SSHServer Component
Properties Methods Events Config Settings Errors
The SSHServer component is used to create Secure Shell (SSH) servers. The component handles multiple simultaneous connections on the same TCP/IP port (service port). It is designed to balance the load between connections for a fast, powerful server.
Syntax
TiphSSHServer
Remarks
The SSHServer component is the SSH-enabled equivalent of the IPWorks TCPServer component, extended by a set of new properties and events that deal with SSH security. The SSHCompressionAlgorithms and SSHEncryptionAlgorithms properties determine which protocols are enabled for the SSH handshake. The SSHCert* properties are used to select a certificate for the server (please note that a valid certificate MUST be selected before the server can function). The SSHUserAuthRequest event will allow you to use authenticate clients using digital certificates or passwords. Finally, the SSHStatus event provides information about the SSH handshake and underlying protocol notifications.
By default, each instance of SSHServer can handle up to 1000 simultaneous incoming connections (this number may be increased up to 100,000, or decreased to a lower value by using the MaxConnections configuration setting).
SSH connections are identified by a ConnectionId. Events relating to these connections as a whole will use the ConnectionId to identify the specific connection. Connections may also contained one or more multiplexed channels, which are identified by a ChannelId. Channel-level events will specify the ChannelId to which they relate.
SSHServer can start to listen on a port by setting the Listening property to True. When a remote host asks for a connection, the ConnectionRequest event is fired. At that point, the connection can either be accepted or rejected. If the connection is accepted, a ConnectionId is assigned, and communication can start. From this point on, the operation is very similar to SSHClient. Data can be sent to an individual SSHChannel using SendChannelData. The address and port of the incoming connection can be found by querying the ClientRemoteHost and ClientRemotePort properties.
Note: Server components are designed to process events as they occur. To ensure that events are processed in a timely manner, DoEvents should be called in a loop after the server is started.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
SSHChannelCount | The number of records in the arrays. |
BytesSent | The number of bytes actually sent after a sending channel data. |
ChannelId | An id generated by the component to identify the current SSH channel. |
DataToSend | A string of data to be sent to the remote host. |
ReadyToSend | This property is True when data can be sent over the SSH Channel. |
RecordLength | The length of received data records. |
Service | This property holds the channel type that was requested when opening the channel. |
ConnectionBacklog | This property includes the maximum number of pending connections maintained by the Transmission Control Protocol (TCP)/IP subsystem. |
SSHConnectionCount | The number of records in the SSHConnection arrays. |
SSHConnectionConnected | Used to disconnect individual connections and/or show their status. |
SSHConnectionLocalAddress | This property shows the IP address of the interface through which the connection is passing. |
SSHConnectionRemoteHost | The RemoteHost shows the IP address of the remote host through which the connection is coming. |
SSHConnectionRemotePort | The RemotePort shows the TCP port on the remote host through which the connection is coming. |
SSHConnectionTimeout | A timeout for the component. |
DefaultAuthMethods | Specifies the supported authentication methods. |
DefaultIdleTimeout | This property includes the default idle timeout for inactive clients. |
DefaultTimeout | An initial timeout value to be used by incoming connections. |
KeyboardInteractiveMessage | The instructions to send to the client during keyboard-interactive authentication. |
KeyboardInteractivePromptCount | The number of records in the KeyboardInteractivePrompt arrays. |
KeyboardInteractivePromptEcho | Specifies if the client should echo the value entered by the user or not. |
KeyboardInteractivePromptPrompt | The prompt label/text the client should present to the user. |
Listening | If set to True, the component accepts incoming connections on LocalPort. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
LocalPort | The TCP port in the local host where the component listens. |
SSHCertEncoded | This is the certificate (PEM/Base64 encoded). |
SSHCertStore | This is the name of the certificate store for the client certificate. |
SSHCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSHCertStoreType | This is the type of certificate store for this certificate. |
SSHCertSubject | This is the subject of the certificate used for client authentication. |
SSHCompressionAlgorithms | A comma-separated list containing all allowable compression algorithms. |
SSHEncryptionAlgorithms | A comma-separated list containing all allowable encryption algorithms. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
ChangeRecordLength | Changes the length of received data records. |
CloseChannel | Closes a existing SSHChannel . |
Config | Sets or retrieves a configuration setting. |
Disconnect | This method disconnects the specified client. |
DoEvents | Processes events from the internal message queue. |
ExchangeKeys | Causes the component to exchange a new set of session keys on the specified connection. |
GetSSHParam | Used to read a field from an SSH packet's payload. |
GetSSHParamBytes | Used to read a field from an SSH packet's payload. |
OpenChannel | Opens a new SSHChannel . |
Reset | Reset the component. |
SendBytes | Sends binary data to the specified channel. |
SendChannelData | Used to send data over an SSH channel. |
SendSSHPacket | Used to send an encoded SSH packet to the server. |
SendText | Sends text to the specified channel. |
SetSSHParam | Used to write a field to the end of a payload. |
Shutdown | This method shuts down the server. |
StartListening | This method starts listening for incoming connections. |
StopListening | This method stops listening for new connections. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Connected | This event is fired immediately after a connection completes (or fails). |
ConnectionRequest | This event is fired when a request for connection comes from a remote host. |
Disconnected | This event is fired when a connection is closed. |
Error | Information about errors during data delivery. |
Log | Fires once for each log message. |
SSHChannelClosed | Fired when a channel is closed. |
SSHChannelDataIn | Fired when data is received on an SSH channel. |
SSHChannelEOF | Fired when the remote peer signals the end of the data stream for the channel. |
SSHChannelOpened | Fired when a channel is successfully opened. |
SSHChannelOpenRequest | Fired when a client attempts to open a new channel. |
SSHChannelReadyToSend | Fired when the component is ready to send data. |
SSHChannelRequest | Fired when the SSHHost sends a channel request to the client. |
SSHChannelRequested | Fired if the SSHChannelRequest was successful, any further processing for the channel request should be done here. |
SSHServiceRequest | Fired when a client requests a service to be started. |
SSHStatus | Shows the progress of the secure connection. |
SSHTunnelClosed | This event will fire when a connected client attempts to close a tunnel. |
SSHTunnelRequested | This event fires when a connected client attempts to establish a forward or reverse tunnel. |
SSHUserAuthRequest | Fires when a client attempts to authenticate a connection. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
AltSSHCertCount | The number of records in the AltSSHCert configuration settings. |
AltSSHCertStore[i] | The name of the certificate store. |
AltSSHCertStorePassword[i] | The password used to open the certificate store. |
AltSSHCertStoreType[i] | The type of certificate store. |
AltSSHCertSubject[i] | The alternative certificate subject. |
ClientSSHVersionString[ConnectionId] | The client's version string. |
FireAuthRequestAfterSig | Whether to fire an informational event after the public key signature has been verified. |
KeyboardInteractivePrompts[ConnectionId] | Specifies custom keyboard-interactive prompts for particular connections. |
KeyRenegotiationThreshold | Sets the threshold for the SSH Key Renegotiation. |
LogLevel | Specifies the level of detail that is logged. |
MaxAuthAttempts | The maximum authentication attempts allowed before forcing a disconnect. |
NegotiatedStrictKex[ConnectionId] | Returns whether strict key exchange was negotiated to be used. |
ServerSSHVersionString | The SSH version string sent to connecting clients. |
SSHKeepAliveCountMax | The maximum number of keep alive packets to send without a response. |
SSHKeepAliveInterval | The interval between keep alive packets. |
SSHKeyExchangeAlgorithms | Specifies the supported key exchange algorithms. |
SSHMacAlgorithms | Specifies the supported Mac algorithms. |
SSHPubKeyAuthSigAlgorithms | Specifies the allowed signature algorithms used by a client performing public key authentication. |
SSHPublicKeyAlgorithms | Specifies the supported public key algorithms for the server's public key. |
SSHVersionPattern | The pattern used to match the remote host's version string. |
UserAuthBanner[ConnectionId] | A custom user authentication banner. |
UseStrictKeyExchange | Specifies how strict key exchange is supported. |
AllowedClients | A comma-separated list of host names or IP addresses that can access the component. |
BindExclusively | Whether or not the component considers a local port reserved for exclusive use. |
BlockedClients | A comma-separated list of host names or IP addresses that cannot access the component. |
DefaultConnectionTimeout | The inactivity timeout applied to the SSL handshake. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
MaxConnections | The maximum number of connections available. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
UseFIPSCompliantAPI | Tells the component whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
SSHChannelCount Property (SSHServer Component)
The number of records in the arrays.
Syntax
__property int SSHChannelCount = { read=FSSHChannelCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
- BytesSent
- ChannelId
- DataToSend
- KeyboardInteractivePromptEcho
- KeyboardInteractivePromptPrompt
- ReadyToSend
- RecordLength
- Service
- SSHCertEncoded
- SSHCertStore
- SSHCertStorePassword
- SSHCertStoreType
- SSHCertSubject
- SSHConnectionConnected
- SSHConnectionLocalAddress
- SSHConnectionRemoteHost
- SSHConnectionRemotePort
- SSHConnectionTimeout
This property is read-only and not available at design time.
Data Type
Integer
BytesSent Property (SSHServer Component)
The number of bytes actually sent after a sending channel data.
Syntax
__property int BytesSent[int SSHChannelId] = { read=FBytesSent };
Default Value
0
Remarks
The number of bytes actually sent after a sending channel data.
The SSHChannelId parameter specifies the index of the item in the array. The size of the array is controlled by the SSHChannelCount property.
This property is read-only and not available at design time.
Data Type
Integer
ChannelId Property (SSHServer Component)
An id generated by the component to identify the current SSH channel.
Syntax
__property String ChannelId[int SSHChannelId] = { read=FChannelId };
Default Value
""
Remarks
An id generated by the component to identify the current SSH channel. This id is unique to this channel.
The SSHChannelId parameter specifies the index of the item in the array. The size of the array is controlled by the SSHChannelCount property.
This property is read-only and not available at design time.
Data Type
String
DataToSend Property (SSHServer Component)
A string of data to be sent to the remote host.
Syntax
__property String DataToSend[int SSHChannelId] = { write=FSetDataToSend }; __property DynamicArray<Byte> DataToSendB[int SSHChannelId] = { write=FSetDataToSendB };
Default Value
""
Remarks
A string of data to be sent to the remote host. Write-only property.
Assigning a string to the DataToSend makes the component send the string to the remote host.
Note:It is recommended to use the SendText or SendBytes method instead of setting this property.
The SSHChannelId parameter specifies the index of the item in the array. The size of the array is controlled by the SSHChannelCount property.
This property is write-only and not available at design time.
Data Type
Byte Array
ReadyToSend Property (SSHServer Component)
This property is True when data can be sent over the SSH Channel.
Syntax
__property bool ReadyToSend[int SSHChannelId] = { read=FReadyToSend };
Default Value
false
Remarks
This property is True when data can be sent over the SSH Channel.
When Timeout is set to 0 (asynchronous) sending data may result in an error if the channel or underlying socket cannot accept more data to send. Monitor SSHChannelReadyToSend or ReadyToSend to determine when data can be sent again.
When Timeout is set to a positive value the component will block when sending data until the data can be successfully sent and SSHChannelReadyToSend and ReadyToSend do not need to be monitored.
The SSHChannelId parameter specifies the index of the item in the array. The size of the array is controlled by the SSHChannelCount property.
This property is read-only and not available at design time.
Data Type
Boolean
RecordLength Property (SSHServer Component)
The length of received data records.
Syntax
__property int RecordLength[int SSHChannelId] = { read=FRecordLength, write=FSetRecordLength };
Default Value
0
Remarks
The length of received data records. If set to a positive value, this setting defines the length of data records to be received. The component will accumulate data until RecordLength is reached and only then fire the SSHChannelDataIn event with data of length RecordLength. This allows data to be received as records of known length. This value can be changed at any time, including within the SSHChannelDataIn event.
The default value is 0, meaning this setting is not used.
Note:It is recommended to use the ChangeRecordLength method instead of setting this property.
The SSHChannelId parameter specifies the index of the item in the array. The size of the array is controlled by the SSHChannelCount property.
This property is not available at design time.
Data Type
Integer
Service Property (SSHServer Component)
This property holds the channel type that was requested when opening the channel.
Syntax
__property String Service[int SSHChannelId] = { read=FService };
Default Value
""
Remarks
This property holds the channel type that was requested when opening the channel. For instance "session" or "forwarded-tcpip".
The SSHChannelId parameter specifies the index of the item in the array. The size of the array is controlled by the SSHChannelCount property.
This property is read-only and not available at design time.
Data Type
String
ConnectionBacklog Property (SSHServer Component)
This property includes the maximum number of pending connections maintained by the Transmission Control Protocol (TCP)/IP subsystem.
Syntax
__property int ConnectionBacklog = { read=FConnectionBacklog, write=FSetConnectionBacklog };
Default Value
5
Remarks
This property contains the maximum number of pending connections maintained by the TCP/IP subsystem. This value reflects the SOMAXCONN option for the main listening socket. The default value for most systems is 5. You may set this property to a larger value if the server is expected to receive a large number of connections, and queuing them is desirable.
This property is not available at design time.
Data Type
Integer
SSHConnectionCount Property (SSHServer Component)
The number of records in the SSHConnection arrays.
Syntax
__property int SSHConnectionCount = { read=FSSHConnectionCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
- SSHConnectionConnected
- SSHConnectionLocalAddress
- SSHConnectionRemoteHost
- SSHConnectionRemotePort
- SSHConnectionTimeout
This property is read-only and not available at design time.
Data Type
Integer
SSHConnectionConnected Property (SSHServer Component)
Used to disconnect individual connections and/or show their status.
Syntax
__property bool SSHConnectionConnected[int ConnectionId] = { read=FSSHConnectionConnected, write=FSetSSHConnectionConnected };
Default Value
False
Remarks
Used to disconnect individual connections and/or show their status.
The Connected is used to close connections.
Connected also shows the status of a particular connection (connected/disconnected).
How and when the connection is closed is controlled by the Linger property. Please refer to its description for more information.
Note:It is recommended to use the Disconnect method instead of setting this property.
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the SSHConnectionCount property.
This property is not available at design time.
Data Type
Boolean
SSHConnectionLocalAddress Property (SSHServer Component)
This property shows the IP address of the interface through which the connection is passing.
Syntax
__property String SSHConnectionLocalAddress[int ConnectionId] = { read=FSSHConnectionLocalAddress };
Default Value
""
Remarks
This property shows the IP address of the interface through which the connection is passing.
LocalAddress is important for multihomed hosts where it can be used to find which particular network interface an individual connection is going through.
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the SSHConnectionCount property.
This property is read-only and not available at design time.
Data Type
String
SSHConnectionRemoteHost Property (SSHServer Component)
The RemoteHost shows the IP address of the remote host through which the connection is coming.
Syntax
__property String SSHConnectionRemoteHost[int ConnectionId] = { read=FSSHConnectionRemoteHost };
Default Value
""
Remarks
The RemoteHost shows the IP address of the remote host through which the connection is coming.
The connection must be valid or an error will be fired.
If the component is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the SSHConnectionCount property.
This property is read-only and not available at design time.
Data Type
String
SSHConnectionRemotePort Property (SSHServer Component)
The RemotePort shows the TCP port on the remote host through which the connection is coming.
Syntax
__property int SSHConnectionRemotePort[int ConnectionId] = { read=FSSHConnectionRemotePort };
Default Value
0
Remarks
The RemotePort shows the TCP port on the remote host through which the connection is coming.
The connection must be valid or an error will be fired.
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the SSHConnectionCount property.
This property is read-only and not available at design time.
Data Type
Integer
SSHConnectionTimeout Property (SSHServer Component)
A timeout for the component.
Syntax
__property int SSHConnectionTimeout[int ConnectionId] = { read=FSSHConnectionTimeout, write=FSetSSHConnectionTimeout };
Default Value
0
Remarks
A timeout for the component.
If the Timeout property is set to 0, all operations return immediately, potentially failing with an 'WOULDBLOCK' error if data can't be sent or received immediately.
If Timeout is set to a positive value, the component will automatically retry each operation that would otherwise result in a 'WOULDBLOCK' error for a maximum of Timeout seconds.
The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.
If Timeout expires, and the operation is not yet complete, the component raises an exception.
Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 0 (asynchronous operation).
The ConnectionId parameter specifies the index of the item in the array. The size of the array is controlled by the SSHConnectionCount property.
This property is not available at design time.
Data Type
Integer
DefaultAuthMethods Property (SSHServer Component)
Specifies the supported authentication methods.
Syntax
__property String DefaultAuthMethods = { read=FDefaultAuthMethods, write=FSetDefaultAuthMethods };
Default Value
"password,publickey"
Remarks
This property specifies the supported authentication methods. The client will choose one of the supported mechanisms when authenticating to the component.
This must be a comma separated list of values. For more information on authenticating clients see the SSHUserAuthRequest event.
The following is a list of methods implemented by the component:
none | This authentication method is used by most SSH clients to obtain the list of authentication methods available for the user's account. In most cases you should not accept a request using this authentication method. |
password | AuthParam will contain the user-supplied password. If the password is correct, set Accept to true. |
publickey | AuthParam will contain an SSH2 public key blob. If the user's public key is acceptable, set Accept or PartialSuccess to true. The component will then handle verifying the digital signature and will respond to the client accordingly. |
keyboard-interactive | SSHUserAuthRequest will fire multiple times for keyboard-interactive authentication: It will fire once for each response sent by the client in the SSH_MSG_USERAUTH_INFO_RESPONSE packet (one for each prompt specified by the daemon). The index of each response will be specified as a suffix in AuthMethod, with AuthParam containing the response to the corresponding prompt (e.g keyboard-interactive-1, keyboard-interactive-2 and so on). Finally, SSHUserAuthRequest will fire one last time with AuthMethod set to "keyboard-interactive" and AuthParam set to an empty string. The daemon must set Accept to true every time to allow the authentication process to succeed. |
Data Type
String
DefaultIdleTimeout Property (SSHServer Component)
This property includes the default idle timeout for inactive clients.
Syntax
__property int DefaultIdleTimeout = { read=FDefaultIdleTimeout, write=FSetDefaultIdleTimeout };
Default Value
0
Remarks
This property specifies the idle timeout (in seconds) for clients. When set to a positive value, the component will disconnect idle clients after the specified timeout.
This applies only to clients that have not sent or received data within DefaultIdleTimeout seconds.
If set to 0 (default), no idle timeout is applied.
Note: DoEvents must be called for the component to check existing connections.
Data Type
Integer
DefaultTimeout Property (SSHServer Component)
An initial timeout value to be used by incoming connections.
Syntax
__property int DefaultTimeout = { read=FDefaultTimeout, write=FSetDefaultTimeout };
Default Value
60
Remarks
This property is used by the component to set the operational timeout value of all inbound connections once they are established. If the timeout is set to 0, all inbound connections will behave asynchronously. The default value is 60, meaning the component will behave synchronously.
Data Type
Integer
KeyboardInteractiveMessage Property (SSHServer Component)
The instructions to send to the client during keyboard-interactive authentication.
Syntax
__property String KeyboardInteractiveMessage = { read=FKeyboardInteractiveMessage, write=FSetKeyboardInteractiveMessage };
Default Value
""
Remarks
This property should be set to the main instructions to send to the client during keyboard-interactive authentication.
Data Type
String
KeyboardInteractivePromptCount Property (SSHServer Component)
The number of records in the KeyboardInteractivePrompt arrays.
Syntax
__property int KeyboardInteractivePromptCount = { read=FKeyboardInteractivePromptCount, write=FSetKeyboardInteractivePromptCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at KeyboardInteractivePromptCount - 1.This property is not available at design time.
Data Type
Integer
KeyboardInteractivePromptEcho Property (SSHServer Component)
Specifies if the client should echo the value entered by the user or not.
Syntax
__property bool KeyboardInteractivePromptEcho[int PromptIndex] = { read=FKeyboardInteractivePromptEcho, write=FSetKeyboardInteractivePromptEcho };
Default Value
false
Remarks
Specifies if the client should echo the value entered by the user or not.
The PromptIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyboardInteractivePromptCount property.
This property is not available at design time.
Data Type
Boolean
KeyboardInteractivePromptPrompt Property (SSHServer Component)
The prompt label/text the client should present to the user.
Syntax
__property String KeyboardInteractivePromptPrompt[int PromptIndex] = { read=FKeyboardInteractivePromptPrompt, write=FSetKeyboardInteractivePromptPrompt };
Default Value
""
Remarks
The prompt label/text the client should present to the user.
The PromptIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyboardInteractivePromptCount property.
This property is not available at design time.
Data Type
String
Listening Property (SSHServer Component)
If set to True, the component accepts incoming connections on LocalPort.
Syntax
__property bool Listening = { read=FListening, write=FSetListening };
Default Value
False
Remarks
This property indicates whether the component is listening for connections on the port specified by the LocalPort property.
Note: Use the StartListening and StopListening methods to control whether the component is listening.
This property is not available at design time.
Data Type
Boolean
LocalHost Property (SSHServer Component)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
__property String LocalHost = { read=FLocalHost, write=FSetLocalHost };
Default Value
""
Remarks
The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.
If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.
Data Type
String
LocalPort Property (SSHServer Component)
The TCP port in the local host where the component listens.
Syntax
__property int LocalPort = { read=FLocalPort, write=FSetLocalPort };
Default Value
22
Remarks
The LocalPort property must be set before TCPServer starts listening. If its value is 0, then the TCP/IP subsystem picks a port number at random. The port number can be found by checking the value of the LocalPort property after TCPServer is in listening mode (after successfully assigning True to the Listening property).
The service port is not shared among servers (i.e. there can be only one TCPServer 'listening' on a particular port at one time).
Data Type
Integer
SSHCertEncoded Property (SSHServer Component)
This is the certificate (PEM/Base64 encoded).
Syntax
__property String SSHCertEncoded = { read=FSSHCertEncoded, write=FSetSSHCertEncoded }; __property DynamicArray<Byte> SSHCertEncodedB = { read=FSSHCertEncodedB, write=FSetSSHCertEncodedB };
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The Store and Subject properties also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
This property is not available at design time.
Data Type
Byte Array
SSHCertStore Property (SSHServer Component)
This is the name of the certificate store for the client certificate.
Syntax
__property String SSHCertStore = { read=FSSHCertStore, write=FSetSSHCertStore }; __property DynamicArray<Byte> SSHCertStoreB = { read=FSSHCertStoreB, write=FSetSSHCertStoreB };
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The StoreType property denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.
Store is used in conjunction with the Subject property to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Byte Array
SSHCertStorePassword Property (SSHServer Component)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
__property String SSHCertStorePassword = { read=FSSHCertStorePassword, write=FSetSSHCertStorePassword };
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
SSHCertStoreType Property (SSHServer Component)
This is the type of certificate store for this certificate.
Syntax
__property TiphSSHServerSSHCertStoreTypes SSHCertStoreType = { read=FSSHCertStoreType, write=FSetSSHCertStoreType };
enum TiphSSHServerSSHCertStoreTypes { cstUser=0, cstMachine=1, cstPFXFile=2, cstPFXBlob=3, cstJKSFile=4, cstJKSBlob=5, cstPEMKeyFile=6, cstPEMKeyBlob=7, cstPublicKeyFile=8, cstPublicKeyBlob=9, cstSSHPublicKeyBlob=10, cstP7BFile=11, cstP7BBlob=12, cstSSHPublicKeyFile=13, cstPPKFile=14, cstPPKBlob=15, cstXMLFile=16, cstXMLBlob=17, cstJWKFile=18, cstJWKBlob=19, cstSecurityKey=20, cstBCFKSFile=21, cstBCFKSBlob=22, cstPKCS11=23, cstAuto=99 };
Default Value
cstUser
Remarks
This is the type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
SSHCertSubject Property (SSHServer Component)
This is the subject of the certificate used for client authentication.
Syntax
__property String SSHCertSubject = { read=FSSHCertSubject, write=FSetSSHCertSubject };
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
SSHCompressionAlgorithms Property (SSHServer Component)
A comma-separated list containing all allowable compression algorithms.
Syntax
__property String SSHCompressionAlgorithms = { read=FSSHCompressionAlgorithms, write=FSetSSHCompressionAlgorithms };
Default Value
"none,zlib"
Remarks
During the SSH handshake, this list will be used to negotiate the compression algorithm to be used between the client and server. This list is used for both directions: client to server and server to client. When negotiating algorithms, each side sends a list of all algorithms it supports or allows. The algorithm chosen for each direction is the first algorithm to appear in the sender's list that the receiver supports, so it is important to list multiple algorithms in preferential order. If no algorithm can be agreed upon, the component will raise an error and the connection will be aborted.
At least one supported algorithm must appear in this list. The following compression algorithms are supported by the component:
- zlib
- zlib@openssh.com
- none
Data Type
String
SSHEncryptionAlgorithms Property (SSHServer Component)
A comma-separated list containing all allowable encryption algorithms.
Syntax
__property String SSHEncryptionAlgorithms = { read=FSSHEncryptionAlgorithms, write=FSetSSHEncryptionAlgorithms };
Default Value
"aes256-ctr,aes192-ctr,aes128-ctr,aes256-cbc,aes192-cbc,aes128-cbc,3des-ctr,3des-cbc,blowfish-cbc,arcfour256,arcfour128,arcfour,cast128-cbc,aes256-gcm@openssh.com,aes128-gcm@openssh.com,chacha20-poly1305@openssh.com"
Remarks
During the SSH handshake, this list will be used to negotiate the encryption algorithm to be used between the client and server. This list is used for both directions: client to server and server to client. When negotiating algorithms, each side sends a list of all algorithms it supports or allows. The algorithm chosen for each direction is the first algorithm to appear in the sender's list that the receiver supports, so it is important to list multiple algorithms in preferential order. If no algorithm can be agreed upon, the component will raise an error and the connection will be aborted.
At least one supported algorithm must appear in this list. The following encryption algorithms are supported by the component:
aes256-ctr | 256-bit AES encryption in CTR mode |
aes256-cbc | 256-bit AES encryption in CBC mode |
aes192-ctr | 192-bit AES encryption in CTR mode |
aes192-cbc | 192-bit AES encryption in CBC mode |
aes128-ctr | 128-bit AES encryption in CTR mode |
aes128-cbc | 128-bit AES encryption in CBC mode |
3des-ctr | 192-bit (3-key) triple DES encryption in CTR mode |
3des-cbc | 192-bit (3-key) triple DES encryption in CBC mode |
cast128-cbc | CAST-128 encryption |
blowfish-cbc | Blowfish encryption |
arcfour | ARC4 encryption |
arcfour128 | 128-bit ARC4 encryption |
arcfour256 | 256-bit ARC4 encryption |
aes256-gcm@openssh.com | 256-bit AES encryption in GCM mode. |
aes128-gcm@openssh.com | 128-bit AES encryption in GCM mode. |
chacha20-poly1305@openssh.com | ChaCha20 with Poly1305-AES encryption. |
Data Type
String
ChangeRecordLength Method (SSHServer Component)
Changes the length of received data records.
Syntax
void __fastcall ChangeRecordLength(int ChannelId, int RecordLength);
Remarks
This method defines the length of data records to be received (in bytes) for the specified ChannelId.
If RecordLength is set to a positive value, the component will accumulate data until RecordLength bytes of data is received and only then fire the SSHChannelDataIn event with data of length RecordLength. This allows data to be received as records of known length. This method can be called at any time to change the record length, including within the DataIn event.
A value of 0 (default) means this functionality is not used.
CloseChannel Method (SSHServer Component)
Closes a existing SSHChannel .
Syntax
void __fastcall CloseChannel(int ChannelId);
Remarks
ChannelId is the identifier for the SSH channel to be closed.
Config Method (SSHServer Component)
Sets or retrieves a configuration setting.
Syntax
String __fastcall Config(String ConfigurationString);
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Disconnect Method (SSHServer Component)
This method disconnects the specified client.
Syntax
void __fastcall Disconnect(int ConnectionId);
Remarks
Calling this method will disconnect the client specified by the ConnectionId parameter.
DoEvents Method (SSHServer Component)
Processes events from the internal message queue.
Syntax
void __fastcall DoEvents();
Remarks
When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.
ExchangeKeys Method (SSHServer Component)
Causes the component to exchange a new set of session keys on the specified connection.
Syntax
void __fastcall ExchangeKeys(int ConnectionId);
Remarks
SSH key renegotiation can be initiated by either end of an established SSH connection. ExchangeKeys allows the server to start such a renegotiation with the client. During this process, SSHStatus events will fire containing updates regarding the key negotiation process.
The SSH 2.0 specification recommends that key renegotiation be done once for 2 gigabytes (GB) of data processed by the connection, or once every day. This makes it more difficult to break the security of data-intensive or long-lived connections.
GetSSHParam Method (SSHServer Component)
Used to read a field from an SSH packet's payload.
Syntax
String __fastcall GetSSHParam(DynamicArray<Byte> Payload, String Field);
Remarks
This method is used to read the value of a particular field from an SSH packet's payload. Payload should contain the full payload of a packet received by an event such as SSHChannelRequest. Field is the name of a field to be read out of the packet.
The following is a list of the names of well-known channel request field names and their encodings:
ChannelId (int32) | The id of the channel that received the packet. |
RequestType (string) | The type of channel request. |
WantsReply (boolean) | Whether or not the client wants a reply to the request. |
The remaining fields that are available in the payload are dependent upon the value of RequestType.
pty-req
Pty-req is a request to open a pseudo terminal on the specified channel. The following fields are available:
TerminalType (string) | The type of terminal being requested (eg: "vt100"). |
TerminalWidthCharacters (int32) | The width, in characters, of the terminal to be opened. |
TerminalHeightRows (int32) | The height, in rows, of the terminal to be opened. |
TerminalWidthPixels (int32) | The width, in pixels, of the terminal to be opened. |
TerminalHeightPixels (int32) | The height, in pixels, of the terminal to be opened. |
TerminalModes (string) | A list of op-val (int32-byte) encoded modes to be used by the terminal. |
x11-req
X11-req is a request to forward x11 sessions over a channel. The following fields are available:
SingleConnection (boolean) | Disallows more than one connection to be forwarded by the channel. |
X11AuthProtocol (string) | The authentication protocol to be used (eg: "MIT-MAGIC-COOKIE-1"). |
X11AuthCookie (string) | A hexadecimal-encoded cookie to be used for authentication. |
X11ScreenNumber (int32) | The x11 screen number to be used. |
env
Env is a request to set an environment variable to be passed into a shell that may be started later. The following fields are available:
VariableName (string) | The name of the variable to be set. |
VariableValue (string) | The value of the variable to be set. |
exec
Exec is a request to execute a command on the channel using the authenticated user's shell. The following field is available:
Command (string) | The command to be executed. |
subsystem
Subsystem is a request to start a subsystem on the specified channel. The following field is available:
Subsystem (string) | The name of the subsystem to be started (eg: "sftp"). |
xon-xoff
Instructs the server to allow or disallow control-S/control-Q style flow control. The following field is available:
ClientCanDo (boolean) | Whether or not the server should enable flow control. |
signal
Sends a signal to the remote process/service. The following field is available:
SignalName (string) | The name of the signal to be sent. |
If the packet type is not well known, Field should start with the special character "%" and contain a comma-separated list of field types as defined in SetSSHParam. For example, reading out the X11AuthProtocol of an x11-req payload, you can use "%s,f".
Note: the return value is a string encoded the same way as the FieldValue param in SetSSHParam.
GetSSHParamBytes Method (SSHServer Component)
Used to read a field from an SSH packet's payload.
Syntax
DynamicArray<Byte> __fastcall GetSSHParamBytes(DynamicArray<Byte> Payload, String Field);
Remarks
This method is the same as calling GetSSHParam, but returns raw bytes instead of strings.
OpenChannel Method (SSHServer Component)
Opens a new SSHChannel .
Syntax
String __fastcall OpenChannel(int ConnectionId, String ChannelType);
Remarks
The SSH 2.0 specification allows for multiple channels to be opened over a single TCP/IP connection. The Channels property represents the channels that are currently open. A new SSHChannel can be opened with OpenChannel.
ChannelType represents the type of SSH channel to be opened. The most common type of channel is "session".
If the call to OpenChannel succeeds, an SSHChannel will be created and added to the Channels collection.
Reset Method (SSHServer Component)
Reset the component.
Syntax
void __fastcall Reset();
Remarks
This method will reset the component's properties to their default values.
SendBytes Method (SSHServer Component)
Sends binary data to the specified channel.
Syntax
void __fastcall SendBytes(int ChannelId, DynamicArray<Byte> Data);
Remarks
This method sends binary data to the channel identified by ChannelId. To send text use the SendText method instead.
SendChannelData Method (SSHServer Component)
Used to send data over an SSH channel.
Syntax
void __fastcall SendChannelData(int ChannelId, DynamicArray<Byte> Data);
Remarks
This method can be used to send arbitrary data to the channel with the specified ChannelId.
SendSSHPacket Method (SSHServer Component)
Used to send an encoded SSH packet to the server.
Syntax
void __fastcall SendSSHPacket(int ChannelId, int PacketType, DynamicArray<Byte> Payload);
Remarks
This method can be used to send a previously built SSH payload to the server. ChannelId identifies the channel that will receive the packet.
PacketType identifies what kind of packet is to be sent. Payload should contain the payload of the packet, which can be built by successive calls to SetSSHParam.
When SendSSHPacket is called, the component will finish building the packet, encrypt it for transport, and send it to the server.
SendText Method (SSHServer Component)
Sends text to the specified channel.
Syntax
void __fastcall SendText(int ChannelId, String Text);
Remarks
This method sends text to the client identified by ChannelId. To send binary data use the SendBytes method instead.
SetSSHParam Method (SSHServer Component)
Used to write a field to the end of a payload.
Syntax
DynamicArray<Byte> __fastcall SetSSHParam(DynamicArray<Byte> Payload, String FieldType, String FieldValue);
Remarks
This method is used to build the payload portion of an SSH packet to be sent later by a call to SendSSHPacket. Payload should contain the result of a previous call to SetSSHParam. FieldType is a string defining the type of field to be written to the packet. FieldValue should be the string representation of the field to be written.
The following is a list of supported field types and a description of how FieldValue should be encoded:
s | A plaintext string containing the default system encoding of the data. |
sb | A string containing the hex encoded data. (eg: "A1B23C") |
m | A variable-length large integer, encoded as a textual representation of the value ("1234"). |
i | A 32-bit integer, encoded as a textual representation of the value (eg: "1234"). |
l | A 64-bit integer, encoded as a textual representation of the value (eg: "1234"). |
b | A single byte, encoded as a textual representation of the value (eg: "123"). |
f | A boolean flag, encoded as a textual representation of the value (eg: 'true' or 'false') |
Note: integer values may be encoded in hexadecimal by prefixing "0x" to the beginning of the string, otherwise the value is assumed to be base-10.
Shutdown Method (SSHServer Component)
This method shuts down the server.
Syntax
void __fastcall Shutdown();
Remarks
This method shuts down the server. Calling this method is equivalent to calling StopListening and then breaking every client connection by calling Disconnect.
StartListening Method (SSHServer Component)
This method starts listening for incoming connections.
Syntax
void __fastcall StartListening();
Remarks
This method begins listening for incoming connections on the port specified by LocalPort. Once listening, events will fire as new clients connect and data are transferred.
To stop listening for new connections, call StopListening. To stop listening for new connections and to disconnect all existing clients, call Shutdown.
StopListening Method (SSHServer Component)
This method stops listening for new connections.
Syntax
void __fastcall StopListening();
Remarks
This method stops listening for new connections. After being called, any new connection attempts will be rejected. Calling this method does not disconnect existing connections.
To stop listening and to disconnect all existing clients, call Shutdown instead.
Connected Event (SSHServer Component)
This event is fired immediately after a connection completes (or fails).
Syntax
typedef struct { int ConnectionId; int StatusCode; String Description; int CertStoreType; String CertStore; String CertPassword; String CertSubject; } TiphSSHServerConnectedEventParams; typedef void __fastcall (__closure *TiphSSHServerConnectedEvent)(System::TObject* Sender, TiphSSHServerConnectedEventParams *e); __property TiphSSHServerConnectedEvent OnConnected = { read=FOnConnected, write=FOnConnected };
Remarks
If the connection is made normally, StatusCode is 0, and Description is "OK".
If the connection fails, StatusCode has the error code returned by the system. Description contains a description of this code. The value of StatusCode is equal to the value of the system error.
Please refer to the Error Codes section for more information.
ConnectionId is the connection Id of the client requesting the connection.
CertStoreType is the store type of the alternate certificate to use for this connection. The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the and set to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
CertStore is the store name or location of the alternate certificate to use for this connection.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
CertPassword is the password of the certificate store containing the alternate certificate to use for this connection.
CertSubject is the subject of the alternate certificate to use for this connection.
The special value * matches any subject and will select the first certificate in the store. The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
ConnectionRequest Event (SSHServer Component)
This event is fired when a request for connection comes from a remote host.
Syntax
typedef struct { String Address; int Port; bool Accept; } TiphSSHServerConnectionRequestEventParams; typedef void __fastcall (__closure *TiphSSHServerConnectionRequestEvent)(System::TObject* Sender, TiphSSHServerConnectionRequestEventParams *e); __property TiphSSHServerConnectionRequestEvent OnConnectionRequest = { read=FOnConnectionRequest, write=FOnConnectionRequest };
Remarks
This event indicates an incoming connection. The connection is accepted by default. Address and Port will contain information about the remote host requesting the inbound connection. If you want to refuse it, you can set the Accept parameter to False.
Disconnected Event (SSHServer Component)
This event is fired when a connection is closed.
Syntax
typedef struct { int ConnectionId; int StatusCode; String Description; } TiphSSHServerDisconnectedEventParams; typedef void __fastcall (__closure *TiphSSHServerDisconnectedEvent)(System::TObject* Sender, TiphSSHServerDisconnectedEventParams *e); __property TiphSSHServerDisconnectedEvent OnDisconnected = { read=FOnDisconnected, write=FOnDisconnected };
Remarks
If the connection is broken normally, StatusCode is 0, and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the system. Description contains a description of this code. The value of StatusCode is equal to the value of the system error.
Please refer to the Error Codes section for more information.
Error Event (SSHServer Component)
Information about errors during data delivery.
Syntax
typedef struct { int ConnectionId; int ErrorCode; String Description; } TiphSSHServerErrorEventParams; typedef void __fastcall (__closure *TiphSSHServerErrorEvent)(System::TObject* Sender, TiphSSHServerErrorEventParams *e); __property TiphSSHServerErrorEvent OnError = { read=FOnError, write=FOnError };
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the component raises an exception.
ConnectionId contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Log Event (SSHServer Component)
Fires once for each log message.
Syntax
typedef struct { int ConnectionId; int LogLevel; String Message; String LogType; } TiphSSHServerLogEventParams; typedef void __fastcall (__closure *TiphSSHServerLogEvent)(System::TObject* Sender, TiphSSHServerLogEventParams *e); __property TiphSSHServerLogEvent OnLog = { read=FOnLog, write=FOnLog };
Remarks
This event fires once for each log messages generated by the component. The verbosity is controlled by the LogLevel setting.
LogLevel indicates the detail level of the message. Possible values are:
0 (None) | No messages are logged. |
1 (Info - Default) | Informational events such as SSH handshake messages are logged. |
2 (Verbose) | Detailed data such as individual packet information is logged. |
3 (Debug) | Debug data including all relevant sent and received bytes are logged. |
Message is the log message.
LogType is reserved for future use.
ConnectionId specifies the connection to which the log message is applicable.
SSHChannelClosed Event (SSHServer Component)
Fired when a channel is closed.
Syntax
typedef struct { int ConnectionId; int ChannelId; } TiphSSHServerSSHChannelClosedEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHChannelClosedEvent)(System::TObject* Sender, TiphSSHServerSSHChannelClosedEventParams *e); __property TiphSSHServerSSHChannelClosedEvent OnSSHChannelClosed = { read=FOnSSHChannelClosed, write=FOnSSHChannelClosed };
Remarks
The SSHChannelClosed event is fired when a channel is closed on an SSH connection.
ConnectionId identifies the connection. ChannelId identifies the channel.
Note: Processing long-running requests, including sending channel data, inside this event may cause the underlying transport to stop processing SSH data until the event returns. In order to prevent this from happening, all requests should be processed asynchronously in a separate thread outside of this event.
SSHChannelDataIn Event (SSHServer Component)
Fired when data is received on an SSH channel.
Syntax
typedef struct { int ConnectionId; int ChannelId; String Data; DynamicArray<Byte> DataB; } TiphSSHServerSSHChannelDataInEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHChannelDataInEvent)(System::TObject* Sender, TiphSSHServerSSHChannelDataInEventParams *e); __property TiphSSHServerSSHChannelDataInEvent OnSSHChannelDataIn = { read=FOnSSHChannelDataIn, write=FOnSSHChannelDataIn };
Remarks
Whenever a client sends data to an SSH channel, the SSHChannelDataIn event will fire. ChannelId will identify the channel receiving data. Data will contain the raw data being received.
ConnectionId identifies the connection. ChannelId identifies the channel.
Note: Processing long-running requests, including sending channel data, inside this event may cause the underlying transport to stop processing SSH data until the event returns. In order to prevent this from happening, all requests should be processed asynchronously in a separate thread outside of this event.
SSHChannelEOF Event (SSHServer Component)
Fired when the remote peer signals the end of the data stream for the channel.
Syntax
typedef struct { int ConnectionId; int ChannelId; } TiphSSHServerSSHChannelEOFEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHChannelEOFEvent)(System::TObject* Sender, TiphSSHServerSSHChannelEOFEventParams *e); __property TiphSSHServerSSHChannelEOFEvent OnSSHChannelEOF = { read=FOnSSHChannelEOF, write=FOnSSHChannelEOF };
Remarks
The SSHChannelEOF event is fired when the end of the data stream for a channel on an SSH connection is reached.
ConnectionId identifies the connection. ChannelId identifies the channel.
Note: Processing long-running requests, including sending channel data, inside this event may cause the underlying transport to stop processing SSH data until the event returns. In order to prevent this from happening, all requests should be processed asynchronously in a separate thread outside of this event.
SSHChannelOpened Event (SSHServer Component)
Fired when a channel is successfully opened.
Syntax
typedef struct { int ConnectionId; int ChannelId; } TiphSSHServerSSHChannelOpenedEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHChannelOpenedEvent)(System::TObject* Sender, TiphSSHServerSSHChannelOpenedEventParams *e); __property TiphSSHServerSSHChannelOpenedEvent OnSSHChannelOpened = { read=FOnSSHChannelOpened, write=FOnSSHChannelOpened };
Remarks
The SSHChannelOpened event is fired when a channel is successfully opened on an SSH connection.
ConnectionId identifies the connection. ChannelId identifies the channel.
Note: Processing long-running requests, including sending channel data, inside this event may cause the underlying transport to stop processing SSH data until the event returns. In order to prevent this from happening, all requests should be processed asynchronously in a separate thread outside of this event.
SSHChannelOpenRequest Event (SSHServer Component)
Fired when a client attempts to open a new channel.
Syntax
typedef struct { int ConnectionId; int ChannelId; String Service; String Parameters; DynamicArray<Byte> ParametersB; bool Accept; } TiphSSHServerSSHChannelOpenRequestEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHChannelOpenRequestEvent)(System::TObject* Sender, TiphSSHServerSSHChannelOpenRequestEventParams *e); __property TiphSSHServerSSHChannelOpenRequestEvent OnSSHChannelOpenRequest = { read=FOnSSHChannelOpenRequest, write=FOnSSHChannelOpenRequest };
Remarks
This event is fired whenever a client attempts to open a new channel for a given connection. ChannelId will contain the id of the channel to be created. Service will identify the type of channel that is being requested (e.g.: "session"). Set Accept to true to accept the channel open request.
ConnectionId identifies the connection. ChannelId identifies the channel.
If the channel open request contains extra information, it will be contained in Parameters; you can extract data from it using GetSSHParam and GetSSHParamBytes. The most common example of a request with parameters would be a request with Service set to "direct-tcpip" (for SSH tunneling); in that case Parameters will contain the host to connect (string), the port to connect (int), the originator IP address (string) and the originator TCP port (int).
Note: Processing long-running requests, including sending channel data, inside this event may cause the underlying transport to stop processing SSH data until the event returns. In order to prevent this from happening, all requests should be processed asynchronously in a separate thread outside of this event.
SSHChannelReadyToSend Event (SSHServer Component)
Fired when the component is ready to send data.
Syntax
typedef struct { int ConnectionId; int ChannelId; } TiphSSHServerSSHChannelReadyToSendEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHChannelReadyToSendEvent)(System::TObject* Sender, TiphSSHServerSSHChannelReadyToSendEventParams *e); __property TiphSSHServerSSHChannelReadyToSendEvent OnSSHChannelReadyToSend = { read=FOnSSHChannelReadyToSend, write=FOnSSHChannelReadyToSend };
Remarks
This event fires when data can be sent over the SSH Channel specified by ChannelId for the connection specified by ConnectionId.
When a channel is opened this event will fire once the channel is ready and data can be sent.
When Timeout is set to 0 (asynchronous) sending data may result in an error if the channel or underlying socket cannot accept more data to send. Monitor SSHChannelReadyToSend or ReadyToSend to determine when data can be sent again.
When Timeout is set to a positive value the component will block when sending data until the data can be successfully sent and SSHChannelReadyToSend and ReadyToSend do not need to be monitored.
SSHChannelRequest Event (SSHServer Component)
Fired when the SSHHost sends a channel request to the client.
Syntax
typedef struct { int ConnectionId; int ChannelId; String RequestType; String Packet; DynamicArray<Byte> PacketB; bool Success; } TiphSSHServerSSHChannelRequestEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHChannelRequestEvent)(System::TObject* Sender, TiphSSHServerSSHChannelRequestEventParams *e); __property TiphSSHServerSSHChannelRequestEvent OnSSHChannelRequest = { read=FOnSSHChannelRequest, write=FOnSSHChannelRequest };
Remarks
The SSHHost may send requests that affect the status of a particular SSHChannel. Some requests will be automatically handled by the component. However, others may need the attention of the user to be dealt with properly within the scope of the application.
ConnectionId identifies the connection.
ChannelId identifies the channel receiving the request.
Type will contain the type of the request. These types are dependent upon the type of the channel. For example, a "session" channel executing a command on the remote shell may receive an "exit-status" request containing the return code of that command.
RequestData contains the remainder of the original SSH packet. If the request type has specific parameters, they can be parsed out of this data.
Success should be used to instruct the component to respond to the request with either a success or failure notification. If the request is successful, SSHChannelRequested will fire with the same information in case the request requires further processing.
Note: Processing long-running requests, including sending channel data, inside this event may cause the underlying transport to stop processing SSH data until the event returns. In order to prevent this from happening, all requests should be processed asynchronously in a separate thread outside of this event.
SSHChannelRequested Event (SSHServer Component)
Fired if the SSHChannelRequest was successful, any further processing for the channel request should be done here.
Syntax
typedef struct { int ConnectionId; int ChannelId; String RequestType; String Packet; DynamicArray<Byte> PacketB; } TiphSSHServerSSHChannelRequestedEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHChannelRequestedEvent)(System::TObject* Sender, TiphSSHServerSSHChannelRequestedEventParams *e); __property TiphSSHServerSSHChannelRequestedEvent OnSSHChannelRequested = { read=FOnSSHChannelRequested, write=FOnSSHChannelRequested };
Remarks
The SSHHost may send requests that affect the status of a particular SSHChannel. Some requests will be automatically handled by the component. However, others may need the attention of the user to be dealt with properly within the scope of the application.
ConnectionId identifies the connection.
ChannelId identifies the channel receiving the request.
Type will contain the type of the request. These types are dependent upon the type of the channel. For example, a "session" channel executing a command on the remote shell may receive an "exit-status" request containing the return code of that command.
RequestData contains the remainder of the original SSH packet. If the request type has specific parameters, they can be parsed out of this data.
Note: Processing long-running requests, including sending channel data, inside this event may cause the underlying transport to stop processing SSH data until the event returns. In order to prevent this from happening, all requests should be processed asynchronously in a separate thread outside of this event.
SSHServiceRequest Event (SSHServer Component)
Fired when a client requests a service to be started.
Syntax
typedef struct { int ConnectionId; String Service; bool Accept; } TiphSSHServerSSHServiceRequestEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHServiceRequestEvent)(System::TObject* Sender, TiphSSHServerSSHServiceRequestEventParams *e); __property TiphSSHServerSSHServiceRequestEvent OnSSHServiceRequest = { read=FOnSSHServiceRequest, write=FOnSSHServiceRequest };
Remarks
The SSHServiceRequest event is fired when a client requests that a service be started for a particular connection, identified by ConnectionId. Service will be the name of the service the client wishes to start. If the connection is authenticated and the user has access to the service, set Accept to true to allow the SSHServer to accept the request.
Note: Processing long-running requests, including sending channel data, inside this event may cause the underlying transport to stop processing SSH data until the event returns. In order to prevent this from happening, all requests should be processed asynchronously in a separate thread outside of this event.
SSHStatus Event (SSHServer Component)
Shows the progress of the secure connection.
Syntax
typedef struct { int ConnectionId; String Message; } TiphSSHServerSSHStatusEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHStatusEvent)(System::TObject* Sender, TiphSSHServerSSHStatusEventParams *e); __property TiphSSHServerSSHStatusEvent OnSSHStatus = { read=FOnSSHStatus, write=FOnSSHStatus };
Remarks
The event is fired for informational and logging purposes only. Used to track the progress of the connection.
SSHTunnelClosed Event (SSHServer Component)
This event will fire when a connected client attempts to close a tunnel.
Syntax
typedef struct { int ConnectionId; String Address; int Port; } TiphSSHServerSSHTunnelClosedEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHTunnelClosedEvent)(System::TObject* Sender, TiphSSHServerSSHTunnelClosedEventParams *e); __property TiphSSHServerSSHTunnelClosedEvent OnSSHTunnelClosed = { read=FOnSSHTunnelClosed, write=FOnSSHTunnelClosed };
Remarks
SSHTunnelRequested Event (SSHServer Component)
This event fires when a connected client attempts to establish a forward or reverse tunnel.
Syntax
typedef struct { int ConnectionId; int Direction; String Address; int Port; bool Accept; } TiphSSHServerSSHTunnelRequestedEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHTunnelRequestedEvent)(System::TObject* Sender, TiphSSHServerSSHTunnelRequestedEventParams *e); __property TiphSSHServerSSHTunnelRequestedEvent OnSSHTunnelRequested = { read=FOnSSHTunnelRequested, write=FOnSSHTunnelRequested };
Remarks
SSHUserAuthRequest Event (SSHServer Component)
Fires when a client attempts to authenticate a connection.
Syntax
typedef struct { int ConnectionId; String User; String Service; String AuthMethod; String AuthParam; bool Accept; bool PartialSuccess; String AvailableMethods; String KeyAlgorithm; } TiphSSHServerSSHUserAuthRequestEventParams; typedef void __fastcall (__closure *TiphSSHServerSSHUserAuthRequestEvent)(System::TObject* Sender, TiphSSHServerSSHUserAuthRequestEventParams *e); __property TiphSSHServerSSHUserAuthRequestEvent OnSSHUserAuthRequest = { read=FOnSSHUserAuthRequest, write=FOnSSHUserAuthRequest };
Remarks
The SSHUserAuthRequest event fires when an SSH client attempts to authenticate itself on a particular connection. ConnectionId will identify the connection being authenticated. User will be the name of the account requesting authentication, and Service will contain the name of the service the client is wishing to access.
AuthMethod will denote which method the client is attempting to use to authenticate itself. AuthParam will contain the value of the authentication token used by the client. If the token is acceptable, you may set Accept to true to allow the component to authenticate the client. If it is not, set Accept to false.
Connecting clients will initially attempt authentication with an AuthMethod of "none". This is done with the expectation that the request will fail and the server will send a list of supported methods back to the client. In your implementation check the AuthMethod parameter, if it is "none" you should set AvailableMethods and reject the request. The client will select one of the available methods and re-authenticate.
You may set AvailableMethods to a comma-delimited string of authentication methods that are available for the user. This list will be sent back to the client so that it may perform further authentication attempts.
The following is a list of methods implemented by the component:
none | This authentication method is used by most SSH clients to obtain the list of authentication methods available for the user's account. In most cases you should not accept a request using this authentication method. |
password | AuthParam will contain the user-supplied password. If the password is correct, set Accept to true. |
publickey | AuthParam will contain an SSH2 public key blob. If the user's public key is acceptable, set Accept or PartialSuccess to true. The component will then handle verifying the digital signature and will respond to the client accordingly. |
keyboard-interactive | SSHUserAuthRequest will fire multiple times for keyboard-interactive authentication: It will fire once for each response sent by the client in the SSH_MSG_USERAUTH_INFO_RESPONSE packet (one for each prompt specified by the daemon). The index of each response will be specified as a suffix in AuthMethod, with AuthParam containing the response to the corresponding prompt (e.g keyboard-interactive-1, keyboard-interactive-2 and so on). Finally, SSHUserAuthRequest will fire one last time with AuthMethod set to "keyboard-interactive" and AuthParam set to an empty string. The daemon must set Accept to true every time to allow the authentication process to succeed. |
The PartialSuccess parameter is only used when multi-factor authentication is needed. To implement multi-factor authentication when this event fires first verify the AuthParam for the given AuthMethod. If accepted, set PartialSuccess to true and Accept to false. The client should then send the authentication request for a different form of authentication specified in AvailableMethods. You may continue to set PartialSuccess to true until all authentication requirements are satisfied. Once all requirements are satisfied set Accept to true.
KeyAlgorithm hold the signing algorithm used when the client attempts public key authentication. Possible values are:
- ssh-rsa
- rsa-sha2-256
- rsa-sha2-512
- ssh-dss
- ecdsa-sha2-nistp256
- ecdsa-sha2-nistp384
- ecdsa-sha2-nistp521
- x509v3-sign-rsa
- x509v3-sign-dss
Note: Processing long-running requests, including sending channel data, inside this event may cause the underlying transport to stop processing SSH data until the event returns. In order to prevent this from happening, all requests should be processed asynchronously in a separate thread outside of this event.
Config Settings (SSHServer Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.SSHServer Config Settings
The array indices start at 0 and end at AltSSHCertCount - 1.
The AltSSHCert configuration settings are used to specify alternative digital certificates to the one set using the SSHCert. The server will determine the certificate to use during SSH negotiation based on the public key algorithm requested by the connecting client. A certificate with a private key is required for session authentication and encryption. The AltSSHCertSubject setting must be set last. When AltSSHCertSubject is set a search is initiated in the AltSSHCertStore and the certificate is loaded.
These alternative server certificate specified by these settings must be configured prior to setting Listening to true. For example:
sftpserver.Config("AltSSHCertCount =1");
sftpserver.Config("AltSSHCertStoreType[0]=7"); //PEM Key Blob
sftpserver.Config("AltSSHCertStore[0]=" + ed25519Key); //PEM formatted string
sftpserver.Config("AltSSHCertSubject[0]=*"); //Load the first (and only) certificate
The AltSSHCertStoreType specifies the type of the certificate store specified by AltSSHCertStore. IF the store is password protected, specify the password in the AltSSHCertStorePassword.
AltSSHCertStore is used in conjunction with the AltSSHCertSubject field in order to specify the certificate.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
0 | User - This is the default for Windows. This specifies that the certificate store is a certificate store owned by the current user. Note: This store type is not available in Java. |
1 | Machine - For Windows, this specifies that the certificate store is a machine store. Note: This store type is not available in Java. |
2 | PFXFile - The certificate store is the name of a PFX (PKCS12) file containing certificates. |
3 | PFXBlob - The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS12) format. |
4 | JKSFile - The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: This store type is available only in Java. |
5 | JKSBlob - The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: This store type is available only in Java. |
6 | PEMKeyFile - The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 | PEMKeyBlob - The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
14 | PPKFile - The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 | PPKBlob - The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 | XMLFile - The certificate store is the name of a file that contains a certificate in XML format. |
17 | XMLBlob - The certificate store is a string that contains a certificate in XML format. |
sftpserver1.OnSSHUserAuthRequest += (obj, ev) =>
{
Console.WriteLine(sftpserver1.Config("ClientSSHVersionString[" + ev.ConnectionId + "]"));
};
If set to true, the SSHUserAuthRequest event will fire twice per public key authentication attempt. The first time the event fires for public key authentication as usual. After verification of the signature has taken place the SSHUserAuthRequest will fire again, and the AuthMethod parameter will contain the string sigstatus. The AuthParam parameter will contain a value of 0 (invalid signature) or 1 (valid signature). If the signature is invalid it will always result in a rejected authentication attempt.
This setting takes a list of prompts to display to the client, and each prompt includes an 'echo' parameter to specify whether or not to echo the client's response to the prompt. The prompt itself and the echo parameter should be separated by a comma (","), and each prompt should be separated by a semi-colon (";"). For example:
"KeyboardInteractivePrompts[connId]=First prompt,echo=false;Second prompt,echo=true"
This config can be set anywhere in code, but it is necessary to know the ConnectionId for the specific connection beforehand; as such, it is generally recommended to set this config inside the SSHUserAuthRequest event. Since connecting clients initially attempt to connect with and AuthMethod of 'none' (with the understanding that this attempt will fail, and the SSH server will advertise which authentication methods it supports), It is recommended to check the AuthMethod, User, and ConnectionId parameters of the SSHUserAuthRequest event and set this config accordingly.
When SSHServer displays keyboard-interactive prompts, it will first check to see if this config is populated for the current ConnectionId. If it is, the prompts set here will be used instead of those set in the KeyboardInteractivePrompts property. Otherwise, the KeyboardInteractivePrompts property will function as normal.
Example (for setting the threshold to 500 MB):
SSHComponent.Config("KeyRenegotiationThreshold=524288000")
0 (None) | No messages are logged. |
1 (Info - Default) | Informational events such as SSH handshake messages are logged. |
2 (Verbose) | Detailed data such as individual packet information is logged. |
3 (Debug) | Debug data including all relevant sent and received bytes are logged. |
component.Config("NegotiatedStrictKex[connId]")
The default value is 0 meaning no keep alives will be sent.
Note: The SSHReverseTunnel component uses a default value of 30.
- curve25519-sha256
- curve25519-sha256@libssh.org
- diffie-hellman-group1-sha1
- diffie-hellman-group14-sha1
- diffie-hellman-group14-sha256
- diffie-hellman-group16-sha512
- diffie-hellman-group18-sha512
- diffie-hellman-group-exchange-sha256
- diffie-hellman-group-exchange-sha1
- ecdh-sha2-nistp256
- ecdh-sha2-nistp384
- ecdh-sha2-nistp521
- gss-group14-sha256-toWM5Slw5Ew8Mqkay+al2g==
- gss-group16-sha512-toWM5Slw5Ew8Mqkay+al2g==
- gss-nistp256-sha256-toWM5Slw5Ew8Mqkay+al2g==
- gss-curve25519-sha256-toWM5Slw5Ew8Mqkay+al2g==
- gss-group14-sha1-toWM5Slw5Ew8Mqkay+al2g==
- gss-gex-sha1-toWM5Slw5Ew8Mqkay+al2g==
- hmac-sha1
- hmac-md5
- hmac-sha1-96
- hmac-md5-96
- hmac-sha2-256
- hmac-sha2-256-96
- hmac-sha2-512
- hmac-sha2-512-96
- hmac-ripemd160
- hmac-ripemd160-96
- hmac-sha2-256-etm@openssh.com
- hmac-sha2-512-etm@openssh.com
- umac-64@openssh.com
- umac-64-etm@openssh.com
- umac-128@openssh.com
- umac-128-etm@openssh.com
The setting should be a comma separated list of algorithms. When a client connects the server will verify that the client performing public key authentication has used one of the specified signature algorithms. If the client uses a signature algorithm which is not in the list the connection will be rejected.
Possible values are:
- ssh-rsa
- rsa-sha2-256
- rsa-sha2-512
- ssh-dss
- ecdsa-sha2-nistp256
- ecdsa-sha2-nistp384
- ecdsa-sha2-nistp521
- ssh-ed25519
- x509v3-sign-rsa
- x509v3-sign-dss
The default value in Windows is ssh-rsa,rsa-sha2-256,rsa-sha2-512,x509v3-sign-rsa,ssh-dss,x509v3-sign-dss,ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,ssh-ed25519.
*SSH-1.99-*,*SSH-2.0-*,*SSH-2.99-*
Since both client and server must implement strict key exchange to effectively mitigate the Terrapin attack, the component provides options to further control the behavior in different scenarios. Possible values for this setting are:
0 | Disabled. Strict key exchange is not supported in the component. |
1 (default) | Enabled, but not enforced. This setting enables strict key exchange, but if the remote host does not support strict key exchange the connection is still allowed to continue. |
2 | Enabled, but reject affected algorithms if the remote host does not support strict key exchange. If the remote host supports strict key exchange all algorithms may be used. If the remote host does not support strict key exchange the connection will only continue if the selected encryption and MAC algorithms are not affected by the Terrapin attack. |
3 | Required. If the remote host does not support strict key exchange the connection will fail. |
TCPServer Config Settings
When a client connects, the client's address is checked against the list defined here. If there is no match, the ConnectionRequest event fires with an Accept value set to False. If no action is taken within the ConnectionRequest event, the client will be disconnected.
When a client connects, the client's address is checked against the list defined here. If there is a match, the ConnectionRequest event fires with an Accept value set to False. If no action is taken within the ConnectionRequest event, the client will not be connected.
Note: This is applicable only to incoming SSL connections. This should be set only if there is a specific reason to do so.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated, the InBufferSize reverts to its defined size. The same thing will happen if you attempt to make it too large or too small.
InBufferSize is shared among incoming connections. When the property is set, the corresponding value is set for incoming connections as they are accepted. Existing connections are not modified.
Note: This value is not applicable in macOS.
Note: Unix/Linux operating systems limit the number of simultaneous connections to 1024.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same thing will happen if you attempt to make it too large or too small.
OutBufferSize is shared among incoming connections. When the property is set, the corresponding value is set for incoming connections as they are accepted. Existing connections are not modified.
By default, this config is set to false.
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 and IPv4 |
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting which applies to all instances of all components of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details please see the FIPS 140-2 Compliance article.
Note: This setting is only applicable on Windows.
Note: Enabling FIPS-compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.
This setting is set to false by default on all platforms.
Trappable Errors (SSHServer Component)
SSHServer Errors
1201 Could not forward connection. A detailed message follows. | |
1202 Could not forward connection/channel data. A detailed message follows. | |
1300 Could not authenticate client. | |
1301 No server certificate was specified or no private key found. |
TCPServer Errors
100 You cannot change the RemotePort at this time. A connection is in progress. | |
101 You cannot change the RemoteHost at this time. A connection is in progress. | |
102 The RemoteHost address is invalid (0.0.0.0). | |
104 TCPServer is already listening. | |
106 Cannot change LocalPort when TCPServer is listening. | |
107 Cannot change LocalHost when TCPServer is listening. | |
108 Cannot change MaxConnections when TCPServer is listening. | |
112 You cannot change MaxLineLength at this time. A connection is in progress. | |
116 RemotePort cannot be zero. Please specify a valid service port number. | |
126 Invalid ConnectionId. | |
135 Operation would block. |
TCP/IP Errors
10004 [10004] Interrupted system call. | |
10009 [10009] Bad file number. | |
10013 [10013] Access denied. | |
10014 [10014] Bad address. | |
10022 [10022] Invalid argument. | |
10024 [10024] Too many open files. | |
10035 [10035] Operation would block. | |
10036 [10036] Operation now in progress. | |
10037 [10037] Operation already in progress. | |
10038 [10038] Socket operation on non-socket. | |
10039 [10039] Destination address required. | |
10040 [10040] Message too long. | |
10041 [10041] Protocol wrong type for socket. | |
10042 [10042] Bad protocol option. | |
10043 [10043] Protocol not supported. | |
10044 [10044] Socket type not supported. | |
10045 [10045] Operation not supported on socket. | |
10046 [10046] Protocol family not supported. | |
10047 [10047] Address family not supported by protocol family. | |
10048 [10048] Address already in use. | |
10049 [10049] Can't assign requested address. | |
10050 [10050] Network is down. | |
10051 [10051] Network is unreachable. | |
10052 [10052] Net dropped connection or reset. | |
10053 [10053] Software caused connection abort. | |
10054 [10054] Connection reset by peer. | |
10055 [10055] No buffer space available. | |
10056 [10056] Socket is already connected. | |
10057 [10057] Socket is not connected. | |
10058 [10058] Can't send after socket shutdown. | |
10059 [10059] Too many references, can't splice. | |
10060 [10060] Connection timed out. | |
10061 [10061] Connection refused. | |
10062 [10062] Too many levels of symbolic links. | |
10063 [10063] File name too long. | |
10064 [10064] Host is down. | |
10065 [10065] No route to host. | |
10066 [10066] Directory not empty | |
10067 [10067] Too many processes. | |
10068 [10068] Too many users. | |
10069 [10069] Disc Quota Exceeded. | |
10070 [10070] Stale NFS file handle. | |
10071 [10071] Too many levels of remote in path. | |
10091 [10091] Network subsystem is unavailable. | |
10092 [10092] WINSOCK DLL Version out of range. | |
10093 [10093] Winsock not loaded yet. | |
11001 [11001] Host not found. | |
11002 [11002] Non-authoritative 'Host not found' (try again or check DNS setup). | |
11003 [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP. | |
11004 [11004] Valid name, no data record (check DNS setup). |