IP*Works! Auth V9 - Online Help
IP*Works! Auth V9
Questions / Feedback?

OAuth Configuration

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

OAuth Configuration Settings

AuthorizationTokenType:   The type of access token returned.

The applicable values include the following:

Bearer (default)When the access token returned by the server is a Bearer type, the authorization string returned by GetAuthorization will be in the format "Bearer access_token". This can be supplied as the value of the HTTP Authorization header.

AuthorizationURL:   Specifies the URL used for authorization.

Holds the URL that the user should be directed to in order to authenticate. If this value is specified the component will use this value instead of automatically calculating the value when GetAuthorization is called.

BrowserResponseTimeout:   Specifies the amount of time to wait for a response from the browser.

This setting specifies the amount of time (in seconds) the component will wait for a response from the browser in the LaunchBrowser event. The default value is 0, meaning that the component will wait indefinitely.

DeviceUserCode:   The device's user code when the ClientProfile is set to cfDevice.

When ClientProfile is set to cfDevice and GetAuthorizationURL is called the component will request a device user code from the server specified by ServerAuthURL. This setting will be populated with the device user code returned by the server. Provide this value along with the URL returned by GetAuthorizationURL to the user.

FormVarCount:   Specifies the number of additional form variables to include in the request.

This setting may be used to specify additional form variables made in the request to exchange AuthorizationCode for an access token. This is useful in cases where the OAuth server requires additional fields. This is used in conjunction with FormVarName and FormVarValue. For instance:

component.Config("FormVarCount=2");
component.Config("FormVarName[0]=myvar");
component.Config("FormVarValue[0]=myvalue");
component.Config("FormVarName[1]=testname");
component.Config("FormVarValue[1]=testvalue");
The value will be URL encoded by the component
FormVarName[i]:   Specifies the form variable name at the specified index.

This setting specifies the form variable name at the index specified. See FormVarCount for details.

FormVarValue[i]:   Specifies the form variable value at the specified index.

This setting specifies the form variable value at the index specified. See FormVarCount for details.

JWTJSONKey:   The file path of the JWT JSON Key, or a string containing its content.

This setting specifies the file path of the JWT JSON Key, or a string containing its content, provided for the service account. If this setting is specified, the component will attempt to parse the values for JWTCertStore, JWTIssuer from the JSON file, as well as initializing the values for JWTCertStoreType, JWTCertStorePassword, and JWTCertSubject.

JWTIssuer:   The JWT issuer when the ClientProfile is set to cfJWT.

This setting specifies the issuer of the JWT. This is required when ClientProfile is set to cfJWT. When using Google service accounts this value is the email address of the service account.

JWTAudience:   The JWT audience when the ClientProfile is set to cfJWT.

This setting specifies the audience that the JWT is intended for. This is required when ClientProfile is set to cfJWT. When using Google service accounts this value must be "https://www.googleapis.com/oauth2/v3/token".

JWTCertStoreType:   The type of certificate store.

This specifies the type of certificate store. Possible values are:

0 User - default For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 Machine - For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 PFXFile - The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 PFXBlob - The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 JKSFile - The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 JKSBlob - The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 PEMKeyFile - The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 PEMKeyBlob - The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
14 PPKFile - The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 PPKBlob - The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 XMLFile - The certificate store is the name of a file that contains a certificate in XML format.
17 XMLBlob - The certificate store is a string that contains a certificate in XML format.

Note: This is required when ClientProfile is set to cfJWT.

JWTCertStore:   The name of the certificate store for the JWT signing certificate.

The name of the certificate store for the JWT signing certificate.

The JWTCertStoreType field specifies the type of the certificate store specified by JWTCertStore. If the store is password protected, specify the password in JWTCertStorePassword.

JWTCertStore is used in conjunction with the JWTCertSubject field in order to specify JWT signing certificate.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

If the provider is OpenSSL, the certificate store is a file containing a certificate and a private key. This property must be set to the name of the file.

Note: This is required when ClientProfile is set to cfJWT.

JWTCertStorePassword:   The JWT signing certificate password.

If the certificate store is of a type that requires a password, this property is used to specify that password in order to open the certificate store.

Note: This is only applicable when ClientProfile is set to cfJWT.

JWTCertSubject:   The JWT signing certificate subject.

The subject of the JWT signing certificate.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

Note: This is required when ClientProfile is set to cfJWT.

JWTSignatureAlgorithm:   The signature algorithm used to sign the JWT.

This setting specifies the signature algorithm used to sign the JWT. Possible values are:

  • RSA-SHA256
Note: This is only applicable when ClientProfile is set to cfJWT.
JWTSubject:   The subject field in the JWT.

This setting optionally specifies the subject field in the JWT. For Google service accounts this is the email address of the user for which the application is requesting delegated access. The meaning of this value varies from service to service. Please consult the documentation for the service to which you're authenticating to determine if the "sub" field is applicable.

JWTValidityTime:   The amount of time in seconds for which the assertion in the JWT is valid.

The amount of time in seconds for which the assertion in the JWT is valid. The default value is 3600 (one hour).

Note: This is only applicable when ClientProfile is set to cfJWT.

Office365ServiceAPIVersion:   The API version of the Office 365 service being discovered.

This setting specifies the API version of the Office 365 service for which a search is initiated. See Office365ServiceEndpoint for details.

Office365ServiceCapability:   The API capability of the Office 365 service being discovered.

This setting specifies the capability of the Office 365 service for which a search is initiated. See Office365ServiceEndpoint for details.

Office365ServiceEndpoint:   The Office 365 endpoint for the service that matches the criteria specified.

When obtaining authorization to access an Office 365 resource it may be necessary to discover a list of services that match a certain criteria and then select a specific resource from that list. For instance, OneDrive for Business requires discovery of the Office 365 service which can be used with the OneDrive API.

When GetAuthorization is called, if Office365ServiceAPIVersion and Office365ServiceCapability are specified the component will attempt to discover the Office 365 services for which the user has access sand find a service which matches the requirements specified in Office365ServiceAPIVersion and Office365ServiceCapability. If a service is found the component will then obtain authorization to access that service. If authorization is successful Office365ServiceEndpoint will hold the service endpoint URL to which requests should be made.

Example of OneDrive for Business:

oauth.Config("Office365ServiceCapability=MyFiles");
oauth.Config("Office365ServiceAPIVersion=v2.0");
string authString = oauth.GetAuthorization();
string endpointURL = oauth.Config("Office365ServiceEndpoint");

PollingInterval:   The interval in seconds between polling requests when the device client type is used.

When ClientProfile is set to cfDevice, this determines the interval (in seconds) between polling requests made to ServerTokenURL. The default value is 5.

ReUseWebServer:   Determines if the same server instance is used between requests.

If set to true (default), the same embedded web server instance will be used for multiple requests. If set to false the embedded web server will be created and destroyed on each call to GetAuthorization

TokenInfoFieldCount:   The number of fields in the tokeninfo service response.

This setting returns the number of fields present in the tokeninfo service response. This is populated after calling ValidateToken.

TokenInfoFieldName[i]:   The name of the tokeninfo service response field.

This setting returns the name of the tokeninfo service response field specified by index i. Valid values are from 0 to TokenInfoFieldCount - 1.

TokenInfoFieldValue[i]:   The value of the tokeninfo service response field.

This setting returns the value of the tokeninfo service response field specified by index i. Valid values are from 0 to TokenInfoFieldCount - 1.

TokenInfoURL:   The URL of the tokeninfo service.

This setting specifies the URL of the tokeninfo service to which a request is made when ValidateToken is called. The default value is "https://www.googleapis.com/oauth2/v1/tokeninfo".

ValidateToken:   Validates the specified access token with a tokeninfo service.

This setting will post the AccessToken to the tokeninfo service specified by TokenInfoURL. This allows a token to be queried for validity and other information before use. When this setting is queried the component will immediately make a request to the server. TokenInfoFieldCount, TokenInfoFieldName[i];, and TokenInfoFieldValue[i]; may be used to iterate over the fields in the response.

WebServerFailedResponse:   The custom response that will be displayed to the user if authentication failed.

When GetAuthorization is called the user will be redirected to the embedded web server upon completing authentication with the authorization server. If authentication failed, the HTML specified here will be sent to the user's browser.

WebServerHost:   The hostname used by the embedded web server displayed in the ReturnURL.

This setting specifies the hostname used by the web server when ClientProfile is set to cfApplication. This specifies the interface on which the embedded web server listens, and also the value displayed in the ReturnURL. This should be set to the hostname only, not the full URL.

The default value is "localhost".

WebServerPort:   The port on which the embedded web server listens.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be returned when this setting is queried after the server has started listening. This is only applicable when using the embedded web server and calling GetAuthorization.

WebServerResponse:   The custom response that will be displayed to the user.

When GetAuthorization is called the user will be redirected to the embedded web server upon completing authentication with the authorization server. This setting allows you to specify the HTML that will be sent to the user's browser.

WebServerUseSSL:   Whether the web server requires SSL connections.

This setting specifies whether the web server listens in SSL mode. If True the web server will only accept SSL connections.

WebServerSSLCertStoreType:   The type of certificate store.

This specifies the type of certificate store. Possible values are:

0 User - default For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 Machine - For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 PFXFile - The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 PFXBlob - The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 JKSFile - The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 JKSBlob - The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 PEMKeyFile - The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 PEMKeyBlob - The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
14 PPKFile - The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 PPKBlob - The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 XMLFile - The certificate store is the name of a file that contains a certificate in XML format.
17 XMLBlob - The certificate store is a string that contains a certificate in XML format.

Note: This is only applicable when WebServerUseSSL is set to True.

WebServerSSLCertStore:   The name of the certificate store for the client certificate.

The name of the certificate store for the client certificate.

The WebServerSSLCertStoreType field specifies the type of the certificate store specified by WebServerSSLCertStore. If the store is password protected, specify the password in WebServerSSLCertStorePassword.

WebServerSSLCertStore is used in conjunction with the WebServerSSLCertSubject field in order to specify client certificates.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

If the provider is OpenSSL, the certificate store is a file containing a certificate and a private key. This property must be set to the name of the file.

Note: This is only applicable when WebServerUseSSL is set to True.

WebServerSSLCertStorePassword:   The certificate password.

If the certificate store is of a type that requires a password, this property is used to specify that password in order to open the certificate store.

Note: This is only applicable when WebServerUseSSL is set to True.

WebServerSSLCertSubject:   The certificate subject.

The subject of the certificate.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

Note: This is only applicable when WebServerUseSSL is set to True.

HTTP Configuration Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is true, the component adds an "Accept-Encoding: " header to the request being sent to the server. By default, this header's value is "gzip, deflate". This config allows you to change the value of the "Accept-Encoding" header. NOTE: The component only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This is the same as the AllowHTTPCompression property. This setting is exposed here for use by components that inherit from HTTP.

AllowIdenticalRedirectURL:   Allow redirects to the same URL.

By default the component does not allow redirects to the same URL to avoid redirect loops. In some cases the server may intentionally redirect the client back to the same URL. In that case this setting may be set to True to allow the redirect to be followed. The default value is False.

Append:   Whether to append data to LocalFile.

This setting determines whether data is appended when writing to LocalFile. When set to True downloaded data will be appended to LocalFile. This may be used in conjunction with Range to resume a failed download. This is only applicable when LocalFile is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a non-empty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP component can be extended with other security schemes in addition to the authorization schemes already implemented by the component.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

Returns the raw number of bytes from the HTTP response data, prior to the component processing the data, whether it is chunked and/or compressed. This returns the same value as the Transfer event, by BytesTransferred.

EncodeURL:   If set to true the URL will be encoded by the component.

The default value is false. If set to true the URL passed to the component will be URL encoded.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the component returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new URL for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same, otherwise the component raises an exception.

Note that following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for 'GET' or 'HEAD' requests. Other methods could potentially change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server and port are different than the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g. new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the component raises an exception instead.

Valid options are:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to true the component will perform a GET on the new location.

The default value is false. If set to true the component will perform a GET on the new location. Otherwise it will use the same HTTP method again.

HTTPVersion:   The version of HTTP used by the component.

Possible values include "1.0", and "1.1". The default is "1.1".

IfModifiedSince:   A date determining the maximum age of the desired document.

This is the same as the IfModifiedSince property. This setting is exposed here for use by components that inherit from HTTP.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If true, the component will not send the 'Connection: Close' header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note that not all server support persistent connections. You may also explicitly add the Keep-Alive header to the request headers by setting OtherHeaders to 'Connection: Keep-Alive'. If false, the connection will be closed immediately after the server response is received.

The default value for KeepAlive is false.

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When FollowRedirects is set to any value besides frNever the component will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration option can be set to a string of headers to be appended to the HTTP request headers.

The headers must be of the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\ n") .

Use this configuration option with caution. If this configuration option contains invalid headers, HTTP requests may fail.

This configuration option is useful for extending the functionality of the component beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

Similar to the Authorization config, but for proxy authorization. If this config contains a non-empty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy authorization information to the server. If ProxyUser and ProxyPassword are specified, this value is calculated using the algorithm specified by ProxyAuthScheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This is the same as ProxyAuthScheme. This setting is provided for use by components that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This is the same as ProxyPassword. This setting is provided for use by components that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This is the same as ProxyPort. This setting is provided for use by components that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This is the same as ProxyServer. This setting is provided for use by components that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This is the same as ProxyUser. This setting is provided for use by components that do not directly expose Proxy properties.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the component.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise this reflects the maximum number of incoming bytes that can be stored by the component.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to true, the component will use HTTP chunked encoding when posting if possible. HTTP chunked encoding allows large files to be sent in chunks instead of all at once. If set to false, the component will not use HTTP chunked encoding. The default value is false.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is only applicable when UseChunkedEncoding is true. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "/n software IPWorks HTTP/S Component - www.nsoftware.com".

Override the default with the name and version of your software.

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

IPPort Configuration Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the component will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the component whether or not to automatically detect and use firewall system settings, if available.

This is the same as FirewallAutoDetect. This setting is provided for use by components that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

NOTE: This is the same as FirewallHost. This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the component raises an exception.

NOTE: This is the same as FirewallPassword. This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

Note that the FirewallPort is set automatically when FirewallType is set to a valid value.

NOTE: This is the same as FirewallPort. This setting is provided for use by components that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.

NOTE: This is the same as FirewallType. This setting is provided for use by components that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the component raises an exception.

NOTE: This is the same as FirewallUser. This setting is provided for use by components that do not directly expose Firewall properties.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to true. By default the operating system will determine the time a connection is idle before a TCP keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Note: This value is not applicable in Java.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to true. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgement is received from the remote host the keep-alive packet will be re-sent. This setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in Java or MAC.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), there are two scenarios for determining how long the connection will linger. The first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP protocol timeout expires.

In the second scenario, LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data is sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (by a client acknowledgment, for example), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, to leave the socket connection linger. This value is 0 by default, which means it will use the default IP protocol timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The TCP port in the local host where the component binds.

This must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes. The maximum value is 65536 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default this is not set and there is no limit.

RecordLength:   The length of received data records.

If set to a positive value, this setting defines the length of data records to be received. The component will accumulate data until RecordLength is reached and only then fire the DataIn event with data of length RecordLength. This allows data to be received as records of known length. This value can be changed at any time, including within the DataIn event.

The default value is 0, meaning this setting is not used.

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to true, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the component will use IPv4 exclusively. When set to 1, the component will use IPv6 exclusively. To instruct the component to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

SSL Configuration Settings

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the component will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the component is the same.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

TLS 1.1 and TLS1.2 support are only available starting with Windows 7.

SSLProvider:   The name of the security provider to use.

Change this setting to use security providers other than the system default.

Use this setting with caution. Disabling SSL security or pointing to the wrong provider could potentially cause serious security vulnerabilities in your application.

The special value "*" (default) picks the default SSL provider defined in the system.

Note: On Windows systems, the default SSL Provider is "Microsoft Unified Security Protocol Provider" and cannot be changed.

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

Socket Configuration Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Configuration Settings

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is the Active Code Page (0).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multlingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangeul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8

The following is a list of valid code page identifiers for Mac OS only:

IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

 
 
Copyright (c) 2017 /n software inc. - All rights reserved.
Build 9.0.6240.0