SCP Class
Properties Methods Events Config Settings Errors
The SCP class can be used to transfer files to and from SSH servers using the Secure Copy Protocol (SCP).
Syntax
SCP
Remarks
The SCP class is the SSH-enabled equivalent of the IPWorks RCP class. The SSHHost and SSHPort properties specify the SSH server to use. The SSHUser and SSHPassword properties allow the client to authenticate itself with the server. The SSHServerAuthentication event and/or SSHAcceptServerHostKey property allow you to check the server identity. Finally, the SSHStatus event provides information about the SSH handshake.
The SCP class implements a standard SCP File Transfer client.
The first step in using the class is specifying the SSHHost, SSHUser and SSHPassword. The file to upload to or download from is given by the RemoteFile property. The file to download to or upload from is specified by LocalFile.
If LocalFile is set to something other than an empty string, then files are received in LocalFile, otherwise the data is received through the Transfer event. StartTransfer and EndTransfer are fired at the beginning and end of transmission.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
Connected | This shows whether the class is connected. |
FilePermissions | The file permissions for the RemoteFile . |
FirewallAutoDetect | This property tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallType | This property determines the type of firewall to connect through. |
FirewallHost | This property contains the name or IP address of firewall (optional). |
FirewallPassword | This property contains a password if authentication is to be used when connecting through the firewall. |
FirewallPort | This property contains the transmission control protocol (TCP) port for the firewall Host . |
FirewallUser | This property contains a user name if authentication is to be used connecting through a firewall. |
LocalFile | The path to a local file for upload/download. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
LocalPort | The TCP port in the local host where the class binds. |
Overwrite | Whether or not the class should overwrite files during transfer. |
RemoteFile | The name of the remote file for uploading, downloading, etc. |
RemotePath | The remote path on the server. |
SSHAcceptServerHostKeyEncoded | This is the certificate (PEM/Base64 encoded). |
SSHAuthMode | The authentication method to be used the class when calling SSHLogon . |
SSHCertEncoded | This is the certificate (PEM/Base64 encoded). |
SSHCertStore | This is the name of the certificate store for the client certificate. |
SSHCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSHCertStoreType | This is the type of certificate store for this certificate. |
SSHCertSubject | This is the subject of the certificate used for client authentication. |
SSHCompressionAlgorithms | A comma-separated list containing all allowable compression algorithms. |
SSHEncryptionAlgorithms | A comma-separated list containing all allowable encryption algorithms. |
SSHHost | The address of the SSH host. |
SSHPassword | The password for SSH password-based authentication. |
SSHPort | The port on the SSH server where the SSH service is running; by default, 22. |
SSHUser | The username for SSH authentication. |
Timeout | A timeout for the class. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
DecodePacket | Decodes a hex-encoded SSH packet. |
DoEvents | Processes events from the internal message queue. |
Download | Download a RemoteFile from an SCP server. |
EncodePacket | Hex encodes an SSH packet. |
GetSSHParam | Used to read a field from an SSH packet's payload. |
GetSSHParamBytes | Used to read a field from an SSH packet's payload. |
Interrupt | Interrupt the current method. |
Reset | Reset the class. |
SetDownloadStream | Sets the stream to which the downloaded data from the server will be written. |
SetSSHParam | Used to write a field to the end of a payload. |
SetUploadStream | Sets the stream from which the class will read data to upload to the server. |
SSHLogoff | Logoff from the SSH server. |
SSHLogon | Logon to the SSHHost using the current SSHUser and SSHPassword . |
Upload | Upload a file specified by LocalFile to an SCP server. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Connected | This event is fired immediately after a connection completes (or fails). |
ConnectionStatus | This event is fired to indicate changes in the connection state. |
Disconnected | This event is fired when a connection is closed. |
EndTransfer | Fired when a file completes downloading/uploading. |
Error | Information about errors during data delivery. |
Log | Fires once for each log message. |
SSHCustomAuth | Fired when the class is doing custom authentication. |
SSHKeyboardInteractive | Fired when the class receives a request for user input from the server. |
SSHServerAuthentication | Fired after the server presents its public key to the client. |
SSHStatus | Shows the progress of the secure connection. |
StartTransfer | Fired when a file starts downloading/uploading. |
Transfer | Fired during file download/upload. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
DirectoryPermissions | The permissions of folders created on the remote host. |
LastAccessedTime | The last accessed time of the remote file. |
LastModifiedTime | The last modified time of the remote file. |
PreserveFileTime | Preserves the file's modified time during transfer. |
RecursiveMode | If set to true the class will recursively upload or download files. |
ServerResponseWindow | The time to wait for a server response in milliseconds. |
ChannelDataEOL[ChannelId] | Used to break the incoming data stream into chunks. |
ChannelDataEOLFound[ChannelId] | Determines if ChannelDataEOL was found. |
ClientSSHVersionString | The SSH version string used by the class. |
EnablePageantAuth | Whether to use a key stored in Pageant to perform client authentication. |
KerberosDelegation | If true, asks for credentials with delegation enabled during authentication. |
KerberosRealm | The fully qualified domain name of the Kerberos Realm to use for GSSAPI authentication. |
KerberosSPN | The Kerberos Service Principal Name of the SSH host. |
KeyRenegotiationThreshold | Sets the threshold for the SSH Key Renegotiation. |
LogLevel | Specifies the level of detail that is logged. |
MaxChannelDataLength[ChannelId] | The maximum amount of data to accumulate when no ChannelDataEOL is found. |
MaxPacketSize | The maximum packet size of the channel, in bytes. |
MaxWindowSize | The maximum window size allowed for the channel, in bytes. |
NegotiatedStrictKex | Returns whether strict key exchange was negotiated to be used. |
PasswordPrompt | The text of the password prompt used in keyboard-interactive authentication. |
PreferredDHGroupBits | The size (in bits) of the preferred modulus (p) to request from the server. |
RecordLength | The length of received data records. |
ServerSSHVersionString | The remote host's SSH version string. |
SignedSSHCert | The CA signed client public key used when authenticating. |
SSHAcceptAnyServerHostKey | If set the class will accept any key presented by the server. |
SSHAcceptServerCAKey | The CA public key that signed the server's host key. |
SSHAcceptServerHostKeyFingerPrint | The fingerprint of the server key to accept. |
SSHFingerprintHashAlgorithm | The algorithm used to calculate the fingerprint. |
SSHFingerprintMD5 | The server hostkey's MD5 fingerprint. |
SSHFingerprintSHA1 | The server hostkey's SHA1 fingerprint. |
SSHFingerprintSHA256 | The server hostkey's SHA256 fingerprint. |
SSHKeepAliveCountMax | The maximum number of keep alive packets to send without a response. |
SSHKeepAliveInterval | The interval between keep alive packets. |
SSHKeyExchangeAlgorithms | Specifies the supported key exchange algorithms. |
SSHKeyRenegotiate | Causes the class to renegotiate the SSH keys. |
SSHMacAlgorithms | Specifies the supported Mac algorithms. |
SSHPubKeyAuthSigAlgorithms | Specifies the enabled signature algorithms that may be used when attempting public key authentication. |
SSHPublicKeyAlgorithms | Specifies the supported public key algorithms for the server's public key. |
SSHVersionPattern | The pattern used to match the remote host's version string. |
TryAllAvailableAuthMethods | If set to true, the class will try all available authentication methods. |
UseStrictKeyExchange | Specifies how strict key exchange is supported. |
WaitForChannelClose | Whether to wait for channels to be closed before disconnected. |
WaitForServerDisconnect | Whether to wait for the server to close the connection. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveRetryCount | The number of keep-alive packets to be sent before the remotehost is considered disconnected. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
Connected Property (SCP Class)
This shows whether the class is connected.
Syntax
ANSI (Cross Platform) int GetConnected();
int SetConnected(int bConnected); Unicode (Windows) BOOL GetConnected();
INT SetConnected(BOOL bConnected);
int ipworksssh_scp_getconnected(void* lpObj);
int ipworksssh_scp_setconnected(void* lpObj, int bConnected);
bool GetConnected();
int SetConnected(bool bConnected);
Default Value
FALSE
Remarks
This property is used to determine whether or not the class is connected to the remote host.
Note: It is recommended to use the Connect or Disconnect method instead of setting this property.
This property is not available at design time.
Data Type
Boolean
FilePermissions Property (SCP Class)
The file permissions for the RemoteFile .
Syntax
ANSI (Cross Platform) char* GetFilePermissions();
int SetFilePermissions(const char* lpszFilePermissions); Unicode (Windows) LPWSTR GetFilePermissions();
INT SetFilePermissions(LPCWSTR lpszFilePermissions);
char* ipworksssh_scp_getfilepermissions(void* lpObj);
int ipworksssh_scp_setfilepermissions(void* lpObj, const char* lpszFilePermissions);
QString GetFilePermissions();
int SetFilePermissions(QString qsFilePermissions);
Default Value
"0600"
Remarks
This property defines the permissions that will be assigned to the RemoteFile after an upload. The value is a four digit octal value. This is the same format that is used with the Unix chmod command. The default value of "0600" gives read/write permissions to the file's owner.
The last three octal digits are the most significant and represent, in order, the file access capabilities of the file's owner, the owner's group and other users. Each of these octal digits is, on its own, a 3-bit bitmask with the following possible values:
1 (001) | Execute |
2 (010) | Write |
4 (100) | Read |
An octal permission digit of 7 would have all three values set and would mean that the file can be read, written and executed by that user class. For example, the octal permissions "100644" would have a value "6" for the owner, "4" for the group, and "4" for other users. This would be interpreted to mean that all users can read the file, no users can execute it and only the owner can write it. The permissions "40755" would mean that all users can read and execute the file, but only the owner can write it.
The previous octal digit is another bitmask with the following values:
1 (001) | Sticky Bit - retain the file in memory for performance |
2 (010) | Set GID - sets the group ID of the process to the file's group ID upon execution (only for executable files) |
4 (100) | Set UID - sets the user ID of the process to the file's user ID upon execution (only for executable files) |
Note: Not all servers support setting permissions after an upload.
Data Type
String
FirewallAutoDetect Property (SCP Class)
This property tells the class whether or not to automatically detect and use firewall system settings, if available.
Syntax
ANSI (Cross Platform) int GetFirewallAutoDetect();
int SetFirewallAutoDetect(int bFirewallAutoDetect); Unicode (Windows) BOOL GetFirewallAutoDetect();
INT SetFirewallAutoDetect(BOOL bFirewallAutoDetect);
int ipworksssh_scp_getfirewallautodetect(void* lpObj);
int ipworksssh_scp_setfirewallautodetect(void* lpObj, int bFirewallAutoDetect);
bool GetFirewallAutoDetect();
int SetFirewallAutoDetect(bool bFirewallAutoDetect);
Default Value
FALSE
Remarks
This property tells the class whether or not to automatically detect and use firewall system settings, if available.
Data Type
Boolean
FirewallType Property (SCP Class)
This property determines the type of firewall to connect through.
Syntax
ANSI (Cross Platform) int GetFirewallType();
int SetFirewallType(int iFirewallType); Unicode (Windows) INT GetFirewallType();
INT SetFirewallType(INT iFirewallType);
Possible Values
FW_NONE(0),
FW_TUNNEL(1),
FW_SOCKS4(2),
FW_SOCKS5(3),
FW_SOCKS4A(10)
int ipworksssh_scp_getfirewalltype(void* lpObj);
int ipworksssh_scp_setfirewalltype(void* lpObj, int iFirewallType);
int GetFirewallType();
int SetFirewallType(int iFirewallType);
Default Value
0
Remarks
This property determines the type of firewall to connect through. The applicable values are as follows:
fwNone (0) | No firewall (default setting). |
fwTunnel (1) | Connect through a tunneling proxy. FirewallPort is set to 80. |
fwSOCKS4 (2) | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
fwSOCKS5 (3) | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
fwSOCKS4A (10) | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Data Type
Integer
FirewallHost Property (SCP Class)
This property contains the name or IP address of firewall (optional).
Syntax
ANSI (Cross Platform) char* GetFirewallHost();
int SetFirewallHost(const char* lpszFirewallHost); Unicode (Windows) LPWSTR GetFirewallHost();
INT SetFirewallHost(LPCWSTR lpszFirewallHost);
char* ipworksssh_scp_getfirewallhost(void* lpObj);
int ipworksssh_scp_setfirewallhost(void* lpObj, const char* lpszFirewallHost);
QString GetFirewallHost();
int SetFirewallHost(QString qsFirewallHost);
Default Value
""
Remarks
This property contains the name or IP address of firewall (optional). If a FirewallHost is given, the requested connections will be authenticated through the specified firewall when connecting.
If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.
Data Type
String
FirewallPassword Property (SCP Class)
This property contains a password if authentication is to be used when connecting through the firewall.
Syntax
ANSI (Cross Platform) char* GetFirewallPassword();
int SetFirewallPassword(const char* lpszFirewallPassword); Unicode (Windows) LPWSTR GetFirewallPassword();
INT SetFirewallPassword(LPCWSTR lpszFirewallPassword);
char* ipworksssh_scp_getfirewallpassword(void* lpObj);
int ipworksssh_scp_setfirewallpassword(void* lpObj, const char* lpszFirewallPassword);
QString GetFirewallPassword();
int SetFirewallPassword(QString qsFirewallPassword);
Default Value
""
Remarks
This property contains a password if authentication is to be used when connecting through the firewall. If FirewallHost is specified, the FirewallUser and FirewallPassword properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.
Data Type
String
FirewallPort Property (SCP Class)
This property contains the transmission control protocol (TCP) port for the firewall Host .
Syntax
ANSI (Cross Platform) int GetFirewallPort();
int SetFirewallPort(int iFirewallPort); Unicode (Windows) INT GetFirewallPort();
INT SetFirewallPort(INT iFirewallPort);
int ipworksssh_scp_getfirewallport(void* lpObj);
int ipworksssh_scp_setfirewallport(void* lpObj, int iFirewallPort);
int GetFirewallPort();
int SetFirewallPort(int iFirewallPort);
Default Value
0
Remarks
This property contains the transmission control protocol (TCP) port for the firewall FirewallHost. See the description of the FirewallHost property for details.
Note: This property is set automatically when FirewallType is set to a valid value. See the description of the FirewallType property for details.
Data Type
Integer
FirewallUser Property (SCP Class)
This property contains a user name if authentication is to be used connecting through a firewall.
Syntax
ANSI (Cross Platform) char* GetFirewallUser();
int SetFirewallUser(const char* lpszFirewallUser); Unicode (Windows) LPWSTR GetFirewallUser();
INT SetFirewallUser(LPCWSTR lpszFirewallUser);
char* ipworksssh_scp_getfirewalluser(void* lpObj);
int ipworksssh_scp_setfirewalluser(void* lpObj, const char* lpszFirewallUser);
QString GetFirewallUser();
int SetFirewallUser(QString qsFirewallUser);
Default Value
""
Remarks
This property contains a user name if authentication is to be used connecting through a firewall. If the FirewallHost is specified, this property and FirewallPassword properties are used to connect and authenticate to the given Firewall. If the authentication fails, the class fails with an error.
Data Type
String
LocalFile Property (SCP Class)
The path to a local file for upload/download.
Syntax
ANSI (Cross Platform) char* GetLocalFile();
int SetLocalFile(const char* lpszLocalFile); Unicode (Windows) LPWSTR GetLocalFile();
INT SetLocalFile(LPCWSTR lpszLocalFile);
char* ipworksssh_scp_getlocalfile(void* lpObj);
int ipworksssh_scp_setlocalfile(void* lpObj, const char* lpszLocalFile);
QString GetLocalFile();
int SetLocalFile(QString qsLocalFile);
Default Value
""
Remarks
The LocalFile property is used by the Upload and Download methods. The file will only be overwritten if the Overwrite property is set to True.
Example (Setting LocalFile)
SCPControl.Localfile = "C:\localfile.txt"
SCPControl.RemoteFile = "remotefile.txt"
SCPControl.Download()
SCPControl.Localfile = "C:\localfile2.txt"
SCPControl.RemoteFile = "folder/remotefile2.txt"
SCPControl.Upload()
Multiple file uploads and downloads are supported through the use of filemasks.
To upload files matching a filemask set LocalFile to a local path including a filemask. Set RemotePath to the directory on the server where the files will be uploaded. In this case RemoteFile is ignored. All matching files will be upload when Upload is called. The StartTransfer, Transfer, and EndTransfer events provide details about the individual file transfers.
To download files matching a filemask set RemoteFile to a filemask. The path may be specified as part of the value in RemoteFile or may be set separately in RemotePath. LocalFile should be set to a local directory where files will be downloaded. When Download is called all matching files are downloaded. The StartTransfer, Transfer, and EndTransfer events provide details about the individual file transfers. In the event an individual file fails to transfer the Error event will fire.
Data Type
String
LocalHost Property (SCP Class)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
ANSI (Cross Platform) char* GetLocalHost();
int SetLocalHost(const char* lpszLocalHost); Unicode (Windows) LPWSTR GetLocalHost();
INT SetLocalHost(LPCWSTR lpszLocalHost);
char* ipworksssh_scp_getlocalhost(void* lpObj);
int ipworksssh_scp_setlocalhost(void* lpObj, const char* lpszLocalHost);
QString GetLocalHost();
int SetLocalHost(QString qsLocalHost);
Default Value
""
Remarks
The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.
The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.
Data Type
String
LocalPort Property (SCP Class)
The TCP port in the local host where the class binds.
Syntax
ANSI (Cross Platform) int GetLocalPort();
int SetLocalPort(int iLocalPort); Unicode (Windows) INT GetLocalPort();
INT SetLocalPort(INT iLocalPort);
int ipworksssh_scp_getlocalport(void* lpObj);
int ipworksssh_scp_setlocalport(void* lpObj, int iLocalPort);
int GetLocalPort();
int SetLocalPort(int iLocalPort);
Default Value
0
Remarks
This property must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.
Setting this property to 0 (default) enables the system to choose an open port at random. The chosen port will be returned by the LocalPort property after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this property when a connection is active will generate an error.
This property is useful when trying to connect to services that require a trusted port in the client side.
Data Type
Integer
Overwrite Property (SCP Class)
Whether or not the class should overwrite files during transfer.
Syntax
ANSI (Cross Platform) int GetOverwrite();
int SetOverwrite(int bOverwrite); Unicode (Windows) BOOL GetOverwrite();
INT SetOverwrite(BOOL bOverwrite);
int ipworksssh_scp_getoverwrite(void* lpObj);
int ipworksssh_scp_setoverwrite(void* lpObj, int bOverwrite);
bool GetOverwrite();
int SetOverwrite(bool bOverwrite);
Default Value
FALSE
Remarks
This property is a value indicating whether or not the class should overwrite LocalFile when downloading. If Overwrite is false, an error will be thrown whenever LocalFile exists before a download operation.
Data Type
Boolean
RemoteFile Property (SCP Class)
The name of the remote file for uploading, downloading, etc.
Syntax
ANSI (Cross Platform) char* GetRemoteFile();
int SetRemoteFile(const char* lpszRemoteFile); Unicode (Windows) LPWSTR GetRemoteFile();
INT SetRemoteFile(LPCWSTR lpszRemoteFile);
char* ipworksssh_scp_getremotefile(void* lpObj);
int ipworksssh_scp_setremotefile(void* lpObj, const char* lpszRemoteFile);
QString GetRemoteFile();
int SetRemoteFile(QString qsRemoteFile);
Default Value
""
Remarks
The RemoteFile is either an absolute file path, or a relative path based on the server current directory.
A number of methods use RemoteFile as an argument.
Example (Setting RemoteFile)
SCPControl.Localfile = "C:\localfile.txt"
SCPControl.RemoteFile = "remotefile.txt"
SCPControl.Download()
SCPControl.Localfile = "C:\localfile2.txt"
SCPControl.RemoteFile = "folder/remotefile2.txt"
SCPControl.Upload()
The remote path may be specified as part of value supplied here, or separately in RemotePath.
Multiple file uploads and downloads are supported through the use of filemasks.
To upload files matching a filemask set LocalFile to a local path including a filemask. Set RemotePath to the directory on the server where the files will be uploaded. In this case RemoteFile is ignored. All matching files will be upload when Upload is called. The StartTransfer, Transfer, and EndTransfer events provide details about the individual file transfers.
To download files matching a filemask set RemoteFile to a filemask. The path may be specified as part of the value in RemoteFile or may be set separately in RemotePath. LocalFile should be set to a local directory where files will be downloaded. When Download is called all matching files are downloaded. The StartTransfer, Transfer, and EndTransfer events provide details about the individual file transfers. In the event an individual file fails to transfer the Error event will fire.
Data Type
String
RemotePath Property (SCP Class)
The remote path on the server.
Syntax
ANSI (Cross Platform) char* GetRemotePath();
int SetRemotePath(const char* lpszRemotePath); Unicode (Windows) LPWSTR GetRemotePath();
INT SetRemotePath(LPCWSTR lpszRemotePath);
char* ipworksssh_scp_getremotepath(void* lpObj);
int ipworksssh_scp_setremotepath(void* lpObj, const char* lpszRemotePath);
QString GetRemotePath();
int SetRemotePath(QString qsRemotePath);
Default Value
""
Remarks
The RemotePath is either an absolute file path, or a relative path based on the server current directory.
This property specifies the remote path on the server when uploading or downloading.
This is required when using a filemask to upload multiple files.
In all other cases it is optional and path information may instead be specified in RemoteFile. If this is set, it is combined with RemoteFile to form a complete path to the file.
Multiple file uploads and downloads are supported through the use of filemasks.
To upload files matching a filemask set LocalFile to a local path including a filemask. Set RemotePath to the directory on the server where the files will be uploaded. In this case RemoteFile is ignored. All matching files will be upload when Upload is called. The StartTransfer, Transfer, and EndTransfer events provide details about the individual file transfers.
To download files matching a filemask set RemoteFile to a filemask. The path may be specified as part of the value in RemoteFile or may be set separately in RemotePath. LocalFile should be set to a local directory where files will be downloaded. When Download is called all matching files are downloaded. The StartTransfer, Transfer, and EndTransfer events provide details about the individual file transfers. In the event an individual file fails to transfer the Error event will fire.
Data Type
String
SSHAcceptServerHostKeyEncoded Property (SCP Class)
This is the certificate (PEM/Base64 encoded).
Syntax
ANSI (Cross Platform) int GetSSHAcceptServerHostKeyEncoded(char* &lpSSHAcceptServerHostKeyEncoded, int &lenSSHAcceptServerHostKeyEncoded);
int SetSSHAcceptServerHostKeyEncoded(const char* lpSSHAcceptServerHostKeyEncoded, int lenSSHAcceptServerHostKeyEncoded); Unicode (Windows) INT GetSSHAcceptServerHostKeyEncoded(LPSTR &lpSSHAcceptServerHostKeyEncoded, INT &lenSSHAcceptServerHostKeyEncoded);
INT SetSSHAcceptServerHostKeyEncoded(LPCSTR lpSSHAcceptServerHostKeyEncoded, INT lenSSHAcceptServerHostKeyEncoded);
int ipworksssh_scp_getsshacceptserverhostkeyencoded(void* lpObj, char** lpSSHAcceptServerHostKeyEncoded, int* lenSSHAcceptServerHostKeyEncoded);
int ipworksssh_scp_setsshacceptserverhostkeyencoded(void* lpObj, const char* lpSSHAcceptServerHostKeyEncoded, int lenSSHAcceptServerHostKeyEncoded);
QByteArray GetSSHAcceptServerHostKeyEncoded();
int SetSSHAcceptServerHostKeyEncoded(QByteArray qbaSSHAcceptServerHostKeyEncoded);
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSHAcceptServerHostKeyStore and SSHAcceptServerHostKeySubject properties also may be used to specify a certificate.
When SSHAcceptServerHostKeyEncoded is set, a search is initiated in the current SSHAcceptServerHostKeyStore for the private key of the certificate. If the key is found, SSHAcceptServerHostKeySubject is updated to reflect the full subject of the selected certificate; otherwise, SSHAcceptServerHostKeySubject is set to an empty string.
This property is not available at design time.
Data Type
Binary String
SSHAuthMode Property (SCP Class)
The authentication method to be used the class when calling SSHLogon .
Syntax
ANSI (Cross Platform) int GetSSHAuthMode();
int SetSSHAuthMode(int iSSHAuthMode); Unicode (Windows) INT GetSSHAuthMode();
INT SetSSHAuthMode(INT iSSHAuthMode);
Possible Values
AM_NONE(0),
AM_MULTI_FACTOR(1),
AM_PASSWORD(2),
AM_PUBLIC_KEY(3),
AM_KEYBOARD_INTERACTIVE(4),
AM_GSSAPIWITH_MIC(5),
AM_CUSTOM(6),
AM_GSSAPIKEYEX(7)
int ipworksssh_scp_getsshauthmode(void* lpObj);
int ipworksssh_scp_setsshauthmode(void* lpObj, int iSSHAuthMode);
int GetSSHAuthMode();
int SetSSHAuthMode(int iSSHAuthMode);
Default Value
2
Remarks
The SSH Authentication specification (RFC 4252) specifies multiple methods by which a user can be authenticated by an SSH server. When a call is made to SSHLogon, the class will connect to the SSH server and establish the security layer. After the connection has been secured, the client will send an authentication request to the SSHHost containing the SSHUser. The server will respond containing a list of methods by which that user may be authenticated.
The class will attempt to authenticate the user by one of those methods based on the value of SSHAuthMode and other property values supplied by the user. Currently, the class supports the following authentication methods:
amNone (0) | No authentication will be performed. The current SSHUser value is ignored, and the connection will be logged in as anonymous. |
amMultiFactor (1) | This allows the class to attempt a multi-step authentication process. The class will send authentication data to the server based on the list of methods allowed for the current user and the authentication property values supplied. The class will continue to send authentication data until the server acknowledges authentication success. If the server rejects an authentication step, the class fails with an error. |
amPassword (2) | The class will use the values of SSHUser and SSHPassword to authenticate the user. |
amPublicKey (3) | The class will use the values of SSHUser and the SSHCert* properties to authenticate the user. the SSHCert* properties must have a private key available for this authentication method to succeed. |
amKeyboardInteractive (4) | At the time of authentication, the class will fire the SSHKeyboardInteractive event containing instructions on how to complete the authentication step. (NOTE: amKeyboardInteractive is not supported in SSHTunnel). |
amGSSAPIWithMic (5) | This allows the class to attempt Kerberos authentication using the GSSAPI-WITH-MIC scheme. The client will try Kerberos authentication using the value of SSHUser (single sign-on), or if SSHPassword is specified as well, it will try Kerberos authentication with alternate credentials. This is currently supported only on Windows, unless using the Java edition, which also provides support for Linux and macOS. |
amCustom (6) | This allows the class caller to take over the authentication process completely. When amCustom is set, the class will fire the SSHCustomAuth event as necessary to complete the authentication process. |
amGSSAPIKeyex (7) | This allows the class to attempt Kerberos authentication using the GSSAPIKeyex scheme. The client will try Kerberos authentication using the value of SSHUser (single sign-on), or if SSHPassword is specified as well, it will try Kerberos authentication with alternate credentials. This is currently supported only on Windows, unless using the Java edition, which also provides support for Linux and macOS. |
Example (User/Password Auth):
Control.SSHAuthMode = SftpSSHAuthModes.amPassword
Control.SSHUser = "username"
Control.SSHPassword = "password"
Control.SSHLogon("server", 22)
Example (Public Key Auth):
Control.SSHAuthMode = SftpSSHAuthModes.amPublicKey
Control.SSHUser = "username"
Control.SSHCertStoreType = SSHCertStoreTypes.cstPFXFile;
Control.SSHCertStore = "cert.pfx";
Control.SSHCertStorePassword = "certpassword";
Control.SSHCertSubject = "*";
Control.SSHLogon("server", 22)
Data Type
Integer
SSHCertEncoded Property (SCP Class)
This is the certificate (PEM/Base64 encoded).
Syntax
ANSI (Cross Platform) int GetSSHCertEncoded(char* &lpSSHCertEncoded, int &lenSSHCertEncoded);
int SetSSHCertEncoded(const char* lpSSHCertEncoded, int lenSSHCertEncoded); Unicode (Windows) INT GetSSHCertEncoded(LPSTR &lpSSHCertEncoded, INT &lenSSHCertEncoded);
INT SetSSHCertEncoded(LPCSTR lpSSHCertEncoded, INT lenSSHCertEncoded);
int ipworksssh_scp_getsshcertencoded(void* lpObj, char** lpSSHCertEncoded, int* lenSSHCertEncoded);
int ipworksssh_scp_setsshcertencoded(void* lpObj, const char* lpSSHCertEncoded, int lenSSHCertEncoded);
QByteArray GetSSHCertEncoded();
int SetSSHCertEncoded(QByteArray qbaSSHCertEncoded);
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSHCertStore and SSHCertSubject properties also may be used to specify a certificate.
When SSHCertEncoded is set, a search is initiated in the current SSHCertStore for the private key of the certificate. If the key is found, SSHCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSHCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Binary String
SSHCertStore Property (SCP Class)
This is the name of the certificate store for the client certificate.
Syntax
ANSI (Cross Platform) int GetSSHCertStore(char* &lpSSHCertStore, int &lenSSHCertStore);
int SetSSHCertStore(const char* lpSSHCertStore, int lenSSHCertStore); Unicode (Windows) INT GetSSHCertStore(LPSTR &lpSSHCertStore, INT &lenSSHCertStore);
INT SetSSHCertStore(LPCSTR lpSSHCertStore, INT lenSSHCertStore);
int ipworksssh_scp_getsshcertstore(void* lpObj, char** lpSSHCertStore, int* lenSSHCertStore);
int ipworksssh_scp_setsshcertstore(void* lpObj, const char* lpSSHCertStore, int lenSSHCertStore);
QByteArray GetSSHCertStore();
int SetSSHCertStore(QByteArray qbaSSHCertStore);
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The SSHCertStoreType property denotes the type of the certificate store specified by SSHCertStore. If the store is password protected, specify the password in SSHCertStorePassword.
SSHCertStore is used in conjunction with the SSHCertSubject property to specify client certificates. If SSHCertStore has a value, and SSHCertSubject or SSHCertEncoded is set, a search for a certificate is initiated. Please see the SSHCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Binary String
SSHCertStorePassword Property (SCP Class)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
ANSI (Cross Platform) char* GetSSHCertStorePassword();
int SetSSHCertStorePassword(const char* lpszSSHCertStorePassword); Unicode (Windows) LPWSTR GetSSHCertStorePassword();
INT SetSSHCertStorePassword(LPCWSTR lpszSSHCertStorePassword);
char* ipworksssh_scp_getsshcertstorepassword(void* lpObj);
int ipworksssh_scp_setsshcertstorepassword(void* lpObj, const char* lpszSSHCertStorePassword);
QString GetSSHCertStorePassword();
int SetSSHCertStorePassword(QString qsSSHCertStorePassword);
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
SSHCertStoreType Property (SCP Class)
This is the type of certificate store for this certificate.
Syntax
ANSI (Cross Platform) int GetSSHCertStoreType();
int SetSSHCertStoreType(int iSSHCertStoreType); Unicode (Windows) INT GetSSHCertStoreType();
INT SetSSHCertStoreType(INT iSSHCertStoreType);
Possible Values
CST_USER(0),
CST_MACHINE(1),
CST_PFXFILE(2),
CST_PFXBLOB(3),
CST_JKSFILE(4),
CST_JKSBLOB(5),
CST_PEMKEY_FILE(6),
CST_PEMKEY_BLOB(7),
CST_PUBLIC_KEY_FILE(8),
CST_PUBLIC_KEY_BLOB(9),
CST_SSHPUBLIC_KEY_BLOB(10),
CST_P7BFILE(11),
CST_P7BBLOB(12),
CST_SSHPUBLIC_KEY_FILE(13),
CST_PPKFILE(14),
CST_PPKBLOB(15),
CST_XMLFILE(16),
CST_XMLBLOB(17),
CST_JWKFILE(18),
CST_JWKBLOB(19),
CST_SECURITY_KEY(20),
CST_BCFKSFILE(21),
CST_BCFKSBLOB(22),
CST_PKCS11(23),
CST_AUTO(99)
int ipworksssh_scp_getsshcertstoretype(void* lpObj);
int ipworksssh_scp_setsshcertstoretype(void* lpObj, int iSSHCertStoreType);
int GetSSHCertStoreType();
int SetSSHCertStoreType(int iSSHCertStoreType);
Default Value
0
Remarks
This is the type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SSHCertStore and set SSHCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
SSHCertSubject Property (SCP Class)
This is the subject of the certificate used for client authentication.
Syntax
ANSI (Cross Platform) char* GetSSHCertSubject();
int SetSSHCertSubject(const char* lpszSSHCertSubject); Unicode (Windows) LPWSTR GetSSHCertSubject();
INT SetSSHCertSubject(LPCWSTR lpszSSHCertSubject);
char* ipworksssh_scp_getsshcertsubject(void* lpObj);
int ipworksssh_scp_setsshcertsubject(void* lpObj, const char* lpszSSHCertSubject);
QString GetSSHCertSubject();
int SetSSHCertSubject(QString qsSSHCertSubject);
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
SSHCompressionAlgorithms Property (SCP Class)
A comma-separated list containing all allowable compression algorithms.
Syntax
ANSI (Cross Platform) char* GetSSHCompressionAlgorithms();
int SetSSHCompressionAlgorithms(const char* lpszSSHCompressionAlgorithms); Unicode (Windows) LPWSTR GetSSHCompressionAlgorithms();
INT SetSSHCompressionAlgorithms(LPCWSTR lpszSSHCompressionAlgorithms);
char* ipworksssh_scp_getsshcompressionalgorithms(void* lpObj);
int ipworksssh_scp_setsshcompressionalgorithms(void* lpObj, const char* lpszSSHCompressionAlgorithms);
QString GetSSHCompressionAlgorithms();
int SetSSHCompressionAlgorithms(QString qsSSHCompressionAlgorithms);
Default Value
"none,zlib"
Remarks
During the SSH handshake, this list will be used to negotiate the compression algorithm to be used between the client and server. This list is used for both directions: client to server and server to client. When negotiating algorithms, each side sends a list of all algorithms it supports or allows. The algorithm chosen for each direction is the first algorithm to appear in the sender's list that the receiver supports, so it is important to list multiple algorithms in preferential order. If no algorithm can be agreed upon, the class will raise an error and the connection will be aborted.
At least one supported algorithm must appear in this list. The following compression algorithms are supported by the class:
- zlib
- zlib@openssh.com
- none
Data Type
String
SSHEncryptionAlgorithms Property (SCP Class)
A comma-separated list containing all allowable encryption algorithms.
Syntax
ANSI (Cross Platform) char* GetSSHEncryptionAlgorithms();
int SetSSHEncryptionAlgorithms(const char* lpszSSHEncryptionAlgorithms); Unicode (Windows) LPWSTR GetSSHEncryptionAlgorithms();
INT SetSSHEncryptionAlgorithms(LPCWSTR lpszSSHEncryptionAlgorithms);
char* ipworksssh_scp_getsshencryptionalgorithms(void* lpObj);
int ipworksssh_scp_setsshencryptionalgorithms(void* lpObj, const char* lpszSSHEncryptionAlgorithms);
QString GetSSHEncryptionAlgorithms();
int SetSSHEncryptionAlgorithms(QString qsSSHEncryptionAlgorithms);
Default Value
"aes256-ctr,aes192-ctr,aes128-ctr,aes256-cbc,aes192-cbc,aes128-cbc,3des-ctr,3des-cbc,blowfish-cbc,arcfour256,arcfour128,arcfour,cast128-cbc,aes256-gcm@openssh.com,aes128-gcm@openssh.com,chacha20-poly1305@openssh.com"
Remarks
During the SSH handshake, this list will be used to negotiate the encryption algorithm to be used between the client and server. This list is used for both directions: client to server and server to client. When negotiating algorithms, each side sends a list of all algorithms it supports or allows. The algorithm chosen for each direction is the first algorithm to appear in the sender's list that the receiver supports, so it is important to list multiple algorithms in preferential order. If no algorithm can be agreed upon, the class will raise an error and the connection will be aborted.
At least one supported algorithm must appear in this list. The following encryption algorithms are supported by the class:
aes256-ctr | 256-bit AES encryption in CTR mode |
aes256-cbc | 256-bit AES encryption in CBC mode |
aes192-ctr | 192-bit AES encryption in CTR mode |
aes192-cbc | 192-bit AES encryption in CBC mode |
aes128-ctr | 128-bit AES encryption in CTR mode |
aes128-cbc | 128-bit AES encryption in CBC mode |
3des-ctr | 192-bit (3-key) triple DES encryption in CTR mode |
3des-cbc | 192-bit (3-key) triple DES encryption in CBC mode |
cast128-cbc | CAST-128 encryption |
blowfish-cbc | Blowfish encryption |
arcfour | ARC4 encryption |
arcfour128 | 128-bit ARC4 encryption |
arcfour256 | 256-bit ARC4 encryption |
aes256-gcm@openssh.com | 256-bit AES encryption in GCM mode. |
aes128-gcm@openssh.com | 128-bit AES encryption in GCM mode. |
chacha20-poly1305@openssh.com | ChaCha20 with Poly1305-AES encryption. |
Data Type
String
SSHHost Property (SCP Class)
The address of the SSH host.
Syntax
ANSI (Cross Platform) char* GetSSHHost();
int SetSSHHost(const char* lpszSSHHost); Unicode (Windows) LPWSTR GetSSHHost();
INT SetSSHHost(LPCWSTR lpszSSHHost);
char* ipworksssh_scp_getsshhost(void* lpObj);
int ipworksssh_scp_setsshhost(void* lpObj, const char* lpszSSHHost);
QString GetSSHHost();
int SetSSHHost(QString qsSSHHost);
Default Value
""
Remarks
The SSHHost property specifies the IP address (IP number in dotted internet format) or Domain Name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.
If the SSHHost property is set to a Domain Name, a DNS request is initiated, and upon successful termination of the request, the SSHHost property is set to the corresponding address. If the search is not successful, an error is returned.
The SSHHost must be the same host that will be assumed for SSH as for the remote service being connected to.
Data Type
String
SSHPassword Property (SCP Class)
The password for SSH password-based authentication.
Syntax
ANSI (Cross Platform) char* GetSSHPassword();
int SetSSHPassword(const char* lpszSSHPassword); Unicode (Windows) LPWSTR GetSSHPassword();
INT SetSSHPassword(LPCWSTR lpszSSHPassword);
char* ipworksssh_scp_getsshpassword(void* lpObj);
int ipworksssh_scp_setsshpassword(void* lpObj, const char* lpszSSHPassword);
QString GetSSHPassword();
int SetSSHPassword(QString qsSSHPassword);
Default Value
""
Remarks
SSHPassword specifies the password which is used to authenticate the client to the SSH server.
Data Type
String
SSHPort Property (SCP Class)
The port on the SSH server where the SSH service is running; by default, 22.
Syntax
ANSI (Cross Platform) int GetSSHPort();
int SetSSHPort(int iSSHPort); Unicode (Windows) INT GetSSHPort();
INT SetSSHPort(INT iSSHPort);
int ipworksssh_scp_getsshport(void* lpObj);
int ipworksssh_scp_setsshport(void* lpObj, int iSSHPort);
int GetSSHPort();
int SetSSHPort(int iSSHPort);
Default Value
22
Remarks
The SSHPort specifies a service port on the SSH host to connect to.
A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.
Data Type
Integer
SSHUser Property (SCP Class)
The username for SSH authentication.
Syntax
ANSI (Cross Platform) char* GetSSHUser();
int SetSSHUser(const char* lpszSSHUser); Unicode (Windows) LPWSTR GetSSHUser();
INT SetSSHUser(LPCWSTR lpszSSHUser);
char* ipworksssh_scp_getsshuser(void* lpObj);
int ipworksssh_scp_setsshuser(void* lpObj, const char* lpszSSHUser);
QString GetSSHUser();
int SetSSHUser(QString qsSSHUser);
Default Value
""
Remarks
SSHUser specifies the username which is used to authenticate the client to the SSH server. This property is required.
Example (User/Password Auth):
Control.SSHAuthMode = SftpSSHAuthModes.amPassword
Control.SSHUser = "username"
Control.SSHPassword = "password"
Control.SSHLogon("server", 22)
Example (Public Key Auth):
Control.SSHAuthMode = SftpSSHAuthModes.amPublicKey
Control.SSHUser = "username"
Control.SSHCertStoreType = SSHCertStoreTypes.cstPFXFile;
Control.SSHCertStore = "cert.pfx";
Control.SSHCertStorePassword = "certpassword";
Control.SSHCertSubject = "*";
Control.SSHLogon("server", 22)
Data Type
String
Timeout Property (SCP Class)
A timeout for the class.
Syntax
ANSI (Cross Platform) int GetTimeout();
int SetTimeout(int iTimeout); Unicode (Windows) INT GetTimeout();
INT SetTimeout(INT iTimeout);
int ipworksssh_scp_gettimeout(void* lpObj);
int ipworksssh_scp_settimeout(void* lpObj, int iTimeout);
int GetTimeout();
int SetTimeout(int iTimeout);
Default Value
60
Remarks
If the Timeout property is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.
If Timeout is set to a positive value, data is sent in a blocking manner and the class will wait for the operation to complete before returning control. The class will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of Timeout seconds.
The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.
If Timeout expires, and the operation is not yet complete, the class fails with an error.
Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 60 seconds.
Data Type
Integer
Config Method (SCP Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksssh_scp_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
DecodePacket Method (SCP Class)
Decodes a hex-encoded SSH packet.
Syntax
ANSI (Cross Platform) char* DecodePacket(const char* lpszEncodedPacket, int *lpSize = NULL); Unicode (Windows) LPSTR DecodePacket(LPCWSTR lpszEncodedPacket, LPINT lpSize = NULL);
char* ipworksssh_scp_decodepacket(void* lpObj, const char* lpszEncodedPacket, int *lpSize);
QByteArray DecodePacket(const QString& qsEncodedPacket);
Remarks
This method is used to decode an SSH packet created by EncodePacket.
Note: This method is only applicable for reading and creating SSH packets for use within the SSHCustomAuth event.
Error Handling (C++)
This method returns a Binary String value (with length lpSize); after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
DoEvents Method (SCP Class)
Processes events from the internal message queue.
Syntax
ANSI (Cross Platform) int DoEvents(); Unicode (Windows) INT DoEvents();
int ipworksssh_scp_doevents(void* lpObj);
int DoEvents();
Remarks
When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Download Method (SCP Class)
Download a RemoteFile from an SCP server.
Syntax
ANSI (Cross Platform) int Download(); Unicode (Windows) INT Download();
int ipworksssh_scp_download(void* lpObj);
int Download();
Remarks
The remote file specified by RemoteFile is downloaded to the local file specified by LocalFile, or it is retrieved through the Transfer event, if the LocalFile property is "" (empty string). RemoteFile is an absolute or relative path on the server.
If there is no SSH session in place, one is automatically created by the component first.
Example
SCPControl.Localfile = "C:\localfile.txt"
SCPControl.RemoteFile = "remotefile.txt"
SCPControl.Download()
SCPControl.Localfile = "C:\localfile2.txt"
SCPControl.RemoteFile = "folder/remotefile2.txt"
SCPControl.Upload()
Multiple file uploads and downloads are supported through the use of filemasks.
To upload files matching a filemask set LocalFile to a local path including a filemask. Set RemotePath to the directory on the server where the files will be uploaded. In this case RemoteFile is ignored. All matching files will be upload when Upload is called. The StartTransfer, Transfer, and EndTransfer events provide details about the individual file transfers.
To download files matching a filemask set RemoteFile to a filemask. The path may be specified as part of the value in RemoteFile or may be set separately in RemotePath. LocalFile should be set to a local directory where files will be downloaded. When Download is called all matching files are downloaded. The StartTransfer, Transfer, and EndTransfer events provide details about the individual file transfers. In the event an individual file fails to transfer the Error event will fire.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
EncodePacket Method (SCP Class)
Hex encodes an SSH packet.
Syntax
ANSI (Cross Platform) char* EncodePacket(const char* lpPacket, int lenPacket); Unicode (Windows) LPWSTR EncodePacket(LPCSTR lpPacket, INT lenPacket);
char* ipworksssh_scp_encodepacket(void* lpObj, const char* lpPacket, int lenPacket);
QString EncodePacket(QByteArray qbaPacket);
Remarks
This method is used to encode a raw SSH packet created by SetSSHParam.
Note: This method is only applicable for reading and creating SSH packets for use within the SSHCustomAuth event.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
GetSSHParam Method (SCP Class)
Used to read a field from an SSH packet's payload.
Syntax
ANSI (Cross Platform) char* GetSSHParam(const char* lpPayload, int lenPayload, const char* lpszField); Unicode (Windows) LPWSTR GetSSHParam(LPCSTR lpPayload, INT lenPayload, LPCWSTR lpszField);
char* ipworksssh_scp_getsshparam(void* lpObj, const char* lpPayload, int lenPayload, const char* lpszField);
QString GetSSHParam(QByteArray qbaPayload, const QString& qsField);
Remarks
This method is used to read the value of a particular field from an SSH packet's payload. Payload should contain the full payload of a packet received by an event such as SSHChannelRequest. Field is the name of a field to be read out of the packet.
The following is a list of the names of well-known channel request field names and their encodings:
ChannelId (int32) | The id of the channel that received the packet. |
RequestType (string) | The type of channel request. |
WantsReply (boolean) | Whether or not the client wants a reply to the request. |
The remaining fields that are available in the payload are dependent upon the value of RequestType.
pty-req
Pty-req is a request to open a pseudo terminal on the specified channel. The following fields are available:
TerminalType (string) | The type of terminal being requested (eg: "vt100"). |
TerminalWidthCharacters (int32) | The width, in characters, of the terminal to be opened. |
TerminalHeightRows (int32) | The height, in rows, of the terminal to be opened. |
TerminalWidthPixels (int32) | The width, in pixels, of the terminal to be opened. |
TerminalHeightPixels (int32) | The height, in pixels, of the terminal to be opened. |
TerminalModes (string) | A list of op-val (int32-byte) encoded modes to be used by the terminal. |
x11-req
X11-req is a request to forward x11 sessions over a channel. The following fields are available:
SingleConnection (boolean) | Disallows more than one connection to be forwarded by the channel. |
X11AuthProtocol (string) | The authentication protocol to be used (eg: "MIT-MAGIC-COOKIE-1"). |
X11AuthCookie (string) | A hexadecimal-encoded cookie to be used for authentication. |
X11ScreenNumber (int32) | The x11 screen number to be used. |
env
Env is a request to set an environment variable to be passed into a shell that may be started later. The following fields are available:
VariableName (string) | The name of the variable to be set. |
VariableValue (string) | The value of the variable to be set. |
exec
Exec is a request to execute a command on the channel using the authenticated user's shell. The following field is available:
Command (string) | The command to be executed. |
subsystem
Subsystem is a request to start a subsystem on the specified channel. The following field is available:
Subsystem (string) | The name of the subsystem to be started (eg: "sftp"). |
xon-xoff
Instructs the server to allow or disallow control-S/control-Q style flow control. The following field is available:
ClientCanDo (boolean) | Whether or not the server should enable flow control. |
signal
Sends a signal to the remote process/service. The following field is available:
SignalName (string) | The name of the signal to be sent. |
If the packet type is not well known, Field should start with the special character "%" and contain a comma-separated list of field types as defined in SetSSHParam. For example, reading out the X11AuthProtocol of an x11-req payload, you can use "%s,f".
Note: the return value is a string encoded the same way as the FieldValue param in SetSSHParam.
Note: This method is only applicable for reading and creating SSH packets for use within the SSHCustomAuth event.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
GetSSHParamBytes Method (SCP Class)
Used to read a field from an SSH packet's payload.
Syntax
ANSI (Cross Platform) char* GetSSHParamBytes(const char* lpPayload, int lenPayload, const char* lpszField, int *lpSize = NULL); Unicode (Windows) LPSTR GetSSHParamBytes(LPCSTR lpPayload, INT lenPayload, LPCWSTR lpszField, LPINT lpSize = NULL);
char* ipworksssh_scp_getsshparambytes(void* lpObj, const char* lpPayload, int lenPayload, const char* lpszField, int *lpSize);
QByteArray GetSSHParamBytes(QByteArray qbaPayload, const QString& qsField);
Remarks
This method is the same as calling GetSSHParam, but returns raw bytes instead of strings.
Note: This method is only applicable for reading and creating SSH packets for use within the SSHCustomAuth event.
Error Handling (C++)
This method returns a Binary String value (with length lpSize); after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Interrupt Method (SCP Class)
Interrupt the current method.
Syntax
ANSI (Cross Platform) int Interrupt(); Unicode (Windows) INT Interrupt();
int ipworksssh_scp_interrupt(void* lpObj);
int Interrupt();
Remarks
If there is no method in progress, Interrupt simply returns, doing nothing.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reset Method (SCP Class)
Reset the class.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int ipworksssh_scp_reset(void* lpObj);
int Reset();
Remarks
This method will reset the class's properties to their default values.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetDownloadStream Method (SCP Class)
Sets the stream to which the downloaded data from the server will be written.
Syntax
ANSI (Cross Platform) int SetDownloadStream(IPWorksSSHStream* sDownloadStream); Unicode (Windows) INT SetDownloadStream(IPWorksSSHStream* sDownloadStream);
int ipworksssh_scp_setdownloadstream(void* lpObj, IPWorksSSHStream* sDownloadStream);
int SetDownloadStream(IPWorksSSHStream* sDownloadStream);
Remarks
If a download stream is set before the Download method is called, the downloaded data will be written to the stream. The stream should be open and normally set to position 0.
The class will automatically close this stream if CloseStreamAfterTransfer is true (default). If the stream is closed, you will need to call SetDownloadStream again before calling Download again.
The downloaded content will be written starting at the current position in the stream.
Note: SetDownloadStream and LocalFile will reset the other.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SetSSHParam Method (SCP Class)
Used to write a field to the end of a payload.
Syntax
ANSI (Cross Platform) char* SetSSHParam(const char* lpPayload, int lenPayload, const char* lpszFieldType, const char* lpszFieldValue, int *lpSize = NULL); Unicode (Windows) LPSTR SetSSHParam(LPCSTR lpPayload, INT lenPayload, LPCWSTR lpszFieldType, LPCWSTR lpszFieldValue, LPINT lpSize = NULL);
char* ipworksssh_scp_setsshparam(void* lpObj, const char* lpPayload, int lenPayload, const char* lpszFieldType, const char* lpszFieldValue, int *lpSize);
QByteArray SetSSHParam(QByteArray qbaPayload, const QString& qsFieldType, const QString& qsFieldValue);
Remarks
This method is used to build the payload portion of an SSH packet to be sent later by a call to SendSSHPacket. Payload should contain the result of a previous call to SetSSHParam. FieldType is a string defining the type of field to be written to the packet. FieldValue should be the string representation of the field to be written.
The following is a list of supported field types and a description of how FieldValue should be encoded:
s | A plaintext string containing the default system encoding of the data. |
sb | A string containing the hex encoded data. (eg: "A1B23C") |
m | A variable-length large integer, encoded as a textual representation of the value ("1234"). |
i | A 32-bit integer, encoded as a textual representation of the value (eg: "1234"). |
l | A 64-bit integer, encoded as a textual representation of the value (eg: "1234"). |
b | A single byte, encoded as a textual representation of the value (eg: "123"). |
f | A boolean flag, encoded as a textual representation of the value (eg: 'true' or 'false') |
Note: integer values may be encoded in hexadecimal by prefixing "0x" to the beginning of the string, otherwise the value is assumed to be base-10.
Note: This method is only applicable for reading and creating SSH packets for use within the SSHCustomAuth event.
Error Handling (C++)
This method returns a Binary String value (with length lpSize); after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
SetUploadStream Method (SCP Class)
Sets the stream from which the class will read data to upload to the server.
Syntax
ANSI (Cross Platform) int SetUploadStream(IPWorksSSHStream* sUploadStream); Unicode (Windows) INT SetUploadStream(IPWorksSSHStream* sUploadStream);
int ipworksssh_scp_setuploadstream(void* lpObj, IPWorksSSHStream* sUploadStream);
int SetUploadStream(IPWorksSSHStream* sUploadStream);
Remarks
If an upload stream is set before the Upload method is called, the content of the stream will be read by the class and uploaded to the server. The stream should be open and normally set to position 0. The class will automatically close this stream if CloseStreamAfterTransfer is true (default). If the stream is closed, you will need to call SetUploadStream again before calling Upload again. The content of the stream will be read from the current position all the way to the end and no bytes will be skipped.
Note: SetUploadStream and LocalFile will reset the other.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SSHLogoff Method (SCP Class)
Logoff from the SSH server.
Syntax
ANSI (Cross Platform) int SSHLogoff(); Unicode (Windows) INT SSHLogoff();
int ipworksssh_scp_sshlogoff(void* lpObj);
int SSHLogoff();
Remarks
Logoff from the SSH server. If that fails, the connection is terminated by the local host.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SSHLogon Method (SCP Class)
Logon to the SSHHost using the current SSHUser and SSHPassword .
Syntax
ANSI (Cross Platform) int SSHLogon(const char* lpszSSHHost, int iSSHPort); Unicode (Windows) INT SSHLogon(LPCWSTR lpszSSHHost, INT iSSHPort);
int ipworksssh_scp_sshlogon(void* lpObj, const char* lpszSSHHost, int iSSHPort);
int SSHLogon(const QString& qsSSHHost, int iSSHPort);
Remarks
Logon to the SSH server using the current SSHUser and SSHPassword. This will perform the SSH handshake and authentication.
Example (Logging On)
SSHClient.SSHUser = "username"
SSHClient.SSHPassword = "password"
SSHClient.SSHLogon("sshHost", sshPort)
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Upload Method (SCP Class)
Upload a file specified by LocalFile to an SCP server.
Syntax
ANSI (Cross Platform) int Upload(); Unicode (Windows) INT Upload();
int ipworksssh_scp_upload(void* lpObj);
int Upload();
Remarks
The local file specified by LocalFile is uploaded to the remote file specified by RemoteFile. RemoteFile is either an absolute path on the server, or a path relative to the server current directory;
If there is no SSH session in place, one is automatically created by the component first.
Example
SCPControl.Localfile = "C:\localfile.txt"
SCPControl.RemoteFile = "remotefile.txt"
SCPControl.Download()
SCPControl.Localfile = "C:\localfile2.txt"
SCPControl.RemoteFile = "folder/remotefile2.txt"
SCPControl.Upload()
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Connected Event (SCP Class)
This event is fired immediately after a connection completes (or fails).
Syntax
ANSI (Cross Platform) virtual int FireConnected(SCPConnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } SCPConnectedEventParams;
Unicode (Windows) virtual INT FireConnected(SCPConnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } SCPConnectedEventParams;
#define EID_SCP_CONNECTED 1 virtual INT IPWORKSSSH_CALL FireConnected(INT &iStatusCode, LPSTR &lpszDescription);
class SCPConnectedEventParams { public: int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Connected(SCPConnectedEventParams *e);
// Or, subclass SCP and override this emitter function. virtual int FireConnected(SCPConnectedEventParams *e) {...}
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.
Please refer to the Error Codes section for more information.
ConnectionStatus Event (SCP Class)
This event is fired to indicate changes in the connection state.
Syntax
ANSI (Cross Platform) virtual int FireConnectionStatus(SCPConnectionStatusEventParams *e);
typedef struct {
const char *ConnectionEvent;
int StatusCode;
const char *Description; int reserved; } SCPConnectionStatusEventParams;
Unicode (Windows) virtual INT FireConnectionStatus(SCPConnectionStatusEventParams *e);
typedef struct {
LPCWSTR ConnectionEvent;
INT StatusCode;
LPCWSTR Description; INT reserved; } SCPConnectionStatusEventParams;
#define EID_SCP_CONNECTIONSTATUS 2 virtual INT IPWORKSSSH_CALL FireConnectionStatus(LPSTR &lpszConnectionEvent, INT &iStatusCode, LPSTR &lpszDescription);
class SCPConnectionStatusEventParams { public: const QString &ConnectionEvent(); int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ConnectionStatus(SCPConnectionStatusEventParams *e);
// Or, subclass SCP and override this emitter function. virtual int FireConnectionStatus(SCPConnectionStatusEventParams *e) {...}
Remarks
The ConnectionStatus event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.
The ConnectionEvent parameter indicates the type of connection event. Values may include the following:
Firewall connection complete. | |
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable). | |
Remote host connection complete. | |
Remote host disconnected. | |
SSL or S/Shell connection broken. | |
Firewall host disconnected. |
Disconnected Event (SCP Class)
This event is fired when a connection is closed.
Syntax
ANSI (Cross Platform) virtual int FireDisconnected(SCPDisconnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } SCPDisconnectedEventParams;
Unicode (Windows) virtual INT FireDisconnected(SCPDisconnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } SCPDisconnectedEventParams;
#define EID_SCP_DISCONNECTED 3 virtual INT IPWORKSSSH_CALL FireDisconnected(INT &iStatusCode, LPSTR &lpszDescription);
class SCPDisconnectedEventParams { public: int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Disconnected(SCPDisconnectedEventParams *e);
// Or, subclass SCP and override this emitter function. virtual int FireDisconnected(SCPDisconnectedEventParams *e) {...}
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.
Please refer to the Error Codes section for more information.
EndTransfer Event (SCP Class)
Fired when a file completes downloading/uploading.
Syntax
ANSI (Cross Platform) virtual int FireEndTransfer(SCPEndTransferEventParams *e);
typedef struct {
int Direction;
const char *LocalFile;
const char *RemoteFile;
const char *RemotePath; int reserved; } SCPEndTransferEventParams;
Unicode (Windows) virtual INT FireEndTransfer(SCPEndTransferEventParams *e);
typedef struct {
INT Direction;
LPCWSTR LocalFile;
LPCWSTR RemoteFile;
LPCWSTR RemotePath; INT reserved; } SCPEndTransferEventParams;
#define EID_SCP_ENDTRANSFER 4 virtual INT IPWORKSSSH_CALL FireEndTransfer(INT &iDirection, LPSTR &lpszLocalFile, LPSTR &lpszRemoteFile, LPSTR &lpszRemotePath);
class SCPEndTransferEventParams { public: int Direction(); const QString &LocalFile(); const QString &RemoteFile(); const QString &RemotePath(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void EndTransfer(SCPEndTransferEventParams *e);
// Or, subclass SCP and override this emitter function. virtual int FireEndTransfer(SCPEndTransferEventParams *e) {...}
Remarks
The EndTransfer event fires when either an upload or a download operation completes. This is when the file finishes transferring and/or a directory listing is finished.
The Direction parameter shows whether the client (0) or the server (1) is sending the data.
The LocalFile, RemoteFile, and RemotePath parameters provide information about the current transfer.
Error Event (SCP Class)
Information about errors during data delivery.
Syntax
ANSI (Cross Platform) virtual int FireError(SCPErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description;
const char *LocalFile;
const char *RemoteFile;
const char *RemotePath; int reserved; } SCPErrorEventParams;
Unicode (Windows) virtual INT FireError(SCPErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description;
LPCWSTR LocalFile;
LPCWSTR RemoteFile;
LPCWSTR RemotePath; INT reserved; } SCPErrorEventParams;
#define EID_SCP_ERROR 5 virtual INT IPWORKSSSH_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription, LPSTR &lpszLocalFile, LPSTR &lpszRemoteFile, LPSTR &lpszRemotePath);
class SCPErrorEventParams { public: int ErrorCode(); const QString &Description(); const QString &LocalFile(); const QString &RemoteFile(); const QString &RemotePath(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(SCPErrorEventParams *e);
// Or, subclass SCP and override this emitter function. virtual int FireError(SCPErrorEventParams *e) {...}
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
The LocalFile, RemoteFile, and RemotePath parameters provide information about the current transfer.
Log Event (SCP Class)
Fires once for each log message.
Syntax
ANSI (Cross Platform) virtual int FireLog(SCPLogEventParams *e);
typedef struct {
int LogLevel;
const char *Message;
const char *LogType; int reserved; } SCPLogEventParams;
Unicode (Windows) virtual INT FireLog(SCPLogEventParams *e);
typedef struct {
INT LogLevel;
LPCWSTR Message;
LPCWSTR LogType; INT reserved; } SCPLogEventParams;
#define EID_SCP_LOG 6 virtual INT IPWORKSSSH_CALL FireLog(INT &iLogLevel, LPSTR &lpszMessage, LPSTR &lpszLogType);
class SCPLogEventParams { public: int LogLevel(); const QString &Message(); const QString &LogType(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Log(SCPLogEventParams *e);
// Or, subclass SCP and override this emitter function. virtual int FireLog(SCPLogEventParams *e) {...}
Remarks
This event fires once for each log messages generated by the class. The verbosity is controlled by the LogLevel setting.
LogLevel indicates the detail level of the message. Possible values are:
0 (None) | No messages are logged. |
1 (Info - Default) | Informational events such as SSH handshake messages are logged. |
2 (Verbose) | Detailed data such as individual packet information is logged. |
3 (Debug) | Debug data including all relevant sent and received bytes are logged. |
Message is the log message.
LogType is reserved for future use.
SSHCustomAuth Event (SCP Class)
Fired when the class is doing custom authentication.
Syntax
ANSI (Cross Platform) virtual int FireSSHCustomAuth(SCPSSHCustomAuthEventParams *e);
typedef struct {
char *Packet; int reserved; } SCPSSHCustomAuthEventParams;
Unicode (Windows) virtual INT FireSSHCustomAuth(SCPSSHCustomAuthEventParams *e);
typedef struct {
LPWSTR Packet; INT reserved; } SCPSSHCustomAuthEventParams;
#define EID_SCP_SSHCUSTOMAUTH 7 virtual INT IPWORKSSSH_CALL FireSSHCustomAuth(LPSTR &lpszPacket);
class SCPSSHCustomAuthEventParams { public: const QString &Packet(); void SetPacket(const QString &qsPacket); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSHCustomAuth(SCPSSHCustomAuthEventParams *e);
// Or, subclass SCP and override this emitter function. virtual int FireSSHCustomAuth(SCPSSHCustomAuthEventParams *e) {...}
Remarks
SSHCustomAuth is fired during the user authentication stage of the SSH logon process if SSHAuthMode is set to amCustom. Packet contains the raw last SSH packet sent by the server, in HEX-encoded format.
The client should create a new raw SSH packet to send to the server and set Packet to the HEX-encoded representation of the packet to send.
In all cases, Packet will start with the message type field.
To read the incoming packet call DecodePacket and then use the GetSSHParam and GetSSHParamBytes methods. To create a packet use the SetSSHParam method and then call EncodePacket to obtain a HEX-encoded value and assign this to the Packet parameter.
SSHKeyboardInteractive Event (SCP Class)
Fired when the class receives a request for user input from the server.
Syntax
ANSI (Cross Platform) virtual int FireSSHKeyboardInteractive(SCPSSHKeyboardInteractiveEventParams *e);
typedef struct {
const char *Name;
const char *Instructions;
const char *Prompt;
char *Response;
int EchoResponse; int reserved; } SCPSSHKeyboardInteractiveEventParams;
Unicode (Windows) virtual INT FireSSHKeyboardInteractive(SCPSSHKeyboardInteractiveEventParams *e);
typedef struct {
LPCWSTR Name;
LPCWSTR Instructions;
LPCWSTR Prompt;
LPWSTR Response;
BOOL EchoResponse; INT reserved; } SCPSSHKeyboardInteractiveEventParams;
#define EID_SCP_SSHKEYBOARDINTERACTIVE 8 virtual INT IPWORKSSSH_CALL FireSSHKeyboardInteractive(LPSTR &lpszName, LPSTR &lpszInstructions, LPSTR &lpszPrompt, LPSTR &lpszResponse, BOOL &bEchoResponse);
class SCPSSHKeyboardInteractiveEventParams { public: const QString &Name(); const QString &Instructions(); const QString &Prompt(); const QString &Response(); void SetResponse(const QString &qsResponse); bool EchoResponse(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSHKeyboardInteractive(SCPSSHKeyboardInteractiveEventParams *e);
// Or, subclass SCP and override this emitter function. virtual int FireSSHKeyboardInteractive(SCPSSHKeyboardInteractiveEventParams *e) {...}
Remarks
SSHKeyboardInteractive is fired during the user authentication stage of the SSH logon process. During authentication, the class will request a list of available authentication methods for the SSHUser. For example, if the SSHHost responds with "keyboard-interactive", the class will fire this event to allow the client application to set the password.
During authentication, the SSH server may respond with a request for the user's authentication information. Name is a server-provided value associated with the authentication method such as "CRYPTOCard Authentication". Instructions will contain specific instructions, also supplied by the server, for how the user should respond.
Along with these values, the server will also send at least one input Prompt to be displayed to and filled out by the user. Response should be set to the user's input, and will be sent back in the user authentication information response. EchoResponse is a server recommendation for whether or not the user's response should be echoed back during input.
Note: the server may send several prompts in a single packet. The class will fire the SSHKeyboardInteractive event once for each prompt.
SSHServerAuthentication Event (SCP Class)
Fired after the server presents its public key to the client.
Syntax
ANSI (Cross Platform) virtual int FireSSHServerAuthentication(SCPSSHServerAuthenticationEventParams *e);
typedef struct {
const char *HostKey; int lenHostKey;
const char *Fingerprint;
const char *KeyAlgorithm;
const char *CertSubject;
const char *CertIssuer;
const char *Status;
int Accept; int reserved; } SCPSSHServerAuthenticationEventParams;
Unicode (Windows) virtual INT FireSSHServerAuthentication(SCPSSHServerAuthenticationEventParams *e);
typedef struct {
LPCSTR HostKey; INT lenHostKey;
LPCWSTR Fingerprint;
LPCWSTR KeyAlgorithm;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR Status;
BOOL Accept; INT reserved; } SCPSSHServerAuthenticationEventParams;
#define EID_SCP_SSHSERVERAUTHENTICATION 9 virtual INT IPWORKSSSH_CALL FireSSHServerAuthentication(LPSTR &lpHostKey, INT &lenHostKey, LPSTR &lpszFingerprint, LPSTR &lpszKeyAlgorithm, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszStatus, BOOL &bAccept);
class SCPSSHServerAuthenticationEventParams { public: const QByteArray &HostKey(); const QString &Fingerprint(); const QString &KeyAlgorithm(); const QString &CertSubject(); const QString &CertIssuer(); const QString &Status(); bool Accept(); void SetAccept(bool bAccept); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSHServerAuthentication(SCPSSHServerAuthenticationEventParams *e);
// Or, subclass SCP and override this emitter function. virtual int FireSSHServerAuthentication(SCPSSHServerAuthenticationEventParams *e) {...}
Remarks
This event is where the client can decide whether to continue with the connection process or not. If the public key is known to be a valid key for the SSH server, Accept should be set to True within the event. Otherwise, the server will not be authenticated and the connection will be broken.
Accept will be True only if either HostKey or Fingerprint is identical to the value of SSHAcceptServerHostKey.
Accept may be set to True manually to accept the server host key.
Note that SSH's security inherently relies on client verification of the host key. Ignoring the host key and always setting Accept to true is strongly discouraged, and could cause potentially serious security vulnerabilities in your application. It is recommended that clients maintain a list of known keys for each server and check HostKey against this list each time a connection is attempted.
Host Key contains the full binary text of the key, in the same format used internally by SSH.
Fingerprint holds the SHA-256 hash of HostKey in the hex-encoded form: 0a:1b:2c:3d. To configure the hash algorithm used to calculate this value see SSHFingerprintHashAlgorithm.
KeyAlgorithm identifies the host key algorithm. Supported values are:
- ssh-rsa
- ssh-dss
- rsa-sha2-256
- rsa-sha2-512
- x509v3-sign-rsa
- x509v3-sign-dss
- ecdsa-sha2-nistp256
- ecdsa-sha2-nistp384
- ecdsa-sha2-nistp521
CertSubject is the subject of the certificate. This is only applicable when KeyAlgorithm is "x509v3-sign-rsa" or "x509v3-sign-dss".
CertIssuer is the issuer of the certificate. This is only applicable when KeyAlgorithm is "x509v3-sign-rsa" or "x509v3-sign-dss".
Status is reserved for future use.
SSHStatus Event (SCP Class)
Shows the progress of the secure connection.
Syntax
ANSI (Cross Platform) virtual int FireSSHStatus(SCPSSHStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } SCPSSHStatusEventParams;
Unicode (Windows) virtual INT FireSSHStatus(SCPSSHStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } SCPSSHStatusEventParams;
#define EID_SCP_SSHSTATUS 10 virtual INT IPWORKSSSH_CALL FireSSHStatus(LPSTR &lpszMessage);
class SCPSSHStatusEventParams { public: const QString &Message(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSHStatus(SCPSSHStatusEventParams *e);
// Or, subclass SCP and override this emitter function. virtual int FireSSHStatus(SCPSSHStatusEventParams *e) {...}
Remarks
The event is fired for informational and logging purposes only. Used to track the progress of the connection.
StartTransfer Event (SCP Class)
Fired when a file starts downloading/uploading.
Syntax
ANSI (Cross Platform) virtual int FireStartTransfer(SCPStartTransferEventParams *e);
typedef struct {
int Direction;
const char *LocalFile;
const char *RemoteFile;
const char *RemotePath;
char *FilePermissions; int reserved; } SCPStartTransferEventParams;
Unicode (Windows) virtual INT FireStartTransfer(SCPStartTransferEventParams *e);
typedef struct {
INT Direction;
LPCWSTR LocalFile;
LPCWSTR RemoteFile;
LPCWSTR RemotePath;
LPWSTR FilePermissions; INT reserved; } SCPStartTransferEventParams;
#define EID_SCP_STARTTRANSFER 11 virtual INT IPWORKSSSH_CALL FireStartTransfer(INT &iDirection, LPSTR &lpszLocalFile, LPSTR &lpszRemoteFile, LPSTR &lpszRemotePath, LPSTR &lpszFilePermissions);
class SCPStartTransferEventParams { public: int Direction(); const QString &LocalFile(); const QString &RemoteFile(); const QString &RemotePath(); const QString &FilePermissions(); void SetFilePermissions(const QString &qsFilePermissions); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void StartTransfer(SCPStartTransferEventParams *e);
// Or, subclass SCP and override this emitter function. virtual int FireStartTransfer(SCPStartTransferEventParams *e) {...}
Remarks
The StartTransfer event fires when the file starts transferring.
The Direction parameter shows whether the client (0) or the server (1) is sending the data.
The LocalFile, RemoteFile, and RemotePath parameters provide information about the current transfer.
The FilePermissions parameter may be used to set the remote file permissions on file currently being uploaded. It will also be populated with the current permissions of the remote file when downloading. See FilePermissions for more details.
Transfer Event (SCP Class)
Fired during file download/upload.
Syntax
ANSI (Cross Platform) virtual int FireTransfer(SCPTransferEventParams *e);
typedef struct {
int Direction;
const char *LocalFile;
const char *RemoteFile;
const char *RemotePath;
int64 BytesTransferred;
int PercentDone;
const char *Text; int lenText; int reserved; } SCPTransferEventParams;
Unicode (Windows) virtual INT FireTransfer(SCPTransferEventParams *e);
typedef struct {
INT Direction;
LPCWSTR LocalFile;
LPCWSTR RemoteFile;
LPCWSTR RemotePath;
LONG64 BytesTransferred;
INT PercentDone;
LPCSTR Text; INT lenText; INT reserved; } SCPTransferEventParams;
#define EID_SCP_TRANSFER 12 virtual INT IPWORKSSSH_CALL FireTransfer(INT &iDirection, LPSTR &lpszLocalFile, LPSTR &lpszRemoteFile, LPSTR &lpszRemotePath, LONG64 &lBytesTransferred, INT &iPercentDone, LPSTR &lpText, INT &lenText);
class SCPTransferEventParams { public: int Direction(); const QString &LocalFile(); const QString &RemoteFile(); const QString &RemotePath(); qint64 BytesTransferred(); int PercentDone(); const QByteArray &Text(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Transfer(SCPTransferEventParams *e);
// Or, subclass SCP and override this emitter function. virtual int FireTransfer(SCPTransferEventParams *e) {...}
Remarks
One or more Transfer events are fired during file transfer. The BytesTransferred parameter shows the number of bytes transferred since the beginning of the transfer.
Text contains the portion of the file data being delivered.
The Direction parameter shows whether the client (0) or the server (1) is sending the data.
The LocalFile, RemoteFile, and RemotePath parameters provide information about the current transfer.
The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.
IPWorksSSHStream Type
Syntax
IPWorksSSHStream (declared in ipworksssh.h)
Remarks
The SCP class includes one or more API members that take a stream object as a parameter. To use such API members, create a concrete class that implements the IPWorksSSHStream interface and pass the SCP class an instance of that concrete class.
When implementing the IPWorksSSHStream interface's properties and methods, they must behave as described below. If the concrete class's implementation does not behave as expected, undefined behavior may occur.
Properties | |
CanRead |
Whether the stream supports reading.
bool CanRead() { return true; } |
CanSeek |
Whether the stream supports seeking.
bool CanSeek() { return true; } |
CanWrite |
Whether the stream supports writing.
bool CanWrite() { return true; } |
Length |
Gets the length of the stream, in bytes.
int64 GetLength() = 0; |
Methods | |
Close |
Closes the stream, releasing all resources currently allocated for it.
void Close() {} This method is called automatically when an IPWorksSSHStream object is deleted. |
Flush |
Forces all data held by the stream's buffers to be written out to storage.
int Flush() { return 0; } Must return 0 if flushing is successful; or -1 if an error occurs or the stream is closed. If the stream does not support writing, this method must do nothing and return 0. |
Read |
Reads a sequence of bytes from the stream and advances the current position within the stream by the number of bytes read.
int Read(void* buffer, int count) = 0; Buffer specifies the buffer to populate with data from the stream. Count specifies the number of bytes that should be read from the stream. Must return the total number of bytes read into Buffer; this may be less than Count if that many bytes are not currently available, or 0 if the end of the stream has been reached. Must return -1 if an error occurs, if reading is not supported, or if the stream is closed. |
Seek |
Sets the current position within the stream based on a particular point of origin.
int64 Seek(int64 offset, int seekOrigin) = 0; Offset specifies the offset in the stream to seek to, relative to SeekOrigin. Valid values for SeekOrigin are:
Must return the new position within the stream; or -1 if an error occurs, if seeking is not supported, or if the stream is closed (however, see note below). If -1 is returned, the current position within the stream must remain unchanged. Note: If the stream is not closed, it must always be possible to call this method with an Offset of 0 and a SeekOrigin of 1 to obtain the current position within the stream, even if seeking is not otherwise supported. |
Write |
Writes a sequence of bytes to the stream and advances the current position within the stream by the number of bytes written.
int Write(const void* buffer, int count) = 0; Buffer specifies the buffer with data to write to the stream. Count specifies the number of bytes that should be written to the stream. Must return the total number of bytes written to the stream; this may be less than Count if that many bytes could not be written. Must return -1 if an error occurs, if writing is not supported, or if the stream is closed. |
Config Settings (SCP Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.SCP Config Settings
When enabled, the class will also populate LastModifiedTime and LastAccessedTime configuration settings. These are only applicable during download and may be used to check the times of the remote file from within the StartTransfer event. To cancel a transfer call the Interrupt method.
SSHClient Config Settings
If MaxChannelDataLength > 0 and ChannelDataEOL is a non-empty string the class will internally buffer data waiting to fire SSHChannelData until either MaxChannelDataLength is reached or ChannelDataEOL is found, whichever comes first. Query ChannelDataEOLFound to know which condition was met. The buffer is reset any time SSHChannelData fires.
ChannelDataEOL and MaxChannelDataLength MUST be set together or unexpected behavior could occur.
This config is only valid when queried inside SSHChannelData, MaxChannelDataLength > 0, and ChannelDataEOL is non-empty.
Most SSH servers expect the SSH version string to have the expected format "SSH-protocol version-software version". See above for an example.
Value | Description |
0 (Disabled - default) | No communication with Pageant is attempted. |
1 (Enabled) | Pageant authentication is used if available. If Pageant is not running, or does not contain the expected key no error is thrown. |
2 (Required) | Only Pageant authentication is used. If Pageant is not running, or does not contain the expected key an error is thrown. |
Example enabling Pageant:
component.Config("EnablePageantAuth=1");
component.SSHUser = "sshuser";
component.SSHLogon("localhost", 22);
Note: This functionality is only available on Windows.
Example (for setting the threshold to 500 MB):
SSHComponent.Config("KeyRenegotiationThreshold=524288000")
0 (None) | No messages are logged. |
1 (Info - Default) | Informational events such as SSH handshake messages are logged. |
2 (Verbose) | Detailed data such as individual packet information is logged. |
3 (Debug) | Debug data including all relevant sent and received bytes are logged. |
If MaxChannelDataLength > 0 and ChannelDataEOL is a non-empty string the class will internally buffer data waiting to fire SSHChannelData until either MaxChannelDataLength is reached or ChannelDataEOL is found, whichever comes first. Query ChannelDataEOLFound to know which condition was met. The buffer is reset any time SSHChannelData fires.
ChannelDataEOL and MaxChannelDataLength MUST be set together or unexpected behavior could occur.
component.Config("NegotiatedStrictKex")
This provides an easy way to automatically reply to prompts with the password if one is presented by the server. The password will be auto-filled in the Response parameter of the SSHKeyboardInteractive event in the case of a match.
The following special characters are supported for pattern matching:
? | Any single character. |
* | Any characters or no characters (e.g., C*t matches Cat, Cot, Coast, Ct). |
[,-] | A range of characters (e.g., [a-z], [a], [0-9], [0-9,a-d,f,r-z]). |
\ | The slash is ignored and exact matching is performed on the next character. |
If these characters need to be used as a literal in a pattern, then they must be escaped by surrounding them with brackets []. Note: "]" and "-" do not need to be escaped. See below for the escape sequences:
Character | Escape Sequence |
? | [?] |
* | [*] |
[ | [[] |
\ | [\] |
For example, to match the value [Something].txt, specify the pattern [[]Something].txt.
The default value is 0, meaning this setting is not used.
component.Config("SignedSSHCert=ssh-rsa-cert-v01@openssh.com AAAAB3NzaC1yc2EAAAADAQABAAAB...");
The algorithm such as ssh-rsa-cert-v01@openssh.com in the above string is used as part of the authentication process. To use a different algorithm simply change this value. For instance all of the following are acceptable with the same signed public key:
- ssh-rsa-cert-v01@openssh.com AAAAB3NzaC1yc2EAAAADAQABAAAB...
- rsa-sha2-256-cert-v01@openssh.com AAAAB3NzaC1yc2EAAAADAQABAAAB...
- rsa-sha2-512-cert-v01@openssh.com AAAAB3NzaC1yc2EAAAADAQABAAAB...
component.Config("SSHAcceptServerCAKey=ssh-rsa AAAAB3NzaC1yc2EAAAADAQAB...");
SSHClient.Config("SSHAcceptServerHostKeyFingerprint=0a:1b:2c:3d");
If the server's fingerprint matches one of the values supplied, the class will accept the host key.
- MD5
- SHA1
- SHA256 (default)
The default value is 0 meaning no keep alives will be sent.
Note: The SSHReverseTunnel class uses a default value of 30.
- curve25519-sha256
- curve25519-sha256@libssh.org
- diffie-hellman-group1-sha1
- diffie-hellman-group14-sha1
- diffie-hellman-group14-sha256
- diffie-hellman-group16-sha512
- diffie-hellman-group18-sha512
- diffie-hellman-group-exchange-sha256
- diffie-hellman-group-exchange-sha1
- ecdh-sha2-nistp256
- ecdh-sha2-nistp384
- ecdh-sha2-nistp521
- gss-group14-sha256-toWM5Slw5Ew8Mqkay+al2g==
- gss-group16-sha512-toWM5Slw5Ew8Mqkay+al2g==
- gss-nistp256-sha256-toWM5Slw5Ew8Mqkay+al2g==
- gss-curve25519-sha256-toWM5Slw5Ew8Mqkay+al2g==
- gss-group14-sha1-toWM5Slw5Ew8Mqkay+al2g==
- gss-gex-sha1-toWM5Slw5Ew8Mqkay+al2g==
Example:
SSHClient.Config("SSHKeyRenegotiate")
- hmac-sha1
- hmac-md5
- hmac-sha1-96
- hmac-md5-96
- hmac-sha2-256
- hmac-sha2-256-96
- hmac-sha2-512
- hmac-sha2-512-96
- hmac-ripemd160
- hmac-ripemd160-96
- hmac-sha2-256-etm@openssh.com
- hmac-sha2-512-etm@openssh.com
- umac-64@openssh.com
- umac-64-etm@openssh.com
- umac-128@openssh.com
- umac-128-etm@openssh.com
The setting should be a comma separated list of algorithms. At runtime the class will evaluate the specified algorithms and if the algorithm is applicable to the certificate specified in SSHCert it will be used. If the algorithm is not applicable the class will evaluate the next algorithm. Possible values are:
- ssh-rsa
- rsa-sha2-256
- rsa-sha2-512
- ssh-dss
- ecdsa-sha2-nistp256
- ecdsa-sha2-nistp384
- ecdsa-sha2-nistp521
- ssh-ed25519
- x509v3-sign-rsa
- x509v3-sign-dss
The default value in Windows is ssh-rsa,rsa-sha2-256,rsa-sha2-512,ssh-dss,ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,ssh-ed25519.
rsa-sha2-256 and rsa-sha2-512 notes
The class will query the server for supported algorithms when connecting. If the server indicates support for rsa-sha2-256 or rsa-sha2-512 and the algorithm is present in the list defined by this setting (as in the default value), that algorithm will be used instead of ssh-rsa even when ssh-rsa appears first in the list.
For the rsa-sha2-256 and rsa-sha2-512 algorithms to be automatically preferred the server must support the ext-info-c mechanism. In practice, older servers do not support this and in that case ssh-rsa will be used since it appears first in the list. Newer servers do support this mechanism and in that case rsa-sha2-256 or rsa-sha2-512 will be used even though it appears after ssh-rsa.
This behavior has been carefully designed to provide maximum compatibility while automatically using more secure algorithms when connecting to servers which support them.
*SSH-1.99-*,*SSH-2.0-*,*SSH-2.99-*
Since both client and server must implement strict key exchange to effectively mitigate the Terrapin attack, the class provides options to further control the behavior in different scenarios. Possible values for this setting are:
0 | Disabled. Strict key exchange is not supported in the class. |
1 (default) | Enabled, but not enforced. This setting enables strict key exchange, but if the remote host does not support strict key exchange the connection is still allowed to continue. |
2 | Enabled, but reject affected algorithms if the remote host does not support strict key exchange. If the remote host supports strict key exchange all algorithms may be used. If the remote host does not support strict key exchange the connection will only continue if the selected encryption and MAC algorithms are not affected by the Terrapin attack. |
3 | Required. If the remote host does not support strict key exchange the connection will fail. |
When True (default) the class will wait for a response to the channel close message until the responses have been received, the server closes the connection, or Timeout seconds is reached.
When False the class will still send the channel close messages but will not wait for a response and will proceed to close the connection.
When set to True the class will initiate the disconnection sequence by sending SSH_MSG_DISCONNECT but will not close the connection, and instead will wait for the server to close the connection. Setting this to True may be beneficial in circumstances where many connections are being established, to avoid port exhaustion when sockets are in a TIME_WAIT state. Allowing the server to close the connection avoids the TIME_WAIT state of socket on the client machine.
When set to False (default) the client will close the connection. It is recommended to use this value unless there is a specific need to change it.
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this config is set to false.
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
Socket Config Settings
Note: This option is not valid for UDP ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting which applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details please see the FIPS 140-2 Compliance article.
Note: This setting is only applicable on Windows.
Note: Enabling FIPS-compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
Trappable Errors (SCP Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
SCP Errors
118 Firewall error. Error description contains detailed information. |
SSHClient Errors
1001 Server has disconnected. | |
1002 Protocol version unsupported or other issue with version string. | |
1003 Cannot negotiate algorithms. | |
1005 Selected algorithm unsupported. | |
1006 Cannot set keys. | |
1010 Unexpected algorithm. | |
1011 Cannot create exchange hash. | |
1012 Cannot make key. | |
1013 Cannot sign data. | |
1014 Cannot encrypt packet. | |
1015 Cannot decrypt packet. | |
1016 Cannot decompress packet. | |
1020 Failure to open channel. | |
1021 Invalid channel ID. | |
1022 Invalid channel data. | |
1023 Invalid channel message. | |
1024 SSH message unimplemented. | |
1027 Server message unsupported. | |
1030 Server's host key was rejected. The host key may be accepted within the SSHServerAuthentication event or using the SSHAcceptServerHostKey property. | |
1031 Cannot verify server's host key. | |
1032 Authentication failed. Check description for details. | |
1033 Channel request failed. | |
1034 Diffie-Hellman exchange failed. | |
1036 SSH connection failed. | |
1037 SSH reconnect limit reached. | |
1038 Elliptic Curve Diffie-Hellman exchange failed. | |
1039 SSH keep-alive limit reached. | |
1098 Request failure. | |
1130 Would block error. | |
1133 Would block, reason: key reExchange. |
The class may also return one of the following error codes, which are inherited from other classes.
TCPClient Errors
100 You cannot change the RemotePort at this time. A connection is in progress. | |
101 You cannot change the RemoteHost (Server) at this time. A connection is in progress. | |
102 The RemoteHost address is invalid (0.0.0.0). | |
104 Already connected. If you want to reconnect, close the current connection first. | |
106 You cannot change the LocalPort at this time. A connection is in progress. | |
107 You cannot change the LocalHost at this time. A connection is in progress. | |
112 You cannot change MaxLineLength at this time. A connection is in progress. | |
116 RemotePort cannot be zero. Please specify a valid service port number. | |
117 You cannot change the UseConnection option while the class is active. | |
135 Operation would block. | |
201 Timeout. | |
211 Action impossible in control's present state. | |
212 Action impossible while not connected. | |
213 Action impossible while listening. | |
301 Timeout. | |
302 Could not open file. | |
434 Unable to convert string to selected CodePage. | |
1105 Already connecting. If you want to reconnect, close the current connection first. | |
1117 You need to connect first. | |
1119 You cannot change the LocalHost at this time. A connection is in progress. | |
1120 Connection dropped by remote host. |
TCP/IP Errors
10004 [10004] Interrupted system call. | |
10009 [10009] Bad file number. | |
10013 [10013] Access denied. | |
10014 [10014] Bad address. | |
10022 [10022] Invalid argument. | |
10024 [10024] Too many open files. | |
10035 [10035] Operation would block. | |
10036 [10036] Operation now in progress. | |
10037 [10037] Operation already in progress. | |
10038 [10038] Socket operation on non-socket. | |
10039 [10039] Destination address required. | |
10040 [10040] Message too long. | |
10041 [10041] Protocol wrong type for socket. | |
10042 [10042] Bad protocol option. | |
10043 [10043] Protocol not supported. | |
10044 [10044] Socket type not supported. | |
10045 [10045] Operation not supported on socket. | |
10046 [10046] Protocol family not supported. | |
10047 [10047] Address family not supported by protocol family. | |
10048 [10048] Address already in use. | |
10049 [10049] Can't assign requested address. | |
10050 [10050] Network is down. | |
10051 [10051] Network is unreachable. | |
10052 [10052] Net dropped connection or reset. | |
10053 [10053] Software caused connection abort. | |
10054 [10054] Connection reset by peer. | |
10055 [10055] No buffer space available. | |
10056 [10056] Socket is already connected. | |
10057 [10057] Socket is not connected. | |
10058 [10058] Can't send after socket shutdown. | |
10059 [10059] Too many references, can't splice. | |
10060 [10060] Connection timed out. | |
10061 [10061] Connection refused. | |
10062 [10062] Too many levels of symbolic links. | |
10063 [10063] File name too long. | |
10064 [10064] Host is down. | |
10065 [10065] No route to host. | |
10066 [10066] Directory not empty | |
10067 [10067] Too many processes. | |
10068 [10068] Too many users. | |
10069 [10069] Disc Quota Exceeded. | |
10070 [10070] Stale NFS file handle. | |
10071 [10071] Too many levels of remote in path. | |
10091 [10091] Network subsystem is unavailable. | |
10092 [10092] WINSOCK DLL Version out of range. | |
10093 [10093] Winsock not loaded yet. | |
11001 [11001] Host not found. | |
11002 [11002] Non-authoritative 'Host not found' (try again or check DNS setup). | |
11003 [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP. | |
11004 [11004] Valid name, no data record (check DNS setup). |