ECC Class
Properties Methods Events Config Settings Errors
The ECC (Elliptic Curve Cryptography) class implements ECDSA, EdDSA, ECDH, and ECIES operations.
Class Name
IPWorksEncrypt_ECC
Procedural Interface
ipworksencrypt_ecc_open(); ipworksencrypt_ecc_close($res); ipworksencrypt_ecc_register_callback($res, $id, $function); ipworksencrypt_ecc_get_last_error($res); ipworksencrypt_ecc_get_last_error_code($res); ipworksencrypt_ecc_set($res, $id, $index, $value); ipworksencrypt_ecc_get($res, $id, $index); ipworksencrypt_ecc_do_computesecret($res); ipworksencrypt_ecc_do_config($res, $configurationstring); ipworksencrypt_ecc_do_createkey($res, $keyalgorithm); ipworksencrypt_ecc_do_decrypt($res); ipworksencrypt_ecc_do_encrypt($res); ipworksencrypt_ecc_do_reset($res); ipworksencrypt_ecc_do_sign($res); ipworksencrypt_ecc_do_verifysignature($res);
Remarks
The ECC (Elliptic Curve Cryptography) class implements ECDSA (Elliptic Curve Digital Signature Algorithm), EdDSA (Edwards-curve Digital Signature Algorithm), ECDH (Elliptic Curve Diffie Hellman), and ECIES (Elliptic Curve Integrated Encryption Scheme) operations. The class supports the following common operations:
- CreateKey allows key creation using algorithms such as secp256r1, secp384r1, secp521r1, X25519, X448, Ed25519, Ed448, and more.
- ComputeSecret computes a shared secret between two parties using a public and private key (ECDH).
- Sign and VerifySignature provides a way to digitally sign data and verify signatures (ECDSA and EdDSA).
- Encrypt and Decrypt encrypt and decrypt data using a public and private key (ECIES).
The class is very flexible and offers many properties and configuration settings to configure it. The sections below detail the use of the class for each of the major operations listed above.
Key Creation and Management
CreateKey creates a new public and private key.
When this method is called, Key is populated with the generated key. The KeyPublicKey and KeyPrivateKey properties hold the PEM formatted public and private key for ease of use. This is helpful for storing or transporting keys more easily.
The KeyAlgorithm parameter specifies the algorithm for which the key is intended to be used. Possible values are:
NIST, Koblitz, and Brainpool Curve Notes
Keys for use with NIST curves (secp256r1, secp384r1, secp521r1), Koblitz curves (secp160k1, secp192k1, secp224k1, secp256k1), and Brainpool curves are made up of a number of individual parameters.
The public key consists of the following parameters:
The private key consists of one value:
Curve25519 and Curve448 Notes
Keys for use with Curve25519 or Curve448 are made up of a private key and public key field.
KeyXPk holds the public key.
KeyXSk holds the private key.
Create Key Example (secp256r1 - PEM)
//Create a key using secp256r1
Ecc ecc = new Ecc();
ecc.CreateKey("secp256r1");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
string privKey = ecc.Key.PrivateKey; //PEM formatted key
string pubKey = ecc.Key.PublicKey; //PEM formatted key
//Load the saved key
ecc.Reset();
ecc.Key.PublicKey = pubKey;
ecc.Key.PrivateKey = privKey;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
Create Key Example (secp256r1 - Raw Key Params)
//Create a key using secp256r1 and store/load the key using the individual params
Ecc ecc = new Ecc();
ecc.CreateKey("secp256r1");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
byte[] K = ecc.Key.KB; //Private key param
byte[] Rx = ecc.Key.RxB; //Public key param
byte[] Ry = ecc.Key.RyB; //Public key param
//Load the saved key
ecc.Reset();
ecc.Key.Algorithm = ECAlgorithms.eaSecp256r1; //This MUST be set manually when using key params directly
ecc.Key.KB = K;
ecc.Key.RxB = Rx;
ecc.Key.RyB = Ry;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
Create Key Example (Ed25519 - PEM)
//Create a key using Ed25519
Ecc ecc = new Ecc();
ecc.CreateKey("Ed25519");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
string privKey = ecc.Key.PrivateKey; //PEM formatted key
string pubKey = ecc.Key.PublicKey; //PEM formatted key
//Load the saved key
ecc.Reset();
ecc.Key.PublicKey = pubKey;
ecc.Key.PrivateKey = privKey;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
Create Key Example (Ed25519 - Raw Key Params)
//Create a key using Ed25519 and store/load the key using the individual params
Ecc ecc = new Ecc();
ecc.CreateKey("Ed25519");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
byte[] XPk = ecc.Key.XPkB; //Public key data
byte[] XSk = ecc.Key.XSkB; //Secret key data
//Load the saved key
ecc.Reset();
ecc.Key.Algorithm = ECAlgorithms.eaEd25519; //This MUST be set manually when using key params directly
ecc.Key.XPkB = XPk;
ecc.Key.XSkB = XSk;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
Compute Secret (ECDH)
This method computes a shared secret using Elliptic Curve Diffie Hellman (ECDH).
When this method is called, the class will use the public key specified by RecipientKeyPublicKey and the private key specified by Key to compute a shared secret, or secret agreement. The ComputeSecretKDF property specifies the Hash or HMAC algorithm that is applied to the raw secret. The resulting value is held by SharedSecret. The following properties are applicable when calling this method:
- Key (required)
- RecipientKeyPublicKey (required)
- ComputeSecretKDF (optional)
See ComputeSecretKDF for details on advanced settings that may be applicable for the chosen algorithm.
Keys created with the Ed25519 and Ed448 algorithms are not supported when calling this method.
Compute Secret Example
//Create a key for Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("X25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Create a key for Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("X25519");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Note: the public keys must be exchanged between parties by some mechanism
//Create the shared secret on Party 1
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv; //Private key of this party
ecc1.RecipientKey.PublicKey = ecc2_pub; //Public key of other party
ecc1.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage
ecc1.ComputeSecret();
Console.WriteLine(ecc1.SharedSecret);
//Create the shared secret on Party 2
ecc2.Reset();
ecc2.Key.PrivateKey = ecc2_priv; //Private key of this party
ecc2.RecipientKey.PublicKey = ecc1_pub; //Public key of other party
ecc2.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage
ecc2.ComputeSecret();
Console.WriteLine(ecc2.SharedSecret); //This will match the shared secret created by ecc1.
Signing (ECDSA and EdDSA)
Sign will create a hash signature using ECDSA or EdDSA. The class will use the key specified by Key to hash the input data and sign the resulting hash.
Key must contain a private key created with a valid ECDSA or EdDSA algorithm. KeyAlgorithm is used to determine the eligibility of the key for this operation. Supported algorithms for signing are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
- Ed25519 and Ed448
See CreateKey for details about key creation and algorithms.
When this method is called, data will be read from the InputFile or InputMessage.
The hash to be signed will be computed using the specified HashAlgorithm. The computed hash is stored in the HashValue property. The signed hash is stored in the HashSignature property.
To sign a hash without first computing it, set HashValue to a previously computed hash for the input data. Note: HashValue is not applicable when signing with a PureEdDSA algorithm such as Ed25519 or Ed448.
The Progress event will fire with updates for the hash computation progress only. The hash signature creation process is quick and does not require progress updates.
After calling Sign, the public key must be sent to the recipient along with HashSignature and the original input data so the other party may perform signature verification.
The following properties are applicable when calling this method:
- Key (required)
- HashAlgorithm (applicable to ECDSA only)
- HashEdDSA (applicable to EdDSA only)
- HashValue (not applicable to PureEdDSA)
- UseHex
The following properties are populated after calling this method:
When the KeyAlgorithm is Ed25519 or Ed448, the following additional parameters are applicable:
EdDSA keys can be used with a PureEdDSA algorithm (Ed25519/Ed448) or a HashEdDSA (Ed25519ph, Ed448ph) algorithm. This is controlled by the HashEdDSA property. By default, the class uses the PureEdDSA algorithm.
The PureEdDSA algorithm requires two passes over the input data but provides collision resilience. The collision resilience of PureEdDSA means that even if it is feasible to compute collisions for the hash function, the algorithm is still secure. When using PureEdDSA, HashValue is not applicable.
When using a HashEdDSA algorithm, the input is pre-hashed and supports a single pass over the data during the signing operation. To enable HashEdDSA, set HashEdDSA to True.
To specify context data when using Ed25519 or Ed448, set EdDSAContext.
Sign And Verify Example (ECDSA)
//Create an ECDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("secp256r1");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - PureEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - HashEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.HashEdDSA = true; //Use "ed25519ph"
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.HashEdDSA = true;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Verifying (ECDSA and EdDSA)
VerifySignature will verify a hash signature and return True if successful or False otherwise.
Before calling this method, specify the input file by setting InputFile or InputMessage.
A public key and the hash signature are required to perform the signature verification. Specify the public key in SignerKey. Specify the hash signature in HashSignature.
When this method is called, the class will compute the hash for the specified file and populate HashValue. It will verify the signature using the specified SignerKey and HashSignature.
To verify the hash signature without first computing the hash, simply specify HashValue before calling this method. Note: HashValue is not applicable when the message was signed with a PureEdDSA algorithm such as Ed25519 or Ed448.
The Progress event will fire with updates for the hash computation progress only. The hash signature verification process is quick and does not require progress updates.
The following properties are applicable when calling this method:
- HashSignature (required)
- SignerKey (required)
- EdDSAContext (applicable to EdDSA only)
- HashAlgorithm (applicable to ECDSA only)
- HashEdDSA (applicable to EdDSA only)
- HashValue (not applicable to PureEdDSA)
- UseHex
Sign And Verify Example (ECDSA)
//Create an ECDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("secp256r1");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - PureEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - HashEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.HashEdDSA = true; //Use "ed25519ph"
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.HashEdDSA = true;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Encrypting (ECIES)
Encrypt encrypts the specified data with the ECDSA public key specified in RecipientKey.
Encryption is performed using ECIES which requires an ECDSA key. RecipientKey must contain an ECDSA key. KeyAlgorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
See CreateKey for details about key creation and algorithms.
When this method is called, the class will encrypt the specified data using ECIES and the encrypted data will be output. To hex encode the output, set UseHex to True.
The following properties are applicable when calling this method:
- EncryptionAlgorithm
- HMACAlgorithm
- HMACOptionalInfo
- HMACKeySize
- IV
- KDF
- KDFHashAlgorithm
- KDFOptionalInfo
- UseHex
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Encrypt and Decrypt Example
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (AES with IV)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
//Use an IV (16 bytes for AES) - In a real environment this should be random
byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc1.IVB = IV;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message and the IV to Party 2
//Decrypt the message using the private key for Party 2 and the IV
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc2.IVB = IV;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (XOR Encryption Algorithm)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (KDF Options)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.KDF = "KDF1"; //Use KDF1
ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.KDF = "KDF1";
ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f");
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Decrypting (ECIES)
Decrypt decrypts the specified data with the ECDSA private key specified in Key.
Decryption is performed using ECIES which requires an ECDSA key. Key must contain an ECDSA key. KeyAlgorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
See CreateKey for details about key creation and algorithms.
When this method is called, the class will decrypt the specified data using ECIES and the decrypted data will be output. If the input data was originally hex encoded, set UseHex to True.
The following properties are applicable when calling this method:
- EncryptionAlgorithm
- HMACAlgorithm
- HMACOptionalInfo
- HMACKeySize
- IV
- KDF
- KDFHashAlgorithm
- KDFOptionalInfo
- UseHex
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Encrypt and Decrypt Example
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (AES with IV)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
//Use an IV (16 bytes for AES) - In a real environment this should be random
byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc1.IVB = IV;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message and the IV to Party 2
//Decrypt the message using the private key for Party 2 and the IV
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc2.IVB = IV;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (XOR Encryption Algorithm)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (KDF Options)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.KDF = "KDF1"; //Use KDF1
ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.KDF = "KDF1";
ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f");
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
CertEffectiveDate | The date on which this certificate becomes valid. |
CertExpirationDate | The date on which the certificate expires. |
CertExtendedKeyUsage | A comma-delimited list of extended key usage identifiers. |
CertFingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
CertFingerprintSHA1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
CertFingerprintSHA256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
CertIssuer | The issuer of the certificate. |
CertPrivateKey | The private key of the certificate (if available). |
CertPrivateKeyAvailable | Whether a PrivateKey is available for the selected certificate. |
CertPrivateKeyContainer | The name of the PrivateKey container for the certificate (if available). |
CertPublicKey | The public key of the certificate. |
CertPublicKeyAlgorithm | The textual description of the certificate's public key algorithm. |
CertPublicKeyLength | The length of the certificate's public key (in bits). |
CertSerialNumber | The serial number of the certificate encoded as a string. |
CertSignatureAlgorithm | The text description of the certificate's signature algorithm. |
CertStore | The name of the certificate store for the client certificate. |
CertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
CertStoreType | The type of certificate store for this certificate. |
CertSubjectAltNames | Comma-separated lists of alternative subject names for the certificate. |
CertThumbprintMD5 | The MD5 hash of the certificate. |
CertThumbprintSHA1 | The SHA-1 hash of the certificate. |
CertThumbprintSHA256 | The SHA-256 hash of the certificate. |
CertUsage | The text description of UsageFlags . |
CertUsageFlags | The flags that show intended use for the certificate. |
CertVersion | The certificate's version number. |
CertSubject | The subject of the certificate used for client authentication. |
CertEncoded | The certificate (PEM/Base64 encoded). |
ComputeSecretKDF | The key derivation function. |
EncryptionAlgorithm | The encryption algorithm to use. |
HashAlgorithm | The hash algorithm used for hash computation. |
HashEdDSA | Whether to use HashEdDSA when signing with an Ed25519 or Ed448 key. |
HashSignature | The hash signature. |
HashValue | The hash value of the data. |
HMACAlgorithm | The HMAC algorithm to use during encryption. |
InputFile | The file to process. |
InputMessage | The message to process. |
IV | The initialization vector (IV) used when encrypting. |
KDF | The key derivation function used during encryption and decryption. |
KDFHashAlgorithm | The KDF hash algorithm to use when encrypting and decrypting. |
KeyAlgorithm | This property holds the algorithm associated with the key. |
KeyK | Represents the private key (K) parameter. |
KeyPrivateKey | This property is a PEM formatted private key. |
KeyPublicKey | This property is a PEM formatted public key. |
KeyRx | Represents the public key's Rx parameter. |
KeyRy | Represents the public key's Ry parameter. |
KeyXPk | Holds the public key data. |
KeyXSk | Holds the private key data. |
OutputFile | The output file when encrypting or decrypting. |
OutputMessage | The output message when encrypting or decrypting. |
Overwrite | Indicates whether or not the class should overwrite files. |
RecipientCertEffectiveDate | The date on which this certificate becomes valid. |
RecipientCertExpirationDate | The date on which the certificate expires. |
RecipientCertExtendedKeyUsage | A comma-delimited list of extended key usage identifiers. |
RecipientCertFingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
RecipientCertFingerprintSHA1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
RecipientCertFingerprintSHA256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
RecipientCertIssuer | The issuer of the certificate. |
RecipientCertPrivateKey | The private key of the certificate (if available). |
RecipientCertPrivateKeyAvailable | Whether a PrivateKey is available for the selected certificate. |
RecipientCertPrivateKeyContainer | The name of the PrivateKey container for the certificate (if available). |
RecipientCertPublicKey | The public key of the certificate. |
RecipientCertPublicKeyAlgorithm | The textual description of the certificate's public key algorithm. |
RecipientCertPublicKeyLength | The length of the certificate's public key (in bits). |
RecipientCertSerialNumber | The serial number of the certificate encoded as a string. |
RecipientCertSignatureAlgorithm | The text description of the certificate's signature algorithm. |
RecipientCertStore | The name of the certificate store for the client certificate. |
RecipientCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
RecipientCertStoreType | The type of certificate store for this certificate. |
RecipientCertSubjectAltNames | Comma-separated lists of alternative subject names for the certificate. |
RecipientCertThumbprintMD5 | The MD5 hash of the certificate. |
RecipientCertThumbprintSHA1 | The SHA-1 hash of the certificate. |
RecipientCertThumbprintSHA256 | The SHA-256 hash of the certificate. |
RecipientCertUsage | The text description of UsageFlags . |
RecipientCertUsageFlags | The flags that show intended use for the certificate. |
RecipientCertVersion | The certificate's version number. |
RecipientCertSubject | The subject of the certificate used for client authentication. |
RecipientCertEncoded | The certificate (PEM/Base64 encoded). |
RecipientKeyAlgorithm | This property holds the algorithm associated with the key. |
RecipientKeyPublicKey | This property is a PEM formatted public key. |
RecipientKeyRx | Represents the public key's Rx parameter. |
RecipientKeyRy | Represents the public key's Ry parameter. |
RecipientKeyXPk | Holds the public key data. |
SharedSecret | The computed shared secret. |
SignerCertEffectiveDate | The date on which this certificate becomes valid. |
SignerCertExpirationDate | The date on which the certificate expires. |
SignerCertExtendedKeyUsage | A comma-delimited list of extended key usage identifiers. |
SignerCertFingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
SignerCertFingerprintSHA1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
SignerCertFingerprintSHA256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
SignerCertIssuer | The issuer of the certificate. |
SignerCertPrivateKey | The private key of the certificate (if available). |
SignerCertPrivateKeyAvailable | Whether a PrivateKey is available for the selected certificate. |
SignerCertPrivateKeyContainer | The name of the PrivateKey container for the certificate (if available). |
SignerCertPublicKey | The public key of the certificate. |
SignerCertPublicKeyAlgorithm | The textual description of the certificate's public key algorithm. |
SignerCertPublicKeyLength | The length of the certificate's public key (in bits). |
SignerCertSerialNumber | The serial number of the certificate encoded as a string. |
SignerCertSignatureAlgorithm | The text description of the certificate's signature algorithm. |
SignerCertStore | The name of the certificate store for the client certificate. |
SignerCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SignerCertStoreType | The type of certificate store for this certificate. |
SignerCertSubjectAltNames | Comma-separated lists of alternative subject names for the certificate. |
SignerCertThumbprintMD5 | The MD5 hash of the certificate. |
SignerCertThumbprintSHA1 | The SHA-1 hash of the certificate. |
SignerCertThumbprintSHA256 | The SHA-256 hash of the certificate. |
SignerCertUsage | The text description of UsageFlags . |
SignerCertUsageFlags | The flags that show intended use for the certificate. |
SignerCertVersion | The certificate's version number. |
SignerCertSubject | The subject of the certificate used for client authentication. |
SignerCertEncoded | The certificate (PEM/Base64 encoded). |
SignerKeyAlgorithm | This property holds the algorithm associated with the key. |
SignerKeyPublicKey | This property is a PEM formatted public key. |
SignerKeyRx | Represents the public key's Rx parameter. |
SignerKeyRy | Represents the public key's Ry parameter. |
SignerKeyXPk | Holds the public key data. |
UseHex | Whether binary values are hex encoded. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
ComputeSecret | Computes a shared secret. |
Config | Sets or retrieves a configuration setting. |
CreateKey | Creates a new key. |
Decrypt | Decrypted the specified data. |
Encrypt | Encrypts the specified data. |
Reset | Resets the class. |
Sign | Creates a hash signature using ECDSA or EdDSA. |
VerifySignature | Verifies the signature for the specified data. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Error | Fired when information is available about errors during data delivery. |
Progress | Fired as progress is made. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
AppendSecret | An optional string to append to the secret agreement. |
CNGECDHKey | The CNG ECDH key. |
CNGECDSAKey | The CNG ECDSA key. |
ConcatAlgorithmId | The AlgorithmId subfield of the OtherInfo field. |
ConcatHashAlgorithm | The hash algorithm to use when ComputeSecretKDF is Concat. |
ConcatPartyUInfo | The PartyUInfo subfield of the OtherInfo field. |
ConcatPartyVInfo | The PartyVInfo subfield of the OtherInfo field. |
ConcatSuppPrivInfo | The SuppPrivInfo subfield of the OtherInfo field. |
ConcatSuppPubInfo | The SuppPubInfo subfield of the OtherInfo field. |
ECDSASignatureFormat | The format of the HashSignature when using ECDSA keys. |
EdDSAContext | A hex encoded string holding the bytes of the context when signing or verifying with Ed25519ctx. |
EncryptionKeySize | The encryption key size. |
HMACKey | A key to use when generating a Hash-based Message Authentication Code (HMAC). |
HMACKeySize | The HMAC key size to be used during encryption. |
HMACOptionalInfo | Optional data to be used during encryption and decryption during the HMAC step. |
KDFOptionalInfo | Optional data to be used during encryption and decryption during the key derivation step. |
PrependSecret | An optional string to prepend to the secret agreement. |
StrictKeyValidation | Whether to validate provided public keys based on private keys. |
TLSLabel | The TLS PRF label. |
TLSSeed | The TLS PRF Seed. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
CertEffectiveDate Property (IPWorksEncrypt_ECC Class)
The date on which this certificate becomes valid.
Object Oriented Interface
public function getCertEffectiveDate();
Procedural Interface
ipworksencrypt_ecc_get($res, 1 );
Default Value
''
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
Data Type
String
CertExpirationDate Property (IPWorksEncrypt_ECC Class)
The date on which the certificate expires.
Object Oriented Interface
public function getCertExpirationDate();
Procedural Interface
ipworksencrypt_ecc_get($res, 2 );
Default Value
''
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
Data Type
String
CertExtendedKeyUsage Property (IPWorksEncrypt_ECC Class)
A comma-delimited list of extended key usage identifiers.
Object Oriented Interface
public function getCertExtendedKeyUsage();
Procedural Interface
ipworksencrypt_ecc_get($res, 3 );
Default Value
''
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
Data Type
String
CertFingerprint Property (IPWorksEncrypt_ECC Class)
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Object Oriented Interface
public function getCertFingerprint();
Procedural Interface
ipworksencrypt_ecc_get($res, 4 );
Default Value
''
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
Data Type
String
CertFingerprintSHA1 Property (IPWorksEncrypt_ECC Class)
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Object Oriented Interface
public function getCertFingerprintSHA1();
Procedural Interface
ipworksencrypt_ecc_get($res, 5 );
Default Value
''
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
Data Type
String
CertFingerprintSHA256 Property (IPWorksEncrypt_ECC Class)
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Object Oriented Interface
public function getCertFingerprintSHA256();
Procedural Interface
ipworksencrypt_ecc_get($res, 6 );
Default Value
''
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
Data Type
String
CertIssuer Property (IPWorksEncrypt_ECC Class)
The issuer of the certificate.
Object Oriented Interface
public function getCertIssuer();
Procedural Interface
ipworksencrypt_ecc_get($res, 7 );
Default Value
''
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
Data Type
String
CertPrivateKey Property (IPWorksEncrypt_ECC Class)
The private key of the certificate (if available).
Object Oriented Interface
public function getCertPrivateKey();
Procedural Interface
ipworksencrypt_ecc_get($res, 8 );
Default Value
''
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The CertPrivateKey may be available but not exportable. In this case, CertPrivateKey returns an empty string.
This property is read-only.
Data Type
String
CertPrivateKeyAvailable Property (IPWorksEncrypt_ECC Class)
Whether a PrivateKey is available for the selected certificate.
Object Oriented Interface
public function getCertPrivateKeyAvailable();
Procedural Interface
ipworksencrypt_ecc_get($res, 9 );
Default Value
false
Remarks
Whether a CertPrivateKey is available for the selected certificate. If CertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
Data Type
Boolean
CertPrivateKeyContainer Property (IPWorksEncrypt_ECC Class)
The name of the PrivateKey container for the certificate (if available).
Object Oriented Interface
public function getCertPrivateKeyContainer();
Procedural Interface
ipworksencrypt_ecc_get($res, 10 );
Default Value
''
Remarks
The name of the CertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
Data Type
String
CertPublicKey Property (IPWorksEncrypt_ECC Class)
The public key of the certificate.
Object Oriented Interface
public function getCertPublicKey();
Procedural Interface
ipworksencrypt_ecc_get($res, 11 );
Default Value
''
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
Data Type
String
CertPublicKeyAlgorithm Property (IPWorksEncrypt_ECC Class)
The textual description of the certificate's public key algorithm.
Object Oriented Interface
public function getCertPublicKeyAlgorithm();
Procedural Interface
ipworksencrypt_ecc_get($res, 12 );
Default Value
''
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
Data Type
String
CertPublicKeyLength Property (IPWorksEncrypt_ECC Class)
The length of the certificate's public key (in bits).
Object Oriented Interface
public function getCertPublicKeyLength();
Procedural Interface
ipworksencrypt_ecc_get($res, 13 );
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
Data Type
Integer
CertSerialNumber Property (IPWorksEncrypt_ECC Class)
The serial number of the certificate encoded as a string.
Object Oriented Interface
public function getCertSerialNumber();
Procedural Interface
ipworksencrypt_ecc_get($res, 14 );
Default Value
''
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
Data Type
String
CertSignatureAlgorithm Property (IPWorksEncrypt_ECC Class)
The text description of the certificate's signature algorithm.
Object Oriented Interface
public function getCertSignatureAlgorithm();
Procedural Interface
ipworksencrypt_ecc_get($res, 15 );
Default Value
''
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
Data Type
String
CertStore Property (IPWorksEncrypt_ECC Class)
The name of the certificate store for the client certificate.
Object Oriented Interface
public function getCertStore(); public function setCertStore($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 16 ); ipworksencrypt_ecc_set($res, 16, $value );
Default Value
'MY'
Remarks
The name of the certificate store for the client certificate.
The CertStoreType property denotes the type of the certificate store specified by CertStore. If the store is password-protected, specify the password in CertStorePassword.
CertStore is used in conjunction with the CertSubject property to specify client certificates. If CertStore has a value, and CertSubject or CertEncoded is set, a search for a certificate is initiated. Please see the CertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Binary String
CertStorePassword Property (IPWorksEncrypt_ECC Class)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Object Oriented Interface
public function getCertStorePassword(); public function setCertStorePassword($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 17 ); ipworksencrypt_ecc_set($res, 17, $value );
Default Value
''
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
CertStoreType Property (IPWorksEncrypt_ECC Class)
The type of certificate store for this certificate.
Object Oriented Interface
public function getCertStoreType(); public function setCertStoreType($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 18 ); ipworksencrypt_ecc_set($res, 18, $value );
Default Value
0
Remarks
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the CertStore and set CertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
CertSubjectAltNames Property (IPWorksEncrypt_ECC Class)
Comma-separated lists of alternative subject names for the certificate.
Object Oriented Interface
public function getCertSubjectAltNames();
Procedural Interface
ipworksencrypt_ecc_get($res, 19 );
Default Value
''
Remarks
Comma-separated lists of alternative subject names for the certificate.
This property is read-only.
Data Type
String
CertThumbprintMD5 Property (IPWorksEncrypt_ECC Class)
The MD5 hash of the certificate.
Object Oriented Interface
public function getCertThumbprintMD5();
Procedural Interface
ipworksencrypt_ecc_get($res, 20 );
Default Value
''
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
CertThumbprintSHA1 Property (IPWorksEncrypt_ECC Class)
The SHA-1 hash of the certificate.
Object Oriented Interface
public function getCertThumbprintSHA1();
Procedural Interface
ipworksencrypt_ecc_get($res, 21 );
Default Value
''
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
CertThumbprintSHA256 Property (IPWorksEncrypt_ECC Class)
The SHA-256 hash of the certificate.
Object Oriented Interface
public function getCertThumbprintSHA256();
Procedural Interface
ipworksencrypt_ecc_get($res, 22 );
Default Value
''
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
CertUsage Property (IPWorksEncrypt_ECC Class)
The text description of UsageFlags .
Object Oriented Interface
public function getCertUsage();
Procedural Interface
ipworksencrypt_ecc_get($res, 23 );
Default Value
''
Remarks
The text description of CertUsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
Data Type
String
CertUsageFlags Property (IPWorksEncrypt_ECC Class)
The flags that show intended use for the certificate.
Object Oriented Interface
public function getCertUsageFlags();
Procedural Interface
ipworksencrypt_ecc_get($res, 24 );
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of CertUsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the CertUsage property for a text representation of CertUsageFlags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
Data Type
Integer
CertVersion Property (IPWorksEncrypt_ECC Class)
The certificate's version number.
Object Oriented Interface
public function getCertVersion();
Procedural Interface
ipworksencrypt_ecc_get($res, 25 );
Default Value
''
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
Data Type
String
CertSubject Property (IPWorksEncrypt_ECC Class)
The subject of the certificate used for client authentication.
Object Oriented Interface
public function getCertSubject(); public function setCertSubject($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 26 ); ipworksencrypt_ecc_set($res, 26, $value );
Default Value
''
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
CertEncoded Property (IPWorksEncrypt_ECC Class)
The certificate (PEM/Base64 encoded).
Object Oriented Interface
public function getCertEncoded(); public function setCertEncoded($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 27 ); ipworksencrypt_ecc_set($res, 27, $value );
Default Value
''
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The CertStore and CertSubject properties also may be used to specify a certificate.
When CertEncoded is set, a search is initiated in the current CertStore for the private key of the certificate. If the key is found, CertSubject is updated to reflect the full subject of the selected certificate; otherwise, CertSubject is set to an empty string.
This property is not available at design time.
Data Type
Binary String
ComputeSecretKDF Property (IPWorksEncrypt_ECC Class)
The key derivation function.
Object Oriented Interface
public function getComputeSecretKDF(); public function setComputeSecretKDF($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 28 ); ipworksencrypt_ecc_set($res, 28, $value );
Default Value
1
Remarks
This property specifies the key derivation function (KDF) and algorithm to use when calling ComputeSecret.
Possible values are:
0 (ekdSHA1) | SHA-1 |
1 (ekdSHA256 - default) | SHA-256 |
2 (ekdSHA384) | SHA-384 |
3 (ekdSHA512) | SHA-512 |
4 (ekdMD2) | MD2 |
5 (ekdMD4) | MD4 |
6 (ekdMD5) | MD5 |
7 (ekdHMACSHA1) | HMAC-SHA1 |
8 (ekdHMACSHA256) | HMAC-SHA256 |
9 (ekdHMACSHA384) | HMAC-SHA384 |
10 (ekdHMACSHA512) | HMAC-SHA512 |
11 (ekdHMACMD5) | HMAC-MD5 |
12 (ekdTLS) | TLS |
13 (ekdConcat) | Concat |
HMAC Notes
If an HMAC algorithm is selected, HMACKey may optionally be set to specify the key.
TLS Notes
When set to TLS, TLSSeed and TLSLabel are required. In addition, PrependSecret and AppendSecret are not applicable.
Concat Notes
If Concat is selected, the following configuration settings are applicable:
- ConcatAlgorithmId (required)
- ConcatPartyUInfo (required)
- ConcatPartyVInfo (required)
- ConcatSuppPubInfo
- ConcatSuppPrivInfo
- ConcatHashAlgorithm
Data Type
Integer
EncryptionAlgorithm Property (IPWorksEncrypt_ECC Class)
The encryption algorithm to use.
Object Oriented Interface
public function getEncryptionAlgorithm(); public function setEncryptionAlgorithm($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 29 ); ipworksencrypt_ecc_set($res, 29, $value );
Default Value
0
Remarks
This setting specifies the encryption algorithm to use when Encrypt is called. This must also be set before calling Decrypt to match the algorithm used during the initial encryption.
Possible values are:
- 0 (iesAES - default)
- 1 (iesTripleDES)
- 2 (iesXOR)
AES Notes
When EncryptionAlgorithm is set to iesAES, AES CBC with a default key size of 256 bits is used. To specify a different key size, set EncryptionKeySize.Data Type
Integer
HashAlgorithm Property (IPWorksEncrypt_ECC Class)
The hash algorithm used for hash computation.
Object Oriented Interface
public function getHashAlgorithm(); public function setHashAlgorithm($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 30 ); ipworksencrypt_ecc_set($res, 30, $value );
Default Value
2
Remarks
This property specifies the hash algorithm used for hash computation. This is only applicable when calling Sign or VerifySignature and KeyAlgorithm specifies a ECDSA key (NIST, Koblitz, or Brainpool curve). Possible values are:
0 (ehaSHA1) | SHA-1 |
1 (ehaSHA224) | SHA-224 |
2 (ehaSHA256 - default) | SHA-256 |
3 (ehaSHA384) | SHA-384 |
4 (ehaSHA512) | SHA-512 |
5 (ehaMD2) | MD2 |
6 (ehaMD4) | MD4 |
7 (ehaMD5) | MD5 |
8 (ehaMD5SHA1) | MD5SHA-1 |
9 (ehaRIPEMD160) | RIPEMD-160 |
When KeyAlgorithm specifies an EdDSA key, this setting is not applicable as the hash algorithm is defined by the specification as SHA-512 for Ed25519 and SHAKE-256 for Ed448.
Data Type
Integer
HashEdDSA Property (IPWorksEncrypt_ECC Class)
Whether to use HashEdDSA when signing with an Ed25519 or Ed448 key.
Object Oriented Interface
public function getHashEdDSA(); public function setHashEdDSA($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 31 ); ipworksencrypt_ecc_set($res, 31, $value );
Default Value
false
Remarks
This setting specifies whether to use the HashEdDSA algorithm when signing and verifying with Ed25519 or Ed448 keys.
If set to True, the class will use the HashEdDSA algorithm (Ed25519ph or Ed448ph) when signing and verifying. When using a HashEdDSA algorithm, the input is pre-hashed and supports a single pass over the data during the signing operation.
If set to False (default), the class will use the PureEdDSA algorithm (Ed25519 or Ed448) when signing. The PureEdDSA requires two passes over the input data but provides collision resilience. The collision resilience of PureEdDSA means that even if it is feasible to compute collisions for the hash function, the algorithm is still secure.
This property is only applicable when calling Sign and KeyAlgorithm is set to Ed25519 or Ed448.
If this property is set before calling Sign, it must be set before calling VerifySignature.
Data Type
Boolean
HashSignature Property (IPWorksEncrypt_ECC Class)
The hash signature.
Object Oriented Interface
public function getHashSignature(); public function setHashSignature($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 32 ); ipworksencrypt_ecc_set($res, 32, $value );
Default Value
''
Remarks
This property holds the computed hash signature. This is populated after calling Sign. This must be set before calling VerifySignature.
Data Type
Binary String
HashValue Property (IPWorksEncrypt_ECC Class)
The hash value of the data.
Object Oriented Interface
public function getHashValue(); public function setHashValue($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 33 ); ipworksencrypt_ecc_set($res, 33, $value );
Default Value
''
Remarks
This property holds the computed hash value for the specified data. This is populated when calling Sign or VerifySignature when an input file is specified by setting InputFile or InputMessage.
Pre-existing hash values may be set to this property before calling Sign or VerifySignature. If you know the hash value prior to using the class, you may specify the pre-computed hash value here.
This setting is not applicable to PureEdDSA algorithms. If KeyAlgorithm is Ed25519 or Ed448 and HashEdDSA is False (default), the PureEdDSA algorithm is used and HashValue is not applicable.
Hash Notes
The class will determine whether or not to recompute the hash based on the properties that are set. If a file is specified by InputFile or InputMessage, the hash will be recomputed when calling Sign or VerifySignature. If the HashValue property is set, the class will only sign the hash or verify the hash signature. Setting InputFile or InputMessage clears the HashValue property. Setting the HashValue property clears the input file selection.
Data Type
Binary String
HMACAlgorithm Property (IPWorksEncrypt_ECC Class)
The HMAC algorithm to use during encryption.
Object Oriented Interface
public function getHMACAlgorithm(); public function setHMACAlgorithm($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 34 ); ipworksencrypt_ecc_set($res, 34, $value );
Default Value
2
Remarks
This property specifies the HMAC algorithm to use when encrypting. The HMAC algorithm is used when Encrypt and Decrypt are called to protect and verify data. Possible values are:
- 0 (iesHMACSHA1)
- 1 (iesHMACSHA224)
- 2 (iesHMACSHA256 - Default)
- 3 (iesHMACSHA384)
- 4 (iesHMACSHA512)
- 5 (iesHMACRIPEMD160)
This property is only applicable when calling Encrypt or Decrypt.
Data Type
Integer
InputFile Property (IPWorksEncrypt_ECC Class)
The file to process.
Object Oriented Interface
public function getInputFile(); public function setInputFile($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 35 ); ipworksencrypt_ecc_set($res, 35, $value );
Default Value
''
Remarks
This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Data Type
String
InputMessage Property (IPWorksEncrypt_ECC Class)
The message to process.
Object Oriented Interface
public function getInputMessage(); public function setInputMessage($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 36 ); ipworksencrypt_ecc_set($res, 36, $value );
Default Value
''
Remarks
This property specifies the message to be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Data Type
Binary String
IV Property (IPWorksEncrypt_ECC Class)
The initialization vector (IV) used when encrypting.
Object Oriented Interface
public function getIV(); public function setIV($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 37 ); ipworksencrypt_ecc_set($res, 37, $value );
Default Value
''
Remarks
This property optionally specifies an IV to be used when calling Encrypt or Decrypt. If specified, the IV is used by EncryptionAlgorithm during encryption.
If not specified, the class will create an IV filled with null bytes (zeros). Since the encryption key is only used once, the use of null bytes in the IV is considered acceptable and is a standard practice.
The length of the IV should be as follows:
EncryptionAlgorithm | IV Length (in bytes) |
AES | 16 |
3DES | 8 |
This setting is not applicable when EncryptionAlgorithm is set to XOR.
Data Type
Binary String
KDF Property (IPWorksEncrypt_ECC Class)
The key derivation function used during encryption and decryption.
Object Oriented Interface
public function getKDF(); public function setKDF($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 38 ); ipworksencrypt_ecc_set($res, 38, $value );
Default Value
'KDF2'
Remarks
This property specifies the key derivation function (KDF) to use when encrypting and decrypting. Possible values are:
- "KDF1"
- "KDF2" (default)
This property is only applicable when calling Encrypt or Decrypt.
Data Type
String
KDFHashAlgorithm Property (IPWorksEncrypt_ECC Class)
The KDF hash algorithm to use when encrypting and decrypting.
Object Oriented Interface
public function getKDFHashAlgorithm(); public function setKDFHashAlgorithm($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 39 ); ipworksencrypt_ecc_set($res, 39, $value );
Default Value
2
Remarks
This property specifies the hash algorithm to use when deriving a key using the specified KDF. Possible values are:
- 0 (iesSHA1)
- 1 (iesSHA224)
- 2 (iesSHA256)
- 3 (iesSHA384)
- 4 (iesSHA512)
This property is only applicable when calling Encrypt or Decrypt.
Data Type
Integer
KeyAlgorithm Property (IPWorksEncrypt_ECC Class)
This property holds the algorithm associated with the key.
Object Oriented Interface
public function getKeyAlgorithm(); public function setKeyAlgorithm($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 40 ); ipworksencrypt_ecc_set($res, 40, $value );
Default Value
0
Remarks
This property holds the algorithm associated with the key. Possible values are:
- 0 (eaSecp256r1)
- 1 (eaSecp384r1)
- 2 (eaSecp521r1)
- 3 (eaEd25519)
- 4 (eaEd448)
- 5 (eaX25519)
- 6 (eaX448)
- 7 (eaSecp160k1)
- 8 (eaSecp192k1)
- 9 (eaSecp224k1)
- 10 (eaSecp256k1)
- 11 (eaBrainpoolP160r1)
- 12 (eaBrainpoolP192r1)
- 13 (eaBrainpoolP224r1)
- 14 (eaBrainpoolP256r1)
- 15 (eaBrainpoolP320r1)
- 16 (eaBrainpoolP384r1)
- 17 (eaBrainpoolP512r1)
- 18 (eaBrainpoolP160t1)
- 19 (eaBrainpoolP192t1)
- 20 (eaBrainpoolP224t1)
- 21 (eaBrainpoolP256t1)
- 22 (eaBrainpoolP320t1)
- 23 (eaBrainpoolP384t1)
- 24 (eaBrainpoolP512t1)
When assigning a key using the PEM formatted KeyPrivateKey and KeyPublicKey, the KeyAlgorithm property will be automatically updated with the key algorithm.
When assigning a key using the raw key parameters (KeyK, KeyRx, and KeyRy for NIST or KeyXPk, and KeyXSk for Curve25519/Curve448), the KeyAlgorithm property must be set manually to the key algorithm.
The following table summarizes the supported operations for keys created with each algorithm:
KeyAlgorithm | Supported Operations |
secp256r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp384r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp521r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
X25519 | ECDH (ComputeSecret) |
X448 | ECDH (ComputeSecret) |
Ed25519 | EdDSA (Sign and VerifySignature) |
Ed448 | EdDSA (Sign and VerifySignature) |
secp160k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp192k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp224k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp256k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP160r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP192r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP224r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP256r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP320r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP384r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP512r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP160t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP192t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP224t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP256t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP320t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP384t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP512t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
Data Type
Integer
KeyK Property (IPWorksEncrypt_ECC Class)
Represents the private key (K) parameter.
Object Oriented Interface
public function getKeyK(); public function setKeyK($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 41 ); ipworksencrypt_ecc_set($res, 41, $value );
Default Value
''
Remarks
Represents the private key (K) parameter.
Note: This value is only applicable when using a NIST, Koblitz, or Brainpool curve.
Data Type
Binary String
KeyPrivateKey Property (IPWorksEncrypt_ECC Class)
This property is a PEM formatted private key.
Object Oriented Interface
public function getKeyPrivateKey(); public function setKeyPrivateKey($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 42 ); ipworksencrypt_ecc_set($res, 42, $value );
Default Value
''
Remarks
This property is a PEM formatted private key. The purpose of this property is to allow easier management of the private key parameters by using only a single value.
Data Type
String
KeyPublicKey Property (IPWorksEncrypt_ECC Class)
This property is a PEM formatted public key.
Object Oriented Interface
public function getKeyPublicKey(); public function setKeyPublicKey($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 43 ); ipworksencrypt_ecc_set($res, 43, $value );
Default Value
''
Remarks
This property is a PEM formatted public key. The purpose of this property is to allow easier management of the public key parameters by using only a single value.
Data Type
String
KeyRx Property (IPWorksEncrypt_ECC Class)
Represents the public key's Rx parameter.
Object Oriented Interface
public function getKeyRx(); public function setKeyRx($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 44 ); ipworksencrypt_ecc_set($res, 44, $value );
Default Value
''
Remarks
Represents the public key's Rx parameter.
Note: This value is only applicable when using a NIST, Koblitz, or Brainpool curve.
Data Type
Binary String
KeyRy Property (IPWorksEncrypt_ECC Class)
Represents the public key's Ry parameter.
Object Oriented Interface
public function getKeyRy(); public function setKeyRy($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 45 ); ipworksencrypt_ecc_set($res, 45, $value );
Default Value
''
Remarks
Represents the public key's Ry parameter.
Note: This value is only applicable when using a NIST, Koblitz, or Brainpool curve.
Data Type
Binary String
KeyXPk Property (IPWorksEncrypt_ECC Class)
Holds the public key data.
Object Oriented Interface
public function getKeyXPk(); public function setKeyXPk($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 46 ); ipworksencrypt_ecc_set($res, 46, $value );
Default Value
''
Remarks
Holds the public key data.
Note: This value is only applicable when using Curve25519 or Curve448.
Data Type
Binary String
KeyXSk Property (IPWorksEncrypt_ECC Class)
Holds the private key data.
Object Oriented Interface
public function getKeyXSk(); public function setKeyXSk($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 47 ); ipworksencrypt_ecc_set($res, 47, $value );
Default Value
''
Remarks
Holds the private key data.
Note: This value is only applicable when using Curve25519 or Curve448.
Data Type
Binary String
OutputFile Property (IPWorksEncrypt_ECC Class)
The output file when encrypting or decrypting.
Object Oriented Interface
public function getOutputFile(); public function setOutputFile($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 48 ); ipworksencrypt_ecc_set($res, 48, $value );
Default Value
''
Remarks
This property specifies the file to which the output will be written when Encrypt or Decrypt is called. This may be set to an absolute or relative path.
This property is only applicable to Encrypt and Decrypt.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Data Type
String
OutputMessage Property (IPWorksEncrypt_ECC Class)
The output message when encrypting or decrypting.
Object Oriented Interface
public function getOutputMessage();
Procedural Interface
ipworksencrypt_ecc_get($res, 49 );
Default Value
''
Remarks
This property will be populated with the output after calling Encrypt or Decrypt if OutputFile is not set.
This property is only applicable to Encrypt and Decrypt.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
This property is read-only and not available at design time.
Data Type
Binary String
Overwrite Property (IPWorksEncrypt_ECC Class)
Indicates whether or not the class should overwrite files.
Object Oriented Interface
public function getOverwrite(); public function setOverwrite($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 50 ); ipworksencrypt_ecc_set($res, 50, $value );
Default Value
false
Remarks
This property indicates whether or not the class will overwrite OutputFile. If Overwrite is False, an error will be thrown whenever OutputFile exists before an operation. The default value is False.
Data Type
Boolean
RecipientCertEffectiveDate Property (IPWorksEncrypt_ECC Class)
The date on which this certificate becomes valid.
Object Oriented Interface
public function getRecipientCertEffectiveDate();
Procedural Interface
ipworksencrypt_ecc_get($res, 51 );
Default Value
''
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
Data Type
String
RecipientCertExpirationDate Property (IPWorksEncrypt_ECC Class)
The date on which the certificate expires.
Object Oriented Interface
public function getRecipientCertExpirationDate();
Procedural Interface
ipworksencrypt_ecc_get($res, 52 );
Default Value
''
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
Data Type
String
RecipientCertExtendedKeyUsage Property (IPWorksEncrypt_ECC Class)
A comma-delimited list of extended key usage identifiers.
Object Oriented Interface
public function getRecipientCertExtendedKeyUsage();
Procedural Interface
ipworksencrypt_ecc_get($res, 53 );
Default Value
''
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
Data Type
String
RecipientCertFingerprint Property (IPWorksEncrypt_ECC Class)
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Object Oriented Interface
public function getRecipientCertFingerprint();
Procedural Interface
ipworksencrypt_ecc_get($res, 54 );
Default Value
''
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
Data Type
String
RecipientCertFingerprintSHA1 Property (IPWorksEncrypt_ECC Class)
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Object Oriented Interface
public function getRecipientCertFingerprintSHA1();
Procedural Interface
ipworksencrypt_ecc_get($res, 55 );
Default Value
''
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
Data Type
String
RecipientCertFingerprintSHA256 Property (IPWorksEncrypt_ECC Class)
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Object Oriented Interface
public function getRecipientCertFingerprintSHA256();
Procedural Interface
ipworksencrypt_ecc_get($res, 56 );
Default Value
''
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
Data Type
String
RecipientCertIssuer Property (IPWorksEncrypt_ECC Class)
The issuer of the certificate.
Object Oriented Interface
public function getRecipientCertIssuer();
Procedural Interface
ipworksencrypt_ecc_get($res, 57 );
Default Value
''
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
Data Type
String
RecipientCertPrivateKey Property (IPWorksEncrypt_ECC Class)
The private key of the certificate (if available).
Object Oriented Interface
public function getRecipientCertPrivateKey();
Procedural Interface
ipworksencrypt_ecc_get($res, 58 );
Default Value
''
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The RecipientCertPrivateKey may be available but not exportable. In this case, RecipientCertPrivateKey returns an empty string.
This property is read-only.
Data Type
String
RecipientCertPrivateKeyAvailable Property (IPWorksEncrypt_ECC Class)
Whether a PrivateKey is available for the selected certificate.
Object Oriented Interface
public function getRecipientCertPrivateKeyAvailable();
Procedural Interface
ipworksencrypt_ecc_get($res, 59 );
Default Value
false
Remarks
Whether a RecipientCertPrivateKey is available for the selected certificate. If RecipientCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
Data Type
Boolean
RecipientCertPrivateKeyContainer Property (IPWorksEncrypt_ECC Class)
The name of the PrivateKey container for the certificate (if available).
Object Oriented Interface
public function getRecipientCertPrivateKeyContainer();
Procedural Interface
ipworksencrypt_ecc_get($res, 60 );
Default Value
''
Remarks
The name of the RecipientCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
Data Type
String
RecipientCertPublicKey Property (IPWorksEncrypt_ECC Class)
The public key of the certificate.
Object Oriented Interface
public function getRecipientCertPublicKey();
Procedural Interface
ipworksencrypt_ecc_get($res, 61 );
Default Value
''
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
Data Type
String
RecipientCertPublicKeyAlgorithm Property (IPWorksEncrypt_ECC Class)
The textual description of the certificate's public key algorithm.
Object Oriented Interface
public function getRecipientCertPublicKeyAlgorithm();
Procedural Interface
ipworksencrypt_ecc_get($res, 62 );
Default Value
''
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
Data Type
String
RecipientCertPublicKeyLength Property (IPWorksEncrypt_ECC Class)
The length of the certificate's public key (in bits).
Object Oriented Interface
public function getRecipientCertPublicKeyLength();
Procedural Interface
ipworksencrypt_ecc_get($res, 63 );
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
Data Type
Integer
RecipientCertSerialNumber Property (IPWorksEncrypt_ECC Class)
The serial number of the certificate encoded as a string.
Object Oriented Interface
public function getRecipientCertSerialNumber();
Procedural Interface
ipworksencrypt_ecc_get($res, 64 );
Default Value
''
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
Data Type
String
RecipientCertSignatureAlgorithm Property (IPWorksEncrypt_ECC Class)
The text description of the certificate's signature algorithm.
Object Oriented Interface
public function getRecipientCertSignatureAlgorithm();
Procedural Interface
ipworksencrypt_ecc_get($res, 65 );
Default Value
''
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
Data Type
String
RecipientCertStore Property (IPWorksEncrypt_ECC Class)
The name of the certificate store for the client certificate.
Object Oriented Interface
public function getRecipientCertStore(); public function setRecipientCertStore($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 66 ); ipworksencrypt_ecc_set($res, 66, $value );
Default Value
'MY'
Remarks
The name of the certificate store for the client certificate.
The RecipientCertStoreType property denotes the type of the certificate store specified by RecipientCertStore. If the store is password-protected, specify the password in RecipientCertStorePassword.
RecipientCertStore is used in conjunction with the RecipientCertSubject property to specify client certificates. If RecipientCertStore has a value, and RecipientCertSubject or RecipientCertEncoded is set, a search for a certificate is initiated. Please see the RecipientCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Binary String
RecipientCertStorePassword Property (IPWorksEncrypt_ECC Class)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Object Oriented Interface
public function getRecipientCertStorePassword(); public function setRecipientCertStorePassword($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 67 ); ipworksencrypt_ecc_set($res, 67, $value );
Default Value
''
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
RecipientCertStoreType Property (IPWorksEncrypt_ECC Class)
The type of certificate store for this certificate.
Object Oriented Interface
public function getRecipientCertStoreType(); public function setRecipientCertStoreType($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 68 ); ipworksencrypt_ecc_set($res, 68, $value );
Default Value
0
Remarks
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the RecipientCertStore and set RecipientCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
RecipientCertSubjectAltNames Property (IPWorksEncrypt_ECC Class)
Comma-separated lists of alternative subject names for the certificate.
Object Oriented Interface
public function getRecipientCertSubjectAltNames();
Procedural Interface
ipworksencrypt_ecc_get($res, 69 );
Default Value
''
Remarks
Comma-separated lists of alternative subject names for the certificate.
This property is read-only.
Data Type
String
RecipientCertThumbprintMD5 Property (IPWorksEncrypt_ECC Class)
The MD5 hash of the certificate.
Object Oriented Interface
public function getRecipientCertThumbprintMD5();
Procedural Interface
ipworksencrypt_ecc_get($res, 70 );
Default Value
''
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
RecipientCertThumbprintSHA1 Property (IPWorksEncrypt_ECC Class)
The SHA-1 hash of the certificate.
Object Oriented Interface
public function getRecipientCertThumbprintSHA1();
Procedural Interface
ipworksencrypt_ecc_get($res, 71 );
Default Value
''
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
RecipientCertThumbprintSHA256 Property (IPWorksEncrypt_ECC Class)
The SHA-256 hash of the certificate.
Object Oriented Interface
public function getRecipientCertThumbprintSHA256();
Procedural Interface
ipworksencrypt_ecc_get($res, 72 );
Default Value
''
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
RecipientCertUsage Property (IPWorksEncrypt_ECC Class)
The text description of UsageFlags .
Object Oriented Interface
public function getRecipientCertUsage();
Procedural Interface
ipworksencrypt_ecc_get($res, 73 );
Default Value
''
Remarks
The text description of RecipientCertUsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
Data Type
String
RecipientCertUsageFlags Property (IPWorksEncrypt_ECC Class)
The flags that show intended use for the certificate.
Object Oriented Interface
public function getRecipientCertUsageFlags();
Procedural Interface
ipworksencrypt_ecc_get($res, 74 );
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of RecipientCertUsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the RecipientCertUsage property for a text representation of RecipientCertUsageFlags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
Data Type
Integer
RecipientCertVersion Property (IPWorksEncrypt_ECC Class)
The certificate's version number.
Object Oriented Interface
public function getRecipientCertVersion();
Procedural Interface
ipworksencrypt_ecc_get($res, 75 );
Default Value
''
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
Data Type
String
RecipientCertSubject Property (IPWorksEncrypt_ECC Class)
The subject of the certificate used for client authentication.
Object Oriented Interface
public function getRecipientCertSubject(); public function setRecipientCertSubject($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 76 ); ipworksencrypt_ecc_set($res, 76, $value );
Default Value
''
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
RecipientCertEncoded Property (IPWorksEncrypt_ECC Class)
The certificate (PEM/Base64 encoded).
Object Oriented Interface
public function getRecipientCertEncoded(); public function setRecipientCertEncoded($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 77 ); ipworksencrypt_ecc_set($res, 77, $value );
Default Value
''
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The RecipientCertStore and RecipientCertSubject properties also may be used to specify a certificate.
When RecipientCertEncoded is set, a search is initiated in the current RecipientCertStore for the private key of the certificate. If the key is found, RecipientCertSubject is updated to reflect the full subject of the selected certificate; otherwise, RecipientCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Binary String
RecipientKeyAlgorithm Property (IPWorksEncrypt_ECC Class)
This property holds the algorithm associated with the key.
Object Oriented Interface
public function getRecipientKeyAlgorithm(); public function setRecipientKeyAlgorithm($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 78 ); ipworksencrypt_ecc_set($res, 78, $value );
Default Value
0
Remarks
This property holds the algorithm associated with the key. Possible values are:
- 0 (eaSecp256r1)
- 1 (eaSecp384r1)
- 2 (eaSecp521r1)
- 3 (eaEd25519)
- 4 (eaEd448)
- 5 (eaX25519)
- 6 (eaX448)
- 7 (eaSecp160k1)
- 8 (eaSecp192k1)
- 9 (eaSecp224k1)
- 10 (eaSecp256k1)
- 11 (eaBrainpoolP160r1)
- 12 (eaBrainpoolP192r1)
- 13 (eaBrainpoolP224r1)
- 14 (eaBrainpoolP256r1)
- 15 (eaBrainpoolP320r1)
- 16 (eaBrainpoolP384r1)
- 17 (eaBrainpoolP512r1)
- 18 (eaBrainpoolP160t1)
- 19 (eaBrainpoolP192t1)
- 20 (eaBrainpoolP224t1)
- 21 (eaBrainpoolP256t1)
- 22 (eaBrainpoolP320t1)
- 23 (eaBrainpoolP384t1)
- 24 (eaBrainpoolP512t1)
When assigning a key using the PEM formatted RecipientKeyPrivateKey and RecipientKeyPublicKey, the RecipientKeyAlgorithm property will be automatically updated with the key algorithm.
When assigning a key using the raw key parameters (RecipientKeyK, RecipientKeyRx, and RecipientKeyRy for NIST or RecipientKeyXPk, and RecipientKeyXSk for Curve25519/Curve448), the RecipientKeyAlgorithm property must be set manually to the key algorithm.
The following table summarizes the supported operations for keys created with each algorithm:
KeyAlgorithm | Supported Operations |
secp256r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp384r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp521r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
X25519 | ECDH (ComputeSecret) |
X448 | ECDH (ComputeSecret) |
Ed25519 | EdDSA (Sign and VerifySignature) |
Ed448 | EdDSA (Sign and VerifySignature) |
secp160k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp192k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp224k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp256k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP160r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP192r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP224r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP256r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP320r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP384r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP512r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP160t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP192t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP224t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP256t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP320t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP384t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP512t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
Data Type
Integer
RecipientKeyPublicKey Property (IPWorksEncrypt_ECC Class)
This property is a PEM formatted public key.
Object Oriented Interface
public function getRecipientKeyPublicKey(); public function setRecipientKeyPublicKey($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 81 ); ipworksencrypt_ecc_set($res, 81, $value );
Default Value
''
Remarks
This property is a PEM formatted public key. The purpose of this property is to allow easier management of the public key parameters by using only a single value.
Data Type
String
RecipientKeyRx Property (IPWorksEncrypt_ECC Class)
Represents the public key's Rx parameter.
Object Oriented Interface
public function getRecipientKeyRx(); public function setRecipientKeyRx($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 82 ); ipworksencrypt_ecc_set($res, 82, $value );
Default Value
''
Remarks
Represents the public key's Rx parameter.
Note: This value is only applicable when using a NIST, Koblitz, or Brainpool curve.
Data Type
Binary String
RecipientKeyRy Property (IPWorksEncrypt_ECC Class)
Represents the public key's Ry parameter.
Object Oriented Interface
public function getRecipientKeyRy(); public function setRecipientKeyRy($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 83 ); ipworksencrypt_ecc_set($res, 83, $value );
Default Value
''
Remarks
Represents the public key's Ry parameter.
Note: This value is only applicable when using a NIST, Koblitz, or Brainpool curve.
Data Type
Binary String
RecipientKeyXPk Property (IPWorksEncrypt_ECC Class)
Holds the public key data.
Object Oriented Interface
public function getRecipientKeyXPk(); public function setRecipientKeyXPk($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 84 ); ipworksencrypt_ecc_set($res, 84, $value );
Default Value
''
Remarks
Holds the public key data.
Note: This value is only applicable when using Curve25519 or Curve448.
Data Type
Binary String
SharedSecret Property (IPWorksEncrypt_ECC Class)
The computed shared secret.
Object Oriented Interface
public function getSharedSecret();
Procedural Interface
ipworksencrypt_ecc_get($res, 86 );
Default Value
''
Remarks
This property holds the shared secret computed by ComputeSecret.
This property is read-only.
Data Type
Binary String
SignerCertEffectiveDate Property (IPWorksEncrypt_ECC Class)
The date on which this certificate becomes valid.
Object Oriented Interface
public function getSignerCertEffectiveDate();
Procedural Interface
ipworksencrypt_ecc_get($res, 87 );
Default Value
''
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
Data Type
String
SignerCertExpirationDate Property (IPWorksEncrypt_ECC Class)
The date on which the certificate expires.
Object Oriented Interface
public function getSignerCertExpirationDate();
Procedural Interface
ipworksencrypt_ecc_get($res, 88 );
Default Value
''
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
Data Type
String
SignerCertExtendedKeyUsage Property (IPWorksEncrypt_ECC Class)
A comma-delimited list of extended key usage identifiers.
Object Oriented Interface
public function getSignerCertExtendedKeyUsage();
Procedural Interface
ipworksencrypt_ecc_get($res, 89 );
Default Value
''
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
Data Type
String
SignerCertFingerprint Property (IPWorksEncrypt_ECC Class)
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Object Oriented Interface
public function getSignerCertFingerprint();
Procedural Interface
ipworksencrypt_ecc_get($res, 90 );
Default Value
''
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
Data Type
String
SignerCertFingerprintSHA1 Property (IPWorksEncrypt_ECC Class)
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Object Oriented Interface
public function getSignerCertFingerprintSHA1();
Procedural Interface
ipworksencrypt_ecc_get($res, 91 );
Default Value
''
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
Data Type
String
SignerCertFingerprintSHA256 Property (IPWorksEncrypt_ECC Class)
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Object Oriented Interface
public function getSignerCertFingerprintSHA256();
Procedural Interface
ipworksencrypt_ecc_get($res, 92 );
Default Value
''
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
Data Type
String
SignerCertIssuer Property (IPWorksEncrypt_ECC Class)
The issuer of the certificate.
Object Oriented Interface
public function getSignerCertIssuer();
Procedural Interface
ipworksencrypt_ecc_get($res, 93 );
Default Value
''
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
Data Type
String
SignerCertPrivateKey Property (IPWorksEncrypt_ECC Class)
The private key of the certificate (if available).
Object Oriented Interface
public function getSignerCertPrivateKey();
Procedural Interface
ipworksencrypt_ecc_get($res, 94 );
Default Value
''
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The SignerCertPrivateKey may be available but not exportable. In this case, SignerCertPrivateKey returns an empty string.
This property is read-only.
Data Type
String
SignerCertPrivateKeyAvailable Property (IPWorksEncrypt_ECC Class)
Whether a PrivateKey is available for the selected certificate.
Object Oriented Interface
public function getSignerCertPrivateKeyAvailable();
Procedural Interface
ipworksencrypt_ecc_get($res, 95 );
Default Value
false
Remarks
Whether a SignerCertPrivateKey is available for the selected certificate. If SignerCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
Data Type
Boolean
SignerCertPrivateKeyContainer Property (IPWorksEncrypt_ECC Class)
The name of the PrivateKey container for the certificate (if available).
Object Oriented Interface
public function getSignerCertPrivateKeyContainer();
Procedural Interface
ipworksencrypt_ecc_get($res, 96 );
Default Value
''
Remarks
The name of the SignerCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
Data Type
String
SignerCertPublicKey Property (IPWorksEncrypt_ECC Class)
The public key of the certificate.
Object Oriented Interface
public function getSignerCertPublicKey();
Procedural Interface
ipworksencrypt_ecc_get($res, 97 );
Default Value
''
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
Data Type
String
SignerCertPublicKeyAlgorithm Property (IPWorksEncrypt_ECC Class)
The textual description of the certificate's public key algorithm.
Object Oriented Interface
public function getSignerCertPublicKeyAlgorithm();
Procedural Interface
ipworksencrypt_ecc_get($res, 98 );
Default Value
''
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
Data Type
String
SignerCertPublicKeyLength Property (IPWorksEncrypt_ECC Class)
The length of the certificate's public key (in bits).
Object Oriented Interface
public function getSignerCertPublicKeyLength();
Procedural Interface
ipworksencrypt_ecc_get($res, 99 );
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
Data Type
Integer
SignerCertSerialNumber Property (IPWorksEncrypt_ECC Class)
The serial number of the certificate encoded as a string.
Object Oriented Interface
public function getSignerCertSerialNumber();
Procedural Interface
ipworksencrypt_ecc_get($res, 100 );
Default Value
''
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
Data Type
String
SignerCertSignatureAlgorithm Property (IPWorksEncrypt_ECC Class)
The text description of the certificate's signature algorithm.
Object Oriented Interface
public function getSignerCertSignatureAlgorithm();
Procedural Interface
ipworksencrypt_ecc_get($res, 101 );
Default Value
''
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
Data Type
String
SignerCertStore Property (IPWorksEncrypt_ECC Class)
The name of the certificate store for the client certificate.
Object Oriented Interface
public function getSignerCertStore(); public function setSignerCertStore($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 102 ); ipworksencrypt_ecc_set($res, 102, $value );
Default Value
'MY'
Remarks
The name of the certificate store for the client certificate.
The SignerCertStoreType property denotes the type of the certificate store specified by SignerCertStore. If the store is password-protected, specify the password in SignerCertStorePassword.
SignerCertStore is used in conjunction with the SignerCertSubject property to specify client certificates. If SignerCertStore has a value, and SignerCertSubject or SignerCertEncoded is set, a search for a certificate is initiated. Please see the SignerCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Binary String
SignerCertStorePassword Property (IPWorksEncrypt_ECC Class)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Object Oriented Interface
public function getSignerCertStorePassword(); public function setSignerCertStorePassword($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 103 ); ipworksencrypt_ecc_set($res, 103, $value );
Default Value
''
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
SignerCertStoreType Property (IPWorksEncrypt_ECC Class)
The type of certificate store for this certificate.
Object Oriented Interface
public function getSignerCertStoreType(); public function setSignerCertStoreType($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 104 ); ipworksencrypt_ecc_set($res, 104, $value );
Default Value
0
Remarks
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SignerCertStore and set SignerCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
SignerCertSubjectAltNames Property (IPWorksEncrypt_ECC Class)
Comma-separated lists of alternative subject names for the certificate.
Object Oriented Interface
public function getSignerCertSubjectAltNames();
Procedural Interface
ipworksencrypt_ecc_get($res, 105 );
Default Value
''
Remarks
Comma-separated lists of alternative subject names for the certificate.
This property is read-only.
Data Type
String
SignerCertThumbprintMD5 Property (IPWorksEncrypt_ECC Class)
The MD5 hash of the certificate.
Object Oriented Interface
public function getSignerCertThumbprintMD5();
Procedural Interface
ipworksencrypt_ecc_get($res, 106 );
Default Value
''
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
SignerCertThumbprintSHA1 Property (IPWorksEncrypt_ECC Class)
The SHA-1 hash of the certificate.
Object Oriented Interface
public function getSignerCertThumbprintSHA1();
Procedural Interface
ipworksencrypt_ecc_get($res, 107 );
Default Value
''
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
SignerCertThumbprintSHA256 Property (IPWorksEncrypt_ECC Class)
The SHA-256 hash of the certificate.
Object Oriented Interface
public function getSignerCertThumbprintSHA256();
Procedural Interface
ipworksencrypt_ecc_get($res, 108 );
Default Value
''
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
SignerCertUsage Property (IPWorksEncrypt_ECC Class)
The text description of UsageFlags .
Object Oriented Interface
public function getSignerCertUsage();
Procedural Interface
ipworksencrypt_ecc_get($res, 109 );
Default Value
''
Remarks
The text description of SignerCertUsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
Data Type
String
SignerCertUsageFlags Property (IPWorksEncrypt_ECC Class)
The flags that show intended use for the certificate.
Object Oriented Interface
public function getSignerCertUsageFlags();
Procedural Interface
ipworksencrypt_ecc_get($res, 110 );
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of SignerCertUsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the SignerCertUsage property for a text representation of SignerCertUsageFlags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
Data Type
Integer
SignerCertVersion Property (IPWorksEncrypt_ECC Class)
The certificate's version number.
Object Oriented Interface
public function getSignerCertVersion();
Procedural Interface
ipworksencrypt_ecc_get($res, 111 );
Default Value
''
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
Data Type
String
SignerCertSubject Property (IPWorksEncrypt_ECC Class)
The subject of the certificate used for client authentication.
Object Oriented Interface
public function getSignerCertSubject(); public function setSignerCertSubject($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 112 ); ipworksencrypt_ecc_set($res, 112, $value );
Default Value
''
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
SignerCertEncoded Property (IPWorksEncrypt_ECC Class)
The certificate (PEM/Base64 encoded).
Object Oriented Interface
public function getSignerCertEncoded(); public function setSignerCertEncoded($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 113 ); ipworksencrypt_ecc_set($res, 113, $value );
Default Value
''
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SignerCertStore and SignerCertSubject properties also may be used to specify a certificate.
When SignerCertEncoded is set, a search is initiated in the current SignerCertStore for the private key of the certificate. If the key is found, SignerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SignerCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Binary String
SignerKeyAlgorithm Property (IPWorksEncrypt_ECC Class)
This property holds the algorithm associated with the key.
Object Oriented Interface
public function getSignerKeyAlgorithm(); public function setSignerKeyAlgorithm($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 114 ); ipworksencrypt_ecc_set($res, 114, $value );
Default Value
0
Remarks
This property holds the algorithm associated with the key. Possible values are:
- 0 (eaSecp256r1)
- 1 (eaSecp384r1)
- 2 (eaSecp521r1)
- 3 (eaEd25519)
- 4 (eaEd448)
- 5 (eaX25519)
- 6 (eaX448)
- 7 (eaSecp160k1)
- 8 (eaSecp192k1)
- 9 (eaSecp224k1)
- 10 (eaSecp256k1)
- 11 (eaBrainpoolP160r1)
- 12 (eaBrainpoolP192r1)
- 13 (eaBrainpoolP224r1)
- 14 (eaBrainpoolP256r1)
- 15 (eaBrainpoolP320r1)
- 16 (eaBrainpoolP384r1)
- 17 (eaBrainpoolP512r1)
- 18 (eaBrainpoolP160t1)
- 19 (eaBrainpoolP192t1)
- 20 (eaBrainpoolP224t1)
- 21 (eaBrainpoolP256t1)
- 22 (eaBrainpoolP320t1)
- 23 (eaBrainpoolP384t1)
- 24 (eaBrainpoolP512t1)
When assigning a key using the PEM formatted SignerKeyPrivateKey and SignerKeyPublicKey, the SignerKeyAlgorithm property will be automatically updated with the key algorithm.
When assigning a key using the raw key parameters (SignerKeyK, SignerKeyRx, and SignerKeyRy for NIST or SignerKeyXPk, and SignerKeyXSk for Curve25519/Curve448), the SignerKeyAlgorithm property must be set manually to the key algorithm.
The following table summarizes the supported operations for keys created with each algorithm:
KeyAlgorithm | Supported Operations |
secp256r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp384r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp521r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
X25519 | ECDH (ComputeSecret) |
X448 | ECDH (ComputeSecret) |
Ed25519 | EdDSA (Sign and VerifySignature) |
Ed448 | EdDSA (Sign and VerifySignature) |
secp160k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp192k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp224k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
secp256k1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP160r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP192r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP224r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP256r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP320r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP384r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP512r1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP160t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP192t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP224t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP256t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP320t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP384t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
brainpoolP512t1 | ECDH/ECIES/ECDSA (ComputeSecret, Encrypt, Decrypt, Sign, and VerifySignature) |
Data Type
Integer
SignerKeyPublicKey Property (IPWorksEncrypt_ECC Class)
This property is a PEM formatted public key.
Object Oriented Interface
public function getSignerKeyPublicKey(); public function setSignerKeyPublicKey($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 117 ); ipworksencrypt_ecc_set($res, 117, $value );
Default Value
''
Remarks
This property is a PEM formatted public key. The purpose of this property is to allow easier management of the public key parameters by using only a single value.
Data Type
String
SignerKeyRx Property (IPWorksEncrypt_ECC Class)
Represents the public key's Rx parameter.
Object Oriented Interface
public function getSignerKeyRx(); public function setSignerKeyRx($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 118 ); ipworksencrypt_ecc_set($res, 118, $value );
Default Value
''
Remarks
Represents the public key's Rx parameter.
Note: This value is only applicable when using a NIST, Koblitz, or Brainpool curve.
Data Type
Binary String
SignerKeyRy Property (IPWorksEncrypt_ECC Class)
Represents the public key's Ry parameter.
Object Oriented Interface
public function getSignerKeyRy(); public function setSignerKeyRy($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 119 ); ipworksencrypt_ecc_set($res, 119, $value );
Default Value
''
Remarks
Represents the public key's Ry parameter.
Note: This value is only applicable when using a NIST, Koblitz, or Brainpool curve.
Data Type
Binary String
SignerKeyXPk Property (IPWorksEncrypt_ECC Class)
Holds the public key data.
Object Oriented Interface
public function getSignerKeyXPk(); public function setSignerKeyXPk($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 120 ); ipworksencrypt_ecc_set($res, 120, $value );
Default Value
''
Remarks
Holds the public key data.
Note: This value is only applicable when using Curve25519 or Curve448.
Data Type
Binary String
UseHex Property (IPWorksEncrypt_ECC Class)
Whether binary values are hex encoded.
Object Oriented Interface
public function getUseHex(); public function setUseHex($value);
Procedural Interface
ipworksencrypt_ecc_get($res, 122 ); ipworksencrypt_ecc_set($res, 122, $value );
Default Value
false
Remarks
This setting specifies whether various calculated values are hex encoded. If set to False (default), all data is provided as-is with no encoding.
If set to True, certain properties are hex encoded when populated for ease of display, transport, and storage.
Compute Secret Notes
This property specifies whether SharedSecret is hex encoded when ComputeSecret is called.
Sign and Verify Notes
This property specifies whether HashValue and HashSignature are hex encoded.
If set to True, when Sign is called the class will compute the hash for the specified file and populate HashValue with the hex encoded hash value. It will then create the hash signature and populate HashSignature with the hex encoded hash signature value. If HashValue is specified directly, it must be a hex encoded value.
If set to True, when VerifySignature is called the class will compute the hash value for the specified file and populate HashValue with the hex encoded hash value. It will then hex decode HashSignature and verify the signature. HashSignature must hold a hex encoded value. If HashValue is specified directly, it must be a hex encoded value.
Encrypt and Decrypt Notes
If set to True, when Encrypt is called the class will perform the encryption as normal and then hex encode the output. OutputMessage or OutputFile will hold hex encoded data.
If set to True, when Decrypt is called the class will expect InputMessage or InputFile to hold hex encoded data. The class will then hex decode the data and perform decryption as normal.
Data Type
Boolean
ComputeSecret Method (IPWorksEncrypt_ECC Class)
Computes a shared secret.
Object Oriented Interface
public function doComputeSecret();
Procedural Interface
ipworksencrypt_ecc_do_computesecret($res);
Remarks
This method computes a shared secret using Elliptic Curve Diffie Hellman (ECDH).
When this method is called, the class will use the public key specified by RecipientKeyPublicKey and the private key specified by Key to compute a shared secret, or secret agreement. The ComputeSecretKDF property specifies the Hash or HMAC algorithm that is applied to the raw secret. The resulting value is held by SharedSecret. The following properties are applicable when calling this method:
- Key (required)
- RecipientKeyPublicKey (required)
- ComputeSecretKDF (optional)
See ComputeSecretKDF for details on advanced settings that may be applicable for the chosen algorithm.
Keys created with the Ed25519 and Ed448 algorithms are not supported when calling this method.
Compute Secret Example
//Create a key for Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("X25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Create a key for Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("X25519");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Note: the public keys must be exchanged between parties by some mechanism
//Create the shared secret on Party 1
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv; //Private key of this party
ecc1.RecipientKey.PublicKey = ecc2_pub; //Public key of other party
ecc1.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage
ecc1.ComputeSecret();
Console.WriteLine(ecc1.SharedSecret);
//Create the shared secret on Party 2
ecc2.Reset();
ecc2.Key.PrivateKey = ecc2_priv; //Private key of this party
ecc2.RecipientKey.PublicKey = ecc1_pub; //Public key of other party
ecc2.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage
ecc2.ComputeSecret();
Console.WriteLine(ecc2.SharedSecret); //This will match the shared secret created by ecc1.
Config Method (IPWorksEncrypt_ECC Class)
Sets or retrieves a configuration setting.
Object Oriented Interface
public function doConfig($configurationstring);
Procedural Interface
ipworksencrypt_ecc_do_config($res, $configurationstring);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
CreateKey Method (IPWorksEncrypt_ECC Class)
Creates a new key.
Object Oriented Interface
public function doCreateKey($keyalgorithm);
Procedural Interface
ipworksencrypt_ecc_do_createkey($res, $keyalgorithm);
Remarks
CreateKey creates a new public and private key.
When this method is called, Key is populated with the generated key. The KeyPublicKey and KeyPrivateKey properties hold the PEM formatted public and private key for ease of use. This is helpful for storing or transporting keys more easily.
The KeyAlgorithm parameter specifies the algorithm for which the key is intended to be used. Possible values are:
NIST, Koblitz, and Brainpool Curve Notes
Keys for use with NIST curves (secp256r1, secp384r1, secp521r1), Koblitz curves (secp160k1, secp192k1, secp224k1, secp256k1), and Brainpool curves are made up of a number of individual parameters.
The public key consists of the following parameters:
The private key consists of one value:
Curve25519 and Curve448 Notes
Keys for use with Curve25519 or Curve448 are made up of a private key and public key field.
KeyXPk holds the public key.
KeyXSk holds the private key.
Create Key Example (secp256r1 - PEM)
//Create a key using secp256r1
Ecc ecc = new Ecc();
ecc.CreateKey("secp256r1");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
string privKey = ecc.Key.PrivateKey; //PEM formatted key
string pubKey = ecc.Key.PublicKey; //PEM formatted key
//Load the saved key
ecc.Reset();
ecc.Key.PublicKey = pubKey;
ecc.Key.PrivateKey = privKey;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
Create Key Example (secp256r1 - Raw Key Params)
//Create a key using secp256r1 and store/load the key using the individual params
Ecc ecc = new Ecc();
ecc.CreateKey("secp256r1");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
byte[] K = ecc.Key.KB; //Private key param
byte[] Rx = ecc.Key.RxB; //Public key param
byte[] Ry = ecc.Key.RyB; //Public key param
//Load the saved key
ecc.Reset();
ecc.Key.Algorithm = ECAlgorithms.eaSecp256r1; //This MUST be set manually when using key params directly
ecc.Key.KB = K;
ecc.Key.RxB = Rx;
ecc.Key.RyB = Ry;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
Create Key Example (Ed25519 - PEM)
//Create a key using Ed25519
Ecc ecc = new Ecc();
ecc.CreateKey("Ed25519");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
string privKey = ecc.Key.PrivateKey; //PEM formatted key
string pubKey = ecc.Key.PublicKey; //PEM formatted key
//Load the saved key
ecc.Reset();
ecc.Key.PublicKey = pubKey;
ecc.Key.PrivateKey = privKey;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
Create Key Example (Ed25519 - Raw Key Params)
//Create a key using Ed25519 and store/load the key using the individual params
Ecc ecc = new Ecc();
ecc.CreateKey("Ed25519");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
byte[] XPk = ecc.Key.XPkB; //Public key data
byte[] XSk = ecc.Key.XSkB; //Secret key data
//Load the saved key
ecc.Reset();
ecc.Key.Algorithm = ECAlgorithms.eaEd25519; //This MUST be set manually when using key params directly
ecc.Key.XPkB = XPk;
ecc.Key.XSkB = XSk;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
Decrypt Method (IPWorksEncrypt_ECC Class)
Decrypted the specified data.
Object Oriented Interface
public function doDecrypt();
Procedural Interface
ipworksencrypt_ecc_do_decrypt($res);
Remarks
Decrypt decrypts the specified data with the ECDSA private key specified in Key.
Decryption is performed using ECIES which requires an ECDSA key. Key must contain an ECDSA key. KeyAlgorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
See CreateKey for details about key creation and algorithms.
When this method is called, the class will decrypt the specified data using ECIES and the decrypted data will be output. If the input data was originally hex encoded, set UseHex to True.
The following properties are applicable when calling this method:
- EncryptionAlgorithm
- HMACAlgorithm
- HMACOptionalInfo
- HMACKeySize
- IV
- KDF
- KDFHashAlgorithm
- KDFOptionalInfo
- UseHex
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Encrypt and Decrypt Example
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (AES with IV)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
//Use an IV (16 bytes for AES) - In a real environment this should be random
byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc1.IVB = IV;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message and the IV to Party 2
//Decrypt the message using the private key for Party 2 and the IV
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc2.IVB = IV;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (XOR Encryption Algorithm)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (KDF Options)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.KDF = "KDF1"; //Use KDF1
ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.KDF = "KDF1";
ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f");
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt Method (IPWorksEncrypt_ECC Class)
Encrypts the specified data.
Object Oriented Interface
public function doEncrypt();
Procedural Interface
ipworksencrypt_ecc_do_encrypt($res);
Remarks
Encrypt encrypts the specified data with the ECDSA public key specified in RecipientKey.
Encryption is performed using ECIES which requires an ECDSA key. RecipientKey must contain an ECDSA key. KeyAlgorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
See CreateKey for details about key creation and algorithms.
When this method is called, the class will encrypt the specified data using ECIES and the encrypted data will be output. To hex encode the output, set UseHex to True.
The following properties are applicable when calling this method:
- EncryptionAlgorithm
- HMACAlgorithm
- HMACOptionalInfo
- HMACKeySize
- IV
- KDF
- KDFHashAlgorithm
- KDFOptionalInfo
- UseHex
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Encrypt and Decrypt Example
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (AES with IV)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
//Use an IV (16 bytes for AES) - In a real environment this should be random
byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc1.IVB = IV;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message and the IV to Party 2
//Decrypt the message using the private key for Party 2 and the IV
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc2.IVB = IV;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (XOR Encryption Algorithm)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (KDF Options)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.KDF = "KDF1"; //Use KDF1
ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.KDF = "KDF1";
ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f");
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Reset Method (IPWorksEncrypt_ECC Class)
Resets the class.
Object Oriented Interface
public function doReset();
Procedural Interface
ipworksencrypt_ecc_do_reset($res);
Remarks
When called, the class will reset all of its properties to their default values.
Sign Method (IPWorksEncrypt_ECC Class)
Creates a hash signature using ECDSA or EdDSA.
Object Oriented Interface
public function doSign();
Procedural Interface
ipworksencrypt_ecc_do_sign($res);
Remarks
Sign will create a hash signature using ECDSA or EdDSA. The class will use the key specified by Key to hash the input data and sign the resulting hash.
Key must contain a private key created with a valid ECDSA or EdDSA algorithm. KeyAlgorithm is used to determine the eligibility of the key for this operation. Supported algorithms for signing are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
- Ed25519 and Ed448
See CreateKey for details about key creation and algorithms.
When this method is called, data will be read from the InputFile or InputMessage.
The hash to be signed will be computed using the specified HashAlgorithm. The computed hash is stored in the HashValue property. The signed hash is stored in the HashSignature property.
To sign a hash without first computing it, set HashValue to a previously computed hash for the input data. Note: HashValue is not applicable when signing with a PureEdDSA algorithm such as Ed25519 or Ed448.
The Progress event will fire with updates for the hash computation progress only. The hash signature creation process is quick and does not require progress updates.
After calling Sign, the public key must be sent to the recipient along with HashSignature and the original input data so the other party may perform signature verification.
The following properties are applicable when calling this method:
- Key (required)
- HashAlgorithm (applicable to ECDSA only)
- HashEdDSA (applicable to EdDSA only)
- HashValue (not applicable to PureEdDSA)
- UseHex
The following properties are populated after calling this method:
When the KeyAlgorithm is Ed25519 or Ed448, the following additional parameters are applicable:
EdDSA keys can be used with a PureEdDSA algorithm (Ed25519/Ed448) or a HashEdDSA (Ed25519ph, Ed448ph) algorithm. This is controlled by the HashEdDSA property. By default, the class uses the PureEdDSA algorithm.
The PureEdDSA algorithm requires two passes over the input data but provides collision resilience. The collision resilience of PureEdDSA means that even if it is feasible to compute collisions for the hash function, the algorithm is still secure. When using PureEdDSA, HashValue is not applicable.
When using a HashEdDSA algorithm, the input is pre-hashed and supports a single pass over the data during the signing operation. To enable HashEdDSA, set HashEdDSA to True.
To specify context data when using Ed25519 or Ed448, set EdDSAContext.
Sign And Verify Example (ECDSA)
//Create an ECDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("secp256r1");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - PureEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - HashEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.HashEdDSA = true; //Use "ed25519ph"
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.HashEdDSA = true;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
VerifySignature Method (IPWorksEncrypt_ECC Class)
Verifies the signature for the specified data.
Object Oriented Interface
public function doVerifySignature();
Procedural Interface
ipworksencrypt_ecc_do_verifysignature($res);
Remarks
VerifySignature will verify a hash signature and return True if successful or False otherwise.
Before calling this method, specify the input file by setting InputFile or InputMessage.
A public key and the hash signature are required to perform the signature verification. Specify the public key in SignerKey. Specify the hash signature in HashSignature.
When this method is called, the class will compute the hash for the specified file and populate HashValue. It will verify the signature using the specified SignerKey and HashSignature.
To verify the hash signature without first computing the hash, simply specify HashValue before calling this method. Note: HashValue is not applicable when the message was signed with a PureEdDSA algorithm such as Ed25519 or Ed448.
The Progress event will fire with updates for the hash computation progress only. The hash signature verification process is quick and does not require progress updates.
The following properties are applicable when calling this method:
- HashSignature (required)
- SignerKey (required)
- EdDSAContext (applicable to EdDSA only)
- HashAlgorithm (applicable to ECDSA only)
- HashEdDSA (applicable to EdDSA only)
- HashValue (not applicable to PureEdDSA)
- UseHex
Sign And Verify Example (ECDSA)
//Create an ECDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("secp256r1");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - PureEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - HashEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.HashEdDSA = true; //Use "ed25519ph"
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to Party 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.HashEdDSA = true;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Error Event (IPWorksEncrypt_ECC Class)
Fired when information is available about errors during data delivery.
Object Oriented Interface
public function fireError($param);
Procedural Interface
ipworksencrypt_ecc_register_callback($res, 1, array($this, 'fireError'));
Parameter List
'errorcode'
'description'
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Progress Event (IPWorksEncrypt_ECC Class)
Fired as progress is made.
Object Oriented Interface
public function fireProgress($param);
Procedural Interface
ipworksencrypt_ecc_register_callback($res, 2, array($this, 'fireProgress'));
Parameter List
'bytesprocessed'
'percentprocessed'
Remarks
This event is fired automatically as data is processed by the class.
The PercentProcessed parameter indicates the current status of the operation.
The BytesProcessed parameter holds the total number of bytes processed so far.
Config Settings (ECC Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.ECC Config Settings
This setting specifies an optional string to append to the secret agreement before hashing it. This is applicable when calling ComputeSecret.
Note: This is not applicable when ComputeSecretKDF is set to 12 (ekdTLS).
This setting may be set to specify the key exported from Microsoft's CNG before calling ComputeSecret. If key data was obtained from Microsoft's CNG API, it can be hex encoded and supplied here. The class will use this key when ComputeSecret is called.
This setting may be set to specify the key exported from Microsoft's CNG before calling VerifySignature. If key data was obtained from Microsoft's CNG API, it can be hex encoded and supplied here. The class will use this key when VerifySignature is called.
This setting specifies the AlgorithmId subfield of the OtherInfo field as described in the publication "NIST SP 800-56A" section 5.8.1. The value supplied to this setting must be a hex encoded string of the subfield data.
This setting is required when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.
This setting optionally specifies the hash algorithm to use when ComputeSecretKDF is set to ekdConcat. Possible values are:
- SHA1
- SHA224
- SHA256 (default)
- SHA384
- SHA512
- RIPEMD160
This setting specifies the PartyUInfo subfield of the OtherInfo field as described in the publication "NIST SP 800-56A" section 5.8.1. The value supplied to this setting must be a hex encoded string of the subfield data.
This setting is required when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.
This setting specifies the PartyVInfo subfield of the OtherInfo field as described in the publication "NIST SP 800-56A" section 5.8.1. The value supplied to this setting must be a hex encoded string of the subfield data.
This setting is required when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.
This setting specifies the SuppPrivInfo subfield of the OtherInfo field as described in the publication "NIST SP 800-56A" section 5.8.1. The value supplied to this setting must be a hex encoded string of the subfield data.
This setting is optional when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.
This setting specifies the SuppPubInfo subfield of the OtherInfo field as described in the publication "NIST SP 800-56A" section 5.8.1. The value supplied to this setting must be a hex encoded string of the subfield data.
This setting is optional when ComputeSecretKDF is set to ekdConcat. This setting is only applicable when calling ComputeSecret.
This setting specifies the format of HashSignature when signing with ECDSA keys. The way the HashSignature parameters are represented can be changed to be interoperable with other implementations. Possible values are:
- 0 (Concatenated - default)
- 1 (ASN)
Note: This setting is only applicable when KeyAlgorithm is set to a NIST, Koblitz, or Brainpool curve.
This setting specifies up to 255 bytes of context data as a hex encoded string for signing and verifying.
This setting is only applicable when KeyAlgorithm is set to Ed25519 or Ed448. When this setting is specified, the KeyAlgorithm is Ed25519, and HashEdDSA is False, the class will automatically use Ed25519ctx.
If this value is specified before calling Sign, it must also be set prior to calling VerifySignature.
This setting specifies the AES encryption key size in bits when EncryptionAlgorithm is set to AES. Possible values are:
- 128
- 192
- 256 (default)
This key is incorporated into the hashing process to add entropy to the resulting hash code, making the plaintext harder to guess and increasing the message security. The value supplied here must be hex encoded.
This is only applicable when calling ComputeSecret.
This setting optionally specifies the HMAC key size to be used during encryption and decryption. If set to 0 (default), the class will automatically select the key size based on the algorithm specified in HMACAlgorithm.
This setting is only applicable when calling Encrypt or Decrypt.
This setting optionally specifies data to be used with the specified HMACAlgorithm as part of the encryption and decryption process. This is additional data known to both parties that is included while performing the HMAC operation.
The value specified in this setting must a hex string.
If specified, this must be set before calling both Encrypt and Decrypt.
This setting optionally specifies data to be used with the specified KDF as part of the encryption and decryption process. This is additional data known to both parties that is included while performing key derivation.
The value specified in this setting must a hex string.
If specified, this must be set before calling both Encrypt and Decrypt.
This setting specifies an optional string to prepend to the secret agreement before hashing it. This is applicable when calling ComputeSecret.
Note: This is not applicable when ComputeSecretKDF is set to 12 (ekdTLS).
This setting performs additional checks prior to using specified keys to validate that the public key corresponds to the provided private key.
When using keys with the algorithm Ed25519, Ed448, X25519, or X448, the class will calculate the public key based on the provided private key and compare it to the provided public key to ensure they match.
When using keys with a NIST, Koblitz, or Brainpool curve, the class will perform calculations to verify that the public key is a point on the curve. The class will also calculate the public key based on the provided private key and compare it to the provided public key to ensure they match.
The default value is False and the class will use the public and private keys as provided without any additional checks.
This setting specifies a string representing the PRF label. This setting is required when ComputeSecretKDF set to 12 (ekdTLS). It is only applicable when calling ComputeSecret.
This setting specifies the hex encoded TLS PRF Seed. The seed value must be 64 bytes in length before hex encoding. This setting is required when ComputeSecretKDF set to 12 (ekdTLS). It is only applicable when calling ComputeSecret.
Base Config Settings
When queried, this setting will return a string containing information about the product's build.
The default code page is Unicode UTF-8 (65001).
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.
If there are no events to process when DoEvents is called, the class will wait for the amount of time specified here before returning. The default value is 20.
When set to true, the class will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle Federal Information Processing Standards (FIPS), while all other Windows editions make use of Microsoft security libraries.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
Trappable Errors (ECC Class)
ECC Errors
102 | No Key specified. |
104 | Cannot read or write file. |
111 | OutputFile already exists and Overwrite is False. |
120 | Invalid curve. |
124 | HashSignature must be specified. |
304 | Cannot write file. |
305 | Cannot read file. |
306 | Cannot create file. |
1401 | Specified ECC parameters are invalid. |
1402 | Missing hash value. |
1403 | Public key must be specified. |
1404 | Key must be specified. |
1405 | HashSignature must be specified. |
1406 | Invalid key size. |
1407 | Invalid TLS seed. TLSSeed must be 64 bytes long. |
1408 | Invalid TLS label. |
1409 | Unsupported key format. |
1410 | Unsupported curve. |