PPOP Class
Properties Methods Events Config Settings Errors
The PPOP class is used retrieve and process OpenPGP encrypted and/or signed messages from Internet Post Office servers (POP).
Syntax
PPOP
Remarks
The PPOP class implements a standard internet post office (POP3) client, as specified in RFC 1725, and supports decrypting and verifying signatures of encrypted and signed emails using OpenPGP. You can send an OpenPGP signed and encrypted message using the PSMTP class by calling the Encrypt, Sign, and SignAndEncrypt methods.
Connect to the Server
To connect to a MailServer, first set the appropriate User and Password and then connect by calling the Connect method. Upon successful connection to the MailServer, the number of waiting messages is shown by the MessageCount property. A message is selected by setting the MessageNumber property to a number between 1 and MessageCount (inclusive). Then, the message text and/or headers are received by calling the Retrieve method.
Receive Messages
The message text is received through the Transfer event, whereas the message headers are received through the Header event. Additionally, up to MaxLines from the message body are provided in the MessageText property. The StartTransfer and EndTransfer events are fired at the beginning and end of message transmission. The PITrail event provides a trace of the interaction between the client and server (excluding message transfers).
Verify
To verify the signature of a message specify the public key to be used for signature verification by
setting the SignerKey* properties. For instance:
PPOP1.SignerKeyCount = 1
PPOP1.SignerKeyKeyring(0) = "c:\my_keyring_dir"
PPOP1.SignerKeyUserId(0) = "sender@nsoftware.com"
The specified public key will be used to verify the signature when calling VerifySignature.
Decrypt
To process an encrypted or signed message first retrieve the message text and headers by calling Retrieve.
To decrypt a message specify the private key to be used for decryption by setting the Key* properties. For instance:
PPOP1.KeyCount = 1
PPOP1.KeyKeyring(0) = "c:\my_keyring_dir"
PPOP1.KeyUserId(0) = "recipient@nsoftware.com"
PPOP1.KeyPassphrase(0) = "password"
The specified private key will be used to decrypt the message when calling Decrypt.
Decrypt and Verify
To decrypt and verify in one step, you can call DecryptAndVerifySignature. Set the public key of the sender in the and the private key to be used for decryption in the Key* properties .
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
AuthMechanism | This property includes the authentication mechanism to be used when connecting to the mail server. |
Connected | Whether the class is connected. |
Firewall | A set of properties related to firewall access. |
Idle | The current status of the class. |
IncludeHeaders | This property instructs the class to include the headers in the MessageText and LocalFile. |
Keys | A collection of keys used for cryptographic operations. |
LastReply | This property indicates the last reply received from the server. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
MailPort | This property includes the server port for POP (default 110). |
MailServer | This property includes the name or address of a mail server (internet post office server). |
MaxLines | This property includes the maximum number of message lines other than headers to retrieve. |
Message | This property provides the raw message content. |
MessageCc | This property includes the value of the CC header of the last retrieved message. |
MessageCount | This property includes the number of messages in the mailbox. |
MessageDate | This property includes the value of the date header of the last retrieved message. |
MessageFrom | This property includes the value of the from header of the last retrieved message. |
MessageHeaders | This property includes a collection of the message headers as retrieved from the server. |
MessageHeadersString | This property includes a string representation of the full headers of the message as retrieved from the server. |
MessageNumber | This property includes the current (selected) message. |
MessageRecipients | This property includes a collection of recipients for the current message. |
MessageReplyTo | This property includes the value of the Reply-To header of the last retrieved message. |
MessageSubject | This property includes the value of the Subject header of the last retrieved message. |
MessageText | This property includes the full text of the message as retrieved from the server. |
MessageTo | This property includes the value of the To header of the last retrieved message. |
Password | This property includes the password for the mailbox user. |
SignerKeys | The collection of keys belonging to the signer of the message. |
SSLAcceptServerCert | Instructs the class to unconditionally accept the server certificate that matches the supplied certificate. |
SSLCert | The certificate to be used during Secure Sockets Layer (SSL) negotiation. |
SSLEnabled | This property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled. |
SSLProvider | The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use. |
SSLServerCert | The server certificate for the last established connection. |
SSLStartMode | This property determines how the class starts the Secure Sockets Layer (SSL) negotiation. |
Timeout | The timeout for the class. |
User | This property includes the user identifier for the mailbox. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Connect | This method connects to the mail server and attempts to log in. |
Decrypt | Decrypts the message. |
DecryptAndVerifySignature | Decrypts and verifies the signature of the message. |
Delete | This method deletes a message specified by MessageNumber on the server. |
Disconnect | This method disconnects from the mail server. |
DoEvents | This method processes events from the internal message queue. |
Interrupt | This method interrupts the current method. |
ListMessageSizes | This method retrieves a list of all message sizes from the server. |
ListMessageUIDs | This method retrieves a list of all message UIDs from the server. |
LocalizeDate | This method converts a valid RFC 822 message date to a local date and time. |
QueryMessageSize | This method returns the size in bytes of the current message. |
QueryMessageUID | This method returns the unique identifier (UID) of the message as specified by the server. |
QueryTotalSize | This method returns the cumulative size in bytes of messages in the mailbox (including headers). |
Reset | This method resets all changes and revert back to the state when the user first connected. |
Retrieve | This method retrieves a message specified by MessageNumber from the server. |
RetrieveHeaders | This method retrieves headers for a message specified by MessageNumber . |
SendCommand | This method sends the exact command directly to the server. |
SetMessageStream | This method sets the stream to which the message downloaded from the server will be written. |
VerifySignature | Verifies the signature of the current message. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
ConnectionStatus | Fired to indicate changes in the connection state. |
EndTransfer | This event is fired when the message completes transferring. |
Error | Fired when information is available about errors during data delivery. |
Header | This event is fired for every message header being retrieved. |
KeyPassphrase | Fired if the passphrase of current key is incorrect or empty. |
MessageList | This event is fired for every message listed by ListMessageSizes and/or ListMessageUIDs . |
PITrail | This event traces the commands sent to the mail server, and the respective replies. |
Progress | Fired as progress is made. |
RecipientInfo | Fired for each recipient key of the encrypted message. |
SignatureInfo | Fired during verification of the signed message. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
StartTransfer | This event is fired when the message starts transferring. |
Status | Shows the progress of the operation. |
Transfer | This event is fired when the message is transferred from MailServer . |
VerificationStatus | Fired after verification of the signed message. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
Comment | The OpenPGP message comment. |
LogLevel | Specifies the level of detail that is logged. |
ProcessAttachments | Whether or not to process attachments. |
RequireValidSignature | Specifies if an invalid signature is considered an error condition. |
SymmetricPassphrase | The password used for symmetric encryption or decryption. |
VerifyClearTextSignatureWithCache | Whether the cleartext message is cached in memory when verifying a cleartext signature. |
VersionHeader | The Version header value in the ASCII armored OpenPGP message. |
AuthorizationIdentity | The value to use as the authorization identity when SASL authentication is used. |
AutoDecodeSubject | Instructs the class to automatically decode message subjects. |
GetMessageSize | Whether to poll the server for the message size prior to retrieving it. |
MaxLineLength | The maximum expected length for message lines. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveRetryCount | The number of keep-alive packets to be sent before the remotehost is considered disconnected. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACerts | A newline separated list of CA certificates to be included when performing an SSL handshake. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLClientCACerts | A newline separated list of CA certificates to use during SSL client certificate validation. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificates to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
AuthMechanism Property (PPOP Class)
This property includes the authentication mechanism to be used when connecting to the mail server.
Syntax
ANSI (Cross Platform) int GetAuthMechanism();
int SetAuthMechanism(int iAuthMechanism); Unicode (Windows) INT GetAuthMechanism();
INT SetAuthMechanism(INT iAuthMechanism);
Possible Values
AM_USER_PASSWORD(0),
AM_CRAMMD5(1),
AM_NTLM(2),
AM_APOP(3),
AM_SASLPLAIN(4),
AM_SASLDIGEST_MD5(5),
AM_KERBEROS(6),
AM_XOAUTH2(7)
int ipworksopenpgp_ppop_getauthmechanism(void* lpObj);
int ipworksopenpgp_ppop_setauthmechanism(void* lpObj, int iAuthMechanism);
int GetAuthMechanism();
int SetAuthMechanism(int iAuthMechanism);
Default Value
0
Remarks
This property is used as the authentication mechanism when connecting to the mail server. By default, this property is amUserPassword (0), and default plaintext authentication is used to log in to the server. Other, more secure, options include amCRAMMD5 (1) for CRAM-MD5, amNTLM (2) for NTLM authentication, amAPOP (3) for APOP authentication, and amSASLDigestMD5 (5) for SASL DIGEST-MD5 authentication.
amSASLPlain (4) is also available, but most servers require a Secure Sockets Layer (SSL) connection when utilizing this authentication mechanism.
amKerberos (6) is for Kerberos authentication. Note: This functionality is available only in Windows.
Data Type
Integer
Connected Property (PPOP Class)
Whether the class is connected.
Syntax
ANSI (Cross Platform) int GetConnected(); Unicode (Windows) BOOL GetConnected();
int ipworksopenpgp_ppop_getconnected(void* lpObj);
bool GetConnected();
Default Value
FALSE
Remarks
This property is used to determine whether or not the class is connected to the remote host. Use the Connect and Disconnect methods to manage the connection.
This property is read-only and not available at design time.
Data Type
Boolean
Firewall Property (PPOP Class)
A set of properties related to firewall access.
Syntax
IPWorksOpenPGPFirewall* GetFirewall(); int SetFirewall(IPWorksOpenPGPFirewall* val);
int ipworksopenpgp_ppop_getfirewallautodetect(void* lpObj);
int ipworksopenpgp_ppop_setfirewallautodetect(void* lpObj, int bFirewallAutoDetect);
int ipworksopenpgp_ppop_getfirewalltype(void* lpObj);
int ipworksopenpgp_ppop_setfirewalltype(void* lpObj, int iFirewallType);
char* ipworksopenpgp_ppop_getfirewallhost(void* lpObj);
int ipworksopenpgp_ppop_setfirewallhost(void* lpObj, const char* lpszFirewallHost);
char* ipworksopenpgp_ppop_getfirewallpassword(void* lpObj);
int ipworksopenpgp_ppop_setfirewallpassword(void* lpObj, const char* lpszFirewallPassword);
int ipworksopenpgp_ppop_getfirewallport(void* lpObj);
int ipworksopenpgp_ppop_setfirewallport(void* lpObj, int iFirewallPort);
char* ipworksopenpgp_ppop_getfirewalluser(void* lpObj);
int ipworksopenpgp_ppop_setfirewalluser(void* lpObj, const char* lpszFirewallUser);
bool GetFirewallAutoDetect();
int SetFirewallAutoDetect(bool bFirewallAutoDetect); int GetFirewallType();
int SetFirewallType(int iFirewallType); QString GetFirewallHost();
int SetFirewallHost(QString qsFirewallHost); QString GetFirewallPassword();
int SetFirewallPassword(QString qsFirewallPassword); int GetFirewallPort();
int SetFirewallPort(int iFirewallPort); QString GetFirewallUser();
int SetFirewallUser(QString qsFirewallUser);
Remarks
This is a Firewall-type property, which contains fields describing the firewall through which the class will attempt to connect.
Data Type
Idle Property (PPOP Class)
The current status of the class.
Syntax
ANSI (Cross Platform) int GetIdle(); Unicode (Windows) BOOL GetIdle();
int ipworksopenpgp_ppop_getidle(void* lpObj);
bool GetIdle();
Default Value
TRUE
Remarks
This property will be False if the component is currently busy (communicating or waiting for an answer), and True at all other times.
This property is read-only.
Data Type
Boolean
IncludeHeaders Property (PPOP Class)
This property instructs the class to include the headers in the MessageText and LocalFile.
Syntax
ANSI (Cross Platform) int GetIncludeHeaders();
int SetIncludeHeaders(int bIncludeHeaders); Unicode (Windows) BOOL GetIncludeHeaders();
INT SetIncludeHeaders(BOOL bIncludeHeaders);
int ipworksopenpgp_ppop_getincludeheaders(void* lpObj);
int ipworksopenpgp_ppop_setincludeheaders(void* lpObj, int bIncludeHeaders);
bool GetIncludeHeaders();
int SetIncludeHeaders(bool bIncludeHeaders);
Default Value
FALSE
Remarks
This property instructs the component to include the headers in the MessageText and LocalFile. If set to True, the headers for the message being retrieved will be placed before the message body in the MessageText property;. If LocalFile is set, then the headers will be written to that file before the message body. In this manner, the whole content of a MIME-encoded message can be passed to the MIME class for further message processing.
Data Type
Boolean
Keys Property (PPOP Class)
A collection of keys used for cryptographic operations.
Syntax
IPWorksOpenPGPList<IPWorksOpenPGPKey>* GetKeys(); int SetKeys(IPWorksOpenPGPList<IPWorksOpenPGPKey>* val);
int ipworksopenpgp_ppop_getkeycount(void* lpObj);
int ipworksopenpgp_ppop_setkeycount(void* lpObj, int iKeyCount);
int ipworksopenpgp_ppop_getkeyencoded(void* lpObj, int keyindex, char** lpKeyEncoded, int* lenKeyEncoded);
int ipworksopenpgp_ppop_setkeyencoded(void* lpObj, int keyindex, const char* lpKeyEncoded, int lenKeyEncoded);
char* ipworksopenpgp_ppop_getkeykeyring(void* lpObj, int keyindex);
int ipworksopenpgp_ppop_setkeykeyring(void* lpObj, int keyindex, const char* lpszKeyKeyring);
char* ipworksopenpgp_ppop_getkeypassphrase(void* lpObj, int keyindex);
int ipworksopenpgp_ppop_setkeypassphrase(void* lpObj, int keyindex, const char* lpszKeyPassphrase);
char* ipworksopenpgp_ppop_getkeyuserid(void* lpObj, int keyindex);
int ipworksopenpgp_ppop_setkeyuserid(void* lpObj, int keyindex, const char* lpszKeyUserId);
int GetKeyCount();
int SetKeyCount(int iKeyCount); QByteArray GetKeyEncoded(int iKeyIndex);
int SetKeyEncoded(int iKeyIndex, QByteArray qbaKeyEncoded); QString GetKeyKeyring(int iKeyIndex);
int SetKeyKeyring(int iKeyIndex, QString qsKeyKeyring); QString GetKeyPassphrase(int iKeyIndex);
int SetKeyPassphrase(int iKeyIndex, QString qsKeyPassphrase); QString GetKeyUserId(int iKeyIndex);
int SetKeyUserId(int iKeyIndex, QString qsKeyUserId);
Remarks
This collection holds keys that are used for signing and decrypting. In most cases only one key will be specified, however multiple keys may be needed in some cases.
This property is not available at design time.
Data Type
LastReply Property (PPOP Class)
This property indicates the last reply received from the server.
Syntax
ANSI (Cross Platform) char* GetLastReply(); Unicode (Windows) LPWSTR GetLastReply();
char* ipworksopenpgp_ppop_getlastreply(void* lpObj);
QString GetLastReply();
Default Value
""
Remarks
This property indicates the last reply received from the server. It can be used for informational purposes. The same information and more also can be retrieved through the PITrail event.
This property is read-only.
Data Type
String
LocalHost Property (PPOP Class)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
ANSI (Cross Platform) char* GetLocalHost();
int SetLocalHost(const char* lpszLocalHost); Unicode (Windows) LPWSTR GetLocalHost();
INT SetLocalHost(LPCWSTR lpszLocalHost);
char* ipworksopenpgp_ppop_getlocalhost(void* lpObj);
int ipworksopenpgp_ppop_setlocalhost(void* lpObj, const char* lpszLocalHost);
QString GetLocalHost();
int SetLocalHost(QString qsLocalHost);
Default Value
""
Remarks
This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.
If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Note: LocalHost is not persistent. You must always set it in code, and never in the property window.
Data Type
String
MailPort Property (PPOP Class)
This property includes the server port for POP (default 110).
Syntax
ANSI (Cross Platform) int GetMailPort();
int SetMailPort(int iMailPort); Unicode (Windows) INT GetMailPort();
INT SetMailPort(INT iMailPort);
int ipworksopenpgp_ppop_getmailport(void* lpObj);
int ipworksopenpgp_ppop_setmailport(void* lpObj, int iMailPort);
int GetMailPort();
int SetMailPort(int iMailPort);
Default Value
110
Remarks
This property contains the server port for POP (default 110). A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.
For implicit Secure Sockets Layer (SSL), use port 995 (please refer to the SSLStartMode property for more information).
This property is not available at design time.
Data Type
Integer
MailServer Property (PPOP Class)
This property includes the name or address of a mail server (internet post office server).
Syntax
ANSI (Cross Platform) char* GetMailServer();
int SetMailServer(const char* lpszMailServer); Unicode (Windows) LPWSTR GetMailServer();
INT SetMailServer(LPCWSTR lpszMailServer);
char* ipworksopenpgp_ppop_getmailserver(void* lpObj);
int ipworksopenpgp_ppop_setmailserver(void* lpObj, const char* lpszMailServer);
QString GetMailServer();
int SetMailServer(QString qsMailServer);
Default Value
""
Remarks
This property specifies the IP address (IP number in dotted internet format) or the domain name of the mail server. It is set before a connection is attempted and cannot be changed once a connection is in progress.
If this property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.
If the class is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.
Data Type
String
MaxLines Property (PPOP Class)
This property includes the maximum number of message lines other than headers to retrieve.
Syntax
ANSI (Cross Platform) int GetMaxLines();
int SetMaxLines(int iMaxLines); Unicode (Windows) INT GetMaxLines();
INT SetMaxLines(INT iMaxLines);
int ipworksopenpgp_ppop_getmaxlines(void* lpObj);
int ipworksopenpgp_ppop_setmaxlines(void* lpObj, int iMaxLines);
int GetMaxLines();
int SetMaxLines(int iMaxLines);
Default Value
0
Remarks
This property is used to limit the number of text lines other than headers retrieved for messages. It can be used to preview message headers and a portion of their contents, without incurring the overhead of downloading the entire message.
The default value of the property is 0. In this case, the entire message will be retrieved, without interruptions. Note: If you are not retrieving the entire message (MaxLines is nonzero), no data will be written to LocalFile.
Data Type
Integer
Message Property (PPOP Class)
This property provides the raw message content.
Syntax
ANSI (Cross Platform) int GetMessage(char* &lpMessage, int &lenMessage); Unicode (Windows) INT GetMessage(LPSTR &lpMessage, INT &lenMessage);
int ipworksopenpgp_ppop_getmessage(void* lpObj, char** lpMessage, int* lenMessage);
QByteArray GetMessage();
Default Value
""
Remarks
This property is populated after calling Retrieve and holds the raw message content. This can be used to access the data before any processing is done by the class.
This property is read-only and not available at design time.
Data Type
Binary String
MessageCc Property (PPOP Class)
This property includes the value of the CC header of the last retrieved message.
Syntax
ANSI (Cross Platform) char* GetMessageCc(); Unicode (Windows) LPWSTR GetMessageCc();
char* ipworksopenpgp_ppop_getmessagecc(void* lpObj);
QString GetMessageCc();
Default Value
""
Remarks
This property contains the value of the CC header of the last retrieved message. The same information also may be retrieved through the Header event.
This property is read-only.
Data Type
String
MessageCount Property (PPOP Class)
This property includes the number of messages in the mailbox.
Syntax
ANSI (Cross Platform) int GetMessageCount(); Unicode (Windows) INT GetMessageCount();
int ipworksopenpgp_ppop_getmessagecount(void* lpObj);
int GetMessageCount();
Default Value
0
Remarks
This property contains the number of messages in the mailbox. When the class is not connected to the server, the value of this property is 0. When connected, it contains the number of messages in the mailbox as reported by the POP server.
This property is read-only.
Data Type
Integer
MessageDate Property (PPOP Class)
This property includes the value of the date header of the last retrieved message.
Syntax
ANSI (Cross Platform) char* GetMessageDate(); Unicode (Windows) LPWSTR GetMessageDate();
char* ipworksopenpgp_ppop_getmessagedate(void* lpObj);
QString GetMessageDate();
Default Value
""
Remarks
This property contains the value of the date header of the last retrieved message. The same information also may be retrieved through the Header event.
This property is read-only.
Data Type
String
MessageFrom Property (PPOP Class)
This property includes the value of the from header of the last retrieved message.
Syntax
ANSI (Cross Platform) char* GetMessageFrom(); Unicode (Windows) LPWSTR GetMessageFrom();
char* ipworksopenpgp_ppop_getmessagefrom(void* lpObj);
QString GetMessageFrom();
Default Value
""
Remarks
This property contains the value of the from header of the last retrieved message. The same information also may be retrieved through the Header event.
This property is read-only.
Data Type
String
MessageHeaders Property (PPOP Class)
This property includes a collection of the message headers as retrieved from the server.
Syntax
IPWorksOpenPGPList<IPWorksOpenPGPHeader>* GetMessageHeaders();
int ipworksopenpgp_ppop_getmessageheadercount(void* lpObj);
char* ipworksopenpgp_ppop_getmessageheaderfield(void* lpObj, int messageheaderindex);
char* ipworksopenpgp_ppop_getmessageheadervalue(void* lpObj, int messageheaderindex);
int GetMessageHeaderCount(); QString GetMessageHeaderField(int iMessageHeaderIndex); QString GetMessageHeaderValue(int iMessageHeaderIndex);
Remarks
This property contains a collection of the message headers as retrieved from the server. If the class is not connected, or MessageNumber does not contain a valid message number, the value of this property is an empty collection. Otherwise, it contains a parsed collection of the full headers of the mail message as reported by the server.
The MailServer is asked about the headers of the message only if the MessageNumber property has changed. If MessageNumber has not changed, the class returns a cached value.
Example. Connect and Retrieve Messages:
POPControl.MailServer = "MyPOPServer"
POPControl.User = "username"
POPControl.Password = "password"
POPControl.Connect()
POPControl.MessageNumber = 1
MessageText = POPControl.MessageText
MessageHeaders = POPControl.MessageHeaders
This property is read-only.
Data Type
MessageHeadersString Property (PPOP Class)
This property includes a string representation of the full headers of the message as retrieved from the server.
Syntax
ANSI (Cross Platform) char* GetMessageHeadersString(); Unicode (Windows) LPWSTR GetMessageHeadersString();
char* ipworksopenpgp_ppop_getmessageheadersstring(void* lpObj);
QString GetMessageHeadersString();
Default Value
""
Remarks
This property contains a string representation of the full headers of the message as retrieved from the server. If the class is not connected, or MessageNumber does not contain a valid message number, the value of this property is an empty string. Otherwise, it contains the full headers of the mail message as reported by the server.
The MailServer is asked about the headers of the message only if the MessageNumber property has changed. If MessageNumber has not changed, the class returns a cached value.
Example. Connect and Retrieve Messages:
POPControl.MailServer = "MyPOPServer"
POPControl.User = "username"
POPControl.Password = "password"
POPControl.Connect()
POPControl.MessageNumber = 1
MessageText = POPControl.MessageText
MessageHeadersString = POPControl.MessageHeadersString
This property is read-only.
Data Type
String
MessageNumber Property (PPOP Class)
This property includes the current (selected) message.
Syntax
ANSI (Cross Platform) int GetMessageNumber();
int SetMessageNumber(int iMessageNumber); Unicode (Windows) INT GetMessageNumber();
INT SetMessageNumber(INT iMessageNumber);
int ipworksopenpgp_ppop_getmessagenumber(void* lpObj);
int ipworksopenpgp_ppop_setmessagenumber(void* lpObj, int iMessageNumber);
int GetMessageNumber();
int SetMessageNumber(int iMessageNumber);
Default Value
1
Remarks
This property indicates the current (selected) message. This property specifies a message number in between 1 and MessageCount. The various class methods related to single messages use this property as a message pointer (see method descriptions and the QueryMessageSize method).
Data Type
Integer
MessageRecipients Property (PPOP Class)
This property includes a collection of recipients for the current message.
Syntax
IPWorksOpenPGPList<IPWorksOpenPGPMessageRecipient>* GetMessageRecipients();
int ipworksopenpgp_ppop_getmessagerecipientcount(void* lpObj);
char* ipworksopenpgp_ppop_getmessagerecipientaddress(void* lpObj, int recipientindex);
char* ipworksopenpgp_ppop_getmessagerecipientname(void* lpObj, int recipientindex);
char* ipworksopenpgp_ppop_getmessagerecipientoptions(void* lpObj, int recipientindex);
int ipworksopenpgp_ppop_getmessagerecipienttype(void* lpObj, int recipientindex);
int GetMessageRecipientCount(); QString GetMessageRecipientAddress(int iRecipientIndex); QString GetMessageRecipientName(int iRecipientIndex); QString GetMessageRecipientOptions(int iRecipientIndex); int GetMessageRecipientType(int iRecipientIndex);
Remarks
This property contains a collection of recipients for the current message. This collection describes all of the people to whom the last retrieved message was sent. Each MessageRecipient contains information describing that recipient, and what type of recipient it is.
This property is read-only and not available at design time.
Data Type
IPWorksOpenPGPMessageRecipient
MessageReplyTo Property (PPOP Class)
This property includes the value of the Reply-To header of the last retrieved message.
Syntax
ANSI (Cross Platform) char* GetMessageReplyTo(); Unicode (Windows) LPWSTR GetMessageReplyTo();
char* ipworksopenpgp_ppop_getmessagereplyto(void* lpObj);
QString GetMessageReplyTo();
Default Value
""
Remarks
This property contains the value of the Reply-To header of the last retrieved message. The same information also may be retrieved through the Header event.
This property is read-only.
Data Type
String
MessageSubject Property (PPOP Class)
This property includes the value of the Subject header of the last retrieved message.
Syntax
ANSI (Cross Platform) char* GetMessageSubject(); Unicode (Windows) LPWSTR GetMessageSubject();
char* ipworksopenpgp_ppop_getmessagesubject(void* lpObj);
QString GetMessageSubject();
Default Value
""
Remarks
This property contains the value of the Subject header of the last retrieved message. The same information also may be retrieved through the Header event.
This property is read-only.
Data Type
String
MessageText Property (PPOP Class)
This property includes the full text of the message as retrieved from the server.
Syntax
ANSI (Cross Platform) char* GetMessageText(); Unicode (Windows) LPWSTR GetMessageText();
char* ipworksopenpgp_ppop_getmessagetext(void* lpObj);
QString GetMessageText();
Default Value
""
Remarks
This property contains the full text of the message as retrieved from the server. If the class is not connected, or MessageNumber does not contain a valid message number, the value of this property is an empty string. Otherwise, it contains the text of the mail message as reported by the server (a maximum of MaxLines).
The MailServer is asked about the text of the message only if the MessageNumber property has changed. If MessageNumber has not changed, the class returns a cached value.
Example. Connect and Retrieve Messages:
POPControl.MailServer = "MyPOPServer"
POPControl.User = "username"
POPControl.Password = "password"
POPControl.Connect()
POPControl.MessageNumber = 1
MessageText = POPControl.MessageText
MessageHeaders = POPControl.MessageHeaders
This property is read-only.
Data Type
String
MessageTo Property (PPOP Class)
This property includes the value of the To header of the last retrieved message.
Syntax
ANSI (Cross Platform) char* GetMessageTo(); Unicode (Windows) LPWSTR GetMessageTo();
char* ipworksopenpgp_ppop_getmessageto(void* lpObj);
QString GetMessageTo();
Default Value
""
Remarks
This property contains the value of the To header of the last retrieved message. The same information also may be retrieved through the Header event.
This property is read-only.
Data Type
String
Password Property (PPOP Class)
This property includes the password for the mailbox user.
Syntax
ANSI (Cross Platform) char* GetPassword();
int SetPassword(const char* lpszPassword); Unicode (Windows) LPWSTR GetPassword();
INT SetPassword(LPCWSTR lpszPassword);
char* ipworksopenpgp_ppop_getpassword(void* lpObj);
int ipworksopenpgp_ppop_setpassword(void* lpObj, const char* lpszPassword);
QString GetPassword();
int SetPassword(QString qsPassword);
Default Value
""
Remarks
This property contains the password for the mailbox user. This property must be set before the class connects to the MailServer.
Data Type
String
SignerKeys Property (PPOP Class)
The collection of keys belonging to the signer of the message.
Syntax
IPWorksOpenPGPList<IPWorksOpenPGPKey>* GetSignerKeys(); int SetSignerKeys(IPWorksOpenPGPList<IPWorksOpenPGPKey>* val);
int ipworksopenpgp_ppop_getsignerkeycount(void* lpObj);
int ipworksopenpgp_ppop_setsignerkeycount(void* lpObj, int iSignerKeyCount);
int ipworksopenpgp_ppop_getsignerkeyencoded(void* lpObj, int signerkeyindex, char** lpSignerKeyEncoded, int* lenSignerKeyEncoded);
int ipworksopenpgp_ppop_setsignerkeyencoded(void* lpObj, int signerkeyindex, const char* lpSignerKeyEncoded, int lenSignerKeyEncoded);
char* ipworksopenpgp_ppop_getsignerkeykeyring(void* lpObj, int signerkeyindex);
int ipworksopenpgp_ppop_setsignerkeykeyring(void* lpObj, int signerkeyindex, const char* lpszSignerKeyKeyring);
char* ipworksopenpgp_ppop_getsignerkeyuserid(void* lpObj, int signerkeyindex);
int ipworksopenpgp_ppop_setsignerkeyuserid(void* lpObj, int signerkeyindex, const char* lpszSignerKeyUserId);
int GetSignerKeyCount();
int SetSignerKeyCount(int iSignerKeyCount); QByteArray GetSignerKeyEncoded(int iSignerKeyIndex);
int SetSignerKeyEncoded(int iSignerKeyIndex, QByteArray qbaSignerKeyEncoded); QString GetSignerKeyKeyring(int iSignerKeyIndex);
int SetSignerKeyKeyring(int iSignerKeyIndex, QString qsSignerKeyKeyring); QString GetSignerKeyUserId(int iSignerKeyIndex);
int SetSignerKeyUserId(int iSignerKeyIndex, QString qsSignerKeyUserId);
Remarks
This property contains the keys of the message signer.
Set this property before calling VerifySignature or DecryptAndVerifySignature.
This property is not available at design time.
Data Type
SSLAcceptServerCert Property (PPOP Class)
Instructs the class to unconditionally accept the server certificate that matches the supplied certificate.
Syntax
IPWorksOpenPGPCertificate* GetSSLAcceptServerCert(); int SetSSLAcceptServerCert(IPWorksOpenPGPCertificate* val);
char* ipworksopenpgp_ppop_getsslacceptservercerteffectivedate(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertexpirationdate(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertextendedkeyusage(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertfingerprint(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertfingerprintsha1(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertfingerprintsha256(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertissuer(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertprivatekey(void* lpObj);
int ipworksopenpgp_ppop_getsslacceptservercertprivatekeyavailable(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertprivatekeycontainer(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertpublickey(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertpublickeyalgorithm(void* lpObj);
int ipworksopenpgp_ppop_getsslacceptservercertpublickeylength(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertserialnumber(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertsignaturealgorithm(void* lpObj);
int ipworksopenpgp_ppop_getsslacceptservercertstore(void* lpObj, char** lpSSLAcceptServerCertStore, int* lenSSLAcceptServerCertStore);
int ipworksopenpgp_ppop_setsslacceptservercertstore(void* lpObj, const char* lpSSLAcceptServerCertStore, int lenSSLAcceptServerCertStore);
char* ipworksopenpgp_ppop_getsslacceptservercertstorepassword(void* lpObj);
int ipworksopenpgp_ppop_setsslacceptservercertstorepassword(void* lpObj, const char* lpszSSLAcceptServerCertStorePassword);
int ipworksopenpgp_ppop_getsslacceptservercertstoretype(void* lpObj);
int ipworksopenpgp_ppop_setsslacceptservercertstoretype(void* lpObj, int iSSLAcceptServerCertStoreType);
char* ipworksopenpgp_ppop_getsslacceptservercertsubjectaltnames(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertthumbprintmd5(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertthumbprintsha1(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertthumbprintsha256(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertusage(void* lpObj);
int ipworksopenpgp_ppop_getsslacceptservercertusageflags(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertversion(void* lpObj);
char* ipworksopenpgp_ppop_getsslacceptservercertsubject(void* lpObj);
int ipworksopenpgp_ppop_setsslacceptservercertsubject(void* lpObj, const char* lpszSSLAcceptServerCertSubject);
int ipworksopenpgp_ppop_getsslacceptservercertencoded(void* lpObj, char** lpSSLAcceptServerCertEncoded, int* lenSSLAcceptServerCertEncoded);
int ipworksopenpgp_ppop_setsslacceptservercertencoded(void* lpObj, const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded);
QString GetSSLAcceptServerCertEffectiveDate(); QString GetSSLAcceptServerCertExpirationDate(); QString GetSSLAcceptServerCertExtendedKeyUsage(); QString GetSSLAcceptServerCertFingerprint(); QString GetSSLAcceptServerCertFingerprintSHA1(); QString GetSSLAcceptServerCertFingerprintSHA256(); QString GetSSLAcceptServerCertIssuer(); QString GetSSLAcceptServerCertPrivateKey(); bool GetSSLAcceptServerCertPrivateKeyAvailable(); QString GetSSLAcceptServerCertPrivateKeyContainer(); QString GetSSLAcceptServerCertPublicKey(); QString GetSSLAcceptServerCertPublicKeyAlgorithm(); int GetSSLAcceptServerCertPublicKeyLength(); QString GetSSLAcceptServerCertSerialNumber(); QString GetSSLAcceptServerCertSignatureAlgorithm(); QByteArray GetSSLAcceptServerCertStore();
int SetSSLAcceptServerCertStore(QByteArray qbaSSLAcceptServerCertStore); QString GetSSLAcceptServerCertStorePassword();
int SetSSLAcceptServerCertStorePassword(QString qsSSLAcceptServerCertStorePassword); int GetSSLAcceptServerCertStoreType();
int SetSSLAcceptServerCertStoreType(int iSSLAcceptServerCertStoreType); QString GetSSLAcceptServerCertSubjectAltNames(); QString GetSSLAcceptServerCertThumbprintMD5(); QString GetSSLAcceptServerCertThumbprintSHA1(); QString GetSSLAcceptServerCertThumbprintSHA256(); QString GetSSLAcceptServerCertUsage(); int GetSSLAcceptServerCertUsageFlags(); QString GetSSLAcceptServerCertVersion(); QString GetSSLAcceptServerCertSubject();
int SetSSLAcceptServerCertSubject(QString qsSSLAcceptServerCertSubject); QByteArray GetSSLAcceptServerCertEncoded();
int SetSSLAcceptServerCertEncoded(QByteArray qbaSSLAcceptServerCertEncoded);
Remarks
If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.
You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.
Note: This functionality is provided only for cases in which you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.
Data Type
SSLCert Property (PPOP Class)
The certificate to be used during Secure Sockets Layer (SSL) negotiation.
Syntax
IPWorksOpenPGPCertificate* GetSSLCert(); int SetSSLCert(IPWorksOpenPGPCertificate* val);
char* ipworksopenpgp_ppop_getsslcerteffectivedate(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertexpirationdate(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertextendedkeyusage(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertfingerprint(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertfingerprintsha1(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertfingerprintsha256(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertissuer(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertprivatekey(void* lpObj);
int ipworksopenpgp_ppop_getsslcertprivatekeyavailable(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertprivatekeycontainer(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertpublickey(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertpublickeyalgorithm(void* lpObj);
int ipworksopenpgp_ppop_getsslcertpublickeylength(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertserialnumber(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertsignaturealgorithm(void* lpObj);
int ipworksopenpgp_ppop_getsslcertstore(void* lpObj, char** lpSSLCertStore, int* lenSSLCertStore);
int ipworksopenpgp_ppop_setsslcertstore(void* lpObj, const char* lpSSLCertStore, int lenSSLCertStore);
char* ipworksopenpgp_ppop_getsslcertstorepassword(void* lpObj);
int ipworksopenpgp_ppop_setsslcertstorepassword(void* lpObj, const char* lpszSSLCertStorePassword);
int ipworksopenpgp_ppop_getsslcertstoretype(void* lpObj);
int ipworksopenpgp_ppop_setsslcertstoretype(void* lpObj, int iSSLCertStoreType);
char* ipworksopenpgp_ppop_getsslcertsubjectaltnames(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertthumbprintmd5(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertthumbprintsha1(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertthumbprintsha256(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertusage(void* lpObj);
int ipworksopenpgp_ppop_getsslcertusageflags(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertversion(void* lpObj);
char* ipworksopenpgp_ppop_getsslcertsubject(void* lpObj);
int ipworksopenpgp_ppop_setsslcertsubject(void* lpObj, const char* lpszSSLCertSubject);
int ipworksopenpgp_ppop_getsslcertencoded(void* lpObj, char** lpSSLCertEncoded, int* lenSSLCertEncoded);
int ipworksopenpgp_ppop_setsslcertencoded(void* lpObj, const char* lpSSLCertEncoded, int lenSSLCertEncoded);
QString GetSSLCertEffectiveDate(); QString GetSSLCertExpirationDate(); QString GetSSLCertExtendedKeyUsage(); QString GetSSLCertFingerprint(); QString GetSSLCertFingerprintSHA1(); QString GetSSLCertFingerprintSHA256(); QString GetSSLCertIssuer(); QString GetSSLCertPrivateKey(); bool GetSSLCertPrivateKeyAvailable(); QString GetSSLCertPrivateKeyContainer(); QString GetSSLCertPublicKey(); QString GetSSLCertPublicKeyAlgorithm(); int GetSSLCertPublicKeyLength(); QString GetSSLCertSerialNumber(); QString GetSSLCertSignatureAlgorithm(); QByteArray GetSSLCertStore();
int SetSSLCertStore(QByteArray qbaSSLCertStore); QString GetSSLCertStorePassword();
int SetSSLCertStorePassword(QString qsSSLCertStorePassword); int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType); QString GetSSLCertSubjectAltNames(); QString GetSSLCertThumbprintMD5(); QString GetSSLCertThumbprintSHA1(); QString GetSSLCertThumbprintSHA256(); QString GetSSLCertUsage(); int GetSSLCertUsageFlags(); QString GetSSLCertVersion(); QString GetSSLCertSubject();
int SetSSLCertSubject(QString qsSSLCertSubject); QByteArray GetSSLCertEncoded();
int SetSSLCertEncoded(QByteArray qbaSSLCertEncoded);
Remarks
This property includes the digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.
Data Type
SSLEnabled Property (PPOP Class)
This property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled.
Syntax
ANSI (Cross Platform) int GetSSLEnabled();
int SetSSLEnabled(int bSSLEnabled); Unicode (Windows) BOOL GetSSLEnabled();
INT SetSSLEnabled(BOOL bSSLEnabled);
int ipworksopenpgp_ppop_getsslenabled(void* lpObj);
int ipworksopenpgp_ppop_setsslenabled(void* lpObj, int bSSLEnabled);
bool GetSSLEnabled();
int SetSSLEnabled(bool bSSLEnabled);
Default Value
FALSE
Remarks
This property specifies whether TLS/SSL is enabled in the class. When False (default), the class operates in plaintext mode. When True, TLS/SSL is enabled.
TLS/SSL may also be enabled by setting SSLStartMode. Setting SSLStartMode will automatically update this property value.
This property is not available at design time.
Data Type
Boolean
SSLProvider Property (PPOP Class)
The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
Syntax
ANSI (Cross Platform) int GetSSLProvider();
int SetSSLProvider(int iSSLProvider); Unicode (Windows) INT GetSSLProvider();
INT SetSSLProvider(INT iSSLProvider);
Possible Values
SSLP_AUTOMATIC(0),
SSLP_PLATFORM(1),
SSLP_INTERNAL(2)
int ipworksopenpgp_ppop_getsslprovider(void* lpObj);
int ipworksopenpgp_ppop_setsslprovider(void* lpObj, int iSSLProvider);
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider);
Default Value
0
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are as follows:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.
When Automatic is selected, on Windows, the class will use the platform implementation. On Linux/macOS, the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used on all platforms.
Data Type
Integer
SSLServerCert Property (PPOP Class)
The server certificate for the last established connection.
Syntax
IPWorksOpenPGPCertificate* GetSSLServerCert();
char* ipworksopenpgp_ppop_getsslservercerteffectivedate(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertexpirationdate(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertextendedkeyusage(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertfingerprint(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertfingerprintsha1(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertfingerprintsha256(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertissuer(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertprivatekey(void* lpObj);
int ipworksopenpgp_ppop_getsslservercertprivatekeyavailable(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertprivatekeycontainer(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertpublickey(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertpublickeyalgorithm(void* lpObj);
int ipworksopenpgp_ppop_getsslservercertpublickeylength(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertserialnumber(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertsignaturealgorithm(void* lpObj);
int ipworksopenpgp_ppop_getsslservercertstore(void* lpObj, char** lpSSLServerCertStore, int* lenSSLServerCertStore);
char* ipworksopenpgp_ppop_getsslservercertstorepassword(void* lpObj);
int ipworksopenpgp_ppop_getsslservercertstoretype(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertsubjectaltnames(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertthumbprintmd5(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertthumbprintsha1(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertthumbprintsha256(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertusage(void* lpObj);
int ipworksopenpgp_ppop_getsslservercertusageflags(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertversion(void* lpObj);
char* ipworksopenpgp_ppop_getsslservercertsubject(void* lpObj);
int ipworksopenpgp_ppop_getsslservercertencoded(void* lpObj, char** lpSSLServerCertEncoded, int* lenSSLServerCertEncoded);
QString GetSSLServerCertEffectiveDate(); QString GetSSLServerCertExpirationDate(); QString GetSSLServerCertExtendedKeyUsage(); QString GetSSLServerCertFingerprint(); QString GetSSLServerCertFingerprintSHA1(); QString GetSSLServerCertFingerprintSHA256(); QString GetSSLServerCertIssuer(); QString GetSSLServerCertPrivateKey(); bool GetSSLServerCertPrivateKeyAvailable(); QString GetSSLServerCertPrivateKeyContainer(); QString GetSSLServerCertPublicKey(); QString GetSSLServerCertPublicKeyAlgorithm(); int GetSSLServerCertPublicKeyLength(); QString GetSSLServerCertSerialNumber(); QString GetSSLServerCertSignatureAlgorithm(); QByteArray GetSSLServerCertStore(); QString GetSSLServerCertStorePassword(); int GetSSLServerCertStoreType(); QString GetSSLServerCertSubjectAltNames(); QString GetSSLServerCertThumbprintMD5(); QString GetSSLServerCertThumbprintSHA1(); QString GetSSLServerCertThumbprintSHA256(); QString GetSSLServerCertUsage(); int GetSSLServerCertUsageFlags(); QString GetSSLServerCertVersion(); QString GetSSLServerCertSubject(); QByteArray GetSSLServerCertEncoded();
Remarks
This property contains the server certificate for the last established connection.
SSLServerCert is reset every time a new connection is attempted.
This property is read-only.
Data Type
SSLStartMode Property (PPOP Class)
This property determines how the class starts the Secure Sockets Layer (SSL) negotiation.
Syntax
ANSI (Cross Platform) int GetSSLStartMode();
int SetSSLStartMode(int iSSLStartMode); Unicode (Windows) INT GetSSLStartMode();
INT SetSSLStartMode(INT iSSLStartMode);
Possible Values
SSL_AUTOMATIC(0),
SSL_IMPLICIT(1),
SSL_EXPLICIT(2),
SSL_NONE(3)
int ipworksopenpgp_ppop_getsslstartmode(void* lpObj);
int ipworksopenpgp_ppop_setsslstartmode(void* lpObj, int iSSLStartMode);
int GetSSLStartMode();
int SetSSLStartMode(int iSSLStartMode);
Default Value
3
Remarks
The SSLStartMode property may have one of the following values:
0 (sslAutomatic) | If the remote port is set to the standard plaintext port of the protocol (where applicable), the class will behave the same as if SSLStartMode is set to sslExplicit. In all other cases, SSL negotiation will be implicit (sslImplicit). |
1 (sslImplicit) | The SSL negotiation will start immediately after the connection is established. |
2 (sslExplicit) | The class will first connect in plaintext, and then will explicitly start SSL negotiation through a protocol command such as STARTTLS. |
3 (sslNone - default) | No SSL negotiation; no SSL security. All communication will be in plaintext mode. |
Data Type
Integer
Timeout Property (PPOP Class)
The timeout for the class.
Syntax
ANSI (Cross Platform) int GetTimeout();
int SetTimeout(int iTimeout); Unicode (Windows) INT GetTimeout();
INT SetTimeout(INT iTimeout);
int ipworksopenpgp_ppop_gettimeout(void* lpObj);
int ipworksopenpgp_ppop_settimeout(void* lpObj, int iTimeout);
int GetTimeout();
int SetTimeout(int iTimeout);
Default Value
60
Remarks
If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.
If Timeout is set to a positive value, the class will wait for the operation to complete before returning control.
The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.
If Timeout expires, and the operation is not yet complete, the class fails with an error.
Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 60 seconds.
Data Type
Integer
User Property (PPOP Class)
This property includes the user identifier for the mailbox.
Syntax
ANSI (Cross Platform) char* GetUser();
int SetUser(const char* lpszUser); Unicode (Windows) LPWSTR GetUser();
INT SetUser(LPCWSTR lpszUser);
char* ipworksopenpgp_ppop_getuser(void* lpObj);
int ipworksopenpgp_ppop_setuser(void* lpObj, const char* lpszUser);
QString GetUser();
int SetUser(QString qsUser);
Default Value
""
Remarks
This property contains the user identifier for the mailbox. This property must be set before the class connects to the MailServer.
Data Type
String
Config Method (PPOP Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksopenpgp_ppop_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Connect Method (PPOP Class)
This method connects to the mail server and attempts to log in.
Syntax
ANSI (Cross Platform) int Connect(); Unicode (Windows) INT Connect();
int ipworksopenpgp_ppop_connect(void* lpObj);
int Connect();
Remarks
This method connects to the mail server and attempts to log in using the current User and Password. Then it retrieves the initial statistics about the mailbox contents (MessageCount and QueryTotalSize).
Example. Connect to POP Mailbox:
POPControl.MailServer = "MyPOPServer"
POPControl.User = "username"
POPControl.Password = "password"
POPControl.Connect()
POPControl.MessageNumber = 1
POPControl.Retrieve()
MessageText = POPControl.MessageText
MessageHeaders = POPControl.MessageHeaders
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Decrypt Method (PPOP Class)
Decrypts the message.
Syntax
ANSI (Cross Platform) int Decrypt(); Unicode (Windows) INT Decrypt();
int ipworksopenpgp_ppop_decrypt(void* lpObj);
int Decrypt();
Remarks
This method decrypts the specified message.
The message will be decrypted using the keys specified in Keys. Before decryption begins the class will fire the RecipientInfo event with information about the encrypted message, including the key used to encrypt the message. Within this event you may use the available information to load the correct key into Keys.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
DecryptAndVerifySignature Method (PPOP Class)
Decrypts and verifies the signature of the message.
Syntax
ANSI (Cross Platform) int DecryptAndVerifySignature(); Unicode (Windows) INT DecryptAndVerifySignature();
int ipworksopenpgp_ppop_decryptandverifysignature(void* lpObj);
int DecryptAndVerifySignature();
Remarks
This method attempts to both decrypt and verify the signature of the message. All of the properties affected by calling the Decrypt and VerifySignature methods are affected in the same manner.
This method may be used when the data is signed, encrypted, or signed and encrypted. For instance, if the data is encrypted but not signed you may still use this method and the class will perform the decryption without error.
The message will be decrypted using the keys specified in Keys. Before decryption begins the class will fire the RecipientInfo event with information about the encrypted message, including the key used to encrypt the message. Within this event you may use the available information to load the correct key into Keys.
The message will be verified using the keys specified in SignerKeys. Before verification begins the class will fire the SignatureInfo event with information about the signature including the key used to sign the message. Within this event you may use the information available to load the correct key into SignerKeys.
By default, if the signature is not valid the class fails with an error. The configuration setting RequireValidSignature may be set to False to disable this requirement. When RequireValidSignature is set to False, the Status parameter of the VerificationStatus event should be checked to determine the result of the operation.
NOTE: This method does not attempt to check the validity of the signing key itself.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Delete Method (PPOP Class)
This method deletes a message specified by MessageNumber on the server.
Syntax
ANSI (Cross Platform) int Delete(); Unicode (Windows) INT Delete();
int ipworksopenpgp_ppop_delete(void* lpObj);
int Delete();
Remarks
This method asks the MailServer to delete the message specified by MessageNumber. The message will not actually be deleted from the server until the connection is closed. To cancel a previous Delete, use the Reset method.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Disconnect Method (PPOP Class)
This method disconnects from the mail server.
Syntax
ANSI (Cross Platform) int Disconnect(); Unicode (Windows) INT Disconnect();
int ipworksopenpgp_ppop_disconnect(void* lpObj);
int Disconnect();
Remarks
This method makes the class disconnect from the MailServer by sending the QUIT command. If successful, all changes to the mailbox are committed by the server. Otherwise, changes are rolled back to the initial state that the server was in before the connection.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
DoEvents Method (PPOP Class)
This method processes events from the internal message queue.
Syntax
ANSI (Cross Platform) int DoEvents(); Unicode (Windows) INT DoEvents();
int ipworksopenpgp_ppop_doevents(void* lpObj);
int DoEvents();
Remarks
When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Interrupt Method (PPOP Class)
This method interrupts the current method.
Syntax
ANSI (Cross Platform) int Interrupt(); Unicode (Windows) INT Interrupt();
int ipworksopenpgp_ppop_interrupt(void* lpObj);
int Interrupt();
Remarks
If there is no method in progress, Interrupt simply returns, doing nothing.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ListMessageSizes Method (PPOP Class)
This method retrieves a list of all message sizes from the server.
Syntax
ANSI (Cross Platform) int ListMessageSizes(); Unicode (Windows) INT ListMessageSizes();
int ipworksopenpgp_ppop_listmessagesizes(void* lpObj);
int ListMessageSizes();
Remarks
This message retrieves a list of all message sizes from the server. For each message listed, a MessageList event will fire containing the number and size of the message.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ListMessageUIDs Method (PPOP Class)
This method retrieves a list of all message UIDs from the server.
Syntax
ANSI (Cross Platform) int ListMessageUIDs(); Unicode (Windows) INT ListMessageUIDs();
int ipworksopenpgp_ppop_listmessageuids(void* lpObj);
int ListMessageUIDs();
Remarks
This method retrieves a list of all message UIDs from the server. For each message listed, a MessageList event will fire containing the number and UID of the message.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
LocalizeDate Method (PPOP Class)
This method converts a valid RFC 822 message date to a local date and time.
Syntax
ANSI (Cross Platform) char* LocalizeDate(const char* lpszDateTime); Unicode (Windows) LPWSTR LocalizeDate(LPCWSTR lpszDateTime);
char* ipworksopenpgp_ppop_localizedate(void* lpObj, const char* lpszDateTime);
QString LocalizeDate(const QString& qsDateTime);
Remarks
This method can be used to convert an RFC 822 date and time string to the corresponding local date and time.
Note: Dates will be returned in the format: "MM/dd/yyyy hh:mm:ss".
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
QueryMessageSize Method (PPOP Class)
This method returns the size in bytes of the current message.
Syntax
ANSI (Cross Platform) int64 QueryMessageSize(); Unicode (Windows) LONG64 QueryMessageSize();
int64 ipworksopenpgp_ppop_querymessagesize(void* lpObj);
qint64 QueryMessageSize();
Remarks
This method queries the server for the size in bytes of the message specified by MessageNumber. The method returns the size (in bytes) of the message.
If the class is not connected, or MessageNumber does not contain a valid message number, the return value is 0. Otherwise, it returns the size of the mail message (including headers) as reported by the server.
The MailServer is asked about the size of the message only if the MessageNumber property has changed. If MessageNumber has not changed, the class returns a cached value.
Error Handling (C++)
This method returns a Long64 value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
QueryMessageUID Method (PPOP Class)
This method returns the unique identifier (UID) of the message as specified by the server.
Syntax
ANSI (Cross Platform) char* QueryMessageUID(); Unicode (Windows) LPWSTR QueryMessageUID();
char* ipworksopenpgp_ppop_querymessageuid(void* lpObj);
QString QueryMessageUID();
Remarks
This method returns the unique identifier (UID) of the message specified by MessageNumber. If the class is not connected, or MessageNumber does not contain a valid message number, the return value of this method is an empty string. Otherwise, it returns the UID of the mail message as reported by the server.
The MailServer is asked about the UID of the message only if the MessageNumber property has changed. If MessageNumber has not changed, the class returns a cached value.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
QueryTotalSize Method (PPOP Class)
This method returns the cumulative size in bytes of messages in the mailbox (including headers).
Syntax
ANSI (Cross Platform) int64 QueryTotalSize(); Unicode (Windows) LONG64 QueryTotalSize();
int64 ipworksopenpgp_ppop_querytotalsize(void* lpObj);
qint64 QueryTotalSize();
Remarks
This method returns the cumulative size in bytes of messages in the mailbox (including headers). When the class is not connected to the server, the return value of this method is 0. When connected, it returns the cumulative size of all the messages in the mail box as reported by the POP server.
Error Handling (C++)
This method returns a Long64 value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Reset Method (PPOP Class)
This method resets all changes and revert back to the state when the user first connected.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int ipworksopenpgp_ppop_reset(void* lpObj);
int Reset();
Remarks
This method is used to reset all changes and revert back to the state when the user first connected. Asks the MailServer to reset all changes and revert back to the state it was when connected.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Retrieve Method (PPOP Class)
This method retrieves a message specified by MessageNumber from the server.
Syntax
ANSI (Cross Platform) int Retrieve(); Unicode (Windows) INT Retrieve();
int ipworksopenpgp_ppop_retrieve(void* lpObj);
int Retrieve();
Remarks
This method is used to retrieve a message specified by MessageNumber from the server. It asks the MailServer to retrieve the message specified by MessageNumber. The message headers will arrive in the Header event, and the message text will arrive in the Transfer event.
The MaxLines property defines the number of lines retrieved.
Example. Connect and Retrieve Messages:
POPControl.MailServer = "MyPOPServer"
POPControl.User = "username"
POPControl.Password = "password"
POPControl.Connect()
POPControl.MessageNumber = 1
POPControl.Retrieve()
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
RetrieveHeaders Method (PPOP Class)
This method retrieves headers for a message specified by MessageNumber .
Syntax
ANSI (Cross Platform) int RetrieveHeaders(); Unicode (Windows) INT RetrieveHeaders();
int ipworksopenpgp_ppop_retrieveheaders(void* lpObj);
int RetrieveHeaders();
Remarks
Calling this method will retrieve the headers for the message specified by the MessageNumber property. The message headers will be provided by the Header event and also stored in the MessageHeaders property.
Example. Connect and Retrieve Message Headers:
POPControl.MailServer = "MyPOPServer"
POPControl.User = "username"
POPControl.Password = "password"
POPControl.Connect()
POPControl.MessageNumber = 1
POPControl.RetrieveHeaders()
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendCommand Method (PPOP Class)
This method sends the exact command directly to the server.
Syntax
ANSI (Cross Platform) int SendCommand(const char* lpszCommand); Unicode (Windows) INT SendCommand(LPCWSTR lpszCommand);
int ipworksopenpgp_ppop_sendcommand(void* lpObj, const char* lpszCommand);
int SendCommand(const QString& qsCommand);
Remarks
This method sends the command specified by Command to the server exactly as it is provided. Use this method to send additional or custom commands directly to the server.
After calling this method, check the LastReply property or monitor the PITrail event to obtain the server's response.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetMessageStream Method (PPOP Class)
This method sets the stream to which the message downloaded from the server will be written.
Syntax
ANSI (Cross Platform) int SetMessageStream(IPWorksOpenPGPStream* sMessageStream); Unicode (Windows) INT SetMessageStream(IPWorksOpenPGPStream* sMessageStream);
int ipworksopenpgp_ppop_setmessagestream(void* lpObj, IPWorksOpenPGPStream* sMessageStream);
int SetMessageStream(IPWorksOpenPGPStream* sMessageStream);
Remarks
This method sets the stream to which the message downloaded from the server will be written. If a download stream is set before the Retrieve method is called, the downloaded data will be written to the stream. The stream should be open and normally set to position 0. The class will automatically close this stream if CloseStreamAfterTransfer is set to True (default). If the stream is closed, you will need to call SetMessageStream again before calling Retrieve again. The downloaded content will be written starting at the current position in the stream.
Note: SetMessageStream and LocalFile will reset the other.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
VerifySignature Method (PPOP Class)
Verifies the signature of the current message.
Syntax
ANSI (Cross Platform) int VerifySignature(); Unicode (Windows) INT VerifySignature();
int ipworksopenpgp_ppop_verifysignature(void* lpObj);
int VerifySignature();
Remarks
This method verifies the signature of the message.
The message will be verified using the keys specified in SignerKeys. Before verification begins the class will fire the SignatureInfo event with information about the signature including the key used to sign the message. Within this event you may use the information available to load the correct key into SignerKeys.
By default, if the signature is not valid the class fails with an error. The configuration setting RequireValidSignature may be set to False to disable this requirement. When RequireValidSignature is set to False, the Status parameter of the VerificationStatus event should be checked to determine the result of the operation.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ConnectionStatus Event (PPOP Class)
Fired to indicate changes in the connection state.
Syntax
ANSI (Cross Platform) virtual int FireConnectionStatus(PPOPConnectionStatusEventParams *e);
typedef struct {
const char *ConnectionEvent;
int StatusCode;
const char *Description; int reserved; } PPOPConnectionStatusEventParams;
Unicode (Windows) virtual INT FireConnectionStatus(PPOPConnectionStatusEventParams *e);
typedef struct {
LPCWSTR ConnectionEvent;
INT StatusCode;
LPCWSTR Description; INT reserved; } PPOPConnectionStatusEventParams;
#define EID_PPOP_CONNECTIONSTATUS 1 virtual INT IPWORKSOPENPGP_CALL FireConnectionStatus(LPSTR &lpszConnectionEvent, INT &iStatusCode, LPSTR &lpszDescription);
class PPOPConnectionStatusEventParams { public: const QString &ConnectionEvent(); int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ConnectionStatus(PPOPConnectionStatusEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireConnectionStatus(PPOPConnectionStatusEventParams *e) {...}
Remarks
This event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.
The ConnectionEvent parameter indicates the type of connection event. Values may include the following:
Firewall connection complete. | |
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable). | |
Remote host connection complete. | |
Remote host disconnected. | |
SSL or S/Shell connection broken. | |
Firewall host disconnected. |
EndTransfer Event (PPOP Class)
This event is fired when the message completes transferring.
Syntax
ANSI (Cross Platform) virtual int FireEndTransfer(PPOPEndTransferEventParams *e);
typedef struct {
int Direction; int reserved; } PPOPEndTransferEventParams;
Unicode (Windows) virtual INT FireEndTransfer(PPOPEndTransferEventParams *e);
typedef struct {
INT Direction; INT reserved; } PPOPEndTransferEventParams;
#define EID_PPOP_ENDTRANSFER 2 virtual INT IPWORKSOPENPGP_CALL FireEndTransfer(INT &iDirection);
class PPOPEndTransferEventParams { public: int Direction(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void EndTransfer(PPOPEndTransferEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireEndTransfer(PPOPEndTransferEventParams *e) {...}
Remarks
The EndTransfer event is fired when the message body completes transferring from the server to the local host.
The Direction parameter shows whether the client (0) or the server (1) is sending the data.
Error Event (PPOP Class)
Fired when information is available about errors during data delivery.
Syntax
ANSI (Cross Platform) virtual int FireError(PPOPErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } PPOPErrorEventParams;
Unicode (Windows) virtual INT FireError(PPOPErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } PPOPErrorEventParams;
#define EID_PPOP_ERROR 3 virtual INT IPWORKSOPENPGP_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class PPOPErrorEventParams { public: int ErrorCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(PPOPErrorEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireError(PPOPErrorEventParams *e) {...}
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Header Event (PPOP Class)
This event is fired for every message header being retrieved.
Syntax
ANSI (Cross Platform) virtual int FireHeader(PPOPHeaderEventParams *e);
typedef struct {
const char *Field;
const char *Value; int reserved; } PPOPHeaderEventParams;
Unicode (Windows) virtual INT FireHeader(PPOPHeaderEventParams *e);
typedef struct {
LPCWSTR Field;
LPCWSTR Value; INT reserved; } PPOPHeaderEventParams;
#define EID_PPOP_HEADER 4 virtual INT IPWORKSOPENPGP_CALL FireHeader(LPSTR &lpszField, LPSTR &lpszValue);
class PPOPHeaderEventParams { public: const QString &Field(); const QString &Value(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Header(PPOPHeaderEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireHeader(PPOPHeaderEventParams *e) {...}
Remarks
The Field parameter contains the name of the header (in the same case as it is delivered). The Value parameter contains the header contents.
If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).
KeyPassphrase Event (PPOP Class)
Fired if the passphrase of current key is incorrect or empty.
Syntax
ANSI (Cross Platform) virtual int FireKeyPassphrase(PPOPKeyPassphraseEventParams *e);
typedef struct {
const char *UserId;
const char *KeyId;
const char *Fingerprint;
char *Passphrase; int reserved; } PPOPKeyPassphraseEventParams;
Unicode (Windows) virtual INT FireKeyPassphrase(PPOPKeyPassphraseEventParams *e);
typedef struct {
LPCWSTR UserId;
LPCWSTR KeyId;
LPCWSTR Fingerprint;
LPWSTR Passphrase; INT reserved; } PPOPKeyPassphraseEventParams;
#define EID_PPOP_KEYPASSPHRASE 5 virtual INT IPWORKSOPENPGP_CALL FireKeyPassphrase(LPSTR &lpszUserId, LPSTR &lpszKeyId, LPSTR &lpszFingerprint, LPSTR &lpszPassphrase);
class PPOPKeyPassphraseEventParams { public: const QString &UserId(); const QString &KeyId(); const QString &Fingerprint(); const QString &Passphrase(); void SetPassphrase(const QString &qsPassphrase); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void KeyPassphrase(PPOPKeyPassphraseEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireKeyPassphrase(PPOPKeyPassphraseEventParams *e) {...}
Remarks
This event fires when the passphrase for the key is required. The passphrase must be specified before operations requiring the secret key are attempted. The passphrase may be supplied by setting the Passphrase parameter in this event, or by specifying the Passphrase field before attempting the operation.
The passphrase is required when using the following methods in KeyMgr:
- AddUserId
- SignUserId
- ChangeExpirationDate
- ChangePassphrase
When using the OpenPGP class, or an email-based class, the following methods require a passphrase for the key:
- Decrypt
- Sign
- SignAndEncrypt
UserId holds the user Id of the key the passphrase is required for.
The UserId format is:
FirstName LastName (Comment) <Email>Not all values are required when selecting or generating a key, but at least FirstName or Email are required.
Note that for OpenPGP v6, a key may be created with or without a UserId, as the field is optional. If a key was created without a UserId, the key's Fingerprint can be used as it's identifier instead.
KeyId is the hex-encoded, 4-byte or 8-byte Id of the key the passphrase is required for. For OpenPGP v4 keys and earlier, the key Id corresponds to the last 4 or 8 bytes of the key's Fingerprint. For OpenPGP v6 keys, the key Id corresponds to the first 8 bytes of the key's Fingerprint instead. For instance:
5E70662EA810E768
Fingerprint holds the hex-encoded, 20-byte fingerprint of the key the passphrase is required for. This is in the form:
5E70662EA810E768391A2FE8F7B7D49C89C9D7B1
MessageList Event (PPOP Class)
This event is fired for every message listed by ListMessageSizes and/or ListMessageUIDs .
Syntax
ANSI (Cross Platform) virtual int FireMessageList(PPOPMessageListEventParams *e);
typedef struct {
int MessageNumber;
const char *MessageUID;
int MessageSize; int reserved; } PPOPMessageListEventParams;
Unicode (Windows) virtual INT FireMessageList(PPOPMessageListEventParams *e);
typedef struct {
INT MessageNumber;
LPCWSTR MessageUID;
INT MessageSize; INT reserved; } PPOPMessageListEventParams;
#define EID_PPOP_MESSAGELIST 6 virtual INT IPWORKSOPENPGP_CALL FireMessageList(INT &iMessageNumber, LPSTR &lpszMessageUID, INT &iMessageSize);
class PPOPMessageListEventParams { public: int MessageNumber(); const QString &MessageUID(); int MessageSize(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void MessageList(PPOPMessageListEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireMessageList(PPOPMessageListEventParams *e) {...}
Remarks
When ListMessageSizes is called, MessageSize is valid, and MessageUID is always an empty string.
When ListMessageUIDs is called, MessageUID is valid, and MessageSize is 0.
PITrail Event (PPOP Class)
This event traces the commands sent to the mail server, and the respective replies.
Syntax
ANSI (Cross Platform) virtual int FirePITrail(PPOPPITrailEventParams *e);
typedef struct {
int Direction;
const char *Message; int reserved; } PPOPPITrailEventParams;
Unicode (Windows) virtual INT FirePITrail(PPOPPITrailEventParams *e);
typedef struct {
INT Direction;
LPCWSTR Message; INT reserved; } PPOPPITrailEventParams;
#define EID_PPOP_PITRAIL 7 virtual INT IPWORKSOPENPGP_CALL FirePITrail(INT &iDirection, LPSTR &lpszMessage);
class PPOPPITrailEventParams { public: int Direction(); const QString &Message(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void PITrail(PPOPPITrailEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FirePITrail(PPOPPITrailEventParams *e) {...}
Remarks
The PITrail event is useful for debugging purposes. It shows all of the interaction between the client and the server, line by line, except for message header and body transfers.
The Message parameter contains the full text of the message. The Direction parameter shows the originator of the message:
0 (Client) | The Message originates from the client. |
1 (Server) | The Message originates from the server. |
2 (Info) | The Message is an informative message originating from the client software (the class code). |
Progress Event (PPOP Class)
Fired as progress is made.
Syntax
ANSI (Cross Platform) virtual int FireProgress(PPOPProgressEventParams *e);
typedef struct {
int64 BytesProcessed;
int PercentProcessed; int reserved; } PPOPProgressEventParams;
Unicode (Windows) virtual INT FireProgress(PPOPProgressEventParams *e);
typedef struct {
LONG64 BytesProcessed;
INT PercentProcessed; INT reserved; } PPOPProgressEventParams;
#define EID_PPOP_PROGRESS 8 virtual INT IPWORKSOPENPGP_CALL FireProgress(LONG64 &lBytesProcessed, INT &iPercentProcessed);
class PPOPProgressEventParams { public: qint64 BytesProcessed(); int PercentProcessed(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Progress(PPOPProgressEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireProgress(PPOPProgressEventParams *e) {...}
Remarks
This event is fired automatically as data is processed by the class.
The PercentProcessed parameter indicates the current status of the operation.
The BytesProcessed parameter holds the total number of bytes processed so far.
RecipientInfo Event (PPOP Class)
Fired for each recipient key of the encrypted message.
Syntax
ANSI (Cross Platform) virtual int FireRecipientInfo(PPOPRecipientInfoEventParams *e);
typedef struct {
const char *KeyId;
const char *Fingerprint;
const char *PublicKeyAlgorithm; int reserved; } PPOPRecipientInfoEventParams;
Unicode (Windows) virtual INT FireRecipientInfo(PPOPRecipientInfoEventParams *e);
typedef struct {
LPCWSTR KeyId;
LPCWSTR Fingerprint;
LPCWSTR PublicKeyAlgorithm; INT reserved; } PPOPRecipientInfoEventParams;
#define EID_PPOP_RECIPIENTINFO 9 virtual INT IPWORKSOPENPGP_CALL FireRecipientInfo(LPSTR &lpszKeyId, LPSTR &lpszFingerprint, LPSTR &lpszPublicKeyAlgorithm);
class PPOPRecipientInfoEventParams { public: const QString &KeyId(); const QString &Fingerprint(); const QString &PublicKeyAlgorithm(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void RecipientInfo(PPOPRecipientInfoEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireRecipientInfo(PPOPRecipientInfoEventParams *e) {...}
Remarks
This event fires when the Decrypt or DecryptAndVerifySignature method is called.
KeyId is the hex-encoded 4- or 8-byte Id of the key used to encrypt the message. If a subkey was used to encrypt the message this will be the Id of that subkey. For OpenPGP v4 keys and earlier, the key Id corresponds to the last 4 or 8 bytes of the key's Fingerprint. For OpenPGP v6 keys, the key Id corresponds to the first 8 bytes of the key's Fingerprint instead. For instance:
5E70662EA810E768
Fingerprint holds the hex-encoded, 20-byte fingerprint of the key. This is in the form:
5E70662EA810E768391A2FE8F7B7D49C89C9D7B1
The KeyId and Fingerprint parameters can be used to identify the correct key to specify in Keys. Keys can be set from within this event as this event fires directly before the decryption process begins.
It is recommended to use the Fingerprint to identify the correct key, as it is possible for different keys to have the same KeyId.
PublicKeyAlgorithm is the algorithm of the public key used to encrypt the message. Possible values are:
- RSA
- DSA
- ECDSA
- EdDSA
- Ed25519
- Ed448
- RSA-Legacy
- ECDH (Subkeys only)
- X25519 (Subkeys only)
- X448 (Subkeys only)
SignatureInfo Event (PPOP Class)
Fired during verification of the signed message.
Syntax
ANSI (Cross Platform) virtual int FireSignatureInfo(PPOPSignatureInfoEventParams *e);
typedef struct {
const char *KeyId;
const char *Fingerprint;
const char *SigningAlgorithm;
const char *PublicKeyAlgorithm; int reserved; } PPOPSignatureInfoEventParams;
Unicode (Windows) virtual INT FireSignatureInfo(PPOPSignatureInfoEventParams *e);
typedef struct {
LPCWSTR KeyId;
LPCWSTR Fingerprint;
LPCWSTR SigningAlgorithm;
LPCWSTR PublicKeyAlgorithm; INT reserved; } PPOPSignatureInfoEventParams;
#define EID_PPOP_SIGNATUREINFO 10 virtual INT IPWORKSOPENPGP_CALL FireSignatureInfo(LPSTR &lpszKeyId, LPSTR &lpszFingerprint, LPSTR &lpszSigningAlgorithm, LPSTR &lpszPublicKeyAlgorithm);
class PPOPSignatureInfoEventParams { public: const QString &KeyId(); const QString &Fingerprint(); const QString &SigningAlgorithm(); const QString &PublicKeyAlgorithm(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SignatureInfo(PPOPSignatureInfoEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireSignatureInfo(PPOPSignatureInfoEventParams *e) {...}
Remarks
This event fires when the VerifySignature or DecryptAndVerifySignature method is called. It provides information about the signature of the message.
KeyId is the hex-encoded 4- or 8-byte Id of the key used to sign the message. If a subkey was used to sign the message this will be the Id of that subkey. For OpenPGP v4 keys and earlier, the key Id corresponds to the last 4 or 8 bytes of the key's Fingerprint. For OpenPGP v6 keys, the key Id corresponds to the first 8 bytes of the key's Fingerprint instead. For instance:
5E70662EA810E768
Fingerprint holds the hex-encoded, 20-byte fingerprint of the key. This is in the form:
5E70662EA810E768391A2FE8F7B7D49C89C9D7B1
The KeyId and Fingerprint parameters can be used to identify the correct key to specify in SignerKeys. SignerKeys can be set from within this event as this event fires directly before the verification process begins.
It is recommended to use the Fingerprint to identify the correct key, as it is possible for different keys to have the same KeyId.
SigningAlgorithm describes the hash algorithm used when the message was originally signed. This value is applicable only to the message signature, not the key used to sign the message. Possible values are:
- SHA1
- MD5
- SHA256
- SHA384
- SHA512
- SHA224
- RIPEMD160
- SHA3-256
- SHA3-512
PublicKeyAlgorithm is the algorithm of the public key used to sign the message. Possible values are:
- RSA
- DSA
- ECDSA
- EdDSA
- Ed25519
- Ed448
- RSA-Legacy
- ECDH (Subkeys only)
- X25519 (Subkeys only)
- X448 (Subkeys only)
SSLServerAuthentication Event (PPOP Class)
Fired after the server presents its certificate to the client.
Syntax
ANSI (Cross Platform) virtual int FireSSLServerAuthentication(PPOPSSLServerAuthenticationEventParams *e);
typedef struct {
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *Status;
int Accept; int reserved; } PPOPSSLServerAuthenticationEventParams;
Unicode (Windows) virtual INT FireSSLServerAuthentication(PPOPSSLServerAuthenticationEventParams *e);
typedef struct {
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR Status;
BOOL Accept; INT reserved; } PPOPSSLServerAuthenticationEventParams;
#define EID_PPOP_SSLSERVERAUTHENTICATION 11 virtual INT IPWORKSOPENPGP_CALL FireSSLServerAuthentication(LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszStatus, BOOL &bAccept);
class PPOPSSLServerAuthenticationEventParams { public: const QByteArray &CertEncoded(); const QString &CertSubject(); const QString &CertIssuer(); const QString &Status(); bool Accept(); void SetAccept(bool bAccept); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSLServerAuthentication(PPOPSSLServerAuthenticationEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireSSLServerAuthentication(PPOPSSLServerAuthenticationEventParams *e) {...}
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (PPOP Class)
Fired when secure connection progress messages are available.
Syntax
ANSI (Cross Platform) virtual int FireSSLStatus(PPOPSSLStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } PPOPSSLStatusEventParams;
Unicode (Windows) virtual INT FireSSLStatus(PPOPSSLStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } PPOPSSLStatusEventParams;
#define EID_PPOP_SSLSTATUS 12 virtual INT IPWORKSOPENPGP_CALL FireSSLStatus(LPSTR &lpszMessage);
class PPOPSSLStatusEventParams { public: const QString &Message(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSLStatus(PPOPSSLStatusEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireSSLStatus(PPOPSSLStatusEventParams *e) {...}
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
StartTransfer Event (PPOP Class)
This event is fired when the message starts transferring.
Syntax
ANSI (Cross Platform) virtual int FireStartTransfer(PPOPStartTransferEventParams *e);
typedef struct {
int Direction; int reserved; } PPOPStartTransferEventParams;
Unicode (Windows) virtual INT FireStartTransfer(PPOPStartTransferEventParams *e);
typedef struct {
INT Direction; INT reserved; } PPOPStartTransferEventParams;
#define EID_PPOP_STARTTRANSFER 13 virtual INT IPWORKSOPENPGP_CALL FireStartTransfer(INT &iDirection);
class PPOPStartTransferEventParams { public: int Direction(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void StartTransfer(PPOPStartTransferEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireStartTransfer(PPOPStartTransferEventParams *e) {...}
Remarks
The StartTransfer event is fired when the message body starts transferring from the server to the local host.
The Direction parameter shows whether the client (0) or the server (1) is sending the data.
Status Event (PPOP Class)
Shows the progress of the operation.
Syntax
ANSI (Cross Platform) virtual int FireStatus(PPOPStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } PPOPStatusEventParams;
Unicode (Windows) virtual INT FireStatus(PPOPStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } PPOPStatusEventParams;
#define EID_PPOP_STATUS 14 virtual INT IPWORKSOPENPGP_CALL FireStatus(LPSTR &lpszMessage);
class PPOPStatusEventParams { public: const QString &Message(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Status(PPOPStatusEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireStatus(PPOPStatusEventParams *e) {...}
Remarks
The event is fired for informational and logging purposes only. It may be used to track the progress of an operation.
The level of detail is controlled by the LogLevel setting.
Transfer Event (PPOP Class)
This event is fired when the message is transferred from MailServer .
Syntax
ANSI (Cross Platform) virtual int FireTransfer(PPOPTransferEventParams *e);
typedef struct {
int Direction;
int64 BytesTransferred;
int PercentDone;
const char *Text; int lenText;
int EOL; int reserved; } PPOPTransferEventParams;
Unicode (Windows) virtual INT FireTransfer(PPOPTransferEventParams *e);
typedef struct {
INT Direction;
LONG64 BytesTransferred;
INT PercentDone;
LPCSTR Text; INT lenText;
BOOL EOL; INT reserved; } PPOPTransferEventParams;
#define EID_PPOP_TRANSFER 15 virtual INT IPWORKSOPENPGP_CALL FireTransfer(INT &iDirection, LONG64 &lBytesTransferred, INT &iPercentDone, LPSTR &lpText, INT &lenText, BOOL &bEOL);
class PPOPTransferEventParams { public: int Direction(); qint64 BytesTransferred(); int PercentDone(); const QByteArray &Text(); bool EOL(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Transfer(PPOPTransferEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireTransfer(PPOPTransferEventParams *e) {...}
Remarks
The Text parameter contains the portion of the message data to be retrieved.
The BytesTransferred parameter contains the number of bytes transferred since the beginning of the message, including header bytes. At the end of transmission (i.e., when the last Transfer event is fired), BytesTransferred equals the value of the QueryMessageSize method.
The Transfer event is fired for every line of the message. For complete lines, there is no terminating newline at the end of the Text parameter, and EOL is True. The EOL parameter is False when a line is broken (usually for being too long).
A faster way to retrieve a message is to assign a value to the LocalFile property and use the Transfer event to check the progress rather than to get the actual data.
The Direction parameter shows whether the client (0) or the server (1) is sending the data.
The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.
Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.
Note: For the PercentDone parameter value to be correct, the GetMessageSize configuration setting must be set to True.
VerificationStatus Event (PPOP Class)
Fired after verification of the signed message.
Syntax
ANSI (Cross Platform) virtual int FireVerificationStatus(PPOPVerificationStatusEventParams *e);
typedef struct {
const char *KeyId;
const char *Fingerprint;
int Status; int reserved; } PPOPVerificationStatusEventParams;
Unicode (Windows) virtual INT FireVerificationStatus(PPOPVerificationStatusEventParams *e);
typedef struct {
LPCWSTR KeyId;
LPCWSTR Fingerprint;
INT Status; INT reserved; } PPOPVerificationStatusEventParams;
#define EID_PPOP_VERIFICATIONSTATUS 16 virtual INT IPWORKSOPENPGP_CALL FireVerificationStatus(LPSTR &lpszKeyId, LPSTR &lpszFingerprint, INT &iStatus);
class PPOPVerificationStatusEventParams { public: const QString &KeyId(); const QString &Fingerprint(); int Status(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void VerificationStatus(PPOPVerificationStatusEventParams *e);
// Or, subclass PPOP and override this emitter function. virtual int FireVerificationStatus(PPOPVerificationStatusEventParams *e) {...}
Remarks
This event fires when VerifySignature or DecryptAndVerifySignature is called. It provides information about the result.
KeyId is the hex-encoded 4- or 8-byte Id of the key used to sign the message. For OpenPGP v4 keys and earlier, the key Id corresponds to the last 4 or 8 bytes of the key's Fingerprint. For OpenPGP v6 keys, the key Id corresponds to the first 8 bytes of the key's Fingerprint instead. For instance:
5E70662EA810E768
Fingerprint holds the hex-encoded, 20-byte fingerprint of the key. This is in the form:
5E70662EA810E768391A2FE8F7B7D49C89C9D7B1
Status holds the result of the operation. Possible values are:
0 | Verification succeeded |
1 | Verification failed |
2 | The required key could not be found |
3 | Verification succeeded but the key is expired. |
Certificate Type
This is the digital certificate being used.
Syntax
IPWorksOpenPGPCertificate (declared in ipworksopenpgp.h)
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
EffectiveDate
char* (read-only)
Default Value: ""
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
ExpirationDate
char* (read-only)
Default Value: ""
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
ExtendedKeyUsage
char* (read-only)
Default Value: ""
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
Fingerprint
char* (read-only)
Default Value: ""
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
FingerprintSHA1
char* (read-only)
Default Value: ""
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
FingerprintSHA256
char* (read-only)
Default Value: ""
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
Issuer
char* (read-only)
Default Value: ""
The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.
PrivateKey
char* (read-only)
Default Value: ""
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.
PrivateKeyAvailable
int (read-only)
Default Value: FALSE
Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
PrivateKeyContainer
char* (read-only)
Default Value: ""
The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
PublicKey
char* (read-only)
Default Value: ""
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
PublicKeyAlgorithm
char* (read-only)
Default Value: ""
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
PublicKeyLength
int (read-only)
Default Value: 0
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
SerialNumber
char* (read-only)
Default Value: ""
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
SignatureAlgorithm
char* (read-only)
Default Value: ""
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
Store
char*
Default Value: "MY"
The name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StorePassword
char*
Default Value: ""
If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.
StoreType
int
Default Value: 0
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
SubjectAltNames
char* (read-only)
Default Value: ""
Comma-separated lists of alternative subject names for the certificate.
ThumbprintMD5
char* (read-only)
Default Value: ""
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA1
char* (read-only)
Default Value: ""
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA256
char* (read-only)
Default Value: ""
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
Usage
char* (read-only)
Default Value: ""
The text description of UsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
UsageFlags
int (read-only)
Default Value: 0
The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the Usage field for a text representation of UsageFlags.
This functionality currently is not available when the provider is OpenSSL.
Version
char* (read-only)
Default Value: ""
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
Subject
char*
Default Value: ""
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the field is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Encoded
char*
Default Value: ""
The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
Constructors
Certificate()
Creates a instance whose properties can be set. This is useful for use with when generating new certificates.
Certificate(const char* lpEncoded, int lenEncoded)
Parses Encoded as an X.509 public key.
Certificate(int iStoreType, const char* lpStore, int lenStore, const char* lpszStorePassword, const char* lpszSubject)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
Firewall Type
The firewall the component will connect through.
Syntax
IPWorksOpenPGPFirewall (declared in ipworksopenpgp.h)
Remarks
When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.
Fields
AutoDetect
int
Default Value: FALSE
Whether to automatically detect and use firewall system settings, if available.
FirewallType
int
Default Value: 0
The type of firewall to connect through. The applicable values are as follows:
fwNone (0) | No firewall (default setting). |
fwTunnel (1) | Connect through a tunneling proxy. Port is set to 80. |
fwSOCKS4 (2) | Connect through a SOCKS4 Proxy. Port is set to 1080. |
fwSOCKS5 (3) | Connect through a SOCKS5 Proxy. Port is set to 1080. |
fwSOCKS4A (10) | Connect through a SOCKS4A Proxy. Port is set to 1080. |
Host
char*
Default Value: ""
The name or IP address of the firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.
If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the class fails with an error.
Password
char*
Default Value: ""
A password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.
Port
int
Default Value: 0
The Transmission Control Protocol (TCP) port for the firewall Host. See the description of the Host field for details.
Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.
User
char*
Default Value: ""
A username if authentication is to be used when connecting through a firewall. If Host is specified, this field and the Password field are used to connect and authenticate to the given Firewall. If the authentication fails, the class fails with an error.
Constructors
Firewall()
Header Type
This is an HTTP header as it is received from the server.
Syntax
IPWorksOpenPGPHeader (declared in ipworksopenpgp.h)
Remarks
When a header is received through a Header event, it is parsed into a Header type. This type contains a Field, and its corresponding Value.
Fields
Field
char*
Default Value: ""
This field contains the name of the HTTP Header (this is the same case as it is delivered).
Value
char*
Default Value: ""
This field contains the Header contents.
Constructors
Header()
Header(const char* lpszField, const char* lpszValue)
Key Type
The OpenPGP key being used.
Syntax
IPWorksOpenPGPKey (declared in ipworksopenpgp.h)
Remarks
This type describes the current key. The key may be a public or secret key. The fields are used to identify or select the key.
Fields
Curve
char* (read-only)
Default Value: ""
This field specifies the elliptic curve if PublicKeyAlgorithm is ECDSA, EdDSA, Ed25519, or Ed448. Possible values are:
Curve | Valid Public Key Algorithms | Description |
secp256r1 | ECDSA | NIST curve P-256 |
secp384r1 | ECDSA | NIST curve P-384 |
secp521r1 | ECDSA | NIST curve P-521 |
secp256k1 | ECDSA | Secp256k1 |
Ed25519 | EdDSA, Ed25519 | Ed25519 |
Ed448 | Ed448 | Ed448 |
EffectiveDate
char* (read-only)
Default Value: ""
The date when this key becomes valid. Prior to this it is not valid. The following is an example of a valid encoded date:
23-Jan-2000 15:00:00.
Encoded
char*
Default Value: ""
The key. This field can be used to assign a specific key. The Fingerprint, Id, and UserId fields may also be used to specify a key.
ExpirationDate
char* (read-only)
Default Value: ""
The date the key expires. After this date the key will no longer be valid. The following is an example of a valid encoded date:
23-Jan-2001 15:00:00.
Fingerprint
char*
Default Value: ""
The hex-encoded, 20-byte fingerprint of the key.
When a key is loaded, this field is populated with the Fingerprint associated with the key. This field may be set to load a key from the Keyring. When this field is set the classwill search the Keyring for a key associated with the Fingerprint specified.
This is in the form:
5E70662EA810E768391A2FE8F7B7D49C89C9D7B1
Id
char*
Default Value: ""
The hex-encoded, 4-byte or 8-byte key Id. For OpenPGP v4 keys and earlier, the key Id corresponds to the last 4 or 8 bytes of the key's Fingerprint. For OpenPGP v6 keys, the key Id corresponds to the first 8 bytes of the key's Fingerprint instead. For instance:
5E70662EA810E768
When a key is loaded, this field is populated with the Id associated with the key. This field may be set to load a key from the Keyring. When this field is set the class will search the Keyring for a key associated with the Id specified.
The KeyIdLength setting may be set to control the length of the returned key Id.
Note: It is recommended to use the Fingerprint field when loading a key from the Keyring, as it is possible for different keys to have the same Id.
Keyring
char*
Default Value: ""
The location of the keyring.
If the keyring is stored in a directory, set this property to the directory. The directory must contain the files "secring.gpg" and "pubring.gpg". A keyring may also be stored in a single file. If the keyring is a file this property should be set to the path of the file.
When This field is set the class will read the keyring and populate the Key property with the first key found in the keyring. Set UserId to select a different key in the current keyring.
OtherUserIds
char* (read-only)
Default Value: ""
If the specified key has alternate user Ids associated with it, this field returns a comma-separated list of the other user Ids.
Passphrase
char*
Default Value: ""
The passphrase for the key's secret key (if any). This must be specified before operations requiring the secret key are attempted. The passphrase may be supplied in this field or through the KeyPassphrase event, which will fire when a passphrase is required.
The passphrase is required when using the following methods in KeyMgr:
- AddUserId
- SignUserId
- ChangeExpirationDate
- ChangePassphrase
When using the OpenPGP class, or an email-based class, the following methods require a passphrase for the key:
- Decrypt
- Sign
- SignAndEncrypt
PublicKey
char* (read-only)
Default Value: ""
The public key of the key. The key is provided as ASCII armored data.
PublicKeyAlgorithm
char* (read-only)
Default Value: ""
A text description of the public key algorithm of the key. Possible values are:
- RSA
- DSA
- ECDSA
- EdDSA
- Ed25519
- Ed448
- RSA-Legacy
PublicKeyLength
int (read-only)
Default Value: 0
The length of the public key in bits. Common values are 1024, 2048, and 3072.
If the PublicKeyAlgorithm field is ECDSA, EdDSA, Ed25519, or Ed448, the length of the public key is determined by the Curve. Possible lengths are:
Curve | Public Key Length (bits) |
secp256r1 | 256 |
secp384r1 | 384 |
secp521r1 | 528 |
secp256k1 | 256 |
Ed25519 | 256 |
Ed448 | 456 |
Revoked
int (read-only)
Default Value: FALSE
Whether or not the key is revoked.
SecretKey
char* (read-only)
Default Value: ""
The secret key of the key (if available). The key is provided as ASCII armored data.
SecretKeyAvailable
int (read-only)
Default Value: FALSE
Whether or not a secret key is available for the selected key.
Usage
char* (read-only)
Default Value: ""
A text description of UsageFlags.
The value will be of one or more of the following strings, separated by commas:
- Certifying Other Certificates
- Signing Emails and Files
- Encrypting Emails and Files
- Split Key
- Authenticate Against Servers
- Group Key
UsageFlags
int (read-only)
Default Value: 47
Flags that show the intended use for the key. The default value is 0x0F. The value of UsageFlags is a combination of the following flags:
0x01 | This key may be used to certify other keys. |
0x02 | This key may be used to sign data. |
0x0C | This key may be used to encrypt communications and encrypt storage. |
0x10 | The private component of this key may have been split by a secret-sharing mechanism. |
0x20 | This key may be used for authentication. |
0x80 | The private component of this key may be in the possession of more than one person. |
Please refer to the Usage field for a text representation of UsageFlags.
UserId
char*
Default Value: ""
The user Id of the key. When a key is loaded this field is populated with the user Id associated with the key. This field may be set to load a key from the Keyring. When this field is set the class will search the Keyring for a key associated with the UserId specified.
When loading a key with multiple user Ids, this field will be populated with the UserId that was most recently added to the key. To discover all of the UserIds associated with a key query this field and OtherUserIds after loading the key.
The UserId format is:
FirstName LastName (Comment) <Email>Not all values are required when selecting or generating a key, but at least FirstName or Email are required.
Note that for OpenPGP v6, a key may be created with or without a UserId, as the field is optional. If a key was created without a UserId, the key's Fingerprint can be used as it's identifier instead.
When using this field to select a key you may also specify the key's Id, or any of its subkeys' Ids, instead of a user Id. The class will then search for a key with a matching Id. This is helpful in situations where you do not have the UserId but still need to load the key, such as within the OpenPGP class's RecipientInfo event.
Version
int (read-only)
Default Value: 4
This field can be used to query the OpenPGP version of the currently selected Key. Possible values are:
- 4 - OpenPGP v4 (default)
- 6 - OpenPGP v6
MessageRecipient Type
This types describes the message recipient.
Syntax
IPWorksOpenPGPMessageRecipient (declared in ipworksopenpgp.h)
Remarks
This type describes who the message is sent to. It includes fields to denote the name and email address of the recipient of the message. The type of recipient must also be specified if the class is sending the message.
Fields
Address
char*
Default Value: ""
This field contains the email address of the recipient.
Name
char*
Default Value: ""
This field contains the name of the recipient.
Options
char*
Default Value: ""
This field contains the recipient sending options (used only by SMTP). This must be a string of RFC-compliant recipient options (used by SMTP).
One type of option is a delivery status notification sent per recipient, which is specified by RFC 1891.
component.MessageRecipientOptions(0) = "NOTIFY SUCCESS,FAILURE,DELAY";
RecipientType
int
Default Value: 0
This field contains the recipient type: To, Cc, or Bcc.
Constructors
MessageRecipient()
MessageRecipient(const char* lpszAddress)
IPWorksOpenPGPList Type
Syntax
IPWorksOpenPGPList<T> (declared in ipworksopenpgp.h)
Remarks
IPWorksOpenPGPList is a generic class that is used to hold a collection of objects of type T, where T is one of the custom types supported by the PPOP class.
Methods | |
GetCount |
This method returns the current size of the collection.
int GetCount() {}
|
SetCount |
This method sets the size of the collection. This method returns 0 if setting the size was successful; or -1 if the collection is ReadOnly. When adding additional objects to a collection call this method to specify the new size. Increasing the size of the collection preserves existing objects in the collection.
int SetCount(int count) {}
|
Get |
This method gets the item at the specified position. The index parameter specifies the index of the item in the collection. This method returns NULL if an invalid index is specified.
T* Get(int index) {}
|
Set |
This method sets the item at the specified position. The index parameter specifies the index of the item in the collection that is being set. This method returns -1 if an invalid index is specified. Note: Objects created using the new operator must be freed using the delete operator; they will not be automatically freed by the class.
T* Set(int index, T* value) {}
|
IPWorksOpenPGPStream Type
Syntax
IPWorksOpenPGPStream (declared in ipworksopenpgp.h)
Remarks
The PPOP class includes one or more API members that take a stream object as a parameter. To use such API members, create a concrete class that implements the IPWorksOpenPGPStream interface and pass the PPOP class an instance of that concrete class.
When implementing the IPWorksOpenPGPStream interface's properties and methods, they must behave as described below. If the concrete class's implementation does not behave as expected, undefined behavior may occur.
Properties | |
CanRead |
Whether the stream supports reading.
bool CanRead() { return true; } |
CanSeek |
Whether the stream supports seeking.
bool CanSeek() { return true; } |
CanWrite |
Whether the stream supports writing.
bool CanWrite() { return true; } |
Length |
Gets the length of the stream, in bytes.
int64 GetLength() = 0; |
Methods | |
Close |
Closes the stream, releasing all resources currently allocated for it.
void Close() {} This method is called automatically when an IPWorksOpenPGPStream object is deleted. |
Flush |
Forces all data held by the stream's buffers to be written out to storage.
int Flush() { return 0; } Must return 0 if flushing is successful; or -1 if an error occurs or the stream is closed. If the stream does not support writing, this method must do nothing and return 0. |
Read |
Reads a sequence of bytes from the stream and advances the current position within the stream by the number of bytes read.
int Read(void* buffer, int count) = 0; Buffer specifies the buffer to populate with data from the stream. Count specifies the number of bytes that should be read from the stream. Must return the total number of bytes read into Buffer; this may be less than Count if that many bytes are not currently available, or 0 if the end of the stream has been reached. Must return -1 if an error occurs, if reading is not supported, or if the stream is closed. |
Seek |
Sets the current position within the stream based on a particular point of origin.
int64 Seek(int64 offset, int seekOrigin) = 0; Offset specifies the offset in the stream to seek to, relative to SeekOrigin. Valid values for SeekOrigin are:
Must return the new position within the stream; or -1 if an error occurs, if seeking is not supported, or if the stream is closed (however, see note below). If -1 is returned, the current position within the stream must remain unchanged. Note: If the stream is not closed, it must always be possible to call this method with an Offset of 0 and a SeekOrigin of 1 to obtain the current position within the stream, even if seeking is not otherwise supported. |
Write |
Writes a sequence of bytes to the stream and advances the current position within the stream by the number of bytes written.
int Write(const void* buffer, int count) = 0; Buffer specifies the buffer with data to write to the stream. Count specifies the number of bytes that should be written to the stream. Must return the total number of bytes written to the stream; this may be less than Count if that many bytes could not be written. Must return -1 if an error occurs, if writing is not supported, or if the stream is closed. |
Config Settings (PPOP Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.PPOP Config Settings
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
This config is True by default, and must be true when verifying an OpenPGP v6 cleartext signature. When enabled, the cleartext portion will be cached in memory until the signature is fully processed.
Note: If the signature is known to be an OpenPGP v4 cleartext signature beforehand (i.e., signed with a v4 key), this config may be set to False. However, if this config is disabled, the class will be unable to verify OpenPGP v6 cleartext signatures. In this case, the class will throw an exception when calling VerifySignature or DecryptAndVerifySignature.
This setting will be populated after calling Decrypt, VerifySignature, or DecryptAndVerifySignature.
POP Config Settings
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this configuration setting is set to False.
0 | IPv4 only |
1 | IPv6 only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this configuration setting has no effect if SSLProvider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to True, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is as follows:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform include the following:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include the following:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include the following:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default - Client and Server) |
TLS1.1 | 768 (Hex 300) (Default - Client) |
TLS1 | 192 (Hex C0) (Default - Client) |
SSL3 | 48 (Hex 30) |
SSL2 | 12 (Hex 0C) |
Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.
SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:
By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider), please be aware of the following notes:
- The platform provider is available only on Windows 11/Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This configuration setting is applicable only when SSLProvider is set to Internal.
If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.
Note: This configuration setting is applicable only when SSLProvider is set to Internal.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown certificate authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown certificate authority revocation status. |
0x00000800 | Ignore unknown root revocation status. |
0x00008000 | Allow test root certificate. |
0x00004000 | Trust test root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN non-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.
The format of this value is a comma-separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.
In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for User Datagram Protocol (UDP) ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
On Linux, the C++ edition requires installation of the FIPS-enabled OpenSSL library. The OpenSSL FIPS provider version must be at least 3.0.0. For additional information and instructions regarding the installation and activation of the FIPS-enabled OpenSSL library, please refer to the following link: https://github.com/openssl/openssl/blob/master/README-FIPS.md
To ensure the class utilizes the FIPS-enabled OpenSSL library, the obfuscated source code should first be compiled with OpenSSL enabled, as described in the Supported Platforms section. Additionally, the FIPS module should be enabled and active. If the obfuscated source code is not compiled as mentioned, or the FIPS module is inactive, the class will throw an appropriate error assuming FIPS mode is enabled.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
Trappable Errors (PPOP Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
POP Errors
116 | MailPort cannot be zero. Please specify a valid service port number. |
118 | Firewall error. Error message contains detailed description. |
171 | POP protocol error. Description contains the server reply. |
172 | Error communicating with server. Error text is attached. |
173 | Please specify a valid MailServer. |
174 | Busy executing current method. |
The class may also return one of the following error codes, which are inherited from other classes.
TCPClient Errors
100 | You cannot change the RemotePort at this time. A connection is in progress. |
101 | You cannot change the RemoteHost (Server) at this time. A connection is in progress. |
102 | The RemoteHost address is invalid (0.0.0.0). |
104 | Already connected. If you want to reconnect, close the current connection first. |
106 | You cannot change the LocalPort at this time. A connection is in progress. |
107 | You cannot change the LocalHost at this time. A connection is in progress. |
112 | You cannot change MaxLineLength at this time. A connection is in progress. |
116 | RemotePort cannot be zero. Please specify a valid service port number. |
117 | You cannot change the UseConnection option while the class is active. |
135 | Operation would block. |
201 | Timeout. |
211 | Action impossible in control's present state. |
212 | Action impossible while not connected. |
213 | Action impossible while listening. |
301 | Timeout. |
302 | Could not open file. |
434 | Unable to convert string to selected CodePage. |
1105 | Already connecting. If you want to reconnect, close the current connection first. |
1117 | You need to connect first. |
1119 | You cannot change the LocalHost at this time. A connection is in progress. |
1120 | Connection dropped by remote host. |
SSL Errors
270 | Cannot load specified security library. |
271 | Cannot open certificate store. |
272 | Cannot find specified certificate. |
273 | Cannot acquire security credentials. |
274 | Cannot find certificate chain. |
275 | Cannot verify certificate chain. |
276 | Error during handshake. |
280 | Error verifying certificate. |
281 | Could not find client certificate. |
282 | Could not find server certificate. |
283 | Error encrypting data. |
284 | Error decrypting data. |
TCP/IP Errors
10004 | [10004] Interrupted system call. |
10009 | [10009] Bad file number. |
10013 | [10013] Access denied. |
10014 | [10014] Bad address. |
10022 | [10022] Invalid argument. |
10024 | [10024] Too many open files. |
10035 | [10035] Operation would block. |
10036 | [10036] Operation now in progress. |
10037 | [10037] Operation already in progress. |
10038 | [10038] Socket operation on nonsocket. |
10039 | [10039] Destination address required. |
10040 | [10040] Message is too long. |
10041 | [10041] Protocol wrong type for socket. |
10042 | [10042] Bad protocol option. |
10043 | [10043] Protocol is not supported. |
10044 | [10044] Socket type is not supported. |
10045 | [10045] Operation is not supported on socket. |
10046 | [10046] Protocol family is not supported. |
10047 | [10047] Address family is not supported by protocol family. |
10048 | [10048] Address already in use. |
10049 | [10049] Cannot assign requested address. |
10050 | [10050] Network is down. |
10051 | [10051] Network is unreachable. |
10052 | [10052] Net dropped connection or reset. |
10053 | [10053] Software caused connection abort. |
10054 | [10054] Connection reset by peer. |
10055 | [10055] No buffer space available. |
10056 | [10056] Socket is already connected. |
10057 | [10057] Socket is not connected. |
10058 | [10058] Cannot send after socket shutdown. |
10059 | [10059] Too many references, cannot splice. |
10060 | [10060] Connection timed out. |
10061 | [10061] Connection refused. |
10062 | [10062] Too many levels of symbolic links. |
10063 | [10063] File name is too long. |
10064 | [10064] Host is down. |
10065 | [10065] No route to host. |
10066 | [10066] Directory is not empty |
10067 | [10067] Too many processes. |
10068 | [10068] Too many users. |
10069 | [10069] Disc Quota Exceeded. |
10070 | [10070] Stale NFS file handle. |
10071 | [10071] Too many levels of remote in path. |
10091 | [10091] Network subsystem is unavailable. |
10092 | [10092] WINSOCK DLL Version out of range. |
10093 | [10093] Winsock is not loaded yet. |
11001 | [11001] Host not found. |
11002 | [11002] Nonauthoritative 'Host not found' (try again or check DNS setup). |
11003 | [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP. |
11004 | [11004] Valid name, no data record (check DNS setup). |
OpenPGP Errors
101 | Cannot decode ASCII Armor data. |
102 | Unknown ASCII Armor data type. |
103 | Checksum failed. |
104 | Unknown ASCII Armor header. |
105 | Cannot decode PGP packet. |
106 | Cannot encode PGP packet. |
107 | Unknown PGP packet tag. |
108 | Unsupported version. |
109 | Unsupported algorithm. |
110 | Unknown subpacket. |
111 | Internal error. |
112 | Feature not supported. |
113 | Secret data was not encrypted. |
114 | Cannot find the key. |
115 | Error reading file. |
116 | Error writing file. |
117 | Error reading key. |
118 | Error writing key. |
119 | Cannot verify signature. |
120 | Cannot create signature. |
121 | Invalid UserId. |
122 | Invalid passphrase. |
123 | Data encryption failed. |
124 | Error creating key. |
125 | Unsupported symmetric algorithm. |
126 | Unsupported hash. |
127 | Unsupported compression algorithm. |
128 | Invalid key usage. |
129 | Component is busy. |
130 | Error decrypting data. |
131 | Data is not compressed. |
132 | Error decompressing data. |
133 | Error compressing data. |
134 | Unsupported signature. |
135 | Failed to overwrite file. |
141 | No input. |
142 | Signing was required, but the message was not signed. |
143 | Encryption was required, but the message was not encrypted. |
146 | No data integrity packet was found (MDC), but one was required. |
200 | Out of memory. |