IVR Component
Properties Methods Events Config Settings Errors
The IVR component can be used to implement an Interactive Voice Response (IVR) menu.
Syntax
TipvIVR
Remarks
The IVR component can be used to implement an IVR menu utilizing modern Voice over Internet Protocol (VoIP) technology. This softphone offers a comprehensive set of features, including the ability to handle incoming calls, detect touch-tone inputs from the caller, and perform other common Voice over Internet Protocol (VoIP) operations. With this, you have a level of flexibility and control when it comes to designing and customizing menu options.
Registration
To begin, the first step is activating, or registering, the component. The Server, Port, User, and Password properties must be set to the appropriate values to register with your SIP server/provider. After these values are set, call Activate. If the component has successfully activated/registered, the Activated event will fire and Active will be set to true. The component will now be able to make/receive phone calls. For example:
component.OnActivated += (o, e) => {
Console.WriteLine("Activation Successful");
};
component.User = "sip_user";
component.Password = "sip_password";
component.Server = "sip_server";
component.Port = 5060 // Default, 5061 is typical for SSL/TLS
component.Activate();
Additionally, it's important to note that the registration of a SIP client will expire if not refreshed. The expiration time is negotiated with the server when registering.
By default, the component will attempt to negotiate a value of 60 seconds. This value can be changed via the RegistrationInterval configuration.
Note this is merely a suggestion to the server, and the server can change this accordingly. If the server does change this, NegotiatedRegistrationInterval will reflect the negotiated lifetime.
Afterwards, the component will attempt to refresh the registration every NegotiatedRegistrationInterval seconds.
Clients may wish to refresh the registration prior to this interval to ensure the registration does not expire. To do so, the RefreshInterval configuration can be set after successful registration. If set, this value should be less than or equal to NegotiatedRegistrationInterval. For example, to refresh the registration 5 seconds prior to it's expiration, the following can be performed after activation:
component.Config("RegistrationInterval=120");
component.Activate();
int lifetime = component.Config("NegotiatedRegistrationInterval");
// Refresh the registration 5 seconds prior to expiration
component.Config("RefreshInterval=" + (lifetime - 5));
To prevent the registration from expiring, the component will refresh the registration within DoEvents according to the value of NegotiatedRegistrationInterval, or RefreshInterval if specified. To ensure this occurs, we recommend calling DoEvents frequently. For example, this could look something like:
private void timer1_Tick(object sender, EventArgs e)
{
component.DoEvents();
}
private System.Windows.Forms.Timer timer1;
timer1.Interval = 1000;
timer1.Tick += new System.EventHandler(this.timer1_Tick);
timer1.Enabled = true;
Note the above solution does not apply to console applications, as DoEvents should already be called in a loop to provide efficient message processing.
Security
By default, the component operates in plaintext for both SIP signaling and RTP (audio) communication. To enable completely secure communication using the component, both SIPS (Secure SIP) and SRTP (Secure RTP) must be enabled.
Enable SIPS
To enable SIPS (Secure SIP, or SIP over SSL/TLS), the SIPTransportProtocol property must be set to 2 (TLS). The Port property will typically need to be set to 5061 (this may vary). Additionally, the SSLServerAuthentication event may be handled, allowing users to check the server identity and other security attributes related to server authentication. Once this is complete, the component can then be activated. All subsequent SIP signaling will now be secured. For example:
component.OnSSLServerAuthentication += (o, e) => {
if (!e.Accept) {
if (e.CertSubject == "SIPS_SAMPLE_SUBJECT" && e.CertIssuer == "SIPS_CERT_ISSUER") {
e.Accept = true;
}
}
};
// Enable SIPS
component.SIPTransportProtocol = 2; // TLS
component.User = "sip_user";
component.Password = "sip_password";
component.Server = "sip_server";
component.Port = 5061; // 5061 is typical for SSL/TLS
component.Activate();
Information related to the SSL/TLS handshake will be available within the SSLStatus event with the prefix [SIP TLS].
Enable SRTP
While the above process secures SIP signaling, it does not secure RTP (audio) communication. The RTPSecurityMode property can be used to specify the security mode that will be used when transmitting RTP packets. By default, this property is 0 (None), and RTP packets will remain unencrypted during communication with the remote party.
To ensure the audio data is encrypted and SRTP is enabled, the RTPSecurityMode must be set to either of the following modes: 1 (SDES), or 2 (DTLS-SRTP). The selected mode will be used to securely derive a key used to encrypt and decrypt RTP packets, enabling secure audio communication with the remote party. The appropriate mode to use may depend on the service provider and configuration of a particular User. For example:
component.OnSSLServerAuthentication += (o, e) => {
if (!e.Accept) {
if (e.CertSubject == "SIPS_SAMPLE_SUBJECT" && e.CertIssuer == "SIPS_CERT_ISSUER") {
e.Accept = true;
}
}
};
component.RTPSecurityMode = 1; // Enable SRTP (SDES)
//component.RTPSecurityMode = 2; // Enable SRTP (DTLS-SRTP)
component.SIPTransportProtocol = 2; // TLS
component.User = "sip_user";
component.Password = "sip_password";
component.Server = "sip_server";
component.Port = 5061; // 5061 is typical for SSL/TLS
component.Activate();
component.Dial("123456789", "", true);
Note it is highly recommended that SIPTransportProtocol is set to TLS when enabling SRTP. Additionally, if SRTP is enabled, the remote party must support the selected mode, otherwise no call will be established.
Handle Incoming Calls
After successful activation, incoming calls will be detected, and IncomingCall will fire for each call. Within this event, Answer or Decline can be used to handle these calls. For example:
ivr1.OnIncomingCall += (o, e) => {
ivr1.Answer(e.CallId);
};
Automated Responses
Throughout the menu, there are various ways to prompt a caller. For example, you may want to play an initial message to an answered call. Once a call has been answered, the CallReady event will fire, where you can use either PlayText, PlayFile, or PlayBytes to do so. For example:
ivr1.OnCallReady += (o, e) => {
ivr1.PlayText(e.CallId, "Please press 1 to be transferred to sales. Press 2 to be transferred to support. Press 3 to hear the options again.");
};
Only audio data with a sampling rate of 8 kHz and a bit depth of 16 bits per sample can be played (PCM 8 kHz 16-bit format). Note that these methods are non-blocking. The component can play audio to multiple calls at once.
Once the audio has finished playing to a particular call, the Played event will fire, with the CallId as a parameter. Please see PlayBytes and Played for more information on expected behavior when playing bytes.
Handle User Input
A main focus of an IVR menu revolves around handling user input. The component keeps track of the touch-tone inputs of a caller in the call's "UserInput" field. Additionally, the Digit event will fire whenever user input is detected. The event will contain parameters for the Digit pressed, and the associated CallId. The component can detect digits 0-9, *, and # tones. Based on current and previous inputs, you can implement various menu options, from transferring calls to certain extensions, checking a user's account status, placing user's on hold, etc. For example:
ivr1.OnDigit += (o, e) => {
if (e.Digit.Equals("1")) {
ivr1.Transfer(e.CallId, "Sales Number");
} else if (e.Digit.Equals("2")) {
ivr1.Transfer(e.CallId, "Support Number");
} else if (e.Digit.Equals("3")) {
ivr1.PlayText(e.CallId, "Please press 1 to be transferred to sales. Press 2 to be transferred to support. Press 3 to hear the options again.");
} else {
// Unhandled input
}
};
Call Termination
Ongoing calls are terminated by passing the appropriate CallId to Hangup. All ongoing calls can be terminated with HangupAll. When a call has been terminated (by either party), CallTerminated will fire.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
Active | The current activation status of the component. |
CallCount | The number of records in the Call arrays. |
CallCallId | String representation of an immutable universally unique identifier (UUID) specific to the call. |
CallConferenceId | A unique identifier for a conference call. |
CallDuration | Elapsed time, in seconds, since the call has begun. |
CallLastStatus | This property indicates the call's last response code. |
CallLocalAddress | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
CallLocalPort | The UDP port in the local host where UDP binds. |
CallMicrophone | The microphone currently in use during the call. |
CallMuteMicrophone | This property can be set to mute the Microphone being used by the component in the given call. |
CallMuteSpeaker | This property can be set to mute the Speaker being used by the component in the given call. |
CallOutgoing | Indicates whether the current call is outgoing. |
CallPlaying | Indicates whether the current call is playing audio via PlayText or PlayFile , or PlayBytes . |
CallRecording | Indicates whether the current call is recording the received voice from the peer. |
CallRemoteAddress | The address of the remote host we are communicating with. |
CallRemotePort | The port of the remote host we are communicating with. |
CallRemoteURI | This property communicates who to call via SIP. |
CallRemoteUser | The username or telephone number of the remote user associated with the call. |
CallSpeaker | The speaker currently in use during the call. |
CallStartedAt | The number of milliseconds since 12:00:00 AM January 1, 1970 when this call started. |
CallState | This property indicates the state of the current call. |
CallUserInput | String representation of digits typed by the callee using their keypad. |
CallVia | The Via header sent in the most recent SIP request. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
LocalPort | This property includes the User Datagram Protocol (UDP) port in the local host where UDP binds. |
Password | The password that is used when connecting to the SIP Server. |
Port | The port on the SIP server the component is connecting to. |
RTPSecurityMode | Specifies the security mode that will be used when transmitting RTP. |
Server | The address of the SIP Server. |
SIPTransportProtocol | Specifies the transport protocol the component will use for SIP signaling. |
SSLAcceptServerCertEffectiveDate | The date on which this certificate becomes valid. |
SSLAcceptServerCertExpirationDate | The date on which the certificate expires. |
SSLAcceptServerCertExtendedKeyUsage | A comma-delimited list of extended key usage identifiers. |
SSLAcceptServerCertFingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
SSLAcceptServerCertFingerprintSHA1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
SSLAcceptServerCertFingerprintSHA256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
SSLAcceptServerCertIssuer | The issuer of the certificate. |
SSLAcceptServerCertPrivateKey | The private key of the certificate (if available). |
SSLAcceptServerCertPrivateKeyAvailable | Whether a PrivateKey is available for the selected certificate. |
SSLAcceptServerCertPrivateKeyContainer | The name of the PrivateKey container for the certificate (if available). |
SSLAcceptServerCertPublicKey | The public key of the certificate. |
SSLAcceptServerCertPublicKeyAlgorithm | The textual description of the certificate's public key algorithm. |
SSLAcceptServerCertPublicKeyLength | The length of the certificate's public key (in bits). |
SSLAcceptServerCertSerialNumber | The serial number of the certificate encoded as a string. |
SSLAcceptServerCertSignatureAlgorithm | The text description of the certificate's signature algorithm. |
SSLAcceptServerCertStore | The name of the certificate store for the client certificate. |
SSLAcceptServerCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSLAcceptServerCertStoreType | The type of certificate store for this certificate. |
SSLAcceptServerCertSubjectAltNames | Comma-separated lists of alternative subject names for the certificate. |
SSLAcceptServerCertThumbprintMD5 | The MD5 hash of the certificate. |
SSLAcceptServerCertThumbprintSHA1 | The SHA-1 hash of the certificate. |
SSLAcceptServerCertThumbprintSHA256 | The SHA-256 hash of the certificate. |
SSLAcceptServerCertUsage | The text description of UsageFlags . |
SSLAcceptServerCertUsageFlags | The flags that show intended use for the certificate. |
SSLAcceptServerCertVersion | The certificate's version number. |
SSLAcceptServerCertSubject | The subject of the certificate used for client authentication. |
SSLAcceptServerCertEncoded | The certificate (PEM/Base64 encoded). |
SSLCertEffectiveDate | The date on which this certificate becomes valid. |
SSLCertExpirationDate | The date on which the certificate expires. |
SSLCertExtendedKeyUsage | A comma-delimited list of extended key usage identifiers. |
SSLCertFingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
SSLCertFingerprintSHA1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
SSLCertFingerprintSHA256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
SSLCertIssuer | The issuer of the certificate. |
SSLCertPrivateKey | The private key of the certificate (if available). |
SSLCertPrivateKeyAvailable | Whether a PrivateKey is available for the selected certificate. |
SSLCertPrivateKeyContainer | The name of the PrivateKey container for the certificate (if available). |
SSLCertPublicKey | The public key of the certificate. |
SSLCertPublicKeyAlgorithm | The textual description of the certificate's public key algorithm. |
SSLCertPublicKeyLength | The length of the certificate's public key (in bits). |
SSLCertSerialNumber | The serial number of the certificate encoded as a string. |
SSLCertSignatureAlgorithm | The text description of the certificate's signature algorithm. |
SSLCertStore | The name of the certificate store for the client certificate. |
SSLCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSLCertStoreType | The type of certificate store for this certificate. |
SSLCertSubjectAltNames | Comma-separated lists of alternative subject names for the certificate. |
SSLCertThumbprintMD5 | The MD5 hash of the certificate. |
SSLCertThumbprintSHA1 | The SHA-1 hash of the certificate. |
SSLCertThumbprintSHA256 | The SHA-256 hash of the certificate. |
SSLCertUsage | The text description of UsageFlags . |
SSLCertUsageFlags | The flags that show intended use for the certificate. |
SSLCertVersion | The certificate's version number. |
SSLCertSubject | The subject of the certificate used for client authentication. |
SSLCertEncoded | The certificate (PEM/Base64 encoded). |
User | The username that is used when connecting to the SIP Server. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Activate | Activates the component. |
Answer | Answers an incoming phone call. |
Config | Sets or retrieves a configuration setting. |
Deactivate | Deactivates the component. |
Decline | Declines an incoming phone call. |
Dial | Used to make a call. |
DoEvents | This method processes events from the internal message queue. |
Hangup | Used to hang up a specific call. |
HangupAll | Used to hang up all calls. |
Hold | Places a call on hold. |
Ping | Used to ping the server. |
PlayBytes | This method is used to play bytes to a call. |
PlayFile | Plays audio from a WAV file to a call. |
PlayText | Plays audio from a string to a call using Text-to-Speech. |
Reset | This method will reset the component. |
StartRecording | Used to start recording the audio of a call. |
StopPlaying | Stops audio from playing to a call. |
StopRecording | Stops recording the audio of a call. |
Transfer | Transfers a call. |
Unhold | Takes a call off hold. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Activated | This event is fired immediately after the component is activated. |
CallReady | This event is fired after a call has been answered, declined, or ignored. |
CallStateChanged | This event is fired after a call's state has changed. |
CallTerminated | This event is fired after a call has been terminated. |
Deactivated | This event is fired immediately after the component is deactivated. |
DialCompleted | This event is fired after the dial process has finished. |
Digit | This event fires every time a digit is pressed using the keypad. |
Error | Fired when information is available about errors during data delivery. |
IncomingCall | This event is fired when an incoming call is received. |
Log | This event is fired once for each log message. |
OutgoingCall | This event is fired when an outgoing call has been made. |
Played | This event is fired after the component finishes playing available audio. |
Record | This event is fired when recorded audio data is available. |
Silence | This event is fired when the component detects silence from incoming audio streams. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
AudioDirection | Indicates the direction of available recorded audio when dynamic recording is enabled. |
AuthUser | Specifies the username to be used during client authentication. |
Codecs | Comma-separated list of codecs the component can use. |
DeclineStatus | Specifies the status to send when declining an incoming call. |
DialTimeout | Specifies the amount of time to wait for a response when making a call. |
DialToneFile | Specifies the location of the WAV file to play when making a call. |
DisableRegistration | Can be used to disable SIP registration. |
Domain | Can be used to set the address of the SIP domain. |
DtmfMethod | The method used for delivering the signals/tones sent when typing a digit. |
EnableDynamicRecording | Specifies whether dynamic recording is enabled when recording a call. |
LogEncodedAudioData | Whether the component will log encoded audio data. |
LogLevel | The level of detail that is logged. |
LogRTPPackets | Whether the component will log RTP packets. |
NegotiatedRegistrationInterval | Specifies the negotiated lifetime of the current registration after successful activation. |
RecordType | The type of recording the component will use. |
RedirectLimit | The maximum number of redirects an outgoing call can experience. |
RefreshInterval | Used to manually specify the interval between subsequent registration messages after successful activation. |
RegistrationInterval | Used to specify the desired lifetime of the registration to the server prior to activation. |
RingtoneFile | Specifies location of a WAV file to play when receiving an incoming call. |
SilenceInterval | Specifies the interval the component uses to detect periods of silence. |
STUNPort | The port of the STUN server. |
STUNServer | The address of the STUN Server. |
UnregisterOnActivate | Specifies whether the component will unregister from the SIP Server before registration. |
UserAgent | Information about the user agent (client). |
VoiceIndex | The voice that will be used when playing text. |
VoiceRate | The speaking rate of the voice when playing text. |
CaptureIPPacketInfo | Used to capture the packet information. |
DelayHostResolution | Whether the hostname is resolved when RemoteHost is set. |
DestinationAddress | Used to get the destination address from the packet information. |
DontFragment | Used to set the Don't Fragment flag of outgoing packets. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the component binds. |
MaxPacketSize | The maximum length of the packets that can be received. |
QOSDSCPValue | Used to specify an arbitrary QOS/DSCP setting (optional). |
QOSTrafficType | Used to specify QOS/DSCP settings (optional). |
ShareLocalPort | If set to True, allows more than one instance of the component to be active on the same local port. |
SourceIPAddress | Used to set the source IP address used when sending a packet. |
SourceMacAddress | Used to set the source MAC address used when sending a packet. |
UseConnection | Determines whether to use a connected socket. |
UseIPv6 | Whether or not to use IPv6. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the component whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallTunnelAuthScheme | This configuration setting specifies the authentication mechanism to use when authenticating to a tunneling proxy. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the component binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACerts | A newline separated list of CA certificates to be included when performing an SSL handshake. |
SSLCACerts | A newline separated list of CA certificates to be included when performing an SSL handshake. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLClientCACerts | A newline separated list of CA certificates to use during SSL client certificate validation. |
SSLClientCACerts | A newline separated list of CA certificates to use during SSL client certificate validation. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificates to use during SSL server certificate validation. |
SSLServerCACerts | A newline separated list of CA certificates to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the component uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the component will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the component whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
Active Property (IVR Component)
The current activation status of the component.
Syntax
__property bool Active = { read=FActive };
Default Value
false
Remarks
This property indicates the activation status of the component. Active will be True if the component has been successfully activated (registered) with the SIP Server, and False otherwise. If False, the component is not registered and will not be able to make or receive calls.
The component can be activated via Activate and deactivated through Deactivate.
This property is read-only and not available at design time.
Data Type
Boolean
CallCount Property (IVR Component)
The number of records in the Call arrays.
Syntax
__property int CallCount = { read=FCallCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
- CallCallId
- CallConferenceId
- CallDuration
- CallLastStatus
- CallLocalAddress
- CallLocalPort
- CallMicrophone
- CallMuteMicrophone
- CallMuteSpeaker
- CallOutgoing
- CallPlaying
- CallRecording
- CallRemoteAddress
- CallRemotePort
- CallRemoteURI
- CallRemoteUser
- CallSpeaker
- CallStartedAt
- CallState
- CallUserInput
- CallVia
The array indices start at 0 and end at CallCount - 1.
This property is read-only and not available at design time.
Data Type
Integer
CallCallId Property (IVR Component)
String representation of an immutable universally unique identifier (UUID) specific to the call.
Syntax
__property String CallCallId[int CallIndex] = { read=FCallCallId };
Default Value
""
Remarks
String representation of an immutable universally unique identifier (UUID) specific to the call.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
String
CallConferenceId Property (IVR Component)
A unique identifier for a conference call.
Syntax
__property String CallConferenceId[int CallIndex] = { read=FCallConferenceId };
Default Value
""
Remarks
A unique identifier for a conference call.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
String
CallDuration Property (IVR Component)
Elapsed time, in seconds, since the call has begun.
Syntax
__property int CallDuration[int CallIndex] = { read=FCallDuration };
Default Value
0
Remarks
Elapsed time, in seconds, since the call has begun. Calculated using the value in CallStartedAt.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
Integer
CallLastStatus Property (IVR Component)
This property indicates the call's last response code.
Syntax
__property int CallLastStatus[int CallIndex] = { read=FCallLastStatus };
Default Value
0
Remarks
This field indicates the call's last response code. Response codes are defined in RFC 3261.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
Integer
CallLocalAddress Property (IVR Component)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
__property String CallLocalAddress[int CallIndex] = { read=FCallLocalAddress };
Default Value
""
Remarks
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
String
CallLocalPort Property (IVR Component)
The UDP port in the local host where UDP binds.
Syntax
__property int CallLocalPort[int CallIndex] = { read=FCallLocalPort };
Default Value
0
Remarks
The UDP port in the local host where UDP binds.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
Integer
CallMicrophone Property (IVR Component)
The microphone currently in use during the call.
Syntax
__property String CallMicrophone[int CallIndex] = { read=FCallMicrophone };
Default Value
""
Remarks
The microphone currently in use during the call. Set through SetMicrophone.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
String
CallMuteMicrophone Property (IVR Component)
This property can be set to mute the Microphone being used by the component in the given call.
Syntax
__property bool CallMuteMicrophone[int CallIndex] = { read=FCallMuteMicrophone, write=FSetCallMuteMicrophone };
Default Value
False
Remarks
This field can be set to mute the CallMicrophone being used by the component in the given call. When True, the CallMicrophone is muted.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is not available at design time.
Data Type
Boolean
CallMuteSpeaker Property (IVR Component)
This property can be set to mute the Speaker being used by the component in the given call.
Syntax
__property bool CallMuteSpeaker[int CallIndex] = { read=FCallMuteSpeaker, write=FSetCallMuteSpeaker };
Default Value
False
Remarks
This field can be set to mute the CallSpeaker being used by the component in the given call. When True, the CallSpeaker is muted.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is not available at design time.
Data Type
Boolean
CallOutgoing Property (IVR Component)
Indicates whether the current call is outgoing.
Syntax
__property bool CallOutgoing[int CallIndex] = { read=FCallOutgoing };
Default Value
False
Remarks
Indicates whether the current call is outgoing. If false, the call is incoming.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CallPlaying Property (IVR Component)
Indicates whether the current call is playing audio via PlayText or PlayFile , or PlayBytes .
Syntax
__property bool CallPlaying[int CallIndex] = { read=FCallPlaying };
Default Value
False
Remarks
Indicates whether the current call is playing audio via PlayText or PlayFile, or PlayBytes. After audio transmission is complete, or stopped using StopPlaying, this flag will be false.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CallRecording Property (IVR Component)
Indicates whether the current call is recording the received voice from the peer.
Syntax
__property bool CallRecording[int CallIndex] = { read=FCallRecording };
Default Value
False
Remarks
Indicates whether the current call is recording the received voice from the peer. When the recording is done, this flag will be false. If the recording is stopped via StopRecording, this flag will be false.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
Boolean
CallRemoteAddress Property (IVR Component)
The address of the remote host we are communicating with.
Syntax
__property String CallRemoteAddress[int CallIndex] = { read=FCallRemoteAddress };
Default Value
""
Remarks
The address of the remote host we are communicating with.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
String
CallRemotePort Property (IVR Component)
The port of the remote host we are communicating with.
Syntax
__property int CallRemotePort[int CallIndex] = { read=FCallRemotePort };
Default Value
0
Remarks
The port of the remote host we are communicating with. This field is typically 5060.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
Integer
CallRemoteURI Property (IVR Component)
This property communicates who to call via SIP.
Syntax
__property String CallRemoteURI[int CallIndex] = { read=FCallRemoteURI };
Default Value
""
Remarks
This field communicates who to call via SIP. This value contains the CallRemoteUser, CallRemoteAddress, and the CallRemotePort, and has the following format:
sip:user@host:port
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
String
CallRemoteUser Property (IVR Component)
The username or telephone number of the remote user associated with the call.
Syntax
__property String CallRemoteUser[int CallIndex] = { read=FCallRemoteUser };
Default Value
""
Remarks
The username or telephone number of the remote user associated with the call.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
String
CallSpeaker Property (IVR Component)
The speaker currently in use during the call.
Syntax
__property String CallSpeaker[int CallIndex] = { read=FCallSpeaker };
Default Value
""
Remarks
The speaker currently in use during the call. Set through SetSpeaker.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
String
CallStartedAt Property (IVR Component)
The number of milliseconds since 12:00:00 AM January 1, 1970 when this call started.
Syntax
__property __int64 CallStartedAt[int CallIndex] = { read=FCallStartedAt };
Default Value
0
Remarks
The number of milliseconds since 12:00:00 AM January 1, 1970 when this call started.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
Long64
CallState Property (IVR Component)
This property indicates the state of the current call.
Syntax
__property TipvIVRCallStates CallState[int CallIndex] = { read=FCallState };
enum TipvIVRCallStates { csInactive=0, csConnecting=1, csAutConnecting=2, csRinging=3, csActive=4, csActiveInConference=5, csDisconnecting=6, csAutDisconnecting=7, csHolding=8, csOnHold=9, csUnholding=10, csTransferring=11, csAutTransferring=12 };
Default Value
csInactive
Remarks
This property indicates the state of the current call. The applicable values are as follows:
csInactive (0) | The call is inactive (default setting). |
csConnecting (1) | The call is establishing a connection to the callee. |
csAutConnecting (2) | The call is establishing a connection to the callee with authorization credentials. |
csRinging (3) | The call is ringing. |
csActive (4) | The call is active. |
csActiveInConference (5) | The call is active and in a conference. |
csDisconnecting (6) | The call is disconnecting with the callee. |
csAutDisconnecting (7) | The call is disconnecting with the callee with authorization credentials. |
csHolding (8) | The call is currently being placed on hold, but the Hold operation has not finished. |
csOnHold (9) | The call is currently on hold. |
csUnholding (10) | The call is currently being unheld, but the Unhold operation has not finished. |
csTransferring (11) | The call is currently being transferred. |
csAutTransferring (12) | The call is currently being transferred with authorization credentials. |
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
Integer
CallUserInput Property (IVR Component)
String representation of digits typed by the callee using their keypad.
Syntax
__property String CallUserInput[int CallIndex] = { read=FCallUserInput };
Default Value
""
Remarks
String representation of digits typed by the callee using their keypad.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
String
CallVia Property (IVR Component)
The Via header sent in the most recent SIP request.
Syntax
__property String CallVia[int CallIndex] = { read=FCallVia };
Default Value
""
Remarks
The Via header sent in the most recent SIP request. Identifies the protocol name/version, transport type, IP Address of the User Agent Client, and port of the request.
The CallIndex parameter specifies the index of the item in the array. The size of the array is controlled by the CallCount property.
This property is read-only and not available at design time.
Data Type
String
LocalHost Property (IVR Component)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
__property String LocalHost = { read=FLocalHost, write=FSetLocalHost };
Default Value
""
Remarks
This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the component initiate connections (or accept in the case of server components) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.
If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Note: LocalHost is not persistent. You must always set it in code, and never in the property window.
Data Type
String
LocalPort Property (IVR Component)
This property includes the User Datagram Protocol (UDP) port in the local host where UDP binds.
Syntax
__property int LocalPort = { read=FLocalPort, write=FSetLocalPort };
Default Value
0
Remarks
The LocalPort property must be set before UDP is activated (Active is set to True). This instructs the component to bind to a specific port (or communication endpoint) in the local machine.
Setting it to 0 (default) enables the Transmission Control Protocol (TCP)/IP stack to choose a port at random. The chosen port will be shown by the LocalPort property after the connection is established.
LocalPort cannot be changed once the component is Active. Any attempt to set the LocalPort property when the component is Active will generate an error.
The LocalPort property is useful when trying to connect to services that require a trusted port on the client side.
Data Type
Integer
Password Property (IVR Component)
The password that is used when connecting to the SIP Server.
Syntax
__property String Password = { read=FPassword, write=FSetPassword };
Default Value
""
Remarks
This property contains the password of the client attempting to connect to the SIP Server. This value will be used when activating the component via Activate.
This property is not available at design time.
Data Type
String
Port Property (IVR Component)
The port on the SIP server the component is connecting to.
Syntax
__property int Port = { read=FPort, write=FSetPort };
Default Value
5060
Remarks
This property specifies the port on the SIP server that the component will connect to. This value will be used when activating the component via Activate.
Data Type
Integer
RTPSecurityMode Property (IVR Component)
Specifies the security mode that will be used when transmitting RTP.
Syntax
__property TipvIVRRTPSecurityModes RTPSecurityMode = { read=FRTPSecurityMode, write=FSetRTPSecurityMode };
enum TipvIVRRTPSecurityModes { etNone=0, etSDES=1, etDTLS=2 };
Default Value
etNone
Remarks
This property is used to specify the security mode that will be used when transmitting RTP (audio data). Possible modes are:
0 (None) | SRTP is disabled. |
1 (SDES) | SRTP is enabled, utilizing SDES. |
2 (DTLS) | SRTP is enabled, utilizing DTLS (DTLS-SRTP). |
By default, the security mode will be 0 (None), and RTP packets will remain unencrypted during communication with the remote party. To enable SRTP (Secure RTP), the security mode must be set to either: 1 (SDES), or 2 (DTLS).
When SRTP is enabled, the selected mode will be used to securely derive a key used to encrypt and decrypt RTP packets, enabling secure audio communication with the remote party. The appropriate mode to use may depend on the service provider and configuration of a particular User. Additionally, if SRTP is enabled, the remote party must support the selected mode, otherwise no call will be established.
Note it is highly recommended that SIPTransportProtocol is set to TLS when enabling SRTP.
Data Type
Integer
Server Property (IVR Component)
The address of the SIP Server.
Syntax
__property String Server = { read=FServer, write=FSetServer };
Default Value
""
Remarks
This property contains the address of the SIP Server the component will attempt to connect to. This value will be used when activating the component via Activate.
Data Type
String
SIPTransportProtocol Property (IVR Component)
Specifies the transport protocol the component will use for SIP signaling.
Syntax
__property TipvIVRSIPTransportProtocols SIPTransportProtocol = { read=FSIPTransportProtocol, write=FSetSIPTransportProtocol };
enum TipvIVRSIPTransportProtocols { tpUDP=0, tpTCP=1, tpTLS=2 };
Default Value
tpUDP
Remarks
This property specifies which transport protocol (UDP, TCP, TLS) the component will use for SIP signaling and can be used to enable SIPS (Secure SIP). Note it is important to set the SIPTransportProtocol property before setting any additional properties and configurations.
This value is 0 (UDP) by default. Possible values are:
0 (UDP - Default) | Signaling will be performed over UDP (plaintext). |
1 (TCP) | Signaling will be performed over TCP (plaintext). |
2 (TLS) | Signaling will be performed using TLS over TCP (SIPS). |
Note when TLS is specified, the Port will typically need to be set to 5061.
Data Type
Integer
SSLAcceptServerCertEffectiveDate Property (IVR Component)
The date on which this certificate becomes valid.
Syntax
__property String SSLAcceptServerCertEffectiveDate = { read=FSSLAcceptServerCertEffectiveDate };
Default Value
""
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertExpirationDate Property (IVR Component)
The date on which the certificate expires.
Syntax
__property String SSLAcceptServerCertExpirationDate = { read=FSSLAcceptServerCertExpirationDate };
Default Value
""
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertExtendedKeyUsage Property (IVR Component)
A comma-delimited list of extended key usage identifiers.
Syntax
__property String SSLAcceptServerCertExtendedKeyUsage = { read=FSSLAcceptServerCertExtendedKeyUsage };
Default Value
""
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertFingerprint Property (IVR Component)
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
__property String SSLAcceptServerCertFingerprint = { read=FSSLAcceptServerCertFingerprint };
Default Value
""
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertFingerprintSHA1 Property (IVR Component)
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
__property String SSLAcceptServerCertFingerprintSHA1 = { read=FSSLAcceptServerCertFingerprintSHA1 };
Default Value
""
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertFingerprintSHA256 Property (IVR Component)
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
__property String SSLAcceptServerCertFingerprintSHA256 = { read=FSSLAcceptServerCertFingerprintSHA256 };
Default Value
""
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertIssuer Property (IVR Component)
The issuer of the certificate.
Syntax
__property String SSLAcceptServerCertIssuer = { read=FSSLAcceptServerCertIssuer };
Default Value
""
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertPrivateKey Property (IVR Component)
The private key of the certificate (if available).
Syntax
__property String SSLAcceptServerCertPrivateKey = { read=FSSLAcceptServerCertPrivateKey };
Default Value
""
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The SSLAcceptServerCertPrivateKey may be available but not exportable. In this case, SSLAcceptServerCertPrivateKey returns an empty string.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertPrivateKeyAvailable Property (IVR Component)
Whether a PrivateKey is available for the selected certificate.
Syntax
__property bool SSLAcceptServerCertPrivateKeyAvailable = { read=FSSLAcceptServerCertPrivateKeyAvailable };
Default Value
false
Remarks
Whether a SSLAcceptServerCertPrivateKey is available for the selected certificate. If SSLAcceptServerCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only and not available at design time.
Data Type
Boolean
SSLAcceptServerCertPrivateKeyContainer Property (IVR Component)
The name of the PrivateKey container for the certificate (if available).
Syntax
__property String SSLAcceptServerCertPrivateKeyContainer = { read=FSSLAcceptServerCertPrivateKeyContainer };
Default Value
""
Remarks
The name of the SSLAcceptServerCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertPublicKey Property (IVR Component)
The public key of the certificate.
Syntax
__property String SSLAcceptServerCertPublicKey = { read=FSSLAcceptServerCertPublicKey };
Default Value
""
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertPublicKeyAlgorithm Property (IVR Component)
The textual description of the certificate's public key algorithm.
Syntax
__property String SSLAcceptServerCertPublicKeyAlgorithm = { read=FSSLAcceptServerCertPublicKeyAlgorithm };
Default Value
""
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertPublicKeyLength Property (IVR Component)
The length of the certificate's public key (in bits).
Syntax
__property int SSLAcceptServerCertPublicKeyLength = { read=FSSLAcceptServerCertPublicKeyLength };
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only and not available at design time.
Data Type
Integer
SSLAcceptServerCertSerialNumber Property (IVR Component)
The serial number of the certificate encoded as a string.
Syntax
__property String SSLAcceptServerCertSerialNumber = { read=FSSLAcceptServerCertSerialNumber };
Default Value
""
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertSignatureAlgorithm Property (IVR Component)
The text description of the certificate's signature algorithm.
Syntax
__property String SSLAcceptServerCertSignatureAlgorithm = { read=FSSLAcceptServerCertSignatureAlgorithm };
Default Value
""
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertStore Property (IVR Component)
The name of the certificate store for the client certificate.
Syntax
__property String SSLAcceptServerCertStore = { read=FSSLAcceptServerCertStore, write=FSetSSLAcceptServerCertStore }; __property DynamicArray<Byte> SSLAcceptServerCertStoreB = { read=FSSLAcceptServerCertStoreB, write=FSetSSLAcceptServerCertStoreB };
Default Value
"MY"
Remarks
The name of the certificate store for the client certificate.
The SSLAcceptServerCertStoreType property denotes the type of the certificate store specified by SSLAcceptServerCertStore. If the store is password-protected, specify the password in SSLAcceptServerCertStorePassword.
SSLAcceptServerCertStore is used in conjunction with the SSLAcceptServerCertSubject property to specify client certificates. If SSLAcceptServerCertStore has a value, and SSLAcceptServerCertSubject or SSLAcceptServerCertEncoded is set, a search for a certificate is initiated. Please see the SSLAcceptServerCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
This property is not available at design time.
Data Type
Byte Array
SSLAcceptServerCertStorePassword Property (IVR Component)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
__property String SSLAcceptServerCertStorePassword = { read=FSSLAcceptServerCertStorePassword, write=FSetSSLAcceptServerCertStorePassword };
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
This property is not available at design time.
Data Type
String
SSLAcceptServerCertStoreType Property (IVR Component)
The type of certificate store for this certificate.
Syntax
__property TipvIVRSSLAcceptServerCertStoreTypes SSLAcceptServerCertStoreType = { read=FSSLAcceptServerCertStoreType, write=FSetSSLAcceptServerCertStoreType };
enum TipvIVRSSLAcceptServerCertStoreTypes { cstUser=0, cstMachine=1, cstPFXFile=2, cstPFXBlob=3, cstJKSFile=4, cstJKSBlob=5, cstPEMKeyFile=6, cstPEMKeyBlob=7, cstPublicKeyFile=8, cstPublicKeyBlob=9, cstSSHPublicKeyBlob=10, cstP7BFile=11, cstP7BBlob=12, cstSSHPublicKeyFile=13, cstPPKFile=14, cstPPKBlob=15, cstXMLFile=16, cstXMLBlob=17, cstJWKFile=18, cstJWKBlob=19, cstSecurityKey=20, cstBCFKSFile=21, cstBCFKSBlob=22, cstPKCS11=23, cstAuto=99 };
Default Value
cstUser
Remarks
The type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CERTMGR component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SSLAcceptServerCertStore and set SSLAcceptServerCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
This property is not available at design time.
Data Type
Integer
SSLAcceptServerCertSubjectAltNames Property (IVR Component)
Comma-separated lists of alternative subject names for the certificate.
Syntax
__property String SSLAcceptServerCertSubjectAltNames = { read=FSSLAcceptServerCertSubjectAltNames };
Default Value
""
Remarks
Comma-separated lists of alternative subject names for the certificate.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertThumbprintMD5 Property (IVR Component)
The MD5 hash of the certificate.
Syntax
__property String SSLAcceptServerCertThumbprintMD5 = { read=FSSLAcceptServerCertThumbprintMD5 };
Default Value
""
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertThumbprintSHA1 Property (IVR Component)
The SHA-1 hash of the certificate.
Syntax
__property String SSLAcceptServerCertThumbprintSHA1 = { read=FSSLAcceptServerCertThumbprintSHA1 };
Default Value
""
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertThumbprintSHA256 Property (IVR Component)
The SHA-256 hash of the certificate.
Syntax
__property String SSLAcceptServerCertThumbprintSHA256 = { read=FSSLAcceptServerCertThumbprintSHA256 };
Default Value
""
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertUsage Property (IVR Component)
The text description of UsageFlags .
Syntax
__property String SSLAcceptServerCertUsage = { read=FSSLAcceptServerCertUsage };
Default Value
""
Remarks
The text description of SSLAcceptServerCertUsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertUsageFlags Property (IVR Component)
The flags that show intended use for the certificate.
Syntax
__property int SSLAcceptServerCertUsageFlags = { read=FSSLAcceptServerCertUsageFlags };
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of SSLAcceptServerCertUsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the SSLAcceptServerCertUsage property for a text representation of SSLAcceptServerCertUsageFlags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only and not available at design time.
Data Type
Integer
SSLAcceptServerCertVersion Property (IVR Component)
The certificate's version number.
Syntax
__property String SSLAcceptServerCertVersion = { read=FSSLAcceptServerCertVersion };
Default Value
""
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only and not available at design time.
Data Type
String
SSLAcceptServerCertSubject Property (IVR Component)
The subject of the certificate used for client authentication.
Syntax
__property String SSLAcceptServerCertSubject = { read=FSSLAcceptServerCertSubject, write=FSetSSLAcceptServerCertSubject };
Default Value
""
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
This property is not available at design time.
Data Type
String
SSLAcceptServerCertEncoded Property (IVR Component)
The certificate (PEM/Base64 encoded).
Syntax
__property String SSLAcceptServerCertEncoded = { read=FSSLAcceptServerCertEncoded, write=FSetSSLAcceptServerCertEncoded }; __property DynamicArray<Byte> SSLAcceptServerCertEncodedB = { read=FSSLAcceptServerCertEncodedB, write=FSetSSLAcceptServerCertEncodedB };
Default Value
""
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.
When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Byte Array
SSLCertEffectiveDate Property (IVR Component)
The date on which this certificate becomes valid.
Syntax
__property String SSLCertEffectiveDate = { read=FSSLCertEffectiveDate };
Default Value
""
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only and not available at design time.
Data Type
String
SSLCertExpirationDate Property (IVR Component)
The date on which the certificate expires.
Syntax
__property String SSLCertExpirationDate = { read=FSSLCertExpirationDate };
Default Value
""
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only and not available at design time.
Data Type
String
SSLCertExtendedKeyUsage Property (IVR Component)
A comma-delimited list of extended key usage identifiers.
Syntax
__property String SSLCertExtendedKeyUsage = { read=FSSLCertExtendedKeyUsage };
Default Value
""
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only and not available at design time.
Data Type
String
SSLCertFingerprint Property (IVR Component)
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
__property String SSLCertFingerprint = { read=FSSLCertFingerprint };
Default Value
""
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only and not available at design time.
Data Type
String
SSLCertFingerprintSHA1 Property (IVR Component)
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
__property String SSLCertFingerprintSHA1 = { read=FSSLCertFingerprintSHA1 };
Default Value
""
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only and not available at design time.
Data Type
String
SSLCertFingerprintSHA256 Property (IVR Component)
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
__property String SSLCertFingerprintSHA256 = { read=FSSLCertFingerprintSHA256 };
Default Value
""
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only and not available at design time.
Data Type
String
SSLCertIssuer Property (IVR Component)
The issuer of the certificate.
Syntax
__property String SSLCertIssuer = { read=FSSLCertIssuer };
Default Value
""
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only and not available at design time.
Data Type
String
SSLCertPrivateKey Property (IVR Component)
The private key of the certificate (if available).
Syntax
__property String SSLCertPrivateKey = { read=FSSLCertPrivateKey };
Default Value
""
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The SSLCertPrivateKey may be available but not exportable. In this case, SSLCertPrivateKey returns an empty string.
This property is read-only and not available at design time.
Data Type
String
SSLCertPrivateKeyAvailable Property (IVR Component)
Whether a PrivateKey is available for the selected certificate.
Syntax
__property bool SSLCertPrivateKeyAvailable = { read=FSSLCertPrivateKeyAvailable };
Default Value
false
Remarks
Whether a SSLCertPrivateKey is available for the selected certificate. If SSLCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only and not available at design time.
Data Type
Boolean
SSLCertPrivateKeyContainer Property (IVR Component)
The name of the PrivateKey container for the certificate (if available).
Syntax
__property String SSLCertPrivateKeyContainer = { read=FSSLCertPrivateKeyContainer };
Default Value
""
Remarks
The name of the SSLCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only and not available at design time.
Data Type
String
SSLCertPublicKey Property (IVR Component)
The public key of the certificate.
Syntax
__property String SSLCertPublicKey = { read=FSSLCertPublicKey };
Default Value
""
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only and not available at design time.
Data Type
String
SSLCertPublicKeyAlgorithm Property (IVR Component)
The textual description of the certificate's public key algorithm.
Syntax
__property String SSLCertPublicKeyAlgorithm = { read=FSSLCertPublicKeyAlgorithm };
Default Value
""
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only and not available at design time.
Data Type
String
SSLCertPublicKeyLength Property (IVR Component)
The length of the certificate's public key (in bits).
Syntax
__property int SSLCertPublicKeyLength = { read=FSSLCertPublicKeyLength };
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only and not available at design time.
Data Type
Integer
SSLCertSerialNumber Property (IVR Component)
The serial number of the certificate encoded as a string.
Syntax
__property String SSLCertSerialNumber = { read=FSSLCertSerialNumber };
Default Value
""
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only and not available at design time.
Data Type
String
SSLCertSignatureAlgorithm Property (IVR Component)
The text description of the certificate's signature algorithm.
Syntax
__property String SSLCertSignatureAlgorithm = { read=FSSLCertSignatureAlgorithm };
Default Value
""
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only and not available at design time.
Data Type
String
SSLCertStore Property (IVR Component)
The name of the certificate store for the client certificate.
Syntax
__property String SSLCertStore = { read=FSSLCertStore, write=FSetSSLCertStore }; __property DynamicArray<Byte> SSLCertStoreB = { read=FSSLCertStoreB, write=FSetSSLCertStoreB };
Default Value
"MY"
Remarks
The name of the certificate store for the client certificate.
The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password-protected, specify the password in SSLCertStorePassword.
SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
This property is not available at design time.
Data Type
Byte Array
SSLCertStorePassword Property (IVR Component)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
__property String SSLCertStorePassword = { read=FSSLCertStorePassword, write=FSetSSLCertStorePassword };
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
This property is not available at design time.
Data Type
String
SSLCertStoreType Property (IVR Component)
The type of certificate store for this certificate.
Syntax
__property TipvIVRSSLCertStoreTypes SSLCertStoreType = { read=FSSLCertStoreType, write=FSetSSLCertStoreType };
enum TipvIVRSSLCertStoreTypes { cstUser=0, cstMachine=1, cstPFXFile=2, cstPFXBlob=3, cstJKSFile=4, cstJKSBlob=5, cstPEMKeyFile=6, cstPEMKeyBlob=7, cstPublicKeyFile=8, cstPublicKeyBlob=9, cstSSHPublicKeyBlob=10, cstP7BFile=11, cstP7BBlob=12, cstSSHPublicKeyFile=13, cstPPKFile=14, cstPPKBlob=15, cstXMLFile=16, cstXMLBlob=17, cstJWKFile=18, cstJWKBlob=19, cstSecurityKey=20, cstBCFKSFile=21, cstBCFKSBlob=22, cstPKCS11=23, cstAuto=99 };
Default Value
cstUser
Remarks
The type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CERTMGR component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
This property is not available at design time.
Data Type
Integer
SSLCertSubjectAltNames Property (IVR Component)
Comma-separated lists of alternative subject names for the certificate.
Syntax
__property String SSLCertSubjectAltNames = { read=FSSLCertSubjectAltNames };
Default Value
""
Remarks
Comma-separated lists of alternative subject names for the certificate.
This property is read-only and not available at design time.
Data Type
String
SSLCertThumbprintMD5 Property (IVR Component)
The MD5 hash of the certificate.
Syntax
__property String SSLCertThumbprintMD5 = { read=FSSLCertThumbprintMD5 };
Default Value
""
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only and not available at design time.
Data Type
String
SSLCertThumbprintSHA1 Property (IVR Component)
The SHA-1 hash of the certificate.
Syntax
__property String SSLCertThumbprintSHA1 = { read=FSSLCertThumbprintSHA1 };
Default Value
""
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only and not available at design time.
Data Type
String
SSLCertThumbprintSHA256 Property (IVR Component)
The SHA-256 hash of the certificate.
Syntax
__property String SSLCertThumbprintSHA256 = { read=FSSLCertThumbprintSHA256 };
Default Value
""
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only and not available at design time.
Data Type
String
SSLCertUsage Property (IVR Component)
The text description of UsageFlags .
Syntax
__property String SSLCertUsage = { read=FSSLCertUsage };
Default Value
""
Remarks
The text description of SSLCertUsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only and not available at design time.
Data Type
String
SSLCertUsageFlags Property (IVR Component)
The flags that show intended use for the certificate.
Syntax
__property int SSLCertUsageFlags = { read=FSSLCertUsageFlags };
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of SSLCertUsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the SSLCertUsage property for a text representation of SSLCertUsageFlags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only and not available at design time.
Data Type
Integer
SSLCertVersion Property (IVR Component)
The certificate's version number.
Syntax
__property String SSLCertVersion = { read=FSSLCertVersion };
Default Value
""
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only and not available at design time.
Data Type
String
SSLCertSubject Property (IVR Component)
The subject of the certificate used for client authentication.
Syntax
__property String SSLCertSubject = { read=FSSLCertSubject, write=FSetSSLCertSubject };
Default Value
""
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
This property is not available at design time.
Data Type
String
SSLCertEncoded Property (IVR Component)
The certificate (PEM/Base64 encoded).
Syntax
__property String SSLCertEncoded = { read=FSSLCertEncoded, write=FSetSSLCertEncoded }; __property DynamicArray<Byte> SSLCertEncodedB = { read=FSSLCertEncodedB, write=FSetSSLCertEncodedB };
Default Value
""
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.
When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Byte Array
User Property (IVR Component)
The username that is used when connecting to the SIP Server.
Syntax
__property String User = { read=FUser, write=FSetUser };
Default Value
""
Remarks
This property contains the username of the client attempting to connect to the SIP Server. This value will be used when activating the component via Activate.
This property is not available at design time.
Data Type
String
Activate Method (IVR Component)
Activates the component.
Syntax
void __fastcall Activate();
Remarks
This method is used to activate the component by registering to a SIP Server specified in the Server and Port properties. The username and password of the SIP Server must be provided via User and Password properties for authorization, if applicable.
Example:
ipphone.User = "MyUsername";
ipphone.Password = "MyPassword";
ipphone.Server = "HostNameOrIP";
ipphone.Port = 5060;
ipphone.Activate();
Upon successful activation, the Activated event will fire.
Answer Method (IVR Component)
Answers an incoming phone call.
Syntax
void __fastcall Answer(String CallId);
Remarks
This method can be used to answer an incoming phone call, specified by CallId. This method can be used in conjunction with the IncomingCall event, for example:
ipphone.onIncomingCall += (sender, e) => {
ipphone.Answer(e.CallId);
};
If successful, CallReady will fire.
Config Method (IVR Component)
Sets or retrieves a configuration setting.
Syntax
String __fastcall Config(String ConfigurationString);
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Deactivate Method (IVR Component)
Deactivates the component.
Syntax
void __fastcall Deactivate();
Remarks
This method is used to unregister the component from the SIP Server. If deactivation is successful, Deactivated will fire.
Decline Method (IVR Component)
Declines an incoming phone call.
Syntax
void __fastcall Decline(String CallId);
Remarks
This method can be used to decline an incoming phone call, specified by CallId. This method can be used in conjunction with the IncomingCall event, for example:
ipphone.onIncomingCall += (sender, e) => {
ipphone.Decline(e.CallId);
};
Dial Method (IVR Component)
Used to make a call.
Syntax
String __fastcall Dial(String Number, String CallerNumber, bool Wait);
Remarks
This method is used to make a call to a particular user, given by Number. This method should only be called after the component has been successfully activated via Activate. Initially, the OutgoingCall event will fire after calling this method. DialCompleted may fire when the dial process is complete. If successful, CallReady will fire after the outgoing call has been answered, declined, or ignored. If the call is declined or ignored, the component will be sent to voicemail, which can be ended with Hangup.
The CallerNumber parameter specifies the optional caller ID. If given, the P-Asserted-Identity Header, specified in RFC 3325, will be sent in requests to the connected SIP Server. If left as an empty string, this header will not be sent.
The Wait parameter specifies whether the component should connect synchronously or asynchronously to the call. If True, the component will connect synchronously, and won't return until the call has been answered, declined, or ignored. If False, the component will connect asynchronously. The call's status can be checked through various events, such as OutgoingCall, CallReady, and CallStateChanged, or found in the call's State field. Exceptions throughout the call process will be reported in DialCompleted, along with other call details.
NOTE: This method will return the CallId field of the call. This returned value may not always reflect the accurate CallId. In the case that Wait is true, this method will always return the accurate value. In the case that Wait is false, the returned value may not be accurate if the outgoing call is forwarded, or redirected, as the component must change this field. Both the updated and original CallId will be present within the DialCompleted event. Any references to the original CallId must be updated accordingly. Please see DialCompleted for more details. The below examples assume the outgoing call has been answered:
Example: "wait" is true
string callId = "";
bool connected = false;
ipphone.OnCallReady += (sender, e) => {
connected = true;
}
try {
callId = ipphone.Dial("123456789", "", true);
} catch (IPWorksVoIPException e) {
MessageBox.Show(e.Code + ": " + e.Message);
}
if (connected) {
ipphone.PlayText(callId, "Hello");
}
Example: "wait" is false
bool connected = false;
string callId = "";
ipphone.OnDialCompleted += (sender, e) => {
if (e.ErrorCode != 0) {
MessageBox.Show(e.ErrorCode + ": " + e.Description);
// Handle error
}
if (e.OriginalCallId != e.CallId) {
callId = e.CallId; // Update callId if redirect occurred
}
}
ipphone.OnCallReady += (sender, e) => {
connected = true;
}
string callId = ipphone.Dial("123456789", "", false);
...
...
...
// Somewhere else...
if (connected) {
ipphone.PlayText(callId, "Hello");
}
DoEvents Method (IVR Component)
This method processes events from the internal message queue.
Syntax
void __fastcall DoEvents();
Remarks
When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Hangup Method (IVR Component)
Used to hang up a specific call.
Syntax
void __fastcall Hangup(String CallId);
Remarks
This method is used to terminate a specific call, specified by CallId. After the call has been successfully terminated, CallTerminated will fire.
HangupAll Method (IVR Component)
Used to hang up all calls.
Syntax
void __fastcall HangupAll();
Remarks
This method is used to terminate all calls currently in the Call* properties. CallTerminated will fire for each successfully terminated call.
Hold Method (IVR Component)
Places a call on hold.
Syntax
void __fastcall Hold(String CallId);
Remarks
This method is used to place a call, specified by CallId, on hold.
Ping Method (IVR Component)
Used to ping the server.
Syntax
void __fastcall Ping(int Timeout);
Remarks
This method is used to ping the SIP server by sending an OPTIONS request. If no server response is received by the component in Timeout seconds, Ping will throw an error.
Note this method is only applicable when the component is active.
PlayBytes Method (IVR Component)
This method is used to play bytes to a call.
Syntax
void __fastcall PlayBytes(String CallId, DynamicArray<Byte> BytesToPlay, bool LastBlock);
Remarks
This method is used to play bytes to a call, specified by the CallId parameter. These bytes are expected to have a sampling rate of 8 kHz and a bit depth of 16 bits per sample (PCM 8 kHz 16-bit format). The BytesToPlay parameter specifies the bytes that will be sent to the call. Internally, these bytes will be stored within a buffer. Once all bytes have played and the buffer is empty, the Played event will fire.
The LastBlock parameter indicates whether the component will expect further uses of PlayBytes. When true, this indicates that no additional bytes will be provided for this particular audio stream, and Played will fire once after the bytes have been played. Until this parameter is specified as true, the component will be considered to be playing audio.
If LastBlock is false, this indicates that the component should expect more calls to PlayBytes. Once all bytes have played and the buffer is empty, Played will fire as expected, and will continue firing until the LastBlock parameter is set to true. Within Played, the user can provide further bytes to PlayBytes. Please see below for detailed examples on how to use this method with Played.
Example: Playing audio from a stream
MemoryStream playBytesStream = new MemoryStream(byteSource);
phone.PlayBytes("callId", new byte[0], false);
phone.OnPlayed += (o, e) => {
if (e.Completed) {
Console.WriteLine("Playing Bytes Completed");
} else {
byte[] data = new byte[4096]; // Arbitrary length
int dataLen = playBytesStream.Read(data, 0, data.Length);
if (dataLen > 0) {
byte[] newData = new byte[dataLen];
Array.Copy(data, newData, dataLen) // Normalize array
phone.PlayBytes(e.CallId, newData, false);
} else {
phone.PlayBytes(e.CallId, null, true);
}
}
};
Exmaple: Playing single audio block
MemoryStream playBytesStream = new MemoryStream(byteSource);
phone.PlayBytes("callId", playBytesStream.ToArray(), true);
phone.OnPlayed += (o, e) => {
Console.WriteLine("Done!"); // No further calls to PlayBytes are expected in this case
}
PlayFile Method (IVR Component)
Plays audio from a WAV file to a call.
Syntax
void __fastcall PlayFile(String CallId, String WavFile);
Remarks
This method is used to play the audio from a WAV file to a particular call, given by CallId. Audio transmission will only occur when the call has connected and CallReady has fired. Only WAV files with a sampling rate of 8 kHz and a bit depth of 16 bits per sample are supported (PCM 8 kHz 16-bit format).
Note that this component can handle playing audio to concurrent calls. This method is non-blocking and will return immediately. The Played event will fire when the audio for the specified call has finished playing. Consecutive uses of PlayText or PlayFile can prevent prior audio transmissions from being completed. In the below example, Played will only fire for the second call to PlayText:
ipphone.PlayFile("callId", "C:\\hello.wav"); // Played will not fire for this
ipphone.PlayText("callId", "This will interrupt the previous use if it has not finished playing.");
The WavFile parameter specifies the path to the WAV file.
PlayText Method (IVR Component)
Plays audio from a string to a call using Text-to-Speech.
Syntax
void __fastcall PlayText(String CallId, String Text);
Remarks
This method is used to play the text from a string to a particular call, given by CallId, using Text-to-Speech. Audio transmission will only occur when the call has connected and CallReady has fired.
Note that this component can handle playing audio to concurrent calls. This method is non-blocking and will return immediately. The Played event will fire when the audio for the specified call has finished playing. Consecutive uses of PlayText and PlayFile can prevent prior audio transmissions from completing. In the below example, Played will only fire for the second call to PlayText:
ipphone.PlayFile("callId", "C:\\hello.wav"); // Played will not fire for this
ipphone.PlayText("callId", "This will interrupt the previous use if it has not finished playing.");
The Text parameter must be a string representation of the text to be transmitted.
Reset Method (IVR Component)
This method will reset the component.
Syntax
void __fastcall Reset();
Remarks
This method will reset the component's properties to their default values.
StartRecording Method (IVR Component)
Used to start recording the audio of a call.
Syntax
void __fastcall StartRecording(String CallId, String FileName);
Remarks
This method is used to start recording the incoming and outgoing audio of a call, specified by CallId. If you wish to record the audio to file, you may specify the Filename parameter. Note that when this parameter is specified, you must record to a WAV file.
You may also leave the Filename parameter blank if you want more direct control over the recorded data. This will cause the Record event to fire containing the call's audio data once the recording is finished.
In both scenarios, you can stop recording the call's audio via StopRecording. By default, the recording will end if the call is terminated. Note the recorded audio will have a sampling rate of 8 kHz and a bit depth of 16 bits per sample (PCM 8 kHz 16-bit format).
Example: Using the 'Record' event
MemoryStream recordStream = new MemoryStream();
phone.StartRecording("callId", "");
phone.OnRecord += (o, e) => {
recordStream.Write(e.RecordedDataB, 0, e.RecordedDataB.Length);
File.WriteAllBytes(recordFile, recordStream.ToArray());
};
StopPlaying Method (IVR Component)
Stops audio from playing to a call.
Syntax
void __fastcall StopPlaying(String CallId);
Remarks
This method is used to stop the audio playing to a call, given by CallId. Note that this will not stop audio from transmitting with an external device set using SetMicrophone, however, will stop audio transmitting from usage of PlayText, PlayFile, and PlayBytes.
Note that Played will not fire when this method is used.
StopRecording Method (IVR Component)
Stops recording the audio of a call.
Syntax
void __fastcall StopRecording(String CallId);
Remarks
This method is used to stop recording the audio of a call, given by CallId. The component will automatically stop recording upon call termination.
Transfer Method (IVR Component)
Transfers a call.
Syntax
void __fastcall Transfer(String CallId, String Number);
Remarks
This method is used to transfer a call, specified by CallId, to the phone number given by Number. The component supports the following types of transfers:
Basic Transfers
Basic transfers are very simple to perform. First, the user must establish a call with the number they will be transferring (transferee). After the call is established, the user can transfer the call to the appropriate number (transfer target). The call will then be removed. For example:
string callId = ipphone1.Dial("123456789", "", true); // Establish call with transferee, hold if needed
//ipphone1.Hold(callId);
ipphone1.Transfer(callId, "number");
Attended Transfers
Typically, attended transfers are used to manually check if the Number (or transfer target) is available for a call, provide extra information about the call, etc., before transferring. In addition to establishing a call with the transferee, the component must also establish a call with the transfer target. Once both of these calls are active, you may perform an attended transfer by calling Transfer at any moment. Afterwards, a session between these calls will be established and they will be removed. Note that Transfer must be used with the CallId of the call you wish to transfer (transferee) and the Number of the call you wish to transfer to (transfer target). For example:
string callId1 = ipphone1.Dial("123456789", "", true); // Establish call with Transferee, hold if needed
//ipphone1.Hold(callId1);
string callId2 = ipphone1.Dial("number", "", true); // Establish call with Transfer Target, hold if needed
//ipphone1.Hold(callId2);
ipphone1.Transfer(callId1, "number");
Note in these examples, Hold can be used to place a call on hold before a transfer. This is optional.
Unhold Method (IVR Component)
Takes a call off hold.
Syntax
void __fastcall Unhold(String CallId);
Remarks
This method is used to take a call, specified by CallId, off hold.
Activated Event (IVR Component)
This event is fired immediately after the component is activated.
Syntax
typedef struct { } TipvIVRActivatedEventParams; typedef void __fastcall (__closure *TipvIVRActivatedEvent)(System::TObject* Sender, TipvIVRActivatedEventParams *e); __property TipvIVRActivatedEvent OnActivated = { read=FOnActivated, write=FOnActivated };
Remarks
The Activated event will fire after the component has successfully registered with the SIP Server via Activate.
CallReady Event (IVR Component)
This event is fired after a call has been answered, declined, or ignored.
Syntax
typedef struct { String CallId; } TipvIVRCallReadyEventParams; typedef void __fastcall (__closure *TipvIVRCallReadyEvent)(System::TObject* Sender, TipvIVRCallReadyEventParams *e); __property TipvIVRCallReadyEvent OnCallReady = { read=FOnCallReady, write=FOnCallReady };
Remarks
For all calls, this event will fire when audio can be transmitted and received. For incoming calls, it will fire after the call has been answered.
For outgoing calls, this event will fire after the call has either been answered, declined, or ignored. In the case that the call is declined or ignored, it will fire and the component will be sent to voicemail. Hangup can be used to end the call in all scenarios.
Note that this event will fire after OutgoingCall and DialCompleted, assuming Dial was successful.
The CallId parameter is the unique Id of the call.
CallStateChanged Event (IVR Component)
This event is fired after a call's state has changed.
Syntax
typedef struct { String CallId; int State; } TipvIVRCallStateChangedEventParams; typedef void __fastcall (__closure *TipvIVRCallStateChangedEvent)(System::TObject* Sender, TipvIVRCallStateChangedEventParams *e); __property TipvIVRCallStateChangedEvent OnCallStateChanged = { read=FOnCallStateChanged, write=FOnCallStateChanged };
Remarks
The CallStateChanged event will fire each time the state of a call has changed.
The CallId parameter is the unique Id of the call.
The State parameter denotes the state the call has changed to. The following values are applicable:
csInactive (0) | The call is inactive (default setting). |
csConnecting (1) | The call is establishing a connection to the callee. |
csAutConnecting (2) | The call is establishing a connection to the callee with authorization credentials. |
csRinging (3) | The call is ringing. |
csActive (4) | The call is active. |
csActiveInConference (5) | The call is active and in a conference. |
csDisconnecting (6) | The call is disconnecting with the callee. |
csAutDisconnecting (7) | The call is disconnecting with the callee with authorization credentials. |
csHolding (8) | The call is currently being placed on hold, but the Hold operation has not finished. |
csOnHold (9) | The call is currently on hold. |
csUnholding (10) | The call is currently being unheld, but the Unhold operation has not finished. |
csTransferring (11) | The call is currently being transferred. |
csAutTransferring (12) | The call is currently being transferred with authorization credentials. |
CallTerminated Event (IVR Component)
This event is fired after a call has been terminated.
Syntax
typedef struct { String CallId; } TipvIVRCallTerminatedEventParams; typedef void __fastcall (__closure *TipvIVRCallTerminatedEvent)(System::TObject* Sender, TipvIVRCallTerminatedEventParams *e); __property TipvIVRCallTerminatedEvent OnCallTerminated = { read=FOnCallTerminated, write=FOnCallTerminated };
Remarks
The CallTerminated event will fire after a call has been terminated by either end of the call.
The CallId parameter is the unique Id of the call.
Deactivated Event (IVR Component)
This event is fired immediately after the component is deactivated.
Syntax
typedef struct { } TipvIVRDeactivatedEventParams; typedef void __fastcall (__closure *TipvIVRDeactivatedEvent)(System::TObject* Sender, TipvIVRDeactivatedEventParams *e); __property TipvIVRDeactivatedEvent OnDeactivated = { read=FOnDeactivated, write=FOnDeactivated };
Remarks
The Deactivated event will fire after the component has unregistered from the SIP Server via Deactivate.
DialCompleted Event (IVR Component)
This event is fired after the dial process has finished.
Syntax
typedef struct { String OriginalCallId; String CallId; String Caller; String Callee; int ErrorCode; String Description; } TipvIVRDialCompletedEventParams; typedef void __fastcall (__closure *TipvIVRDialCompletedEvent)(System::TObject* Sender, TipvIVRDialCompletedEventParams *e); __property TipvIVRDialCompletedEvent OnDialCompleted = { read=FOnDialCompleted, write=FOnDialCompleted };
Remarks
This event will fire when the dial process, initiated by calling Dial, has completed. Note that this event will not fire if an exception occurs when the "wait" parameter of Dial is true. In this case, the component will throw an exception. However, it will fire if "wait" is true and no exception occurs, indicating Dial was successful.
The OriginalCallId parameter is the value returned by Dial.
The value of the CallId parameter depends on the redirection status of the call. There are two scenarios:
- The outgoing call has not been redirected. In this case, CallId is equal to OriginalCallId, and the value returned by Dial is correct.
- The outgoing call has been redirected any number of times. In this case, the OriginalCallId is no longer applicable, and the CallId parameter is the new unique identifier for this call. Any reference to the past value, OriginalCallId, should be updated accordingly to reflect the change due to redirection. This would also include references to the original value returned by Dial.
Errors during the dial process are reported via the ErrorCode and Description parameters. An error code of 0 and description of "Dialed Successfully" indicate Dial has completed with no issues. A list of error codes can be found in the Error Codes section. In the case of a non-zero ErrorCode, the Description parameter will contain the error message (and SIP response code, if applicable), for example, "Dial Timeout" or "486: Busy Here".
Digit Event (IVR Component)
This event fires every time a digit is pressed using the keypad.
Syntax
typedef struct { String CallId; String Digit; } TipvIVRDigitEventParams; typedef void __fastcall (__closure *TipvIVRDigitEvent)(System::TObject* Sender, TipvIVRDigitEventParams *e); __property TipvIVRDigitEvent OnDigit = { read=FOnDigit, write=FOnDigit };
Remarks
The Digit event will fire after every detected keypad input from a call.
The detected input will be present in the Digit parameter. Note, this event will not fire after the component's inputs via TypeDigit. Detectable inputs include: 0-9, *, #
The CallId parameter is the unique Id of the call.
Error Event (IVR Component)
Fired when information is available about errors during data delivery.
Syntax
typedef struct { int ErrorCode; String Description; } TipvIVRErrorEventParams; typedef void __fastcall (__closure *TipvIVRErrorEvent)(System::TObject* Sender, TipvIVRErrorEventParams *e); __property TipvIVRErrorEvent OnError = { read=FOnError, write=FOnError };
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the component raises an exception.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
IncomingCall Event (IVR Component)
This event is fired when an incoming call is received.
Syntax
typedef struct { String CallId; String RemoteUser; String RequestURI; String ToURI; } TipvIVRIncomingCallEventParams; typedef void __fastcall (__closure *TipvIVRIncomingCallEvent)(System::TObject* Sender, TipvIVRIncomingCallEventParams *e); __property TipvIVRIncomingCallEvent OnIncomingCall = { read=FOnIncomingCall, write=FOnIncomingCall };
Remarks
The IncomingCall event will fire when an incoming call is received.
The CallId parameter specifies the unique Id of the call, and can be used to Answer or Decline the call.
The RemoteUser parameter indicates the username or telephone number of the remote user associated with the call.
The RequestURI parameter specifies the contact information of the current recipient associated with the call. This parameter is typically of the format sip:user@domain:port.
The ToURI parameter specifies the URI present in the To header. This URI contains the contact information information of the original recipient associated with the call. This parameter is typically of the format sip:user@domain.
Note the user and domain within the ToURI indicate the original recipient of the call as initially specified by the caller. This value may not reflect the current (or final) recipient of the call as denoted by the RequestURI.
Log Event (IVR Component)
This event is fired once for each log message.
Syntax
typedef struct { int LogLevel; String Message; String LogType; } TipvIVRLogEventParams; typedef void __fastcall (__closure *TipvIVRLogEvent)(System::TObject* Sender, TipvIVRLogEventParams *e); __property TipvIVRLogEvent OnLog = { read=FOnLog, write=FOnLog };
Remarks
This event fires once for each log message generated by the component. The verbosity is controlled by the LogLevel configuration.
LogLevel indicates the detail level of the message. Possible values are:
0 (None) | No messages are logged. |
1 (Info - Default) | Informational events such as a call's status are logged. |
2 (Verbose) | Detailed data such as SIP/SDP packet information is logged. |
3 (Debug) | Debug data including all relevant sent and received audio bytes are logged. |
Message is the log message.
LogType identifies the type of log entry. Possible values are as follows:
- Info
- Packet
- RTP
OutgoingCall Event (IVR Component)
This event is fired when an outgoing call has been made.
Syntax
typedef struct { String CallId; String RemoteUser; } TipvIVROutgoingCallEventParams; typedef void __fastcall (__closure *TipvIVROutgoingCallEvent)(System::TObject* Sender, TipvIVROutgoingCallEventParams *e); __property TipvIVROutgoingCallEvent OnOutgoingCall = { read=FOnOutgoingCall, write=FOnOutgoingCall };
Remarks
The OutgoingCall event is fired when an outgoing call has been made using Dial. This event signifies the start of the invite process.
The CallId parameter is the unique Id of the call.
The RemoteUser parameter indicates the username or telephone number of the remote user associated with the call.
Played Event (IVR Component)
This event is fired after the component finishes playing available audio.
Syntax
typedef struct { String CallId; bool Completed; } TipvIVRPlayedEventParams; typedef void __fastcall (__closure *TipvIVRPlayedEvent)(System::TObject* Sender, TipvIVRPlayedEventParams *e); __property TipvIVRPlayedEvent OnPlayed = { read=FOnPlayed, write=FOnPlayed };
Remarks
The Played event will fire after the component finishes playing available audio to a call. When using PlayText or PlayFile, Completed will always be true. However, this will not always be the case when using PlayBytes.
When playing audio via PlayBytes, this event will fire when the internal byte queue is empty. In the event that the internal byte queue is empty, and the component is still expecting calls to PlayBytes (i.e., lastBlock is false), this event will continue to fire with the Completed parameter as false. In this case, additional bytes are expected to be provided. Completed will be true once all bytes have been played and the component is no longer expecting calls to PlayBytes (i.e., lastBlock is true). Please see the method description for more details.
The CallId parameter is the unique Id of the call.
Record Event (IVR Component)
This event is fired when recorded audio data is available.
Syntax
typedef struct { String CallId; String RecordedData; DynamicArray<Byte> RecordedDataB; } TipvIVRRecordEventParams; typedef void __fastcall (__closure *TipvIVRRecordEvent)(System::TObject* Sender, TipvIVRRecordEventParams *e); __property TipvIVRRecordEvent OnRecord = { read=FOnRecord, write=FOnRecord };
Remarks
This event is fired when a call's recorded data is available. This data is made available when either StopRecording is called or the call is terminated. Note that for this event to fire, StartRecording must be specified with no filename parameter.
The recorded data will be available in the RecordedData and RecordedDataB parameters, and will have a sampling rate of 8 kHz and a bit depth of 16 bits per sample (PCM 8 kHz 16-bit format).
The CallId parameter is the unique Id of the call.
Silence Event (IVR Component)
This event is fired when the component detects silence from incoming audio streams.
Syntax
typedef struct { String CallId; } TipvIVRSilenceEventParams; typedef void __fastcall (__closure *TipvIVRSilenceEvent)(System::TObject* Sender, TipvIVRSilenceEventParams *e); __property TipvIVRSilenceEvent OnSilence = { read=FOnSilence, write=FOnSilence };
Remarks
The Silence event will fire every second the component detects silence from a call's incoming audio stream. Note that this event can fire while an outgoing call is ringing.
The CallId parameter is the unique Id of the call.
SSLServerAuthentication Event (IVR Component)
Fired after the server presents its certificate to the client.
Syntax
typedef struct { String CertEncoded; DynamicArray<Byte> CertEncodedB; String CertSubject; String CertIssuer; String Status; bool Accept; } TipvIVRSSLServerAuthenticationEventParams; typedef void __fastcall (__closure *TipvIVRSSLServerAuthenticationEvent)(System::TObject* Sender, TipvIVRSSLServerAuthenticationEventParams *e); __property TipvIVRSSLServerAuthenticationEvent OnSSLServerAuthentication = { read=FOnSSLServerAuthentication, write=FOnSSLServerAuthentication };
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (IVR Component)
Fired when secure connection progress messages are available.
Syntax
typedef struct { String Message; } TipvIVRSSLStatusEventParams; typedef void __fastcall (__closure *TipvIVRSSLStatusEvent)(System::TObject* Sender, TipvIVRSSLStatusEventParams *e); __property TipvIVRSSLStatusEvent OnSSLStatus = { read=FOnSSLStatus, write=FOnSSLStatus };
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
Config Settings (IVR Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.IPPhone Config Settings
This configuration is used to indicate the direction of available recorded audio when dynamic recording is enabled via EnableDynamicRecording. When EnableDynamicRecording is enabled and StartRecording has been called with no filename parameter, this configuration can be queried within Record to determine whether the recorded audio data is incoming or outgoing audio. A value of "0" indicates the audio is outgoing. A value of "1" indicates the audio is incoming. Aside from the above case, this configuration should not be interpreted elsewhere.
This configuration is used to specify the username to be used when authenticating a SIP client, for example, when registering or initiating a call. When specified, this value will replace the User property within the Authorization and Proxy-Authorization headers sent in the mentioned requests.
By default, this value is empty, and the User property will be used within the mentioned headers.
This configuration contains a comma-separated list of codecs, represented as integers, that the component can use to compress call data. By default, this value is:
8,0,3
The following integers correspond to these supported codecs:
0 | PCMU (G711MU) |
3 | GSM |
8 | PCMA (G711A) |
This configuration is used to specify the status to send when declining an incoming call. By default, this configuration will be empty and the component will send 486 Busy Here when calling Decline. Valid responses when declining a call can be found in RFC 3261 Section 21. Note this configuration must be set to the response code and description, for example:
Component.Config("DeclineStatus=600 Busy Everywhere")
This configuration is used to specify the amount of time (in seconds) the component will wait for the outgoing call to be answered, declined, or ignored when using Dial. Note this value will be 60 by default.
When using Dial with the Wait parameter as false, the timeout will be reported within DialCompleted.
This configuration is used to specify the WAV file to play when making a call. Once the call is answered or terminated, the file will stop playing. Note this file will play when making a call, but only in the case that early media has not been established by the server. In the event the server has established early media, the server's dial tone will be heard instead. Only WAV files with a sampling rate of 8 kHz and a bit depth of 16 bits per sample are supported (PCM 8 kHz 16-bit format).
This configuration can be used to disable SIP registration. By default, this configuration is set to False and registration is enabled. When set to True and Activate is called, the component will attempt to establish a connection with the server using the underlying transport protocol specified by SIPTransportProtocol. After a successful connection, the component will be considered active until the connection is removed by either end.
Note: It is recommended to enable this configuration only if SIPTransportProtocol is set to TCP or TLS.
This configuration is used to specify the domain name the component will use in SIP requests, if needed. By default this value will be empty.
This configuration is used to describe the method being used to transmit the signals/tones when calling TypeDigit. Possible values of supported methods are:
1 | Inband (Default) |
2 | RFC 2833 |
3 | Info (SIP Info) |
This configuration is used to specify whether dynamic recording is enabled when recording a call. By default, this configuration is disabled (false). When enabled (true), and StartRecording was called with no filename parameter specified, Record will fire when incoming audio is sent and received. Within Record, the data will either be incoming or outgoing audio. This can be determined by querying the AudioDirection configuration.
This configuration controls whether the component will log encoded audio data when LogLevel is set to 3 (Debug). By default, this configuration is false, and the component will only log raw audio data.
This configuration controls the level of detail that is logged through the Log event. Possible values are:
0 (None) | No messages are logged. |
1 (Info - Default) | Informational events such as a call's status are logged. |
2 (Verbose) | Detailed data such as SIP/SDP packet information is logged. |
3 (Debug) | Debug data including all relevant sent and received audio bytes are logged. |
This configuration controls whether the component will log received RTP packets when LogLevel is set to 3 (Debug). By default, this configuration is false, and the component will only log audio data.
After successful activation, this config specifies the lifetime (in seconds) of the current registration as determined by the server. If RefreshInterval is set, it should be less than or equal to the value returned by this config.
This configuration sets the recording type the component will use when calling StartRecording. Possible values are 0 (Mono) and 1 (Stereo - Default).
This configuration limits the number of redirects, also known as forwards or diversions, an outgoing call can experience. If the number of redirects exceeds this value, an exception will be thrown. Note this value is 0 by default.
By default, this configuration is set to 0, and NegotiatedRegistrationInterval will denote the interval at which the current registration is refreshed. When set to a positive value, this configuration denotes the interval at which the current registration is refreshed, in seconds.
If the client wishes to refresh the registration prior to the expected expiration, this configuration should be set appropriately. To do so, after successful activation, the NegotiatedRegistrationInterval should be queried to determine the existing lifetime. This configuration should then be set to a value less than or equal to the queried NegotiatedRegistrationInterval. For example:
component.Config("RefreshInterval=120"); // proposed registration lifetime
component.Activate();
int lifetime = component.Config("NegotiatedRegistrationInterval"); // negotiated registration lifetime
// Refresh the registration halfway through its lifetime.
component.Config("RefreshInterval=" + (lifetime / 2));
Prior to activation, this config can be used to specify the clients desired lifetime for the current registration, in seconds. Note that this is merely a suggestion to the server, as the server determines the final lifetime of the registration. By default, this config is set to 60.
After successfully calling Activate, the NegotiatedRegistrationInterval config will contain the actual, negotiated lifetime of the registration.
This configuration is used to specify a WAV file to play when receiving an incoming call. The ringtone will play until all incoming calls are answered declined, or ignored. Only WAV files with a sampling rate of 8 kHz and a bit depth of 16 bits per sample are supported (PCM 8 kHz 16-bit format).
This configuration is used to specify the interval (in milliseconds) that the component uses to detect silence from a call's incoming audio stream. This will also directly control the rate that Silence will fire in the case silence is detected. Note this value is 1000 by default.
This configuration sets the port of the corresponding STUNServer. This value will be 3478 by default.
This configuration sets the address of the STUN Server the component will use to communicate with the SIP Server.
When calling Activate, this configuration will specify whether the component will unregister with the SIP Server before the initial registration. If False (default), the component will not attempt to unregister first, and will only perform registration.
This config specifies information about the user agent (client). The value specified here will be supplied in the SIP User-Agent header.
By default, this value is empty, and no User-Agent header will be sent. If set, the User-Agent header will be present in all outgoing requests.
This configuration sets the voice that will be used when calling PlayText. The available voice tokens are listed in the registry under HKEY_LOCAL_MACHINE\\SOFTWARE\\Microsoft\\Speech\\Voices\\Tokens. Note this value will be 0 by default.
This configuration specifies the speaking rate of the voice when calling PlayText. Supported values range from -10 (slowest) to 10 (fastest). Note this value will be 0 by default.
UDP Config Settings
If this is set to True, the component will capture the IP packet information.
The default value for this setting is False.
Note: This configuration setting is available only in Windows.
This configuration setting specifies whether a hostname is resolved immediately when RemoteHost is set. If true the component will resolve the hostname and the IP address will be present in the RemoteHost property. If false, the hostname is not resolved until needed by the component when a method to connect or send data is called. If desired, ResolveRemoteHost may be called to manually resolve the value in RemoteHost at any time.
The default value is false.
If CaptureIPPacketInfo is set to True, then this will be populated with the packet's destination address when a packet is received. This information will be accessible in the DataIn event.
Note: This configuration setting is available only in Windows.
When set to True, packets sent by the component will have the Don't Fragment flag set. The default value is False.
The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.
If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
This configuration setting must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.
This configuration setting specifies the maximum size of the datagrams that the component will accept without truncation.
UseConnection must be True to use this configuration setting. This option allows you to specify an arbitrary DSCP value between 0 and 63. The default is 0. When set to the default value, the component will not set a DSCP value.
Note: This configuration setting uses the qWAVE API and is available only on Windows 7, Windows Server 2008 R2, and later.
UseConnection must be True to use this setting. You may specify either the text or integer values: BestEffort (0), Background (1), ExcellentEffort (2), AudioVideo (3), Voice (4), and Control (5).
Note: This configuration setting uses the qWAVE API and is available only on Windows Vista and Windows Server 2008 or above.
Note: QOSTrafficType must be set before setting Active to True.
This option must be set before the component is activated through the Active property or it will have no effect.
The default value for this setting is False.
This configuration setting can be used to override the source IP address when sending a packet.
Note: This configuration setting is available only in Windows and requires that the winpcap library be installed (or npcap with winpcap compatibility).
This configuration setting can be used to override the source MAC address when sending a packet.
Note: This configuration setting is available only in Windows and requires that the winpcap library be installed (or npcap with winpcap compatibility).
UseConnection specifies whether or not the component should use a connected socket. The connection is defined as an association in between the local address/port and the remote address/port. As such, this is not a connection in the traditional Transmission Control Protocol (TCP) sense. It means only that the component will send and receive data to and from the specified destination.
The default value for this setting is False.
By default, the component expects an IPv4 address for local and remote host properties, and it will create an IPv4 socket. To use IPv6 instead, set this to True.
Socket Config Settings
If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.
Note: This option is not valid for User Datagram Protocol (UDP) ports.
Determines whether timeouts are inactivity timeouts or absolute timeouts.If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.
Note: This option is not valid for User Datagram Protocol (UDP) ports.
If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.
Note: This option is not valid for User Datagram Protocol (UDP) ports.
Determines whether timeouts are inactivity timeouts or absolute timeouts.If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.
Note: This option is not valid for User Datagram Protocol (UDP) ports.
When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes). Used to send extra data to the firewall.
When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).
When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes). Used to send extra data to the firewall.
When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).
This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
The size in bytes of the incoming queue of the socket.This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
The size in bytes of the incoming queue of the socket.This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
The size in bytes of the outgoing queue of the socket.This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
The size in bytes of the outgoing queue of the socket.This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
TCPClient Config Settings
When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the component will use Timeout for establishing a connection and transmitting/receiving data.
This configuration setting is provided for use by components that do not directly expose Firewall properties.
If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the component raises an exception.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
The FirewallPort is set automatically when FirewallType is set to a valid value.
Note: This configuration setting is provided for use by components that do not directly expose Firewall properties.
Possible values are as follows:
1 | AuthDigest |
3 | AuthNone |
4 | AuthNTLM |
5 | AuthNegotiate |
Possible values are as follows:
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by components that do not directly expose Firewall properties.
If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the component raises an exception.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.
Note: This value is not applicable in macOS.
When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.
This property controls how a connection is closed. The default is True.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.
The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.
If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
This configuration setting must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.
MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.
This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:
www.google.com;www.nsoftware.com
If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.
Note: This value is not applicable in Java.
When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.
By default, this configuration setting is set to False.
When set to 0 (default), the component will use IPv4 exclusively. When set to 1, the component will use IPv6 exclusively. To instruct the component to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:
0 | IPv4 only |
1 | IPv6 only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this configuration setting has no effect if SSLProvider is set to Platform.
Controls whether SSL packets are logged when using the internal security API.When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this configuration setting has no effect if SSLProvider is set to Platform.
When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this configuration setting has no effect if SSLProvider is set to Platform.
Controls whether SSL packets are logged when using the internal security API.When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this configuration setting has no effect if SSLProvider is set to Platform.
This functionality is available only when the provider is OpenSSL.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The path to a directory containing CA certificates.This functionality is available only when the provider is OpenSSL.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
This functionality is available only when the provider is OpenSSL.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The path to a directory containing CA certificates.This functionality is available only when the provider is OpenSSL.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
This functionality is available only when the provider is OpenSSL.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
Name of the file containing the list of CA's trusted by your application.This functionality is available only when the provider is OpenSSL.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
This functionality is available only when the provider is OpenSSL.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
Name of the file containing the list of CA's trusted by your application.This functionality is available only when the provider is OpenSSL.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
This functionality is available only when the provider is OpenSSL.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
A string that controls the ciphers to be used by SSL.This functionality is available only when the provider is OpenSSL.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
This functionality is available only when the provider is OpenSSL.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
A string that controls the ciphers to be used by SSL.This functionality is available only when the provider is OpenSSL.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
This functionality is available only when the provider is OpenSSL.
By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
The data to seed the pseudo random number generator (PRNG).This functionality is available only when the provider is OpenSSL.
By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
This functionality is available only when the provider is OpenSSL.
By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
The data to seed the pseudo random number generator (PRNG).This functionality is available only when the provider is OpenSSL.
By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to True, the component will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the component is the same.
If set to True, the component will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the component is the same.
If set to True, the component will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the component is the same.
If set to True, the component will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the component is the same.
This configuration setting specifies the paths on disk to CA certificate files on Unix/Linux.
The value is formatted as a list of paths separated by semicolons. The component will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is as follows:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
The paths to CA certificate files on Unix/Linux.This configuration setting specifies the paths on disk to CA certificate files on Unix/Linux.
The value is formatted as a list of paths separated by semicolons. The component will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is as follows:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
This configuration setting specifies the paths on disk to CA certificate files on Unix/Linux.
The value is formatted as a list of paths separated by semicolons. The component will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is as follows:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
The paths to CA certificate files on Unix/Linux.This configuration setting specifies the paths on disk to CA certificate files on Unix/Linux.
The value is formatted as a list of paths separated by semicolons. The component will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is as follows:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificates to be included when performing an SSL handshake.
When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificates to be included when performing an SSL handshake.
When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
This configuration setting specifies whether the component will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the component will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The component will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component raises an exception.
When set to 0 (default), the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
Whether to check the Certificate Revocation List for the server certificate.This configuration setting specifies whether the component will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the component will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The component will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component raises an exception.
When set to 0 (default), the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
This configuration setting specifies whether the component will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the component will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The component will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component raises an exception.
When set to 0 (default), the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
Whether to check the Certificate Revocation List for the server certificate.This configuration setting specifies whether the component will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the component will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The component will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component raises an exception.
When set to 0 (default), the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
This configuration setting specifies whether the component will use OCSP to check the validity of the server certificate. If set to 1 or 2, the component will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The component will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the component raises an exception.
When set to 0 (default), the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
Whether to use OCSP to check the status of the server certificate.This configuration setting specifies whether the component will use OCSP to check the validity of the server certificate. If set to 1 or 2, the component will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The component will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the component raises an exception.
When set to 0 (default), the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
This configuration setting specifies whether the component will use OCSP to check the validity of the server certificate. If set to 1 or 2, the component will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The component will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the component raises an exception.
When set to 0 (default), the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
Whether to use OCSP to check the status of the server certificate.This configuration setting specifies whether the component will use OCSP to check the validity of the server certificate. If set to 1 or 2, the component will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The component will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the component raises an exception.
When set to 0 (default), the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.
Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.
The minimum cipher strength used for bulk encryption.This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.
Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.
This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.
Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.
The minimum cipher strength used for bulk encryption.This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.
Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.
This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificates to use during SSL client certificate validation.
This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificates to use during SSL client certificate validation.
This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
This configuration setting enables the cipher suites to be used in SSL negotiation.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform include the following:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include the following:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include the following:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
The cipher suite to be used in an SSL negotiation.This configuration setting enables the cipher suites to be used in SSL negotiation.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform include the following:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include the following:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include the following:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
This configuration setting enables the cipher suites to be used in SSL negotiation.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform include the following:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include the following:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include the following:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
The cipher suite to be used in an SSL negotiation.This configuration setting enables the cipher suites to be used in SSL negotiation.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform include the following:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include the following:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include the following:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
This configuration setting is used to enable or disable the supported security protocols.
Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default - Client and Server) |
TLS1.1 | 768 (Hex 300) (Default - Client) |
TLS1 | 192 (Hex C0) (Default - Client) |
SSL3 | 48 (Hex 30) |
SSL2 | 12 (Hex 0C) |
Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.
SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:
By default when TLS 1.3 is enabled, the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider), please be aware of the following notes:
- The platform provider is available only on Windows 11/Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
Used to enable/disable the supported security protocols.This configuration setting is used to enable or disable the supported security protocols.
Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default - Client and Server) |
TLS1.1 | 768 (Hex 300) (Default - Client) |
TLS1 | 192 (Hex C0) (Default - Client) |
SSL3 | 48 (Hex 30) |
SSL2 | 12 (Hex 0C) |
Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.
SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:
By default when TLS 1.3 is enabled, the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider), please be aware of the following notes:
- The platform provider is available only on Windows 11/Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This configuration setting is used to enable or disable the supported security protocols.
Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default - Client and Server) |
TLS1.1 | 768 (Hex 300) (Default - Client) |
TLS1 | 192 (Hex C0) (Default - Client) |
SSL3 | 48 (Hex 30) |
SSL2 | 12 (Hex 0C) |
Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.
SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:
By default when TLS 1.3 is enabled, the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider), please be aware of the following notes:
- The platform provider is available only on Windows 11/Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
Used to enable/disable the supported security protocols.This configuration setting is used to enable or disable the supported security protocols.
Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default - Client and Server) |
TLS1.1 | 768 (Hex 300) (Default - Client) |
TLS1 | 192 (Hex C0) (Default - Client) |
SSL3 | 48 (Hex 30) |
SSL2 | 12 (Hex 0C) |
Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.
SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:
By default when TLS 1.3 is enabled, the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider), please be aware of the following notes:
- The platform provider is available only on Windows 11/Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is false by default, but it can be set to true to enable the extension.
This configuration setting is applicable only when SSLProvider is set to Internal.
Whether the renegotiation_info SSL extension is supported.This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is false by default, but it can be set to true to enable the extension.
This configuration setting is applicable only when SSLProvider is set to Internal.
This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is false by default, but it can be set to true to enable the extension.
This configuration setting is applicable only when SSLProvider is set to Internal.
Whether the renegotiation_info SSL extension is supported.This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is false by default, but it can be set to true to enable the extension.
This configuration setting is applicable only when SSLProvider is set to Internal.
This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.
If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
Whether the entire certificate chain is included in the SSLServerAuthentication event.This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.
If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.
If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
Whether the entire certificate chain is included in the SSLServerAuthentication event.This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.
If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.
When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the component will only append, it will not overwrite previous values.
Note: This configuration setting is applicable only when SSLProvider is set to Internal.
The location of a file where per-session secrets are written for debugging purposes.This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.
When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the component will only append, it will not overwrite previous values.
Note: This configuration setting is applicable only when SSLProvider is set to Internal.
This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.
When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the component will only append, it will not overwrite previous values.
Note: This configuration setting is applicable only when SSLProvider is set to Internal.
The location of a file where per-session secrets are written for debugging purposes.This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.
When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the component will only append, it will not overwrite previous values.
Note: This configuration setting is applicable only when SSLProvider is set to Internal.
This configuration setting returns the cipher suite negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Returns the negotiated cipher suite.This configuration setting returns the cipher suite negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
This configuration setting returns the cipher suite negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Returns the negotiated cipher suite.This configuration setting returns the cipher suite negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Returns the negotiated cipher suite strength.This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Returns the negotiated cipher suite strength.This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Returns the negotiated cipher suite.This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Returns the negotiated cipher suite.This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Returns the negotiated key exchange algorithm.This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Returns the negotiated key exchange algorithm.This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Returns the negotiated key exchange algorithm strength.This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Returns the negotiated key exchange algorithm strength.This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
This configuration setting returns the protocol version negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
Returns the negotiated protocol version.This configuration setting returns the protocol version negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
This configuration setting returns the protocol version negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
Returns the negotiated protocol version.This configuration setting returns the protocol version negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown certificate authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown certificate authority revocation status. |
0x00000800 | Ignore unknown root revocation status. |
0x00008000 | Allow test root certificate. |
0x00004000 | Trust test root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN non-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
Flags that control certificate verification.The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown certificate authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown certificate authority revocation status. |
0x00000800 | Ignore unknown root revocation status. |
0x00008000 | Allow test root certificate. |
0x00004000 | Trust test root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN non-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown certificate authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown certificate authority revocation status. |
0x00000800 | Ignore unknown root revocation status. |
0x00008000 | Allow test root certificate. |
0x00004000 | Trust test root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN non-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
Flags that control certificate verification.The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown certificate authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown certificate authority revocation status. |
0x00000800 | Ignore unknown root revocation status. |
0x00008000 | Allow test root certificate. |
0x00004000 | Trust test root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN non-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificates to use during SSL server certificate validation.
This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----A newline separated list of CA certificates to use during SSL server certificate validation.
This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.
When specified the component will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the component raises an exception.
The format of this value is a comma-separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.
When specified the component will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the component raises an exception.
The format of this value is a comma-separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.
When specified the component will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the component raises an exception.
The format of this value is a comma-separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.
When specified the component will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the component raises an exception.
The format of this value is a comma-separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.
In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.
In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.
In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.
In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Base Config Settings
When queried, this setting will return a string containing information about the product's build.
The default code page is Unicode UTF-8 (65001).
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
When queried, this setting will return a string containing information about the license this instance of a component is using. It will return the following information:
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.
This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
If set to False, the component will not fire internal idle events. Set this to False to use the component in a background thread on Mac OS. By default, this setting is True.
If there are no events to process when DoEvents is called, the component will wait for the amount of time specified here before returning. The default value is 20.
When set to true, the component will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle Federal Information Processing Standards (FIPS), while all other Windows editions make use of Microsoft security libraries.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all components of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
When set to false, the component will use the system security libraries by default to perform cryptographic functions where applicable.
Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.
This setting is set to false by default on all platforms.
Trappable Errors (IVR Component)
IPPHONE Errors
201 | Timeout error. The error description contains detailed information. |
202 | Invalid argument error. The error description contains detailed information. |
601 | Protocol error. The error description contains detailed information. |
UDP Errors
104 | UDP is already Active. |
106 | You cannot change the LocalPort while the component is Active. |
107 | You cannot change the LocalHost at this time. A connection is in progress. |
109 | The component must be Active for this operation. |
112 | You cannot change MaxPacketSize while the component is Active. |
113 | You cannot change ShareLocalPort option while the component is Active. |
114 | You cannot change RemoteHost when UseConnection is set and the component Active. |
115 | You cannot change RemotePort when UseConnection is set and the component is Active. |
116 | RemotePort cannot be zero when UseConnection is set. Please specify a valid service port number. |
117 | You cannot change UseConnection while the component is Active. |
118 | Message cannot be longer than MaxPacketSize. |
119 | Message is too short. |
434 | Unable to convert string to selected CodePage |
SSL Errors
270 | Cannot load specified security library. |
271 | Cannot open certificate store. |
272 | Cannot find specified certificate. |
273 | Cannot acquire security credentials. |
274 | Cannot find certificate chain. |
275 | Cannot verify certificate chain. |
276 | Error during handshake. |
280 | Error verifying certificate. |
281 | Could not find client certificate. |
282 | Could not find server certificate. |
283 | Error encrypting data. |
284 | Error decrypting data. |
TCP/IP Errors
10004 | [10004] Interrupted system call. |
10009 | [10009] Bad file number. |
10013 | [10013] Access denied. |
10014 | [10014] Bad address. |
10022 | [10022] Invalid argument. |
10024 | [10024] Too many open files. |
10035 | [10035] Operation would block. |
10036 | [10036] Operation now in progress. |
10037 | [10037] Operation already in progress. |
10038 | [10038] Socket operation on nonsocket. |
10039 | [10039] Destination address required. |
10040 | [10040] Message is too long. |
10041 | [10041] Protocol wrong type for socket. |
10042 | [10042] Bad protocol option. |
10043 | [10043] Protocol is not supported. |
10044 | [10044] Socket type is not supported. |
10045 | [10045] Operation is not supported on socket. |
10046 | [10046] Protocol family is not supported. |
10047 | [10047] Address family is not supported by protocol family. |
10048 | [10048] Address already in use. |
10049 | [10049] Cannot assign requested address. |
10050 | [10050] Network is down. |
10051 | [10051] Network is unreachable. |
10052 | [10052] Net dropped connection or reset. |
10053 | [10053] Software caused connection abort. |
10054 | [10054] Connection reset by peer. |
10055 | [10055] No buffer space available. |
10056 | [10056] Socket is already connected. |
10057 | [10057] Socket is not connected. |
10058 | [10058] Cannot send after socket shutdown. |
10059 | [10059] Too many references, cannot splice. |
10060 | [10060] Connection timed out. |
10061 | [10061] Connection refused. |
10062 | [10062] Too many levels of symbolic links. |
10063 | [10063] File name is too long. |
10064 | [10064] Host is down. |
10065 | [10065] No route to host. |
10066 | [10066] Directory is not empty |
10067 | [10067] Too many processes. |
10068 | [10068] Too many users. |
10069 | [10069] Disc Quota Exceeded. |
10070 | [10070] Stale NFS file handle. |
10071 | [10071] Too many levels of remote in path. |
10091 | [10091] Network subsystem is unavailable. |
10092 | [10092] WINSOCK DLL Version out of range. |
10093 | [10093] Winsock is not loaded yet. |
11001 | [11001] Host not found. |
11002 | [11002] Nonauthoritative 'Host not found' (try again or check DNS setup). |
11003 | [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP. |
11004 | [11004] Valid name, no data record (check DNS setup). |