PipeServer Component
Properties Methods Events Config Settings Errors
The PipeServer component is a lightweight server component based on an asynchronous, event-driven architecture. It is designed to balance the load between connections for a fast, powerful server.
Syntax
TiipPipeServer
Remarks
PipeServer is the server complement of PipeClient (which is used to create client applications). They share a common design philosophy and interface. PipeServer is as easy to use as PipeClient.
The client connections are identified by a ConnectionId, an id generated by the component to identify each connection. This id is unique to each connection. PipeServer's events also have ConnectionId as a parameter to identify the connection to which they are related.
Our main goal in designing PipeServer was to make it easy to use without sacrificing performance. The component has a minimum of properties, and events: Connected, DataIn, Disconnected, ReadyToSend, and Error.
PipeServer can start to listen on a pipe by setting PipeName and then setting Listening to True. When a client connects the Connected event fires, a ConnectionId is assigned, and communication can start. From this point on, the operation is very similar to PipeClient.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
ConnectionCount | The number of records in the arrays. |
AcceptData | This property indicates whether data reception is currently enabled. |
BytesSent | This property shows how many bytes were sent after calling Send or SendBytes . |
Connected | This property is used to disconnect individual connections and/or show their status. |
ConnectionId | This property contains an identifier generated by the component to identify each connection. |
EOL | The EOL property is used to define boundaries in the input stream using the value of the property. |
MaxLineLength | This property is the size of an internal buffer that holds received data while waiting for an EOL string. |
SingleLineMode | This property shows the special mode for line-oriented protocols. |
Timeout | This property specifies a timeout for the component. |
DefaultEOL | This property includes a default end-of-line (EOL) value to be used by incoming connections. |
DefaultMaxLineLength | The property includes the default maximum line length value for inbound connections. |
DefaultSingleLineMode | This property tells the component whether or not to treat new connections as line oriented. |
DefaultTimeout | This property includes an initial timeout value to be used by incoming connections. |
Listening | If True, the component accepts incoming connections. |
PipeName | The name of the pipe. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Disconnect | This method disconnects the specified client. |
DoEvents | This method processes events from the internal message queue. |
Interrupt | This method interrupts a synchronous send to the remote host. |
Send | This method sends binary data to the specified client. |
SendBytes | This method sends binary data to the specified client. |
SendFile | This method sends the file to the remote host. |
SendLine | This method sends a string followed by a new line. |
SendText | This method sends text to the specified client. |
Shutdown | This method shuts down the server. |
StartListening | This method starts listening for incoming connections. |
StopListening | This method stops listening for new connections. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Connected | Fired immediately after a connection completes. |
DataIn | This event is fired when data come in. |
Disconnected | Fires when a client disconnects. |
Error | This event fires information about errors during data delivery. |
ReadyToSend | Fired when the component is ready to send data. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
CustomSecurityDescription | A custom security descriptor to define access to the pipe. |
InBufferSize | The size in bytes of the output buffer. |
OutBufferSize | The size in bytes of the input buffer. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
UseFIPSCompliantAPI | Tells the component whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
ConnectionCount Property (PipeServer Component)
The number of records in the arrays.
Syntax
__property int ConnectionCount = { read=FConnectionCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at ConnectionCount - 1.This property is read-only and not available at design time.
Data Type
Integer
AcceptData Property (PipeServer Component)
This property indicates whether data reception is currently enabled.
Syntax
__property bool AcceptData[int ConnectionId] = { read=FAcceptData };
Default Value
True
Remarks
This property indicates whether data reception is currently enabled. When false, data reception is disabled and the DataIn event will not fire for the connection. Use the PauseData and ProcessData methods to pause and resume data reception.
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the ConnectionCount property.
This property is read-only and not available at design time.
Data Type
Boolean
BytesSent Property (PipeServer Component)
This property shows how many bytes were sent after calling Send or SendBytes .
Syntax
__property int BytesSent[int ConnectionId] = { read=FBytesSent };
Default Value
0
Remarks
This property shows how many bytes were sent after calling Send or SendBytes. Please see Send or SendBytes for more information.
Note: This property will always return 0 when the component is operating in the synchronous mode (i.e., the Timeout property is set to a positive value).
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the ConnectionCount property.
This property is read-only and not available at design time.
Data Type
Integer
Connected Property (PipeServer Component)
This property is used to disconnect individual connections and/or show their status.
Syntax
__property bool Connected[int ConnectionId] = { read=FConnected, write=FSetConnected };
Default Value
False
Remarks
This property is used to disconnect individual connections and/or show their status.
The Connected property may be set to false to close the connection.
Connected also shows the status of a particular connection (connected/disconnected).
Use the Connect and Disconnect methods to manage the connection.
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the ConnectionCount property.
This property is not available at design time.
Data Type
Boolean
ConnectionId Property (PipeServer Component)
This property contains an identifier generated by the component to identify each connection.
Syntax
__property int ConnectionId[int ConnectionId] = { read=FConnectionId };
Default Value
0
Remarks
This property contains an identifier generated by the component to identify each connection. This identifier is unique to this connection.
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the ConnectionCount property.
This property is read-only and not available at design time.
Data Type
Integer
EOL Property (PipeServer Component)
The EOL property is used to define boundaries in the input stream using the value of the property.
Syntax
__property String EOL[int ConnectionId] = { read=FEOL, write=FSetEOL }; __property DynamicArray<Byte> EOLB[int ConnectionId] = { read=FEOLB, write=FSetEOLB };
Default Value
""
Remarks
The EOL property is used to define boundaries in the input stream using the value of the property.
The EOL property is especially useful with ASCII files. By setting it to CRLF ("\r\n") , the incoming ASCII text stream can be split into lines. In this case, one event is fired for each line received (as well as in packet boundaries). The CRLF ("\r\n") . bytes are discarded.
The EOL property is a binary string. This means that it can be more than one byte long, and it can contain NULL bytes.
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the ConnectionCount property.
This property is not available at design time.
Data Type
Byte Array
MaxLineLength Property (PipeServer Component)
This property is the size of an internal buffer that holds received data while waiting for an EOL string.
Syntax
__property int MaxLineLength[int ConnectionId] = { read=FMaxLineLength, write=FSetMaxLineLength };
Default Value
2048
Remarks
This property is the size of an internal buffer that holds received data while waiting for an EOL string.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the ConnectionCount property.
This property is not available at design time.
Data Type
Integer
SingleLineMode Property (PipeServer Component)
This property shows the special mode for line-oriented protocols.
Syntax
__property bool SingleLineMode[int ConnectionId] = { read=FSingleLineMode, write=FSetSingleLineMode };
Default Value
False
Remarks
This property shows the special mode for line-oriented protocols. When SingleLineMode is True, the component treats the incoming data stream as lines separated by carriage return (CR), line feed (LF), or CRLF. The EOL property is ignored.
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the ConnectionCount property.
This property is not available at design time.
Data Type
Boolean
Timeout Property (PipeServer Component)
This property specifies a timeout for the component.
Syntax
__property int Timeout[int ConnectionId] = { read=FTimeout, write=FSetTimeout };
Default Value
0
Remarks
This property specifies a timeout for the component.
If the Timeout property is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.
If Timeout is set to a positive value, data is sent in a blocking manner and the component will wait for the operation to complete before returning control. The component will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of Timeout seconds.
The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.
If Timeout expires, and the operation is not yet complete, the component raises an exception.
Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 0 (asynchronous operation).
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the ConnectionCount property.
This property is not available at design time.
Data Type
Integer
DefaultEOL Property (PipeServer Component)
This property includes a default end-of-line (EOL) value to be used by incoming connections.
Syntax
__property String DefaultEOL = { read=FDefaultEOL, write=FSetDefaultEOL }; __property DynamicArray<Byte> DefaultEOLB = { read=FDefaultEOLB, write=FSetDefaultEOLB };
Default Value
""
Remarks
This property contains a default end-of-line (EOL) value to be used by incoming connections. Once the component accepts and establishes an inbound connection, it will set that connection's EOL to the value in this property. By default, this value is empty (""), meaning that data will be fired as it is received.
Data Type
Byte Array
DefaultMaxLineLength Property (PipeServer Component)
The property includes the default maximum line length value for inbound connections.
Syntax
__property int DefaultMaxLineLength = { read=FDefaultMaxLineLength, write=FSetDefaultMaxLineLength };
Default Value
2048
Remarks
This property controls the default size of an internal buffer that holds received data while waiting for an end-of-line (EOL) string.
The minimum value for this property is 256 bytes. The default value is 2048 bytes.
Data Type
Integer
DefaultSingleLineMode Property (PipeServer Component)
This property tells the component whether or not to treat new connections as line oriented.
Syntax
__property bool DefaultSingleLineMode = { read=FDefaultSingleLineMode, write=FSetDefaultSingleLineMode };
Default Value
False
Remarks
This property instructs the component whether or not to treat newly established connections as line-oriented protocols. If this value is True, newly accepted connections will read the incoming data stream as lines separated by a carriage return line feed (CRLF), carriage return (CR), or line feed (LF) and will ignore the end of lines (EOLs).
Data Type
Boolean
DefaultTimeout Property (PipeServer Component)
This property includes an initial timeout value to be used by incoming connections.
Syntax
__property int DefaultTimeout = { read=FDefaultTimeout, write=FSetDefaultTimeout };
Default Value
0
Remarks
This property is used by the component to set the operational timeout value of all inbound connections once they are established.
By default, the timeout is 0, meaning that all inbound connections will behave asynchronously.
Data Type
Integer
Listening Property (PipeServer Component)
If True, the component accepts incoming connections.
Syntax
__property bool Listening = { read=FListening, write=FSetListening };
Default Value
False
Remarks
Use this property to make the component 'listen' (accept connections) on the pipe specified by PipeName. Setting this property to False will make the component stop listening. Please note that this does not close any existing connections.
Use the StartListening and StopListening methods to control whether the component is listening.
This property is not available at design time.
Data Type
Boolean
PipeName Property (PipeServer Component)
The name of the pipe.
Syntax
__property String PipeName = { read=FPipeName, write=FSetPipeName };
Default Value
""
Remarks
This property specifies the name of the pipe on which to accept connections. Clients must use this name when establishing a connection to PipeServer.
Data Type
String
Config Method (PipeServer Component)
Sets or retrieves a configuration setting.
Syntax
String __fastcall Config(String ConfigurationString);
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Disconnect Method (PipeServer Component)
This method disconnects the specified client.
Syntax
void __fastcall Disconnect(int ConnectionId);
Remarks
Calling this method will disconnect the client specified by the ConnectionId parameter.
DoEvents Method (PipeServer Component)
This method processes events from the internal message queue.
Syntax
void __fastcall DoEvents();
Remarks
When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Interrupt Method (PipeServer Component)
This method interrupts a synchronous send to the remote host.
Syntax
void __fastcall Interrupt(int ConnectionId);
Remarks
This property is called using the Connection Id if you wish to interrupt a connection and stop a file from uploading without disconnecting the client connected to the component. If you use SendFile to upload a file, the component will run synchronously on that Connection Id until it is completed.
Send Method (PipeServer Component)
This method sends binary data to the specified client.
Syntax
void __fastcall Send(int ConnectionId, DynamicArray<Byte> Text);
Remarks
This method sends binary data to the client identified by ConnectionId. To send text, use the SendText method instead.
When Timeout is set to 0, the component will behave asynchronously. If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation raises the exception with errorcode 10035 and message "[10035] Operation would block" (WSAEWOULDBLOCK). You can handle this exception, and then try to send the data again. . The BytesSent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the ReadyToSend event before attempting to send data again.
Note: The ReadyToSend event is not fired when part of the data is sent successfully.
SendBytes Method (PipeServer Component)
This method sends binary data to the specified client.
Syntax
void __fastcall SendBytes(int ConnectionId, DynamicArray<Byte> Data);
Remarks
This method sends binary data to the client identified by ConnectionId. To send text, use the SendText method instead.
When Timeout is set to 0, the component will behave asynchronously. If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation raises the exception with errorcode 10035 and message "[10035] Operation would block" (WSAEWOULDBLOCK). You can handle this exception, and then try to send the data again. . The BytesSent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the ReadyToSend event before attempting to send data again.
Note: The ReadyToSend event is not fired when part of the data is sent successfully.
SendFile Method (PipeServer Component)
This method sends the file to the remote host.
Syntax
void __fastcall SendFile(int ConnectionId, String FileName);
Remarks
This method sends the file to the client specified by the ConnectionId.
SendLine Method (PipeServer Component)
This method sends a string followed by a new line.
Syntax
void __fastcall SendLine(int ConnectionId, String Text);
Remarks
This method is used to send data with line-oriented protocols. The line is followed by CRLF ("\r\n") .
Please refer to the GetLine method and SingleLineMode property for more information.
SendText Method (PipeServer Component)
This method sends text to the specified client.
Syntax
void __fastcall SendText(int ConnectionId, String Text);
Remarks
This method sends text to the client identified by ConnectionId. To send binary data, use the SendBytes method instead.
When Timeout is set to 0, the component will behave asynchronously. If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation raises the exception with errorcode 10035 and message "[10035] Operation would block" (WSAEWOULDBLOCK). You can handle this exception, and then try to send the data again. . The BytesSent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the ReadyToSend event before attempting to send data again.
Note: The ReadyToSend event is not fired when part of the data is sent successfully.
Shutdown Method (PipeServer Component)
This method shuts down the server.
Syntax
void __fastcall Shutdown();
Remarks
This method shuts down the server. Calling this method is equivalent to calling StopListening and then breaking every client connection by calling Disconnect.
StartListening Method (PipeServer Component)
This method starts listening for incoming connections.
Syntax
void __fastcall StartListening();
Remarks
This method begins listening for incoming connections on the pipe specified by PipeName.
To stop listening for new connections, call StopListening. To stop listening for new connections and to disconnect all existing clients, call Shutdown.
StopListening Method (PipeServer Component)
This method stops listening for new connections.
Syntax
void __fastcall StopListening();
Remarks
This method stops listening for new connections. After being called, any new connection attempts will be rejected. Calling this method does not disconnect existing connections.
To stop listening and to disconnect all existing clients, call Shutdown instead.
Connected Event (PipeServer Component)
Fired immediately after a connection completes.
Syntax
typedef struct { int ConnectionId; } TiipPipeServerConnectedEventParams; typedef void __fastcall (__closure *TiipPipeServerConnectedEvent)(System::TObject* Sender, TiipPipeServerConnectedEventParams *e); __property TiipPipeServerConnectedEvent OnConnected = { read=FOnConnected, write=FOnConnected };
Remarks
This event fires immediately after a client connects. The ConnectionId parameter identifies the client connection.
DataIn Event (PipeServer Component)
This event is fired when data come in.
Syntax
typedef struct { int ConnectionId; String Text; DynamicArray<Byte> TextB; bool EOL; } TiipPipeServerDataInEventParams; typedef void __fastcall (__closure *TiipPipeServerDataInEvent)(System::TObject* Sender, TiipPipeServerDataInEventParams *e); __property TiipPipeServerDataInEvent OnDataIn = { read=FOnDataIn, write=FOnDataIn };
Remarks
Trapping the DataIn event is your only chance to get the data coming from the other end of the connection specified by ConnectionId. The incoming data are provided through the Text parameter.
EOL indicates whether or not the EOL string was found at the end of Text. If the EOL string was found, then EOL is True.
If Text is part of the data portion of length larger than either DefaultMaxLineLength or with no EOL strings in it, then EOL is False. Please note that this means that one or more DataIn events with EOL set to False can be received during a connection.
If the EOL property is "" (empty string), then EOL can be disregarded (it is always True).
Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.
Disconnected Event (PipeServer Component)
Fires when a client disconnects.
Syntax
typedef struct { int ConnectionId; } TiipPipeServerDisconnectedEventParams; typedef void __fastcall (__closure *TiipPipeServerDisconnectedEvent)(System::TObject* Sender, TiipPipeServerDisconnectedEventParams *e); __property TiipPipeServerDisconnectedEvent OnDisconnected = { read=FOnDisconnected, write=FOnDisconnected };
Remarks
This event fires when a client disconnects. The ConnectionId parameters identifies the client that is disconnected.
Error Event (PipeServer Component)
This event fires information about errors during data delivery.
Syntax
typedef struct { int ConnectionId; int ErrorCode; String Description; } TiipPipeServerErrorEventParams; typedef void __fastcall (__closure *TiipPipeServerErrorEvent)(System::TObject* Sender, TiipPipeServerErrorEventParams *e); __property TiipPipeServerErrorEvent OnError = { read=FOnError, write=FOnError };
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally, the component raises an exception.
ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
ConnectionId indicates the connection for which the error is applicable.
ReadyToSend Event (PipeServer Component)
Fired when the component is ready to send data.
Syntax
typedef struct { int ConnectionId; } TiipPipeServerReadyToSendEventParams; typedef void __fastcall (__closure *TiipPipeServerReadyToSendEvent)(System::TObject* Sender, TiipPipeServerReadyToSendEventParams *e); __property TiipPipeServerReadyToSendEvent OnReadyToSend = { read=FOnReadyToSend, write=FOnReadyToSend };
Remarks
The ReadyToSend event indicates that the underlying pipe is ready to accept data after a failed SendBytes. The event is also fired immediately after a connection to the remote host is established.
Config Settings (PipeServer Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.PipeServer Config Settings
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all components of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.
This setting is set to false by default on all platforms.
Trappable Errors (PipeServer Component)
PipeServer Errors
401 | Failed to create event. |
402 | Failed to create security descriptor. |
403 | Error creating named pipe. |
404 | Error connecting to named pipe. |
405 | Error disconnecting named pipe. |
408 | Error sending data. |
410 | Invalid MaxLineLength value. |
411 | Error reading data. |
412 | Error invoking RegisterWaitForSingleObject. |
413 | Operation would block. |
414 | Named pipe does not exist. |
415 | Named pipe is already connected. |
416 | Error connecting to named pipe. |
417 | Named pipe not connected. |
419 | Unsupported operation, see error message for details. |
424 | Invalid ConnectionID. |