected.

By default, AuthScheme is authBasic (0), and if the User and Password fields are set, the component will attempt basic authentication.

If AuthScheme is set to authDigest (1), digest authentication will be attempted instead.

If AuthScheme is set to authProprietary (2), then the authorization token will not be generated by the component. Look at the configuration file for the component being used to find more information about manually setting this token.

If AuthScheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this field will clear the values of User and Password.

AutoDetect
bool

Default Value: False

This field tells the component whether or not to automatically detect and use proxy system settings, if available. The default value is false.

Password
string

Default Value: ""

This field contains a password if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password fields are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password fields are used to authenticate through NTLM negotiation.

Port
int

Default Value: 80

This field contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80). See the description of the Server field for details.

Server
string

Default Value: ""

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the Server field is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the Server field is set to the corresponding address. If the search is not successful, an error is returned.

SSL
ProxySSLTypes

Default Value: 0

This field determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the component will use the psTunnel option. If the URL is an http URL, the component will use the psNever option.
psAlways (1)The connection is always SSL enabled.
psNever (2)The connection is not SSL enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

User
string

Default Value: ""

This field contains a username if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password fields are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password fields are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password fields are used to authenticate through NTLM negotiation.

Constructors

public Proxy();
Public Proxy()
public Proxy(string server, int port);
Public Proxy(ByVal Server As String, ByVal Port As Integer)
public Proxy(string server, int port, string user, string password);
Public Proxy(ByVal Server As String, ByVal Port As Integer, ByVal User As String, ByVal Password As String)

Config Settings (AmazonGlacier Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

AmazonGlacier Config Settings

AccumulatePages:   Whether the component should accumulate subsequent pages of results when listing them.

This setting controls how the component behaves when listing multiple pages of results. If this setting is enabled, each successive page of results will be appended to the appropriate collection property until the last page of results has been listed (at which point the next list call will cause said collection to be cleared first). If this setting is disabled, the collection will be cleared every time a page of results is returned.

By default, this setting is enabled, allowing all pages of results to be accumulated in the appropriate collection property.

EncryptionIV:   The initialization vector to be used for encryption/decryption.

When encrypting or decrypting a file, this setting may be set to specify the initialization vector. Normally the component will derive this value automatically from EncryptionPassword.

This setting accepts a hex encoded value.

EncryptionKey:   The key to use during encryption/decryption.

When encrypting or decrypting a file, this setting may be set to specify the key to use. Normally the component will derive this value automatically from EncryptionPassword.

This setting accepts a hex encoded value.

EncryptionPasswordKDF:   The KDF algorithm to use during password based encryption and decryption.

This setting specified the Key Derivation Function (KDF) used to derive a key from the specified EncryptionPassword. Possible values are:

  • 0 (default) - PBKDF1
  • 1 - PBKDF2
Note: PBKDF1 is not FIPS compliant. When operating in FIPS mode PBKDF2 should be used.

IsJobPaged:   Whether or not the ListJobs results are paged.

This setting is populated after calling ListJobs and returns true if the results are paged, false otherwise.

IsMultipartUploadPaged:   Whether or not the ListMultipartUploads results are paged.

This setting is populated after calling ListMultipartUploads and returns true if the results are paged, false otherwise.

IsPartPaged:   Whether or not the ListParts results are paged.

This setting is populated after calling ListParts and returns true if the results are paged, false otherwise.

IsVaultPaged:   Whether or not the ListVaults results are paged.

This setting is populated after calling ListVaults and returns true if the results are paged, false otherwise.

JobCompletionFilter:   Specifies the state of jobs to return when calling ListJobs.

This setting specifies whether completed jobs, incomplete jobs, or both are returned when calling ListJobs. Possible values are:

0 (default)Both
1 Completed
2 Incomplete
JobDescription:   The description for the job.

This is an optional setting that can be used to specify a friendly description for the job. The description must be less than or equal to 1,024 bytes. The allowable characters are 7-bit ASCII without control codes, specifically, ASCII values 32-126 decimal or 0x20-0x7E hexadecimal.

JobInventoryFormat:   The format of data returned from an inventory retrieval.

This setting controls the format of the data returned when retrieving the inventory of a vault. It is applicable when calling the CreateJob method. Possible values are:

0 (default)JSON
1 CSV
JobOutputByteRange:   The byte range to retrieve.

This setting specifies the byte range to retrieve when calling GetJobOutput. If unspecified the entire output is retrieved. Values should be in the format "start-end". For instance if you want to download the first 1,048,576 bytes set this to "0-1048575".

JobRetrievalByteRange:   A range of bytes to retrieve.

This may be set to request only a specific range of bytes when retrieving an archive. The byte range to retrieve for an archive retrieval in the form "StartByteValue-EndByteValue". If not specified, the whole archive is retrieved. If specified, the byte range must be megabyte (1024*1024) aligned, which means that StartByteValue must be divisible by 1 MB, and the EndByteValue plus 1 must be divisible by 1 MB or be the end of the archive specified as the archive byte size value minus 1. If RetrievalByteRange is not megabyte aligned, this operation returns a 400 response.

JobStatusFilter:   Specifies the status of jobs to return when calling ListJobs.

This setting specifies whether failed, succeeded, in progress, or all jobs are returned when calling ListJobs. Possible values are:

0 (default)All
1 In Progress
2 Succeeded
3 Failed
LocationURI:   The relative URI of the resource.

This setting holds the relative URI of the resource returned by Amazon after a call to CreateVault, UploadArchive, CreateJob, StartMultipartUpload, and CompleteMultipartUpload. For instance: "/111122223333/vaults/examplevault". In most cases you will not need to use this value.

MaxListJobResults:   The maximum number of Jobs to return.

This setting is used when calling ListJobs to limit the number of results. The default value is 1000.

MaxListMultipartUploadResults:   The maximum number of Multipart Uploads to return.

This setting is used when calling ListMultipartUploads to limit the number of results. The default value is 1000.

MaxListPartResults:   The maximum number of Parts to return.

This setting is used when calling ListParts to limit the number of results. The default value is 1000.

MaxListVaultResults:   The maximum number of Vaults to return.

This setting is used when calling ListVaults to limit the number of results. The default value is 1000.

PartSize:   The size in megabytes of each part in a multipart upload.

This setting specifies the size in megabytes of the parts in a multipart upload. This value is used when calling StartMultipartUpload. The part size must be a megabyte multiplied by a power of 2. For instance 1, 2, 4, and 8 are valid sizes. The minimum part size is 1, the maximum is 4096 (4GB). The default value is 1.

ProgressAbsolute:   Whether the component should track transfer progress absolutely.

This setting controls whether the component tracks upload and download progress absolutely or relatively, with regards to the values reported via the Progress event when an interrupted transfer is resumed.

If this setting is enabled (default), then when a transfer is interrupted and later resumed, the values reported by the Progress event will account for the data that was successfully transferred before the interruption.

If this setting is disabled, then the component will treat resumed transfers as "new" transfers, and the values reported by the Progress event will start at 0 rather than from the number of bytes already transferred.

Refer to the Progress event for more information.

ProgressStep:   How often the progress event should be fired, in terms of percentage.

This setting controls how often the component will fire the Progress event during an upload or download, in terms of percentage. Valid values are 0 to 99, inclusive.

The default value, 1, will cause the Progress event to fire each time the event's PercentDone parameter value increases by one percent. Setting this setting to 0 will cause the Progress event to fire every time data is transferred.

Note that the Progress event will always fire once at the beginning and end of a transfer, regardless of this setting's value. Also, if PercentDone cannot be calculated for a particular transfer (e.g., for downloads that use chunked transfer encoding), then the component will behave as if this setting were 0 for the duration of the transfer.

RequestId:   The Amazon generated RequestId.

A value created by Amazon that uniquely identifies your request. This may be used when contacting Amazon about a problem to help troubleshoot. Amazon recommends that you log this value.

TransferredData:   Returns the entire XML response received from the server.

URL:   If set, the default URL will be overridden by this value.

By default, the component uses the service's URL. Setting this config will override this value.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the component adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The component only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the component will accept compressed data. It then will uncompress the data it has received. The component will handle data compressed by both gzip and deflate compression algorithms.

When True, the component adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when HTTPVersion is set to "2.0".

If set to True (default), the component will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the component throws an exception if the server does not support HTTP/2.

The default value is True.

AllowNTLMFallback:   Whether to allow fallback from Negotiate to NTLM when authenticating.

This configuration setting applies only when AuthScheme is set to Negotiate. If set to True, the component will automatically use New Technology LAN Manager (NTLM) if the server does not support Negotiate authentication. Note: The server must indicate that it supports NTLM authentication through the WWW-Authenticate header for the fallback from Negotiate to NTLM to take place. The default value is False.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to LocalFile. When set to True, downloaded data will be appended to LocalFile. This may be used in conjunction with Range to resume a failed download. This is applicable only when LocalFile is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP component can be extended with other security schemes in addition to the authorization schemes already implemented by the component.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the Transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the component.

If set to True, the URL passed to the component will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the component returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new URL for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the component throws an exception.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the component throws an exception instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the component will perform a GET on the new location.

The default value is False. If set to True, the component will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the component.

This property specifies the HTTP version used by the component. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the component will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/2 is supported on all versions of Windows. If the Windows version is an earlier version than Windows 8.1/Windows Server 2012 R2, the internal security implementation will be used. If the Windows version is Window 8.1/Windows Server 2012 R2 or later, the system security libraries will be used by default.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If true, the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If false, the connection will be closed immediately after the server response is received.

The default value for KeepAlive is false.

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the Log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxHeaders:   Instructs component to save the amount of headers specified that are returned by the server after a Header event has been fired.

This configuration setting should be set when the TransferredHeaders collection is to be populated when a Header event has been fired. This value represents the number of headers that are to be saved in the collection.

To save all items to the collection, set this configuration setting to -1. If no items are wanted, set this to 0, which will not save any items to the collection. The default for this configuration setting is -1, so all items will be included in the collection.

MaxHTTPCookies:   Instructs component to save the amount of cookies specified that are returned by the server when a SetCookie event is fired.

This configuration setting should be set when populating the Cookies collection as a result of an HTTP request. This value represents the number of cookies that are to be saved in the collection.

To save all items to the collection, set this configuration setting to -1. If no items are wanted, set this to 0, which will not save any items to the collection. The default for this configuration setting is -1, so all items will be included in the collection.

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When FollowRedirects is set to any value other than frNever, the component will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When HTTPVersion is set to "2.0" (if the server does not support "2.0"), then the component will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the component beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If User and Password are specified, this value is calculated using the algorithm specified by AuthScheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by components that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by components that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by components that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by components that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by components that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the component.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the component.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the component will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the component will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified.

UsePlatformDeflate:   Whether to use the platform implementation to decompress compressed responses.

This configuration setting specifies whether the platform's deflate-algorithm implementation is used to decompress responses that use compression. If set to True (default), the platform implementation is used. If set to False, an internal implementation is used.

UsePlatformHTTPClient:   Whether or not to use the platform HTTP client.

When using this configuration setting, if True, the component will use the default HTTP client for the platform (URLConnection in Java, WebRequest in .NET, or CFHTTPMessage in Mac/iOS) instead of the internal HTTP implementation. This is important for environments in which direct access to sockets is limited or not allowed (e.g., in the Google AppEngine).

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the component will attempt to use the Proxy auto-config URL when establishing a connection and AutoDetect is set to True.

When True (default), the component will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

CloseStreamAfterTransfer:   If true, the component will close the upload or download stream after the transfer.

This setting determines whether the input or output stream is closed after the transfer completes. When set to True (default), all streams will be closed after a transfer is completed. In order to keep streams open after the transfer of data, set this to False. the default value is True.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the component will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the component whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by components that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallListener:   If true, the component binds to a SOCKS firewall as a server (TCPClient only).

This entry is for TCPClient only and does not work for other components that descend from TCPClient.

If this entry is set, the component acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.

RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.

The connection to the firewall is made by calling the Connect method.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the component throws an exception.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by components that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the component throws an exception.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the component binds.

This must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the component will use IPv4 exclusively. When set to 1, the component will use IPv6 exclusively. To instruct the component to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback
UseNTLMv2:   Whether to use NTLM V2.

When authenticating with NTLM, this setting specifies whether NTLM V2 is used. By default this value is False and NTLM V1 will be used. Set this to True to use NTLM V2.

SSL Config Settings

CACertFilePaths:   The paths to CA certificate files when using Mono on Unix/Linux.

This setting specifies the paths on disk to CA certificate files when using Mono on Unix/Linux. It is not applicable in any other circumstances.

The value is formatted as a list of paths separated by semicolons. The component will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the component will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the component is the same.

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the component will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the component will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The component will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component throws an exception.

When set to 0 (default) the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the component will use OCSP to check the validity of the server certificate. If set to 1 or 2, the component will first obtain the OCSP URL from the server certificate's OCSP extension. The component will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component throws an exception.

When set to 0 (default) the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30) [Platform Only]
SSL2 12 (Hex 0C) [Platform Only]

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the component will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available in Java or when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the component will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the component throws an exception.

The format of this value is a comma separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The component will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the component does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a component is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseFIPSCompliantAPI:   Tells the component whether or not to use FIPS certified APIs.

When set to true, the component will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle FIPS, while all the other Windows editions make use of Microsoft security libraries.

FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting which applies to all instances of all components of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.

For more details please see the FIPS 140-2 Compliance article.

Note: This setting is only applicable on Windows.

Note: Enabling FIPS-compliance requires a special license; please contact sales@nsoftware.com for details.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the component will use the system security libraries by default to perform cryptographic functions where applicable. In this case, calls to unmanaged code will be made. In certain environments, this is not desirable. To use a completely managed security implementation, set this setting to true.

Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.

If using the .NET Standard Library, this setting will be true on all platforms. The .NET Standard library does not support using the system security libraries.

Note: This setting is static. The value set is applicable to all components used in the application.

When this value is set, the product's system dynamic link library (DLL) is no longer required as a reference, as all unmanaged code is stored in that file.

Trappable Errors (AmazonGlacier Component)

Common Errors

600   A server error occurred, and/or the component was unable to process the server's response. Please refer to the error message for more information.
601   An unsupported operation or action was attempted.
602   The RawRequest or RawResponse configuration setting was queried without first setting the TransferredRequest configuration setting to ON.
603   The login credentials specified were invalid. Please refer to the error message for more information.
604   An invalid remote resource identifier (i.e., a name, path, Id, etc.) was specified.
605   An invalid index was specified.
606   An upload was aborted by the user before it could finish.
607   The specified resource is a folder and cannot be downloaded.
608   A download failed because the specified LocalFile already exists and Overwrite is false.
609   The component could not resume a download or upload. Please refer to the error message for more information.
610   An encrypted download could not be resumed because the DownloadTempFile configuration setting is not set.
611   An exception occurred while working with the specified LocalFile (or the current value of LocalFile is invalid). Please refer to the error message for more information.
612   An exception occurred while working with the specified upload or download stream. Please refer to the error message for more information.

The component may also return one of the following error codes, which are inherited from other components.

HTTP Errors

118   Firewall Error. Error description contains detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in URL
153   Specified URLScheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Can't open AttachedFile.

The component may also return one of the following error codes, which are inherited from other components.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the component is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
303   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).