JWT Class

Properties   Methods   Events   Config Settings   Errors  

Create, Sign, Encrypt, Verify and Decrypt JSON Web Tokens (JWTs).

Syntax

class ipworksauth.JWT

Remarks

The JWT class supports signing, encrypting, decrypting and verifying JSON Web Tokens (JWTs).

Specify a set of claims via the Claim* properties or add your own claims with add_claim. Call sign to create a signed JWT using a variety of signing algorithms including HMAC, RSA, and ECDSA. Use verify to verify the signature of any received JWT. See signing_algorithm for more details about supported algorithms.

Use encrypt to create an encrypted JWT using a variety of algorithms including ECDH, RSA, and AES. Use decrypt to decrypt the payload of any received JWT. See encryption_algorithm for more details about supported algorithms.

Signing

The sign method may be used to sign a payload with a variety of algorithms. Before calling the sign method set signing_algorithm to the algorithm which will be used to sign the message. The result of signing is a compact serialized JWT string. For instance:

eyJhbGciOiJIUzI1NiJ9.eyJhdWQiOlsiYXVkaWVuY2UiXSwiaXNzIjoiaXNzdWVyIn0.mlFETSma4WUcUSjNSUWA1n9QBcQHCkHN-y4zeBsCVqI

The class will use the values present in the Claim* properties to build the encoded JWT. After calling this method the encoded_jwt property will hold the compact serialized JWT. The following properties are applicable when calling this method:

Notes for HMAC Algorithms (HS256, HS384, HS512)

When signing_algorithm is set to a HMAC algorithm key must be set to a key of appropriate length for the algorithm. The key should be the same number of bits as the algorithm being used. For instance a 256 bit key would be used for HS256.

The key must be known by both parties in order for signing and verification to take place. To use an existing HMAC key provide the bytes to the key property. For instance:

//HMAC SHA-256 Key byte[] key = new byte[] { 170, 171, 221, 209, 7, 181, 48, 178, 48, 118, 242, 132, 36, 218, 74, 140, 216, 165, 161, 70, 11, 42, 246, 205, 235, 231, 19, 48, 87, 141, 122, 10 }; //Sign the payload using HS256 Jwt jwt = new Jwt(); jwt.SigningAlgorithm = JwtSigningAlgorithms.saHS256; jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.KeyB = key; jwt.Sign(); string signedData = jwt.EncodedJWT;

Notes for RSA Algorithms (RS256, RS384, RS512, PS256, PS384, PS512)

The RSA based algorithms use asymmetric encryption. Signing is done with a private key and verification is done with a public key. The private key may be in PFX or PEM format.

Jwt jwt = new Jwt(); jwt.SigningAlgorithm = JwtSigningAlgorithms.saRS256; jwt.Certificate = new Certificate(CertStoreTypes.cstPFXFile, "..\\jwt.pfx", "test", "*"); jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.Sign(); string signedMessage = jwt.EncodedJWT;

Notes for ECDSA Algorithms (ES256, ES384, ES512)

ECDSA algorithms require a valid ECC private key in order to sign data. The certificate property should be set to a certificate with an ECC key. The CertMgr class can be used to create a certificate with an ECC key.

//Create an ECC key with SHA-256 Certmgr mgr = new Certmgr(); mgr.Config("CertPublicKeyAlgorithm=ECDSA_P256"); mgr.CertStoreType = CertStoreTypes.cstPEMKeyFile; mgr.CertStore = "C:\\temp\\ecdsa.pem"; mgr.CreateCertificate("CN=ecdsa", 123); //Sign the payload using ES256 Jwt jwt = new Jwt(); jwt.SigningAlgorithm = JwtSigningAlgorithms.saES256; jwt.Certificate = new Certificate(CertStoreTypes.cstPEMKeyFile, "C:\\temp\\ecdsa.pem", "", "*"); jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.Sign(); string signedMessage = jwt.EncodedJWT;

Notes for Unsecured (none)

To create a JWS token without any security set signing_algorithm to jwtNone.

Jwt jwt = new Jwt(); jwt.SigningAlgorithm = JwtSigningAlgorithms.saNone; jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.Sign(); string unsecuredMessage = jwt.EncodedJWT;

Signature Verification

The verify method may be used to verify a received JWS message. Before calling the verify method set encoded_jwt to a valid compact serialized JWT. For instance:

eyJhbGciOiJIUzI1NiJ9.eyJhdWQiOlsiYXVkaWVuY2UiXSwiaXNzIjoiaXNzdWVyIn0.mlFETSma4WUcUSjNSUWA1n9QBcQHCkHN-y4zeBsCVqI

The key or signer_cert properties should be set to the HMAC key or public certificate respectively. If the correct key or signer_cert is not known ahead of time the KeyId parameter of the on_signer_info event may be used to identify the correct key.

If this method returns without error verification was successful. If verification fails then this method fails with an error. After calling this method the claims will be parsed and the Claim* properties will be populated. The the header_params property will contain the headers. Headers of the parsed message are also available through the on_header_param event.

The following properties are applicable when calling this method:

After calling this method the following properties are populated:

Notes for HMAC Algorithms (HS256, HS384, HS512)

When verifying a message originally signed with a HMAC algorithm key must be set to the same key used during signing. The key must be known by both parties in order for signing and verification to take place.

byte[] key = new byte[] { 170, 171, 221, 209, 7, 181, 48, 178, 48, 118, 242, 132, 36, 218, 74, 140, 216, 165, 161, 70, 11, 42, 246, 205, 235, 231, 19, 48, 87, 141, 122, 10 }; Jwt jwt = new Jwt(); jwt.KeyB = key; jwt.EncodedJWT = signedData; jwt.Verify(); string issuer = jwt.ClaimIssuer;

Notes for RSA Algorithms (RS256, RS384, RS512, PS256, PS384, PS512)

The RSA based algorithms use asymmetric encryption. Signing is done with a private key and verification is done with a public key. The public key is typically in PEM format.

Jwt jwt = new Jwt(); jwt.SignerCert = new Certificate("..\\jwt.cer"); jwt.EncodedJWT = signedData; jwt.Verify(); string issuer = jwt.ClaimIssuer;

Notes for ECDSA Algorithms (ES256, ES384, ES512)

ECDSA algorithms require a valid ECC public key to verify the message. The PEM encoded public key may be used directly with the certificate property. An example PEM encoded public certificate created by the CertMgr class:

-----BEGIN CERTIFICATE-----
MIIBETCBtaADAgECAgF7MAwGCCqGSM49BAMCBQAwEDEOMAwGA1UEAxMFZWNkc2EwHhcNMjMw
NzAzMTcwMjU3WhcNMjQwNzAyMTcwMjU3WjAQMQ4wDAYDVQQDEwVlY2RzYTBZMBMGByqGSM49
AgEGCCqGSM49AwEHA0IABGJv251JI7ITcq+fac9Z2yYkhTLSRhWGzBw1wEJZbs/8AZbVmvcy
4BzKSZEaTfBsCHIt3FLNgRLdugI+B65eQDYwDAYIKoZIzj0EAwIFAANJADBGAiEAzmH5LKKn
r4iy9kJvIlCslpcBHM/8k0XQaj13Zwhm2ocCIQD/cSiC4EuqRkxT4IKET7ko3iI5YUS+J5W5
/0xnxxxIpQ==
-----END CERTIFICATE-----

Jwt jwt = new Jwt(); jwt.SignerCert = new Certificate(CertStoreTypes.cstPublicKeyBlob, pubKey, "", "*"); jwt.EncodedJWT = signedData; jwt.Verify(); string issuer = jwt.ClaimIssuer;

Notes for Unsecured (none)

To parse a JWS token without any security call the sign method without setting the key or certificate properties.

Jwt jwt = new Jwt(); jwt.EncodedJWT = signedData; jwt.Verify(); string issuer = jwt.ClaimIssuer;

Encrypting

The encrypt method may be used to encrypt a payload with a variety of algorithms. To create an encrypted JWT JSON Web Encryption (JWE) is performed by first generating a random key used to encrypt the content. The content encryption key is used to encrypt the content using the algorithm specified by content_encryption_algorithm. The content encryption key is then encrypted itself using the algorithm specified by encryption_algorithm. The content encryption key is not directly exposed in the API as it is randomly generated.

After calling this method the compact serialized JWT is written to encoded_jwt. For instance:

eyJhbGciOiJBMjU2S1ciLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.4tcAnZJ00u4GY2kLOanPOL4CtvcfraZ8SIi6bOZ27qYBI2rHITPc1Q.c_9rCTdPn-saLCti2ZEyWQ.eLwqqo5BGNa70RlsvT-vTh7Gk0hjpJYY_9Zc39Vim_qEtjyMcxZygBpkfx9brzQr9rUbuiAhoCMXKip2-lKT6w.NkuLDPmWxWL4BaTWHWicIQ

The class will use the values present in the Claim* properties to build the encoded JWT. After calling this method the encoded_jwt property will hold the compact serialized JWT. The following properties are applicable when calling this method:

Notes for AES Algorithms (A128KW, A192KW, A256KW, A128GCMKW, A192GCMKW, A256GCMKW)

When encryption_algorithm is set to a AES algorithm key must be set to a key of appropriate length for the algorithm. For instance a 256 bit key would be used for A256KW.

To use an existing AES key provide the bytes to the key property. For instance:

byte[] key = new byte[] { 164, 60, 194, 0, 161, 189, 41, 38, 130, 89, 141, 164, 45, 170, 159, 209, 69, 137, 243, 216, 191, 131, 47, 250, 32, 107, 231, 117, 37, 158, 225, 234 }; //Encrypt the payload using A256KW Jwt jwt = new Jwt(); jwt.KeyB = key; jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaA256KW; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

Notes for RSA Algorithms (RSA1_5, RSA-OEAP, RSA-OAEP-256)

The RSA based algorithms use asymmetric encryption. Encrypting is done with a public key and decryption is done with a private key. The public certificate should be in PEM (base64) format. For instance:

Jwt jwt = new Jwt(); jwt.Certificate = new Certificate("..\\recipient.cer"); jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaRSA_OAEP; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

Notes for ECDH Algorithms (ECDH-ES, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW)

ECDH algorithms require a valid ECC public key to encrypt the message. If the key was originally created with the ECC class the PEM encoded PublicKey may be used directly with the certificate property. An example PEM encoded public certificate created by the ECC component:

-----BEGIN PUBLIC KEY-----
MIIBMjCB7AYHKoZIzj0CATCB4AIBATAsBgcqhkjOPQEBAiEA/////wAAAAEAAAAAAAAAAAAA
AAD///////////////8wRAQg/////wAAAAEAAAAAAAAAAAAAAAD///////////////wEIFrG
NdiqOpPns+u9VXaYhrxlHQawzFOw9jvOPD4n0mBLBEEEaxfR8uEsQkf4vOblY6RA8ncDfYEt
6zOg9KE5RdiYwpZP40Li/hp/m47n60p8D54WK84zV2sxXs7LtkBoN79R9QIhAP////8AAAAA
//////////+85vqtpxeehPO5ysL8YyVRAgEBA0EEIC5rbLp11Mnz6cBXLLriaDIov3rm8RAY
x/OR0bOKiff0cQy+sLVaxjseqFk/+Xvl4ORSv5Z6HdHv5GyEpA0UoA==
-----END PUBLIC KEY-----

Jwt jwt = new Jwt(); jwt.Certificate = new Certificate(CertStoreTypes.cstPublicKeyFile, pubKeyFile, "", "*"); jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaECDH_ES_A256KW; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

To use an ECC public key created by other means the ECC class may be used to import the key parameters. Populate the Rx and Ry properties of the ECC component first to obtain the PEM formatted public key. For instance:

byte[] x_bytes = new byte[] { 171, 170, 196, 151, 94, 196, 231, 12, 128, 232, 17, 61, 45, 105, 41, 209, 192, 187, 112, 242, 110, 178, 95, 240, 36, 55, 83, 171, 190, 176, 78, 13 }; byte[] y_bytes = new byte[] { 197, 75, 134, 245, 245, 28, 199, 9, 7, 117, 1, 54, 49, 178, 135, 252, 62, 89, 35, 180, 117, 80, 231, 23, 110, 250, 28, 124, 219, 253, 224, 156 }; nsoftware.IPWorksEncrypt.Ecc ecc = new nsoftware.IPWorksEncrypt.Ecc(); ecc.Key.RxB = x_bytes; ecc.Key.RyB = y_bytes; string pubKey = ecc.Key.PublicKey; Jwt jwt = new Jwt(); jwt.Certificate = new Certificate(CertStoreTypes.cstPublicKeyFile, pubKey, "", "*"); jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaECDH_ES_A256KW; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

Notes for PBES Algorithms (PBES2-HS256+A128KW, PBES2-HS384+A192KW, PBES2-HS512+A256KW

PBES algorithms derive a content encryption key from the key_password property. Set key_password to a shared secret.

Jwt jwt = new Jwt(); jwt.KeyPassword = "secret"; jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaPBES2_HS512_A256KW; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

Notes for Direct Shared Keys

When encryption_algorithm is set to Direct the key property must be set to a valid symmetric key that will be used directly by the content_encryption_algorithm. In this case a content encryption key is not generated randomly, the key is used instead. The length of the specified key must be valid for the selected content_encryption_algorithm. For instance:

byte[] key = new byte[] { 164, 62, 191, 60, 161, 189, 41, 38, 130, 89, 141, 164, 45, 170, 159, 209, 69, 137, 243, 216, 191, 131, 47, 250, 32, 107, 231, 117, 37, 158, 225, 234 }; Jwt jwt = new Jwt(); jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaDir; jwt.ContentEncryptionAlgorithm = JwtContentEncryptionAlgorithms.ceaA256GCM; jwt.KeyB = key; jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

Decrypting

The decrypt method may be used to decrypt a received JWE message. Before calling the decrypt method set encoded_jwt to a valid compact serialized JWT string. For instance:

eyJhbGciOiJBMjU2S1ciLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.4tcAnZJ00u4GY2kLOanPOL4CtvcfraZ8SIi6bOZ27qYBI2rHITPc1Q.c_9rCTdPn-saLCti2ZEyWQ.eLwqqo5BGNa70RlsvT-vTh7Gk0hjpJYY_9Zc39Vim_qEtjyMcxZygBpkfx9brzQr9rUbuiAhoCMXKip2-lKT6w.NkuLDPmWxWL4BaTWHWicIQ

The type and format of the private key depends on the algorithm used to encrypt the data. The following table summarizes the relationship:

AlgorithmPrivate Key Location
AESkey
RSA and ECDHcertificate
PBESkey_password
If the correct key or certificate is not known ahead of time the KeyId parameter of the on_recipient_info event may be used to identify the correct key.

If this method returns without error decryption was successful. If decryption fails then this method fails with an error. After calling this method the payload will be present in the Claim* properties and the header_params property will contain the headers. Headers of the parsed message are also available through the on_header_param event.

The following properties are applicable when calling this method:

After calling this method the following properties are populated:

Notes for AES Algorithms (A128KW, A192KW, A256KW, A128GCMKW, A192GCMKW, A256GCMKW)

To decrypt messages that use AES encryption key must be set to a key of appropriate length for the algorithm. For instance a 256 bit key would be used for A256KW.

The key must be known by both parties in order for encryption and decryption to take place.

byte[] key = new byte[] { 164, 60, 194, 0, 161, 189, 41, 38, 130, 89, 141, 164, 45, 170, 159, 209, 69, 137, 243, 216, 191, 131, 47, 250, 32, 107, 231, 117, 37, 158, 225, 234 }; Jwt jwt = new Jwt(); jwt.KeyB = key; jwt.EncodedJWT = encryptedData; jwt.Decrypt(); string issuer = jwt.ClaimIssuer;

Notes for RSA Algorithms (RSA1_5, RSA-OEAP, RSA-OAEP-256)

The RSA based algorithms use asymmetric encryption. Encrypting is done with a public key and decryption is done with a private key. The certificate with private key must be specified. For instance:

Jwt jwt = new Jwt(); jwt.Certificate = new Certificate(CertStoreTypes.cstPFXFile, "..\\jwt.pfx", "password", "*"); jwt.EncodedJWT = encryptedData; jwt.Decrypt(); string issuer = jwt.ClaimIssuer;

Notes for ECDH Algorithms (ECDH-ES, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW)

ECDH algorithms require a valid ECC private key to decrypt the message. If the key was originally created with the ECC class the PEM encoded PrivateKey may be used directly with the certificate property.

Jwt jwt = new Jwt(); jwt.Certificate = new Certificate(CertStoreTypes.cstPEMKeyFile, privKeyFile, "", "*"); jwt.EncodedJWT = encryptedData; jwt.Decrypt(); string issuer = jwt.ClaimIssuer;

To use an ECC private key created by other means the ECC class may be used to import the key parameters. Populate the Rx, Ry, and KB properties of the ECC component first to obtain the PEM formatted public key. For instance:

nsoftware.IPWorksEncrypt.Ecc ecc = new nsoftware.IPWorksEncrypt.Ecc(); byte[] x_bytes = new byte[] { 171, 170, 196, 151, 94, 196, 231, 12, 128, 232, 17, 61, 45, 105, 41, 209, 192, 187, 112, 242, 110, 178, 95, 240, 36, 55, 83, 171, 190, 176, 78, 13 }; byte[] y_bytes = new byte[] { 197, 75, 134, 245, 245, 28, 199, 9, 7, 117, 1, 54, 49, 178, 135, 252, 62, 89, 35, 180, 117, 80, 231, 23, 110, 250, 28, 124, 219, 253, 224, 156 }; byte[] k_bytes = new byte[] { 81, 65, 201, 24, 235, 249, 162, 148, 169, 150, 109, 181, 61, 238, 145, 122, 31, 30, 151, 94, 239, 90, 222, 217, 63, 103, 54, 2, 176, 232, 248, 168 }; ecc.Key.RxB = x_bytes; ecc.Key.RyB = y_bytes; ecc.Key.KB = k_bytes; string privKey = ecc.Key.PrivateKey; Jwt jwt = new Jwt(); jwt.Certificate = new Certificate(CertStoreTypes.cstPEMKeyBlob, privKey, "", "*"); jwt.EncodedJWT = encryptedData; jwt.Decrypt(); string issuer = jwt.ClaimIssuer;

Notes for PBES Algorithms (PBES2-HS256+A128KW, PBES2-HS384+A192KW, PBES2-HS512+A256KW

PBES algorithms derive a content encryption key from the key_password property. Set key_password to the shared secret.

Jwt jwt = new Jwt(); jwt.KeyPassword = "secret"; jwt.EncodedJWT = encryptedData; jwt.Decrypt(); string issuer = jwt.ClaimIssuer;

Notes for Direct Shared Keys

When Direct encryption is used the key property must be set to a valid symmetric key that will be used directly by the content_encryption_algorithm. For instance:

byte[] key = new byte[] { 164, 60, 194, 0, 161, 189, 41, 38, 130, 89, 141, 164, 45, 170, 159, 209, 69, 137, 243, 216, 191, 131, 47, 250, 32, 107, 231, 117, 37, 158, 225, 234 }; Jwt jwt = new Jwt(); jwt.KeyB = key; jwt.EncodedJWT = encryptedData; jwt.Decrypt(); string issuer = jwt.ClaimIssuer;

Other Functionality

In addition to standard operations the class also supports a variety of other features including:

  • Adding custom header parameters with add_header_param
  • Enforcing algorithm restrictions when verifying by setting StrictValidation
  • Inspect the JWT without verifying or decrypting by calling parse

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

cert_effective_dateThe date on which this certificate becomes valid.
cert_expiration_dateThe date on which the certificate expires.
cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
cert_issuerThe issuer of the certificate.
cert_private_keyThe private key of the certificate (if available).
cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
cert_public_keyThe public key of the certificate.
cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
cert_public_key_lengthThe length of the certificate's public key (in bits).
cert_serial_numberThe serial number of the certificate encoded as a string.
cert_signature_algorithmThe text description of the certificate's signature algorithm.
cert_storeThe name of the certificate store for the client certificate.
cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
cert_store_typeThe type of certificate store for this certificate.
cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
cert_thumbprint_md5The MD5 hash of the certificate.
cert_thumbprint_sha1The SHA-1 hash of the certificate.
cert_thumbprint_sha256The SHA-256 hash of the certificate.
cert_usageThe text description of UsageFlags .
cert_usage_flagsThe flags that show intended use for the certificate.
cert_versionThe certificate's version number.
cert_subjectThe subject of the certificate used for client authentication.
cert_encodedThe certificate (PEM/Base64 encoded).
claim_audienceThe audience claim.
claim_expThe expiration time claim.
claim_issued_atThe claim indicating the time at which the JWT was issued.
claim_issuerThe issuer of the JWT.
claim_jwt_idThe unique identifier for the JWT.
claim_not_beforeThe claim identifying the time before which the JWT is invalid.
jwt_claim_countThe number of records in the JWTClaim arrays.
jwt_claim_data_typeThe data type of the claim value.
jwt_claim_nameThe claim name.
jwt_claim_valueThe claim value.
claim_subjectThe subject identifies the principal of the JWT.
content_encryption_algorithmThe algorithm used to encrypt the content.
encoded_jwtThe encoded JWT.
encryption_algorithmThe key encryption algorithm.
header_param_countThe number of records in the HeaderParam arrays.
header_param_data_typeThe data type of the header parameter.
header_param_nameThe header parameter name.
header_param_valueThe header parameter value.
keyThe key used for HMAC and AES.
key_idThe Id of the key used to sign or encrypt the message.
key_passwordThe key password used in the PBES algorithm.
recipient_cert_effective_dateThe date on which this certificate becomes valid.
recipient_cert_expiration_dateThe date on which the certificate expires.
recipient_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
recipient_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
recipient_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
recipient_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
recipient_cert_issuerThe issuer of the certificate.
recipient_cert_private_keyThe private key of the certificate (if available).
recipient_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
recipient_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
recipient_cert_public_keyThe public key of the certificate.
recipient_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
recipient_cert_public_key_lengthThe length of the certificate's public key (in bits).
recipient_cert_serial_numberThe serial number of the certificate encoded as a string.
recipient_cert_signature_algorithmThe text description of the certificate's signature algorithm.
recipient_cert_storeThe name of the certificate store for the client certificate.
recipient_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
recipient_cert_store_typeThe type of certificate store for this certificate.
recipient_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
recipient_cert_thumbprint_md5The MD5 hash of the certificate.
recipient_cert_thumbprint_sha1The SHA-1 hash of the certificate.
recipient_cert_thumbprint_sha256The SHA-256 hash of the certificate.
recipient_cert_usageThe text description of UsageFlags .
recipient_cert_usage_flagsThe flags that show intended use for the certificate.
recipient_cert_versionThe certificate's version number.
recipient_cert_subjectThe subject of the certificate used for client authentication.
recipient_cert_encodedThe certificate (PEM/Base64 encoded).
signer_cert_effective_dateThe date on which this certificate becomes valid.
signer_cert_expiration_dateThe date on which the certificate expires.
signer_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
signer_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
signer_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
signer_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
signer_cert_issuerThe issuer of the certificate.
signer_cert_private_keyThe private key of the certificate (if available).
signer_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
signer_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
signer_cert_public_keyThe public key of the certificate.
signer_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
signer_cert_public_key_lengthThe length of the certificate's public key (in bits).
signer_cert_serial_numberThe serial number of the certificate encoded as a string.
signer_cert_signature_algorithmThe text description of the certificate's signature algorithm.
signer_cert_storeThe name of the certificate store for the client certificate.
signer_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
signer_cert_store_typeThe type of certificate store for this certificate.
signer_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
signer_cert_thumbprint_md5The MD5 hash of the certificate.
signer_cert_thumbprint_sha1The SHA-1 hash of the certificate.
signer_cert_thumbprint_sha256The SHA-256 hash of the certificate.
signer_cert_usageThe text description of UsageFlags .
signer_cert_usage_flagsThe flags that show intended use for the certificate.
signer_cert_versionThe certificate's version number.
signer_cert_subjectThe subject of the certificate used for client authentication.
signer_cert_encodedThe certificate (PEM/Base64 encoded).
signing_algorithmThe algorithm used when signing.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

add_claimAdds an new claim.
add_header_paramAdds additional header parameters.
configSets or retrieves a configuration setting.
decryptDecrypts the encoded JWT.
encryptEncrypts the claims with the specified algorithms.
parseParses the encoded JWT.
resetResets the class properties.
signSigns the payload with the specified algorithm.
verifyVerifies the signature of the encoded JWT.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

on_claim_infoFires once for each claim.
on_errorFired when information is available about errors during data delivery.
on_header_paramFires once for each JOSE header parameter.
on_recipient_infoFired with information about the recipient key of the encrypted message.
on_signer_infoFires with information about the signature.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AllowedSigningAlgorithmsAllowed signing algorithms when StrictValidation is set to True.
AudienceDelimiterDefines the character to separate audience values.
CompressionAlgorithmThe compression algorithm to use.
ExpectedAudienceThe expected audience claim.
ExpectedExpThe expected expiration time claim.
ExpectedIssuedAtThe expected time at which the JWT was issued.
ExpectedIssuerThe expected issuer of the JWT.
ExpectedJWTIdThe expected unique identifier for the JWT.
ExpectedNotBeforeThe expected claim identifying the time before which the JWT is invalid.
ExpectedSubjectThe expected subject identifying the principal of the JWT.
IncludeCertificateFormatThe certificate values to include in the signed message (if any).
InputMessageThe raw input to process.
IsEncryptedIndicates whether the EncodedJWT is encrypted.
IsSignedIndicates whether the EncodedJWT is signed.
IssuerCertsA collection of issuer certificates used with IncludeCertificateFormat.
KeyEncodingThe encoding of the Key value.
OutputMessageThe raw output of the operation.
PartyUInfoInformation about the producer of the message.
PartyVInfoInformation about the recipient of the message.
PBES2CountThe PBKDF2 iteration count.
PBES2SaltLengthThe salt input value length.
RawHeaderHolds the raw JOSE header.
StrictValidationRequires specific algorithms when processing.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseFIPSCompliantAPITells the class whether or not to use FIPS certified APIs.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

cert_effective_date Property

The date on which this certificate becomes valid.

Syntax

def get_cert_effective_date() -> str: ...

cert_effective_date = property(get_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

cert_expiration_date Property

The date on which the certificate expires.

Syntax

def get_cert_expiration_date() -> str: ...

cert_expiration_date = property(get_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

cert_extended_key_usage Property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_cert_extended_key_usage() -> str: ...

cert_extended_key_usage = property(get_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

cert_fingerprint Property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_cert_fingerprint() -> str: ...

cert_fingerprint = property(get_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

cert_fingerprint_sha1 Property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_cert_fingerprint_sha1() -> str: ...

cert_fingerprint_sha1 = property(get_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

cert_fingerprint_sha256 Property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_cert_fingerprint_sha256() -> str: ...

cert_fingerprint_sha256 = property(get_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

cert_issuer Property

The issuer of the certificate.

Syntax

def get_cert_issuer() -> str: ...

cert_issuer = property(get_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

cert_private_key Property

The private key of the certificate (if available).

Syntax

def get_cert_private_key() -> str: ...

cert_private_key = property(get_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The cert_private_key may be available but not exportable. In this case, cert_private_key returns an empty string.

This property is read-only.

cert_private_key_available Property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_cert_private_key_available() -> bool: ...

cert_private_key_available = property(get_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a cert_private_key is available for the selected certificate. If cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

cert_private_key_container Property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_cert_private_key_container() -> str: ...

cert_private_key_container = property(get_cert_private_key_container, None)

Default Value

""

Remarks

The name of the cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

cert_public_key Property

The public key of the certificate.

Syntax

def get_cert_public_key() -> str: ...

cert_public_key = property(get_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

cert_public_key_algorithm Property

The textual description of the certificate's public key algorithm.

Syntax

def get_cert_public_key_algorithm() -> str: ...

cert_public_key_algorithm = property(get_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

cert_public_key_length Property

The length of the certificate's public key (in bits).

Syntax

def get_cert_public_key_length() -> int: ...

cert_public_key_length = property(get_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

cert_serial_number Property

The serial number of the certificate encoded as a string.

Syntax

def get_cert_serial_number() -> str: ...

cert_serial_number = property(get_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

cert_signature_algorithm Property

The text description of the certificate's signature algorithm.

Syntax

def get_cert_signature_algorithm() -> str: ...

cert_signature_algorithm = property(get_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

cert_store Property

The name of the certificate store for the client certificate.

Syntax

def get_cert_store() -> bytes: ...
def set_cert_store(value: bytes) -> None: ...

cert_store = property(get_cert_store, set_cert_store)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The cert_store_type property denotes the type of the certificate store specified by cert_store. If the store is password-protected, specify the password in cert_store_password.

cert_store is used in conjunction with the cert_subject property to specify client certificates. If cert_store has a value, and cert_subject or cert_encoded is set, a search for a certificate is initiated. Please see the cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_cert_store_password() -> str: ...
def set_cert_store_password(value: str) -> None: ...

cert_store_password = property(get_cert_store_password, set_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

cert_store_type Property

The type of certificate store for this certificate.

Syntax

def get_cert_store_type() -> int: ...
def set_cert_store_type(value: int) -> None: ...

cert_store_type = property(get_cert_store_type, set_cert_store_type)

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the cert_store and set cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

cert_subject_alt_names Property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_cert_subject_alt_names() -> str: ...

cert_subject_alt_names = property(get_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

cert_thumbprint_md5 Property

The MD5 hash of the certificate.

Syntax

def get_cert_thumbprint_md5() -> str: ...

cert_thumbprint_md5 = property(get_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

cert_thumbprint_sha1 Property

The SHA-1 hash of the certificate.

Syntax

def get_cert_thumbprint_sha1() -> str: ...

cert_thumbprint_sha1 = property(get_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

cert_thumbprint_sha256 Property

The SHA-256 hash of the certificate.

Syntax

def get_cert_thumbprint_sha256() -> str: ...

cert_thumbprint_sha256 = property(get_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

cert_usage Property

The text description of UsageFlags .

Syntax

def get_cert_usage() -> str: ...

cert_usage = property(get_cert_usage, None)

Default Value

""

Remarks

The text description of cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

cert_usage_flags Property

The flags that show intended use for the certificate.

Syntax

def get_cert_usage_flags() -> int: ...

cert_usage_flags = property(get_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the cert_usage property for a text representation of cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

cert_version Property

The certificate's version number.

Syntax

def get_cert_version() -> str: ...

cert_version = property(get_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

cert_subject Property

The subject of the certificate used for client authentication.

Syntax

def get_cert_subject() -> str: ...
def set_cert_subject(value: str) -> None: ...

cert_subject = property(get_cert_subject, set_cert_subject)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

cert_encoded Property

The certificate (PEM/Base64 encoded).

Syntax

def get_cert_encoded() -> bytes: ...
def set_cert_encoded(value: bytes) -> None: ...

cert_encoded = property(get_cert_encoded, set_cert_encoded)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The cert_store and cert_subject properties also may be used to specify a certificate.

When cert_encoded is set, a search is initiated in the current cert_store for the private key of the certificate. If the key is found, cert_subject is updated to reflect the full subject of the selected certificate; otherwise, cert_subject is set to an empty string.

claim_audience Property

The audience claim.

Syntax

def get_claim_audience() -> str: ...
def set_claim_audience(value: str) -> None: ...

claim_audience = property(get_claim_audience, set_claim_audience)

Default Value

""

Remarks

This property holds the audience claim. The audience claim identifies the recipients that the JWT is intended for. The values specified here are case sensitive.

Multiple audience values are supported and should be separated by a semicolon. See AudienceDelimiter for details.

This property corresponds to the aud JSON property.

claim_exp Property

The expiration time claim.

Syntax

def get_claim_exp() -> str: ...
def set_claim_exp(value: str) -> None: ...

claim_exp = property(get_claim_exp, set_claim_exp)

Default Value

""

Remarks

This property holds the expiration time claim. The expiration time claim identifies the expiration time on or after which the JWT must not be accepted. This value corresponds to the exp JSON property.

This value is represented as a numeric value containing the number of seconds since the epoch (January 1st 1970). For instance 1498599163.

claim_issued_at Property

The claim indicating the time at which the JWT was issued.

Syntax

def get_claim_issued_at() -> str: ...
def set_claim_issued_at(value: str) -> None: ...

claim_issued_at = property(get_claim_issued_at, set_claim_issued_at)

Default Value

""

Remarks

This property holds the time at which the JWT was issued. This value corresponds to the iat JSON property.

This value is represented as a numeric value containing the number of seconds since the epoch (January 1st 1970). For instance 1498599163.

claim_issuer Property

The issuer of the JWT.

Syntax

def get_claim_issuer() -> str: ...
def set_claim_issuer(value: str) -> None: ...

claim_issuer = property(get_claim_issuer, set_claim_issuer)

Default Value

""

Remarks

This property holds the issuer of the JWT. The value is a case-sensitive string.

This property corresponds to the iss JSON property.

claim_jwt_id Property

The unique identifier for the JWT.

Syntax

def get_claim_jwt_id() -> str: ...
def set_claim_jwt_id(value: str) -> None: ...

claim_jwt_id = property(get_claim_jwt_id, set_claim_jwt_id)

Default Value

""

Remarks

This property holds the unique identifier for the JWT. The value is a case-sensitive string.

This property corresponds to the jti JSON property.

claim_not_before Property

The claim identifying the time before which the JWT is invalid.

Syntax

def get_claim_not_before() -> str: ...
def set_claim_not_before(value: str) -> None: ...

claim_not_before = property(get_claim_not_before, set_claim_not_before)

Default Value

""

Remarks

This property identifies the time before which the JWT is invalid. This value corresponds to the nbf JSON property.

This value is represented as a numeric value containing the number of seconds since the epoch (January 1st 1970). For instance 1498599163.

jwt_claim_count Property

The number of records in the JWTClaim arrays.

Syntax

def get_jwt_claim_count() -> int: ...
def set_jwt_claim_count(value: int) -> None: ...

jwt_claim_count = property(get_jwt_claim_count, set_jwt_claim_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at jwt_claim_count - 1.

jwt_claim_data_type Property

The data type of the claim value.

Syntax

def get_jwt_claim_data_type(jwt_claim_index: int) -> int: ...
def set_jwt_claim_data_type(jwt_claim_index: int, value: int) -> None: ...

Default Value

2

Remarks

The data type of the claim value.

This property specifies the JSON type of the claim value. Possible values are:

  • 0 (Object)
  • 1 (Array)
  • 2 (String)
  • 3 (Number)
  • 4 (Bool)
  • 5 (Null)

The jwt_claim_index parameter specifies the index of the item in the array. The size of the array is controlled by the jwt_claim_count property.

jwt_claim_name Property

The claim name.

Syntax

def get_jwt_claim_name(jwt_claim_index: int) -> str: ...
def set_jwt_claim_name(jwt_claim_index: int, value: str) -> None: ...

Default Value

""

Remarks

The claim name.

The jwt_claim_index parameter specifies the index of the item in the array. The size of the array is controlled by the jwt_claim_count property.

jwt_claim_value Property

The claim value.

Syntax

def get_jwt_claim_value(jwt_claim_index: int) -> str: ...
def set_jwt_claim_value(jwt_claim_index: int, value: str) -> None: ...

Default Value

""

Remarks

The claim value.

The jwt_claim_index parameter specifies the index of the item in the array. The size of the array is controlled by the jwt_claim_count property.

claim_subject Property

The subject identifies the principal of the JWT.

Syntax

def get_claim_subject() -> str: ...
def set_claim_subject(value: str) -> None: ...

claim_subject = property(get_claim_subject, set_claim_subject)

Default Value

""

Remarks

This property holds the subject which identifies the principal of the JWT. The value is a case-sensitive string.

This property corresponds to the sub JSON property.

content_encryption_algorithm Property

The algorithm used to encrypt the content.

Syntax

def get_content_encryption_algorithm() -> int: ...
def set_content_encryption_algorithm(value: int) -> None: ...

content_encryption_algorithm = property(get_content_encryption_algorithm, set_content_encryption_algorithm)

Default Value

0

Remarks

This property specifies the algorithm used to encrypt the content.

The following values are supported.

AlgorithmDescription
0 (ceaA128CBC_HS256 - default) AES_128_CBC_HMAC_SHA_256 authenticated encryption algorithm
1 (ceaA192CBC_HS384) AES_192_CBC_HMAC_SHA_384 authenticated encryption algorithm
2 (ceaA256CBC_HS512) AES_256_CBC_HMAC_SHA_512 authenticated encryption algorithm
3 (ceaA128GCM) AES GCM using 128-bit key
4 (ceaA192GCM) AES GCM using 192-bit key
5 (ceaA256GCM) AES GCM using 256-bit key

encoded_jwt Property

The encoded JWT.

Syntax

def get_encoded_jwt() -> str: ...
def set_encoded_jwt(value: str) -> None: ...

encoded_jwt = property(get_encoded_jwt, set_encoded_jwt)

Default Value

""

Remarks

This property holds the encoded JWT. This is populated after calling sign or encrypt.

This must be set to a valid JWT before calling verify, decrypt or parse.

encryption_algorithm Property

The key encryption algorithm.

Syntax

def get_encryption_algorithm() -> int: ...
def set_encryption_algorithm(value: int) -> None: ...

encryption_algorithm = property(get_encryption_algorithm, set_encryption_algorithm)

Default Value

0

Remarks

This property specifies the algorithm used to encrypt the randomly generated content encryption key.

When using an AES algorithm the key property must be specified. When using an RSA or ECDH algorithm the recipient_cert property must be specified. When using a PBES algorithm the key_password property must be specified;. Possible values are:

AlgorithmDescriptionKey Location
0 (eaRSA1_5 - default) RSAES-PKCS1-v1_5 recipient_cert
1 (eaRSA_OAEP) RSAES OAEP using default parameters recipient_cert
2 (eaRSA_OAEP_256) RSAES OAEP using SHA-256 and MGF1 with SHA-256 recipient_cert
3 (eaA128KW) AES Key Wrap with default initial using 128-bit key key
4 (eaA192KW) AES Key Wrap with default initial using 192-bit key key
5 (eaA256KW) AES Key Wrap with default initial using 256-bit key key
6 (eaDir) Direct use of a shared symmetric key as the CEK key
7 (eaECDH_ES) Elliptic Curve Ephemeral Static key agreement using Concat KDF recipient_cert
8 (eaECDH_ES_A128KW) ECDH-ES using Concat KDF and CEK wrapped with A128KW recipient_cert
9 (eaECDH_ES_A192KW) ECDH-ES using Concat KDF and CEK wrapped with A192KW recipient_cert
10 (eaECDH_ES_A256KW) ECDH-ES using Concat KDF and CEK wrapped with A256KW recipient_cert
11 (eaA128GCMKW) Key wrapping with AES GCM using 128-bit key key
12 (eaA192GCMKW) Key wrapping with AES GCM using 192-bit key key
13 (eaA256GCMKW) Key wrapping with AES GCM using 256-bit key key
14 (eaPBES2_HS256_A128KW) PBES2 with HMAC SHA-256 and A128KW key_password
15 (eaPBES2_HS384_A192KW) PBES2 with HMAC SHA-384 and A192KW key_password
16 (eaPBES2_HS512_A256KW) PBES2 with HMAC SHA-512 and A256KW key_password

When set to an ECDH algorithm the following settings are also applicable:

When set to a PBES algorithm the following settings are also applicable:

header_param_count Property

The number of records in the HeaderParam arrays.

Syntax

def get_header_param_count() -> int: ...
def set_header_param_count(value: int) -> None: ...

header_param_count = property(get_header_param_count, set_header_param_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at header_param_count - 1.

header_param_data_type Property

The data type of the header parameter.

Syntax

def get_header_param_data_type(header_param_index: int) -> int: ...
def set_header_param_data_type(header_param_index: int, value: int) -> None: ...

Default Value

2

Remarks

The data type of the header parameter.

This property specifies the JSON type of the header parameter value. Possible values are:

  • 0 (Object)
  • 1 (Array)
  • 2 (String)
  • 3 (Number)
  • 4 (Bool)
  • 5 (Null)

The header_param_index parameter specifies the index of the item in the array. The size of the array is controlled by the header_param_count property.

header_param_name Property

The header parameter name.

Syntax

def get_header_param_name(header_param_index: int) -> str: ...
def set_header_param_name(header_param_index: int, value: str) -> None: ...

Default Value

""

Remarks

The header parameter name.

The header_param_index parameter specifies the index of the item in the array. The size of the array is controlled by the header_param_count property.

header_param_value Property

The header parameter value.

Syntax

def get_header_param_value(header_param_index: int) -> str: ...
def set_header_param_value(header_param_index: int, value: str) -> None: ...

Default Value

""

Remarks

The header parameter value.

The header_param_index parameter specifies the index of the item in the array. The size of the array is controlled by the header_param_count property.

key Property

The key used for HMAC and AES.

Syntax

def get_key() -> bytes: ...
def set_key(value: bytes) -> None: ...

key = property(get_key, set_key)

Default Value

""

Remarks

This property specifies the key used when signing with an HMAC algorithm or encrypting with an AES algorithm.

Signing

This property is applicable when signing_algorithm is set to an HMAC algorithm.

It is recommended that the length of the key be equal to or larger than the hash size of the algorithm. Use of keys shorter than the hash size is discouraged.

Sizes (in bytes)

SHA1SHA224SHA256SHA384SHA512MD5RIPEMD160
Recommended Key Size20 28 32 48 64 16 20
Hash Size 20 28 32 48 64 16 20
Block Size 64 64 64 128 128 64 64

Key Length Details

As mentioned above it is recommended to use a key size equal to the hash size. Use of keys larger than the hash size does not typically significantly increase the function strength. Keys of any length are technically valid however see the below processing rules to understand how keys of varying lengths are treated:

  • If the key length is equal to the hash size (recommended) it is used without modification.
  • If the key length is less than the hash size it is used without modification.
  • If the key length is less than or equal to the block size it is used without modification.
  • If the key length is larger than the block size is it first hashed with the same algorithm.

Encrypting

When encryption_algorithm is set to an AES algorithm this property must hold the symmetric key used for encryption and decryption. The size of the key must match the size of the algorithm. For instance when selecting the algorithm A256GCMKW (AES 256) the size of the key must also be 256 bits (32 bytes).

In the case where encryption_algorithm is set to Direct this key is used directly with the algorithm specified by content_encryption_algorithm and must be an appropriate size for the selected content_encryption_algorithm.

key_id Property

The Id of the key used to sign or encrypt the message.

Syntax

def get_key_id() -> str: ...
def set_key_id(value: str) -> None: ...

key_id = property(get_key_id, set_key_id)

Default Value

""

Remarks

This property optionally specifies the Id of the key used to sign the message.

Any string value may be supplied here to help the other party identify the key used to sign or encrypt the message. This may be set before calling the sign or encrypt method.

key_password Property

The key password used in the PBES algorithm.

Syntax

def get_key_password() -> str: ...
def set_key_password(value: str) -> None: ...

key_password = property(get_key_password, set_key_password)

Default Value

""

Remarks

This property specifies the key password used to derive a key when using a PBES encryption_algorithm.

This is only applicable to PBES algorithms and must be set before calling encrypt or decrypt.

This property does not apply when calling sign or verify.

recipient_cert_effective_date Property

The date on which this certificate becomes valid.

Syntax

def get_recipient_cert_effective_date() -> str: ...

recipient_cert_effective_date = property(get_recipient_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

recipient_cert_expiration_date Property

The date on which the certificate expires.

Syntax

def get_recipient_cert_expiration_date() -> str: ...

recipient_cert_expiration_date = property(get_recipient_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

recipient_cert_extended_key_usage Property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_recipient_cert_extended_key_usage() -> str: ...

recipient_cert_extended_key_usage = property(get_recipient_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

recipient_cert_fingerprint Property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_recipient_cert_fingerprint() -> str: ...

recipient_cert_fingerprint = property(get_recipient_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

recipient_cert_fingerprint_sha1 Property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_recipient_cert_fingerprint_sha1() -> str: ...

recipient_cert_fingerprint_sha1 = property(get_recipient_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

recipient_cert_fingerprint_sha256 Property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_recipient_cert_fingerprint_sha256() -> str: ...

recipient_cert_fingerprint_sha256 = property(get_recipient_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

recipient_cert_issuer Property

The issuer of the certificate.

Syntax

def get_recipient_cert_issuer() -> str: ...

recipient_cert_issuer = property(get_recipient_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

recipient_cert_private_key Property

The private key of the certificate (if available).

Syntax

def get_recipient_cert_private_key() -> str: ...

recipient_cert_private_key = property(get_recipient_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The recipient_cert_private_key may be available but not exportable. In this case, recipient_cert_private_key returns an empty string.

This property is read-only.

recipient_cert_private_key_available Property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_recipient_cert_private_key_available() -> bool: ...

recipient_cert_private_key_available = property(get_recipient_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a recipient_cert_private_key is available for the selected certificate. If recipient_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

recipient_cert_private_key_container Property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_recipient_cert_private_key_container() -> str: ...

recipient_cert_private_key_container = property(get_recipient_cert_private_key_container, None)

Default Value

""

Remarks

The name of the recipient_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

recipient_cert_public_key Property

The public key of the certificate.

Syntax

def get_recipient_cert_public_key() -> str: ...

recipient_cert_public_key = property(get_recipient_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

recipient_cert_public_key_algorithm Property

The textual description of the certificate's public key algorithm.

Syntax

def get_recipient_cert_public_key_algorithm() -> str: ...

recipient_cert_public_key_algorithm = property(get_recipient_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

recipient_cert_public_key_length Property

The length of the certificate's public key (in bits).

Syntax

def get_recipient_cert_public_key_length() -> int: ...

recipient_cert_public_key_length = property(get_recipient_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

recipient_cert_serial_number Property

The serial number of the certificate encoded as a string.

Syntax

def get_recipient_cert_serial_number() -> str: ...

recipient_cert_serial_number = property(get_recipient_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

recipient_cert_signature_algorithm Property

The text description of the certificate's signature algorithm.

Syntax

def get_recipient_cert_signature_algorithm() -> str: ...

recipient_cert_signature_algorithm = property(get_recipient_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

recipient_cert_store Property

The name of the certificate store for the client certificate.

Syntax

def get_recipient_cert_store() -> bytes: ...
def set_recipient_cert_store(value: bytes) -> None: ...

recipient_cert_store = property(get_recipient_cert_store, set_recipient_cert_store)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The recipient_cert_store_type property denotes the type of the certificate store specified by recipient_cert_store. If the store is password-protected, specify the password in recipient_cert_store_password.

recipient_cert_store is used in conjunction with the recipient_cert_subject property to specify client certificates. If recipient_cert_store has a value, and recipient_cert_subject or recipient_cert_encoded is set, a search for a certificate is initiated. Please see the recipient_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

recipient_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_recipient_cert_store_password() -> str: ...
def set_recipient_cert_store_password(value: str) -> None: ...

recipient_cert_store_password = property(get_recipient_cert_store_password, set_recipient_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

recipient_cert_store_type Property

The type of certificate store for this certificate.

Syntax

def get_recipient_cert_store_type() -> int: ...
def set_recipient_cert_store_type(value: int) -> None: ...

recipient_cert_store_type = property(get_recipient_cert_store_type, set_recipient_cert_store_type)

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the recipient_cert_store and set recipient_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

recipient_cert_subject_alt_names Property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_recipient_cert_subject_alt_names() -> str: ...

recipient_cert_subject_alt_names = property(get_recipient_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

recipient_cert_thumbprint_md5 Property

The MD5 hash of the certificate.

Syntax

def get_recipient_cert_thumbprint_md5() -> str: ...

recipient_cert_thumbprint_md5 = property(get_recipient_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

recipient_cert_thumbprint_sha1 Property

The SHA-1 hash of the certificate.

Syntax

def get_recipient_cert_thumbprint_sha1() -> str: ...

recipient_cert_thumbprint_sha1 = property(get_recipient_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

recipient_cert_thumbprint_sha256 Property

The SHA-256 hash of the certificate.

Syntax

def get_recipient_cert_thumbprint_sha256() -> str: ...

recipient_cert_thumbprint_sha256 = property(get_recipient_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

recipient_cert_usage Property

The text description of UsageFlags .

Syntax

def get_recipient_cert_usage() -> str: ...

recipient_cert_usage = property(get_recipient_cert_usage, None)

Default Value

""

Remarks

The text description of recipient_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

recipient_cert_usage_flags Property

The flags that show intended use for the certificate.

Syntax

def get_recipient_cert_usage_flags() -> int: ...

recipient_cert_usage_flags = property(get_recipient_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of recipient_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the recipient_cert_usage property for a text representation of recipient_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

recipient_cert_version Property

The certificate's version number.

Syntax

def get_recipient_cert_version() -> str: ...

recipient_cert_version = property(get_recipient_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

recipient_cert_subject Property

The subject of the certificate used for client authentication.

Syntax

def get_recipient_cert_subject() -> str: ...
def set_recipient_cert_subject(value: str) -> None: ...

recipient_cert_subject = property(get_recipient_cert_subject, set_recipient_cert_subject)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

recipient_cert_encoded Property

The certificate (PEM/Base64 encoded).

Syntax

def get_recipient_cert_encoded() -> bytes: ...
def set_recipient_cert_encoded(value: bytes) -> None: ...

recipient_cert_encoded = property(get_recipient_cert_encoded, set_recipient_cert_encoded)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The recipient_cert_store and recipient_cert_subject properties also may be used to specify a certificate.

When recipient_cert_encoded is set, a search is initiated in the current recipient_cert_store for the private key of the certificate. If the key is found, recipient_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, recipient_cert_subject is set to an empty string.

signer_cert_effective_date Property

The date on which this certificate becomes valid.

Syntax

def get_signer_cert_effective_date() -> str: ...

signer_cert_effective_date = property(get_signer_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

signer_cert_expiration_date Property

The date on which the certificate expires.

Syntax

def get_signer_cert_expiration_date() -> str: ...

signer_cert_expiration_date = property(get_signer_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

signer_cert_extended_key_usage Property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_signer_cert_extended_key_usage() -> str: ...

signer_cert_extended_key_usage = property(get_signer_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

signer_cert_fingerprint Property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_signer_cert_fingerprint() -> str: ...

signer_cert_fingerprint = property(get_signer_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

signer_cert_fingerprint_sha1 Property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_signer_cert_fingerprint_sha1() -> str: ...

signer_cert_fingerprint_sha1 = property(get_signer_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

signer_cert_fingerprint_sha256 Property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_signer_cert_fingerprint_sha256() -> str: ...

signer_cert_fingerprint_sha256 = property(get_signer_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

signer_cert_issuer Property

The issuer of the certificate.

Syntax

def get_signer_cert_issuer() -> str: ...

signer_cert_issuer = property(get_signer_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

signer_cert_private_key Property

The private key of the certificate (if available).

Syntax

def get_signer_cert_private_key() -> str: ...

signer_cert_private_key = property(get_signer_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The signer_cert_private_key may be available but not exportable. In this case, signer_cert_private_key returns an empty string.

This property is read-only.

signer_cert_private_key_available Property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_signer_cert_private_key_available() -> bool: ...

signer_cert_private_key_available = property(get_signer_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a signer_cert_private_key is available for the selected certificate. If signer_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

signer_cert_private_key_container Property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_signer_cert_private_key_container() -> str: ...

signer_cert_private_key_container = property(get_signer_cert_private_key_container, None)

Default Value

""

Remarks

The name of the signer_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

signer_cert_public_key Property

The public key of the certificate.

Syntax

def get_signer_cert_public_key() -> str: ...

signer_cert_public_key = property(get_signer_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

signer_cert_public_key_algorithm Property

The textual description of the certificate's public key algorithm.

Syntax

def get_signer_cert_public_key_algorithm() -> str: ...

signer_cert_public_key_algorithm = property(get_signer_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

signer_cert_public_key_length Property

The length of the certificate's public key (in bits).

Syntax

def get_signer_cert_public_key_length() -> int: ...

signer_cert_public_key_length = property(get_signer_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

signer_cert_serial_number Property

The serial number of the certificate encoded as a string.

Syntax

def get_signer_cert_serial_number() -> str: ...

signer_cert_serial_number = property(get_signer_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

signer_cert_signature_algorithm Property

The text description of the certificate's signature algorithm.

Syntax

def get_signer_cert_signature_algorithm() -> str: ...

signer_cert_signature_algorithm = property(get_signer_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

signer_cert_store Property

The name of the certificate store for the client certificate.

Syntax

def get_signer_cert_store() -> bytes: ...
def set_signer_cert_store(value: bytes) -> None: ...

signer_cert_store = property(get_signer_cert_store, set_signer_cert_store)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The signer_cert_store_type property denotes the type of the certificate store specified by signer_cert_store. If the store is password-protected, specify the password in signer_cert_store_password.

signer_cert_store is used in conjunction with the signer_cert_subject property to specify client certificates. If signer_cert_store has a value, and signer_cert_subject or signer_cert_encoded is set, a search for a certificate is initiated. Please see the signer_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

signer_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_signer_cert_store_password() -> str: ...
def set_signer_cert_store_password(value: str) -> None: ...

signer_cert_store_password = property(get_signer_cert_store_password, set_signer_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

signer_cert_store_type Property

The type of certificate store for this certificate.

Syntax

def get_signer_cert_store_type() -> int: ...
def set_signer_cert_store_type(value: int) -> None: ...

signer_cert_store_type = property(get_signer_cert_store_type, set_signer_cert_store_type)

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the signer_cert_store and set signer_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

signer_cert_subject_alt_names Property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_signer_cert_subject_alt_names() -> str: ...

signer_cert_subject_alt_names = property(get_signer_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

signer_cert_thumbprint_md5 Property

The MD5 hash of the certificate.

Syntax

def get_signer_cert_thumbprint_md5() -> str: ...

signer_cert_thumbprint_md5 = property(get_signer_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

signer_cert_thumbprint_sha1 Property

The SHA-1 hash of the certificate.

Syntax

def get_signer_cert_thumbprint_sha1() -> str: ...

signer_cert_thumbprint_sha1 = property(get_signer_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

signer_cert_thumbprint_sha256 Property

The SHA-256 hash of the certificate.

Syntax

def get_signer_cert_thumbprint_sha256() -> str: ...

signer_cert_thumbprint_sha256 = property(get_signer_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

signer_cert_usage Property

The text description of UsageFlags .

Syntax

def get_signer_cert_usage() -> str: ...

signer_cert_usage = property(get_signer_cert_usage, None)

Default Value

""

Remarks

The text description of signer_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

signer_cert_usage_flags Property

The flags that show intended use for the certificate.

Syntax

def get_signer_cert_usage_flags() -> int: ...

signer_cert_usage_flags = property(get_signer_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of signer_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the signer_cert_usage property for a text representation of signer_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

signer_cert_version Property

The certificate's version number.

Syntax

def get_signer_cert_version() -> str: ...

signer_cert_version = property(get_signer_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

signer_cert_subject Property

The subject of the certificate used for client authentication.

Syntax

def get_signer_cert_subject() -> str: ...
def set_signer_cert_subject(value: str) -> None: ...

signer_cert_subject = property(get_signer_cert_subject, set_signer_cert_subject)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

signer_cert_encoded Property

The certificate (PEM/Base64 encoded).

Syntax

def get_signer_cert_encoded() -> bytes: ...
def set_signer_cert_encoded(value: bytes) -> None: ...

signer_cert_encoded = property(get_signer_cert_encoded, set_signer_cert_encoded)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The signer_cert_store and signer_cert_subject properties also may be used to specify a certificate.

When signer_cert_encoded is set, a search is initiated in the current signer_cert_store for the private key of the certificate. If the key is found, signer_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, signer_cert_subject is set to an empty string.

signing_algorithm Property

The algorithm used when signing.

Syntax

def get_signing_algorithm() -> int: ...
def set_signing_algorithm(value: int) -> None: ...

signing_algorithm = property(get_signing_algorithm, set_signing_algorithm)

Default Value

0

Remarks

This property specifies the algorithm to use when signing.

When signing with an HMAC algorithm key must be specified. When an RSA or ECDSA algorithm is selected certificate must be set before calling sign and signer_cert must be set before calling verify. The following values are supported:

AlgorithmDescriptionPrivate Key Location
0 (saHS256 - default) HMAC using SHA-256 key
1 (saHS384) HMAC using SHA-384 key
2 (saHS512) HMAC using SHA-512 key
3 (saRS256) RSASSA-PKCS1-v1_5 using SHA-256 certificate
4 (saRS384) RSASSA-PKCS1-v1_5 using SHA-384 certificate
5 (saRS512) RSASSA-PKCS1-v1_5 using SHA-512 certificate
6 (saPS256) RSASSA-PSS using SHA-256 and MGF1 with SHA-256 certificate
7 (saPS384) RSASSA-PSS using SHA-384 and MGF1 with SHA-384 certificate
8 (saPS512) RSASSA-PSS using SHA-512 and MGF1 with SHA-512 certificate
9 (saES256) ECDSA using P-256 and SHA-256 certificate
10 (saES384) ECDSA using P-384 and SHA-384 certificate
11 (saES512) ECDSA using P-521 and SHA-512 certificate
12 (saES256K) ECDSA using secp256k1 curve and SHA-256 certificate
99 (saNone) None (unprotected) Not Applicable

Note: This setting is also applicable when StrictValidation is enabled before calling verify.

add_claim Method

Adds an new claim.

Syntax

def add_claim(name: str, value: str, data_type: int) -> None: ...

Remarks

This method adds a claim to the existing claims. Use this method to add claims that are not already supported directly via properties.

The Name parameter defines the name of the claim. The Value parameter is the value, represented as a string. The JSON data type of the value is defined by the DataType parameter. Possible DataType values are:

  • 0 (Object)
  • 1 (Array)
  • 2 (String)
  • 3 (Number)
  • 4 (Bool)
  • 5 (Null)

add_header_param Method

Adds additional header parameters.

Syntax

def add_header_param(name: str, value: str, data_type: int) -> None: ...

Remarks

This method is used to add additional header parameters before calling encrypt or sign.

The Name and Value parameters define the name and value of the parameter respectively. The DataType parameter specifies the JSON data type of the value. Possible values for DataType are:

  • 0 (Object)
  • 1 (Array)
  • 2 (String)
  • 3 (Number)
  • 4 (Bool)
  • 5 (Null)

Signing

To add additional parameters to the JOSE header use this method. For instance to create this header:

{
	"alg": "HS256",
	"crit": [
		"myheader"
	],
	"myheader": "testvalue"
}

The following code can be used:

byte[] key = new byte[] { 170, 171, 221, 209, 7, 181, 48, 178, 48, 118, 242, 132, 36, 218, 74, 140, 216, 165, 161, 70, 11, 42, 246, 205, 235, 231, 19, 48, 87, 141, 122, 10 }; //Sign the payload using HS256 Jwt jwt = new Jwt(); jwt.SigningAlgorithm = JwtSigningAlgorithms.saHS256; jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.AddHeaderParam("crit", "[\"myheader\"]", 1); jwt.AddHeaderParam("myheader", "testvalue", 2); jwt.KeyB = key; jwt.Sign(); string signedData = jwt.EncodedJWT;

Note: when calling sign the class will automatically add some headers based on properties that are set.

Parameters Automatically Set:

Header ParamProperty
algalgorithm
kidkey_id

Encrypting

To add additional parameters to the JOSE header use this method. For instance to create this header:

{
	"alg": "A256GCMKW",
	"enc": "A128CBC-HS256",
	"iv": "cPTXlBL7aMiv-Dnf",
	"tag": "r5tmS-tXmfFngrybpnnt5g",
	"crit": [
		"myheader"
	],
	"myheader": "testvalue"
}

The following code can be used:

byte[] key = new byte[] { 164, 60, 194, 0, 161, 189, 41, 38, 130, 89, 141, 164, 45, 170, 159, 209, 69, 137, 243, 216, 191, 131, 47, 250, 32, 107, 231, 117, 37, 158, 225, 234 }; Jwt jwt = new Jwt(); jwt.KeyB = key; jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.AddHeaderParam("crit", "[\"myheader\"]",1); jwt.AddHeaderParam("myheader", "testvalue",2); jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaA256GCMKW; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

Note: When calling encrypt the class will automatically add headers based on the selected encryption_algorithm and other properties that may be set.

Parameters Automatically Set:

Header ParamProperty
alg encryption_algorithm
enc content_encryption_algorithm
kid key_id
zip CompressionAlgorithm
p2c PBES2Count (PBES Algorithms Only)
apu PartyUInfo (ECDH Algorithms Only)
apv PartyVInfo (ECDH Algorithms Only)
iv N/A - Automatically Generated (AES Algorithms Only)
tag N/A - Automatically Generated (AES Algorithms Only)
p2s N/A - Automatically Generated (PBES Algorithms Only)
epk N/A - Automatically Generated (ECDH Algorithms Only)

config Method

Sets or retrieves a configuration setting.

Syntax

def config(configuration_string: str) -> str: ...

Remarks

config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

decrypt Method

Decrypts the encoded JWT.

Syntax

def decrypt() -> None: ...

Remarks

This method decrypts the encoded JWT.

Before calling the decrypt method set encoded_jwt to a valid compact serialized JWT string. For instance:

eyJhbGciOiJBMjU2S1ciLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.4tcAnZJ00u4GY2kLOanPOL4CtvcfraZ8SIi6bOZ27qYBI2rHITPc1Q.c_9rCTdPn-saLCti2ZEyWQ.eLwqqo5BGNa70RlsvT-vTh7Gk0hjpJYY_9Zc39Vim_qEtjyMcxZygBpkfx9brzQr9rUbuiAhoCMXKip2-lKT6w.NkuLDPmWxWL4BaTWHWicIQ

The type and format of the private key depends on the algorithm used to encrypt the data. The following table summarizes the relationship:

AlgorithmPrivate Key Location
AESkey
RSA and ECDHcertificate
PBESkey_password
If the correct key or certificate is not known ahead of time the KeyId parameter of the on_recipient_info event may be used to identify the correct key.

If this method returns without error decryption was successful. If decryption fails then this method fails with an error. After calling this method the payload will be present in the Claim* properties and the header_params property will contain the headers. Headers of the parsed message are also available through the on_header_param event.

The following properties are applicable when calling this method:

After calling this method the following properties are populated:

Notes for AES Algorithms (A128KW, A192KW, A256KW, A128GCMKW, A192GCMKW, A256GCMKW)

To decrypt messages that use AES encryption key must be set to a key of appropriate length for the algorithm. For instance a 256 bit key would be used for A256KW.

The key must be known by both parties in order for encryption and decryption to take place.

byte[] key = new byte[] { 164, 60, 194, 0, 161, 189, 41, 38, 130, 89, 141, 164, 45, 170, 159, 209, 69, 137, 243, 216, 191, 131, 47, 250, 32, 107, 231, 117, 37, 158, 225, 234 }; Jwt jwt = new Jwt(); jwt.KeyB = key; jwt.EncodedJWT = encryptedData; jwt.Decrypt(); string issuer = jwt.ClaimIssuer;

Notes for RSA Algorithms (RSA1_5, RSA-OEAP, RSA-OAEP-256)

The RSA based algorithms use asymmetric encryption. Encrypting is done with a public key and decryption is done with a private key. The certificate with private key must be specified. For instance:

Jwt jwt = new Jwt(); jwt.Certificate = new Certificate(CertStoreTypes.cstPFXFile, "..\\jwt.pfx", "password", "*"); jwt.EncodedJWT = encryptedData; jwt.Decrypt(); string issuer = jwt.ClaimIssuer;

Notes for ECDH Algorithms (ECDH-ES, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW)

ECDH algorithms require a valid ECC private key to decrypt the message. If the key was originally created with the ECC class the PEM encoded PrivateKey may be used directly with the certificate property.

Jwt jwt = new Jwt(); jwt.Certificate = new Certificate(CertStoreTypes.cstPEMKeyFile, privKeyFile, "", "*"); jwt.EncodedJWT = encryptedData; jwt.Decrypt(); string issuer = jwt.ClaimIssuer;

To use an ECC private key created by other means the ECC class may be used to import the key parameters. Populate the Rx, Ry, and KB properties of the ECC component first to obtain the PEM formatted public key. For instance:

nsoftware.IPWorksEncrypt.Ecc ecc = new nsoftware.IPWorksEncrypt.Ecc(); byte[] x_bytes = new byte[] { 171, 170, 196, 151, 94, 196, 231, 12, 128, 232, 17, 61, 45, 105, 41, 209, 192, 187, 112, 242, 110, 178, 95, 240, 36, 55, 83, 171, 190, 176, 78, 13 }; byte[] y_bytes = new byte[] { 197, 75, 134, 245, 245, 28, 199, 9, 7, 117, 1, 54, 49, 178, 135, 252, 62, 89, 35, 180, 117, 80, 231, 23, 110, 250, 28, 124, 219, 253, 224, 156 }; byte[] k_bytes = new byte[] { 81, 65, 201, 24, 235, 249, 162, 148, 169, 150, 109, 181, 61, 238, 145, 122, 31, 30, 151, 94, 239, 90, 222, 217, 63, 103, 54, 2, 176, 232, 248, 168 }; ecc.Key.RxB = x_bytes; ecc.Key.RyB = y_bytes; ecc.Key.KB = k_bytes; string privKey = ecc.Key.PrivateKey; Jwt jwt = new Jwt(); jwt.Certificate = new Certificate(CertStoreTypes.cstPEMKeyBlob, privKey, "", "*"); jwt.EncodedJWT = encryptedData; jwt.Decrypt(); string issuer = jwt.ClaimIssuer;

Notes for PBES Algorithms (PBES2-HS256+A128KW, PBES2-HS384+A192KW, PBES2-HS512+A256KW

PBES algorithms derive a content encryption key from the key_password property. Set key_password to the shared secret.

Jwt jwt = new Jwt(); jwt.KeyPassword = "secret"; jwt.EncodedJWT = encryptedData; jwt.Decrypt(); string issuer = jwt.ClaimIssuer;

Notes for Direct Shared Keys

When Direct encryption is used the key property must be set to a valid symmetric key that will be used directly by the content_encryption_algorithm. For instance:

byte[] key = new byte[] { 164, 60, 194, 0, 161, 189, 41, 38, 130, 89, 141, 164, 45, 170, 159, 209, 69, 137, 243, 216, 191, 131, 47, 250, 32, 107, 231, 117, 37, 158, 225, 234 }; Jwt jwt = new Jwt(); jwt.KeyB = key; jwt.EncodedJWT = encryptedData; jwt.Decrypt(); string issuer = jwt.ClaimIssuer;

encrypt Method

Encrypts the claims with the specified algorithms.

Syntax

def encrypt() -> None: ...

Remarks

This method encrypts the claims using the specified algorithms.

To create an encrypted JWT JSON Web Encryption (JWE) is performed by first generating a random key used to encrypt the content. The content encryption key is used to encrypt the content using the algorithm specified by content_encryption_algorithm. The content encryption key is then encrypted itself using the algorithm specified by encryption_algorithm. The content encryption key is not directly exposed in the API as it is randomly generated.

After calling this method the compact serialized JWT is written to encoded_jwt. For instance:

eyJhbGciOiJBMjU2S1ciLCJlbmMiOiJBMTI4Q0JDLUhTMjU2In0.4tcAnZJ00u4GY2kLOanPOL4CtvcfraZ8SIi6bOZ27qYBI2rHITPc1Q.c_9rCTdPn-saLCti2ZEyWQ.eLwqqo5BGNa70RlsvT-vTh7Gk0hjpJYY_9Zc39Vim_qEtjyMcxZygBpkfx9brzQr9rUbuiAhoCMXKip2-lKT6w.NkuLDPmWxWL4BaTWHWicIQ

The class will use the values present in the Claim* properties to build the encoded JWT. After calling this method the encoded_jwt property will hold the compact serialized JWT. The following properties are applicable when calling this method:

Notes for AES Algorithms (A128KW, A192KW, A256KW, A128GCMKW, A192GCMKW, A256GCMKW)

When encryption_algorithm is set to a AES algorithm key must be set to a key of appropriate length for the algorithm. For instance a 256 bit key would be used for A256KW.

To use an existing AES key provide the bytes to the key property. For instance:

byte[] key = new byte[] { 164, 60, 194, 0, 161, 189, 41, 38, 130, 89, 141, 164, 45, 170, 159, 209, 69, 137, 243, 216, 191, 131, 47, 250, 32, 107, 231, 117, 37, 158, 225, 234 }; //Encrypt the payload using A256KW Jwt jwt = new Jwt(); jwt.KeyB = key; jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaA256KW; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

Notes for RSA Algorithms (RSA1_5, RSA-OEAP, RSA-OAEP-256)

The RSA based algorithms use asymmetric encryption. Encrypting is done with a public key and decryption is done with a private key. The public certificate should be in PEM (base64) format. For instance:

Jwt jwt = new Jwt(); jwt.Certificate = new Certificate("..\\recipient.cer"); jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaRSA_OAEP; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

Notes for ECDH Algorithms (ECDH-ES, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW)

ECDH algorithms require a valid ECC public key to encrypt the message. If the key was originally created with the ECC class the PEM encoded PublicKey may be used directly with the certificate property. An example PEM encoded public certificate created by the ECC component:

-----BEGIN PUBLIC KEY-----
MIIBMjCB7AYHKoZIzj0CATCB4AIBATAsBgcqhkjOPQEBAiEA/////wAAAAEAAAAAAAAAAAAA
AAD///////////////8wRAQg/////wAAAAEAAAAAAAAAAAAAAAD///////////////wEIFrG
NdiqOpPns+u9VXaYhrxlHQawzFOw9jvOPD4n0mBLBEEEaxfR8uEsQkf4vOblY6RA8ncDfYEt
6zOg9KE5RdiYwpZP40Li/hp/m47n60p8D54WK84zV2sxXs7LtkBoN79R9QIhAP////8AAAAA
//////////+85vqtpxeehPO5ysL8YyVRAgEBA0EEIC5rbLp11Mnz6cBXLLriaDIov3rm8RAY
x/OR0bOKiff0cQy+sLVaxjseqFk/+Xvl4ORSv5Z6HdHv5GyEpA0UoA==
-----END PUBLIC KEY-----

Jwt jwt = new Jwt(); jwt.Certificate = new Certificate(CertStoreTypes.cstPublicKeyFile, pubKeyFile, "", "*"); jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaECDH_ES_A256KW; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

To use an ECC public key created by other means the ECC class may be used to import the key parameters. Populate the Rx and Ry properties of the ECC component first to obtain the PEM formatted public key. For instance:

byte[] x_bytes = new byte[] { 171, 170, 196, 151, 94, 196, 231, 12, 128, 232, 17, 61, 45, 105, 41, 209, 192, 187, 112, 242, 110, 178, 95, 240, 36, 55, 83, 171, 190, 176, 78, 13 }; byte[] y_bytes = new byte[] { 197, 75, 134, 245, 245, 28, 199, 9, 7, 117, 1, 54, 49, 178, 135, 252, 62, 89, 35, 180, 117, 80, 231, 23, 110, 250, 28, 124, 219, 253, 224, 156 }; nsoftware.IPWorksEncrypt.Ecc ecc = new nsoftware.IPWorksEncrypt.Ecc(); ecc.Key.RxB = x_bytes; ecc.Key.RyB = y_bytes; string pubKey = ecc.Key.PublicKey; Jwt jwt = new Jwt(); jwt.Certificate = new Certificate(CertStoreTypes.cstPublicKeyFile, pubKey, "", "*"); jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaECDH_ES_A256KW; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

Notes for PBES Algorithms (PBES2-HS256+A128KW, PBES2-HS384+A192KW, PBES2-HS512+A256KW

PBES algorithms derive a content encryption key from the key_password property. Set key_password to a shared secret.

Jwt jwt = new Jwt(); jwt.KeyPassword = "secret"; jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaPBES2_HS512_A256KW; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

Notes for Direct Shared Keys

When encryption_algorithm is set to Direct the key property must be set to a valid symmetric key that will be used directly by the content_encryption_algorithm. In this case a content encryption key is not generated randomly, the key is used instead. The length of the specified key must be valid for the selected content_encryption_algorithm. For instance:

byte[] key = new byte[] { 164, 62, 191, 60, 161, 189, 41, 38, 130, 89, 141, 164, 45, 170, 159, 209, 69, 137, 243, 216, 191, 131, 47, 250, 32, 107, 231, 117, 37, 158, 225, 234 }; Jwt jwt = new Jwt(); jwt.EncryptionAlgorithm = JwtEncryptionAlgorithms.eaDir; jwt.ContentEncryptionAlgorithm = JwtContentEncryptionAlgorithms.ceaA256GCM; jwt.KeyB = key; jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.Encrypt(); string encryptedData = jwt.EncodedJWT;

parse Method

Parses the encoded JWT.

Syntax

def parse() -> None: ...

Remarks

This method parses, but does not verify the encoded JWT.

Take care when using this method as no verification or decryption is performed. This method may be helpful in cases where only header information is desired.

If verification or decryption is desired, use verify or decrypt instead. It is not necessary to call this method before calling verify or decrypt. verify or decrypt will both parse and decrypt the message.

When calling this method the headers are parsed. The on_header_param and on_recipient_info events will fire and the header_params property will be populated.

If the message is signed (not encrypted) the claims will also be parsed and the Claim* properties will be populated.

reset Method

Resets the class properties.

Syntax

def reset() -> None: ...

Remarks

This method resets all message and key properties to their default values.

sign Method

Signs the payload with the specified algorithm.

Syntax

def sign() -> None: ...

Remarks

This method signs the claims specified by the Claim* properties with the specified signing_algorithm.

Before calling the sign method set signing_algorithm to the algorithm which will be used to sign the message. The result of signing is a compact serialized JWT string. For instance:

eyJhbGciOiJIUzI1NiJ9.eyJhdWQiOlsiYXVkaWVuY2UiXSwiaXNzIjoiaXNzdWVyIn0.mlFETSma4WUcUSjNSUWA1n9QBcQHCkHN-y4zeBsCVqI

The class will use the values present in the Claim* properties to build the encoded JWT. After calling this method the encoded_jwt property will hold the compact serialized JWT. The following properties are applicable when calling this method:

Notes for HMAC Algorithms (HS256, HS384, HS512)

When signing_algorithm is set to a HMAC algorithm key must be set to a key of appropriate length for the algorithm. The key should be the same number of bits as the algorithm being used. For instance a 256 bit key would be used for HS256.

The key must be known by both parties in order for signing and verification to take place. To use an existing HMAC key provide the bytes to the key property. For instance:

//HMAC SHA-256 Key byte[] key = new byte[] { 170, 171, 221, 209, 7, 181, 48, 178, 48, 118, 242, 132, 36, 218, 74, 140, 216, 165, 161, 70, 11, 42, 246, 205, 235, 231, 19, 48, 87, 141, 122, 10 }; //Sign the payload using HS256 Jwt jwt = new Jwt(); jwt.SigningAlgorithm = JwtSigningAlgorithms.saHS256; jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.KeyB = key; jwt.Sign(); string signedData = jwt.EncodedJWT;

Notes for RSA Algorithms (RS256, RS384, RS512, PS256, PS384, PS512)

The RSA based algorithms use asymmetric encryption. Signing is done with a private key and verification is done with a public key. The private key may be in PFX or PEM format.

Jwt jwt = new Jwt(); jwt.SigningAlgorithm = JwtSigningAlgorithms.saRS256; jwt.Certificate = new Certificate(CertStoreTypes.cstPFXFile, "..\\jwt.pfx", "test", "*"); jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.Sign(); string signedMessage = jwt.EncodedJWT;

Notes for ECDSA Algorithms (ES256, ES384, ES512)

ECDSA algorithms require a valid ECC private key in order to sign data. The certificate property should be set to a certificate with an ECC key. The CertMgr class can be used to create a certificate with an ECC key.

//Create an ECC key with SHA-256 Certmgr mgr = new Certmgr(); mgr.Config("CertPublicKeyAlgorithm=ECDSA_P256"); mgr.CertStoreType = CertStoreTypes.cstPEMKeyFile; mgr.CertStore = "C:\\temp\\ecdsa.pem"; mgr.CreateCertificate("CN=ecdsa", 123); //Sign the payload using ES256 Jwt jwt = new Jwt(); jwt.SigningAlgorithm = JwtSigningAlgorithms.saES256; jwt.Certificate = new Certificate(CertStoreTypes.cstPEMKeyFile, "C:\\temp\\ecdsa.pem", "", "*"); jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.Sign(); string signedMessage = jwt.EncodedJWT;

Notes for Unsecured (none)

To create a JWS token without any security set signing_algorithm to jwtNone.

Jwt jwt = new Jwt(); jwt.SigningAlgorithm = JwtSigningAlgorithms.saNone; jwt.ClaimAudience = "audience"; jwt.ClaimIssuer = "issuer"; jwt.ClaimExp = "1498508071"; jwt.Sign(); string unsecuredMessage = jwt.EncodedJWT;

verify Method

Verifies the signature of the encoded JWT.

Syntax

def verify() -> None: ...

Remarks

This method verifies the signature of the encoded JWT.

Before calling the verify method set encoded_jwt to a valid compact serialized JWT. For instance:

eyJhbGciOiJIUzI1NiJ9.eyJhdWQiOlsiYXVkaWVuY2UiXSwiaXNzIjoiaXNzdWVyIn0.mlFETSma4WUcUSjNSUWA1n9QBcQHCkHN-y4zeBsCVqI

The key or signer_cert properties should be set to the HMAC key or public certificate respectively. If the correct key or signer_cert is not known ahead of time the KeyId parameter of the on_signer_info event may be used to identify the correct key.

If this method returns without error verification was successful. If verification fails then this method fails with an error. After calling this method the claims will be parsed and the Claim* properties will be populated. The the header_params property will contain the headers. Headers of the parsed message are also available through the on_header_param event.

The following properties are applicable when calling this method:

After calling this method the following properties are populated:

Notes for HMAC Algorithms (HS256, HS384, HS512)

When verifying a message originally signed with a HMAC algorithm key must be set to the same key used during signing. The key must be known by both parties in order for signing and verification to take place.

byte[] key = new byte[] { 170, 171, 221, 209, 7, 181, 48, 178, 48, 118, 242, 132, 36, 218, 74, 140, 216, 165, 161, 70, 11, 42, 246, 205, 235, 231, 19, 48, 87, 141, 122, 10 }; Jwt jwt = new Jwt(); jwt.KeyB = key; jwt.EncodedJWT = signedData; jwt.Verify(); string issuer = jwt.ClaimIssuer;

Notes for RSA Algorithms (RS256, RS384, RS512, PS256, PS384, PS512)

The RSA based algorithms use asymmetric encryption. Signing is done with a private key and verification is done with a public key. The public key is typically in PEM format.

Jwt jwt = new Jwt(); jwt.SignerCert = new Certificate("..\\jwt.cer"); jwt.EncodedJWT = signedData; jwt.Verify(); string issuer = jwt.ClaimIssuer;

Notes for ECDSA Algorithms (ES256, ES384, ES512)

ECDSA algorithms require a valid ECC public key to verify the message. The PEM encoded public key may be used directly with the certificate property. An example PEM encoded public certificate created by the CertMgr class:

-----BEGIN CERTIFICATE-----
MIIBETCBtaADAgECAgF7MAwGCCqGSM49BAMCBQAwEDEOMAwGA1UEAxMFZWNkc2EwHhcNMjMw
NzAzMTcwMjU3WhcNMjQwNzAyMTcwMjU3WjAQMQ4wDAYDVQQDEwVlY2RzYTBZMBMGByqGSM49
AgEGCCqGSM49AwEHA0IABGJv251JI7ITcq+fac9Z2yYkhTLSRhWGzBw1wEJZbs/8AZbVmvcy
4BzKSZEaTfBsCHIt3FLNgRLdugI+B65eQDYwDAYIKoZIzj0EAwIFAANJADBGAiEAzmH5LKKn
r4iy9kJvIlCslpcBHM/8k0XQaj13Zwhm2ocCIQD/cSiC4EuqRkxT4IKET7ko3iI5YUS+J5W5
/0xnxxxIpQ==
-----END CERTIFICATE-----

Jwt jwt = new Jwt(); jwt.SignerCert = new Certificate(CertStoreTypes.cstPublicKeyBlob, pubKey, "", "*"); jwt.EncodedJWT = signedData; jwt.Verify(); string issuer = jwt.ClaimIssuer;

Notes for Unsecured (none)

To parse a JWS token without any security call the sign method without setting the key or certificate properties.

Jwt jwt = new Jwt(); jwt.EncodedJWT = signedData; jwt.Verify(); string issuer = jwt.ClaimIssuer;

on_claim_info Event

Fires once for each claim.

Syntax

class JWTClaimInfoEventParams(object):
  @property
  def name() -> str: ...

  @property
  def value() -> str: ...

  @property
  def data_type() -> int: ...

# In class JWT:
@property
def on_claim_info() -> Callable[[JWTClaimInfoEventParams], None]: ...
@on_claim_info.setter
def on_claim_info(event_hook: Callable[[JWTClaimInfoEventParams], None]) -> None: ...

Remarks

When decrypt, verify or parse is called this event will fire once for each claim in the JWT.

Name is the name of the claim.

Value is the value of the claim.

DataType specifies the JSON data type of the value. Possible values are:

  • 0 (Object)
  • 1 (Array)
  • 2 (String)
  • 3 (Number)
  • 4 (Bool)
  • 5 (Null)

on_error Event

Fired when information is available about errors during data delivery.

Syntax

class JWTErrorEventParams(object):
  @property
  def error_code() -> int: ...

  @property
  def description() -> str: ...

# In class JWT:
@property
def on_error() -> Callable[[JWTErrorEventParams], None]: ...
@on_error.setter
def on_error(event_hook: Callable[[JWTErrorEventParams], None]) -> None: ...

Remarks

The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

on_header_param Event

Fires once for each JOSE header parameter.

Syntax

class JWTHeaderParamEventParams(object):
  @property
  def name() -> str: ...

  @property
  def value() -> str: ...

  @property
  def data_type() -> int: ...

# In class JWT:
@property
def on_header_param() -> Callable[[JWTHeaderParamEventParams], None]: ...
@on_header_param.setter
def on_header_param(event_hook: Callable[[JWTHeaderParamEventParams], None]) -> None: ...

Remarks

When decrypt, verify or parse is called this event will fire once for each JOSE header parameter.

Name is the name of the parameter.

Value is the value of the parameter.

DataType specifies the JSON data type of the value. Possible values are:

  • 0 (Object)
  • 1 (Array)
  • 2 (String)
  • 3 (Number)
  • 4 (Bool)
  • 5 (Null)

on_recipient_info Event

Fired with information about the recipient key of the encrypted message.

Syntax

class JWTRecipientInfoEventParams(object):
  @property
  def key_id() -> str: ...

  @property
  def algorithm() -> str: ...

# In class JWT:
@property
def on_recipient_info() -> Callable[[JWTRecipientInfoEventParams], None]: ...
@on_recipient_info.setter
def on_recipient_info(event_hook: Callable[[JWTRecipientInfoEventParams], None]) -> None: ...

Remarks

This event fires with information about the key used to encrypt the data. This may be used to help identify the key or certificate properties to load in order to decrypt the message. This event fires when decrypt or parse is called.

KeyId is the Id of the key as supplied by the entity that created the message. This may be empty.

Algorithm is the encryption algorithm used to encrypt the data.

on_signer_info Event

Fires with information about the signature.

Syntax

class JWTSignerInfoEventParams(object):
  @property
  def key_id() -> str: ...

  @property
  def algorithm() -> str: ...

# In class JWT:
@property
def on_signer_info() -> Callable[[JWTSignerInfoEventParams], None]: ...
@on_signer_info.setter
def on_signer_info(event_hook: Callable[[JWTSignerInfoEventParams], None]) -> None: ...

Remarks

This event fires with information about the signature. This may be used to help identify the key or certificate properties to load in order to verify the signature. This event fires when verify or parse is called.

KeyId is the Id of the key as supplied by the signer that created the message. This may be empty.

Algorithm is the signature algorithm used to sign the message.

JWT Config Settings

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

JWT Config Settings

AllowedSigningAlgorithms:   Allowed signing algorithms when StrictValidation is set to True.

This setting specifics a comma separated list of algorithms that are allowed when StrictValidation is set to True. This allows multiple signing algorithms to be considered acceptable during validation. This setting is only applicable when StrictValidation is set to True. Possible values:

  • HS256
  • HS384
  • HS512
  • RS256
  • RS384
  • RS512
  • ES256
  • ES384
  • ES512
  • PS256
  • PS384
  • PS512

Example value: HS512,HS256.

AudienceDelimiter:   Defines the character to separate audience values.

This setting specifies the character to used to separate multiple audience values. claim_audience may contain multiple values. When multiple values are present they will be separated by this character. The default value is ;.

When setting claim_audience that contains multiple audiences specify multiple value separated by the character set here. For instance:

jwt.ClaimAudience = "aud1;aud2";

CompressionAlgorithm:   The compression algorithm to use.

This setting specifies the compression algorithm to use (if any). If set the content will be compressed using the specified algorithm. Possible values are:

  • 0 (none - default)
  • 1 (deflate)
ExpectedAudience:   The expected audience claim.

This setting specifies the expected audience claim. When set prior to calling the verify method, the component will compare the audience claim from the encoded_jwt with this value.

ExpectedExp:   The expected expiration time claim.

This setting specifies the expected expiration time claim. When set prior to calling the verify method, the component will compare the expiration time claim from the encoded_jwt with this value.

ExpectedIssuedAt:   The expected time at which the JWT was issued.

This setting specifies the expected issued at claim. When set prior to calling the verify method, the component will compare the issued at claim from the encoded_jwt with this value.

ExpectedIssuer:   The expected issuer of the JWT.

This setting specifies the expected issuer of the JWT. When set prior to calling the verify method, the component will compare the issuer of the encoded_jwt with this value.

ExpectedJWTId:   The expected unique identifier for the JWT.

This setting specifies the expected ID of the JWT. When set prior to calling the verify method, the component will compare the JWT ID of the encoded_jwt with this value.

ExpectedNotBefore:   The expected claim identifying the time before which the JWT is invalid.

This setting specifies the expected not before claim of the JWT. When set prior to calling the verify method, the component will compare the not before of claim of the encoded_jwt with this value.

ExpectedSubject:   The expected subject identifying the principal of the JWT.

This setting specifies the expected subject claim of the JWT. When set prior to calling the verify method, the component will compare the subject claim of the encoded_jwt with this value.

IncludeCertificateFormat:   The certificate values to include in the signed message (if any).

This setting specifies whether information about the certificate is included in the signed message. When specified, the value here determines the format of the included certificate information. The certificate information is included as a standard JWS header parameter.

Multiple formats may be included in the signed message. The value specified should be the binary 'OR' of one or more of the following values:

Value Description JWS Header Param
0 (0x00 - default) None
1 (0x01) X.509 Certificate Chain x5c
2 (0x02) X.509 Certificate SHA-1 Thumbprint (Base64-URL encoded) x5t
4 (0x04) X.509 Certificate SHA-256 Thumbprint (Base64-URL encoded) x5t#S256

Note: When including the certificate chain (0x01) the public certificate of certificate property will automatically be included. IssuerCerts may also be set to the public issuer certificates that will be used when building the chain to include.

For instance, to include both the certificate chain and SHA-256 thumbprint of the certificate set this to 5.

InputMessage:   The raw input to process.

This setting optionally specifies the pay payload to process. When calling sign or encrypt input is taken from this setting if specified. If a value is set here the Claim* properties are ignored.

IsEncrypted:   Indicates whether the EncodedJWT is encrypted.

This setting may be queried after calling parse to determine if the encoded_jwt is encrypted.

IsSigned:   Indicates whether the EncodedJWT is signed.

This setting may be queried after calling parse to determine if the encoded_jwt is signed.

IssuerCerts:   A collection of issuer certificates used with IncludeCertificateFormat.

This setting optionally specifies one or more issuer certificates that may be used by the class when IncludeCertificateFormat is specified. Note that the issuer certificates specified here are used as a store of potential issuer certificates. At runtime the class will inspect the certificate value and add the relevant issuer certificates that are present in this property.

The format of the value must be one or more PEM encoded certificates with headers and footers. For instance to include 2 issuer certificates the value may be:

-----BEGIN CERTIFICATE-----
MIIBujCCASOgAwIBAgICA+kwDQYJKoZIhvcNAQELBQAwHTEbMBkGA1UEAxMSbnVuaXRDZXJ0
Q2hhaW5Sb290MCAXDTE4MTAxNTA5MDAxN1oYDzIxMTgwOTIxMDkwMDE3WjAmMSQwIgYDVQQD
...
Tr+wi0ouNo7ifWRcE83Z15PhfGn1nkfxMYj4rya5n+V0RVVcgFUdiolCI5o/sYq503a7kH16
JSF5Zw+TiMz/COM8R94=
-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----
MIIBsTCCARqgAwIBAgICA+gwDQYJKoZIhvcNAQELBQAwHTEbMBkGA1UEAxMSbnVuaXRDZXJ0
Q2hhaW5Sb290MCAXDTE4MTAxNTA5MDAxN1oYDzIxMTgwOTIxMDkwMDE3WjAdMRswGQYDVQQD
...
5u2K9PuJ3ySgL7AvYsqbB/e0/gw8j253SOU+gNTpFahOJsLGEJ43CRtaowkLnWEzs+OPnRfw
iQmqruw=
-----END CERTIFICATE-----

KeyEncoding:   The encoding of the Key value.

This setting specifies the encoding that has been applied to the key. value prior to providing it to the class. The key is typically represented as an array of bytes, however in some cases the key value may have been encoded. As a matter of convenience the class will accept the key with an encoding already applied. The class will decode the key value according the to the value specified here before processing. Possible values are:

  • 0 (none - default)
  • 1 (Base64)
  • 2 (Hex)
  • 3 (Base64URL)

OutputMessage:   The raw output of the operation.

After calling verify or decrypt this holds the raw JSON payload. This may be useful for debugging or logging purposes when the JSON payload is desired.

PartyUInfo:   Information about the producer of the message.

This setting may optionally be set when encryption_algorithm is set to an ECDH algorithm before calling encrypt. When calling decrypt this setting is populated and also accessible from within the on_recipient_info event. The value may be any string. To specify a base64url encoded value directly prefix the string with [b64]. For instance the following lines both set the same value:

jwe.Config("PartyUInfo=Alice"); jwe.Config("PartyUInfo=[b64]QWxpY2U="); //Equivalent to above line

PartyVInfo:   Information about the recipient of the message.

This setting may optionally be set when encryption_algorithm is set to an ECDH algorithm before calling encrypt. When calling decrypt this setting is populated and also accessible from within the on_recipient_info event. The value may be any string. To specify a base64url encoded value directly prefix the string with [b64]. For instance the following lines both set the same value:

jwe.Config("PartyUInfo=Bob"); jwe.Config("PartyUInfo=[b64]Qm9i"); //Equivalent to above line

PBES2Count:   The PBKDF2 iteration count.

This setting specifies the PBDKF2 iteration count. A minimum value of 1000 is recommended. The default value is 1000.

This setting is only applicable when encryption_algorithm is set to a PBES algorithm.

PBES2SaltLength:   The salt input value length.

This setting specifies the length in bytes of the salt input value, which is used as part of the PBKDF2 salt value. The default value is 16.

This setting is only applicable when encryption_algorithm is set to a PBES algorithm.

RawHeader:   Holds the raw JOSE header.

This setting may be queried after calling sign or verify to obtain the raw JOSE header. This returns a JSON string like:

{"alg":"ES384","kid":"myKeyId"}

StrictValidation:   Requires specific algorithms when processing.

If set to True the class will validate that the algorithm used in the JWT matches the values specified in encryption_algorithm, content_encryption_algorithm, and signing_algorithm. This is applicable when calling decrypt and verify.

By default this is False and the algorithms are read automatically from the encoded JWT.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to True to mask sensitive data. The default is True.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when do_events is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseFIPSCompliantAPI:   Tells the class whether or not to use FIPS certified APIs.

When set to True, the class will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle Federal Information Processing Standards (FIPS), while all other Windows editions make use of Microsoft security libraries.

FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to True. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.

For more details, please see the FIPS 140-2 Compliance article.

Note: This setting is applicable only on Windows.

Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to False, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to True tells the class to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to False by default. On Linux/macOS, this setting is set to True by default.

To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.

JWT Errors

JWT Errors

301   EncodedJWT is not set. The input is not valid.
302   Failed to parse claims. See error message for details.
303   Claim is not within its validity period.
304   Failed to verify an expected claim value. See error message for details.

JWS Errors

201   Invalid JWS value. Not recognized as a compact serialized JWS string.
202   Signature verification failed.
203   Key must be specified before attempting this operation.
204   The specified key is too short for the selected algorithm.
205   Certificate must be specified before attempting this operation.
206   Unsupported algorithm.
207   OutputFile already exists and Overwrite is False.
208   Error writing data. See error message for details.

JWE Errors

101   Invalid JWE message. See message for details.
102   Unsupported compression algorithm.
103   Unsupported content encryption algorithm.
104   Unsupported key encryption algorithm.
105   A required header for decryption was not found. See message for details.
106   The specified key is not a valid length for the algorithm.
107   OutputFile already exists and Overwrite is False.
108   KeyPassword must be set for the selected algorithm.
109   Key must be set for the selected algorithm.
110   Certificate must be set for the selected algorithm.
111   A header parameter defined to be critical is not present.
112   Error writing data.
113   Error reading data. Check message for details.
114   Error encrypting. Check message for details.
115   Error decrypting. Check message for details.