SNMPMgr Control

Properties   Methods   Events   Config Settings   Errors  

The SNMPMgr control is used to implement UDP-based SNMP Management Applications.

Syntax

SNMPMgr

Remarks

The SNMPMgr control implements a UDP-based standard SNMP Manager as specified in the SNMP RFCs. The control supports SNMP v1, v2c, and v3.

The control provides both encoding/decoding and transport capabilities, making the task of developing a custom SNMP manager as simple as setting a few key properties and handling a few events. SNMP data, such as for instance SNMP object id-s (OID-s) are exchanged as text strings, thus further simplifying the task of handling them.

The control is activated/deactivated by calling the Activate or Deactivate method. These methods enable or disable sending and receiving. The activation status can be found in the Active property.

Messages are received through events such as Response, Trap, or InformRequest. SNMP Traps are received through the Trap event.

Messages are sent to other agents or managers by using control's methods such as SendGetRequest, SendGetNextRequest, SendGetBulkRequest, SendSetRequest, and SendInformRequest.

SNMP OIDs, types, and values are provided in the Objects collection of SNMP objects for both sent and received packets.

SNMPv3 USM security is enabled by setting properties such as User, AuthenticationPassword, and EncryptionPassword and calling the Discover method to bind to a particular agent (RemoteEngineId). Upon successful discovery, received packets are checked for integrity (authentication) and timeliness. Note that the discovery step is optional, and may be avoided if the values for RemoteEngineId, RemoteEngineBoots, and RemoteEngineTime are known in advance and provided to the control through the respective properties.

By default, the control operates synchronously (except for the Discover method), sending a request and waiting until the corresponding response has been received. This behavior may be overridden by setting Timeout to 0, in which case the control returns control immediately after a send, and responses are received exclusively through the Response event.

Property List


The following is the full list of the properties of the control with short descriptions. Click on the links for further details.

AcceptDataEnables or disables data reception.
ActiveIndicates whether the control is active.
AuthenticationPasswordThe password used for SNMPv3 authentication.
AuthenticationProtocolThe authentication protocol used for SNMPv3 packets.
CommunityThe community string used to authenticate SNMP packets.
EncryptionAlgorithmThe encryption algorithm used for SNMPv3 packets.
EncryptionPasswordThe password used for SNMPv3 privacy.
ErrorDescriptionDescription of the status code for the last SNMP packet received by the control.
ErrorIndexIndex of the first variable (object) that caused an error from the last SNMP response.
ErrorStatusStatus code for the last SNMP packet received by the control.
LocalEngineIdThe Engine Id of the SNMP Manager.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
LocalPortThe port in the local host where the SNMP Manager is bound to.
ObjCountThe number of records in the Obj arrays.
ObjTypeThe current object's type.
ObjIdThe current object's id which is encoded as a string of numbers separated by periods.
ObjTypeStringA string representation of the current object's ObjectType .
ObjValueThe current object's value.
RemoteEngineBootsThe remote engine boots (SNMPv3).
RemoteEngineIdThe Engine Id of the remote agent.
RemoteEngineTimeThe remote engine time (SNMPv3).
RemoteHostThe address of the remote host. Domain names are resolved to IP addresses.
RemotePortThe port where the remote SNMP agent is listening.
RequestIdThe request-id to mark outgoing packets with.
SNMPVersionVersion of SNMP used for outgoing requests.
StoreWalkObjectsTells the control whether or not to store returned objects.
TimeoutA timeout for the control.
UserThe user name used for SNMPv3 authentication.
WalkLimitThe limit of oid's returned in a walk.

Method List


The following is the full list of the methods of the control with short descriptions. Click on the links for further details.

ActivateActivates the control.
ConfigSets or retrieves a configuration setting.
DeactivateDeactivates the control.
DiscoverPerforms SNMPv3 discovery.
DoEventsProcesses events from the internal message queue.
HashPasswordsHashes all passwords in the cache.
InterruptInterrupt the current method.
ResetClears the object arrays.
SendGetBulkRequestSend a GetBulkRequest packet.
SendGetNextRequestSend GetNextRequest packet.
SendGetRequestSend GetRequest packet.
SendInformRequestSend an InformRequest packet.
SendSetRequestSend Set Request packet.
ValueReturns the value corresponding to an OID.
WalkDoes an SNMP walk starting with the specified oid.

Event List


The following is the full list of the events fired by the control with short descriptions. Click on the links for further details.

BadPacketFired for erroneous and/or malformed messages.
DiscoveryRequestFired when an SNMPv3 discovery packet is received.
DiscoveryResponseFired when an SNMPv3 discovery response is received.
ErrorFired when information is available about errors during data delivery.
HashPasswordFired before and after a password is hashed.
InformRequestFired when an InformRequest packet is received.
PacketTraceFired for every packet sent or received.
ReadyToSendFired when the control is ready to send data.
ReportFired when a Report packet is received.
ResponseFired when a GetResponse packet is received.
TrapFired when a SNMP trap packet is received.

Config Settings


The following is a list of config settings for the control with short descriptions. Click on the links for further details.

AllowSingleStepDiscoveryWhether to allow discovery to be completed in a single step.
CheckMessageOriginWhether to match the origin IP address when receiving responses.
CheckSNMPVersionWhether to check the version of incoming packets.
CompatibilityModeWhether to operate the control in a specific compatibility mode.
ContextEngineIdSets the context engine id of the SNMP entity.
ContextNameSets the context name of the SNMP entity.
DecryptLogPacketsWhether to decrypt logged packets.
ForceLocalPortForces the control to bind to a specific port.
IgnoreDuplicateResponseWhether to ignore duplicate responses.
IgnorePortMismatchWhether to check if the port matches when a response is received.
IncomingContextEngineIdThe engine Id of the received packet.
IncomingContextNameThe context name of the received packet.
MsgMaxSizeThe maximum supported message size.
SourceAddressThe source address of the received packet.
SourcePortThe source port of the received packet.
TimeoutInMillisecondsThe timeout is treated as milliseconds.
WalkInsideRangeStops the SNMP walk if the OID value returned from an agent is outside the table.
WalkStartOIDSpecifies the OID to be used when a Walk is performed.
CaptureIPPacketInfoUsed to capture the packet information.
DelayHostResolutionWhether the hostname is resolved when RemoteHost is set.
DestinationAddressUsed to get the destination address from the packet information.
DontFragmentUsed to set the Don't Fragment flag of outgoing packets.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the control binds.
MaxPacketSizeThe maximum length of the packets that can be received.
QOSDSCPValueUsed to specify an arbitrary QOS/DSCP setting (optional).
QOSTrafficTypeUsed to specify QOS/DSCP settings (optional).
ShareLocalPortIf set to True, allows more than one instance of the control to be active on the same local port.
UseConnectionDetermines whether to use a connected socket.
UseIPv6Whether or not to use IPv6.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
CodePageThe system code page used for Unicode to Multibyte translations.
MaskSensitiveWhether sensitive data is masked in log messages.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

AcceptData Property (SNMPMgr Control)

Enables or disables data reception.

Syntax

snmpmgrcontrol.AcceptData[=boolean]

Default Value

True

Remarks

Setting the property to False temporarily disables data reception. Setting the property to True re-enables data reception.

This property is not available at design time.

Data Type

Boolean

Active Property (SNMPMgr Control)

Indicates whether the control is active.

Syntax

snmpmgrcontrol.Active[=boolean]

Default Value

False

Remarks

This property indicates whether the control is currently active and can send or receive data.

The control will be automatically activated if it is not already and you attempt to perform an operation which requires the control to be active.

Note: Use the Activate or Deactivate method to control whether the control is active.

This property is not available at design time.

Data Type

Boolean

AuthenticationPassword Property (SNMPMgr Control)

The password used for SNMPv3 authentication.

Syntax

snmpmgrcontrol.AuthenticationPassword[=string]

Default Value

""

Remarks

Every time EncryptionPassword, AuthenticationPassword, or RemoteEngineId are set, a localized key is computed automatically, and cached internally.

Data Type

String

AuthenticationProtocol Property (SNMPMgr Control)

The authentication protocol used for SNMPv3 packets.

Syntax

snmpmgrcontrol.AuthenticationProtocol[=integer]

Possible Values

authpHMACMD596(1), 
authpHMACSHA96(2), 
authpHMAC192SHA256(3), 
authpHMAC384SHA512(4)

Default Value

1

Remarks

This property defines the authentication protocol used when SNMPVersion is set to snmpverV3. Possible values are:

  • 1 (HMAC-MD5-96 - default)
  • 2 (HMAC-SHA-96)
  • 3 (HMAC-192-SHA-256)
  • 4 (HMAC-384-SHA-512)

This property is not available at design time.

Data Type

Integer

Community Property (SNMPMgr Control)

The community string used to authenticate SNMP packets.

Syntax

snmpmgrcontrol.Community[=string]

Default Value

"public"

Remarks

Must match the community name that is specified on the agent.

Typical values are "public" or "private".

This property is used for all SNMP packets sent by the control.

Data Type

String

EncryptionAlgorithm Property (SNMPMgr Control)

The encryption algorithm used for SNMPv3 packets.

Syntax

snmpmgrcontrol.EncryptionAlgorithm[=integer]

Possible Values

encraDES(1), 
encraAES(2), 
encra3DES(3), 
encraAES192(4), 
encraAES256(5)

Default Value

1

Remarks

In order to use encryption, you must set the EncryptionPassword property. The supported algorithms for encryption are:

DES (1)Data Encryption Standard.
AES (2)Advanced Encryption Standard with key length of 128.
3DES (3)Triple Data Encryption Standard.
AES192 (4)Advanced Encryption Standard with key length of 192.
AES256 (5)Advanced Encryption Standard with key length of 256.

This property is not available at design time.

Data Type

Integer

EncryptionPassword Property (SNMPMgr Control)

The password used for SNMPv3 privacy.

Syntax

snmpmgrcontrol.EncryptionPassword[=string]

Default Value

""

Remarks

Every time EncryptionPassword, AuthenticationPassword, or RemoteEngineId are set, a localized key is computed automatically, and cached internally.

Data Type

String

ErrorDescription Property (SNMPMgr Control)

Description of the status code for the last SNMP packet received by the control.

Syntax

snmpmgrcontrol.ErrorDescription

Default Value

"0"

Remarks

Please refer to the ErrorStatus property for more information.

This property is read-only and not available at design time.

Data Type

String

ErrorIndex Property (SNMPMgr Control)

Index of the first variable (object) that caused an error from the last SNMP response.

Syntax

snmpmgrcontrol.ErrorIndex

Default Value

0

Remarks

This property is used in conjunction with the ErrorStatus property, and refers to the object that caused the error reported in the last SNMP response. This value is parsed directly from the SNMP response, which will be a one-based value, so a value of i here maps to index i-1 in the Objects collection.

The ErrorIndex property has no meaning when the ErrorStatus property is 0 (no error).

This property is read-only and not available at design time.

Data Type

Integer

ErrorStatus Property (SNMPMgr Control)

Status code for the last SNMP packet received by the control.

Syntax

snmpmgrcontrol.ErrorStatus

Default Value

0

Remarks

This property is used in conjunction with the ErrorIndex property, which denotes the index of the variable in error. The ErrorDescription property provides a textual description of the error.

The following is a list of valid SNMP status code values:

0 (noError) No error.
1 (tooBig) The response cannot fit in a single SNMP message.
2 (noSuchName) Variable does not exist.
3 (badValue) Invalid value or syntax.
4 (readOnly) Variable is read-only.
5 (genError) Other error (SNMPv1).
6 (noAccess) Access denied.
7 (wrongType) Wrong object type.
8 (wrongLength) Wrong length.
9 (wrongEncoding) Wrong encoding.
10 (wrongValue) Wrong value.
11 (noCreation) No creation.
12 (inconsistentValue) Inconsistent value.
13 (resourceUnavailable) Resource unavailable.
14 (commitFailed) Commit failed.
15 (undoFailed) Undo failed.
16 (authorizationError) Authorization error.
17 (notWritable) Variable is not writable.
18 (inconsistentName) Inconsistent name.
The ErrorIndex parameter indicates the index of the first variable (object) that caused an error. The default value is 0.

Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).

The default value is 0 (no error).

This property is read-only and not available at design time.

Data Type

Integer

LocalEngineId Property (SNMPMgr Control)

The Engine Id of the SNMP Manager.

Syntax

snmpmgrcontrol.LocalEngineId[=string]

Default Value

""

Remarks

This property is only used for SNMPv3 packets (when SNMPVersion is 3).

To read or write binary data to the property, a Variant (Byte Array) version is provided in .LocalEngineIdB.

Data Type

Binary String

LocalHost Property (SNMPMgr Control)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

snmpmgrcontrol.LocalHost[=string]

Default Value

""

Remarks

The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.

If the control is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.

Data Type

String

LocalPort Property (SNMPMgr Control)

The port in the local host where the SNMP Manager is bound to.

Syntax

snmpmgrcontrol.LocalPort[=integer]

Default Value

0

Remarks

The LocalPort property must be set before the control is activated (Active is set to True). It instructs the control to bind to a specific port (or communication endpoint) in the local machine. The default port is 0 (random port). If you would like to receive traps, set LocalPort to 162 (standard trap port). However, it is recommended that the SNMPTrapMgr control be used for listening to traps, because SNMPMgr is limited to receiving SNMPv3 traps from a single agent only. SNMPTrapMgr does not have this limitation.

LocalPort cannot be changed once the control is Active. Any attempt to set the LocalPort property when the control is Active will generate an error.

Note: on macOS and iOS, root permissions are required to set LocalPort to any value below 1024.

Data Type

Integer

ObjCount Property (SNMPMgr Control)

The number of records in the Obj arrays.

Syntax

snmpmgrcontrol.ObjCount[=integer]

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at ObjCount - 1.

This property is not available at design time.

Data Type

Integer

ObjType Property (SNMPMgr Control)

The current object's type.

Syntax

snmpmgrcontrol.ObjType(ObjIndex)[=integer]

Possible Values

otInteger(2), 
otOctetString(4), 
otNull(5), 
otObjectId(6), 
otIPAddress(64), 
otCounter32(65), 
otGauge32(66), 
otTimeTicks(67), 
otOpaque(68), 
otNSAP(69), 
otCounter64(70), 
otUnsignedInteger32(71), 
otNoSuchObject(128), 
otNoSuchInstance(129), 
otEndOfMibView(130)

Default Value

5

Remarks

The current object's type. The default type is NULL (5).

The corresponding object id and value are specified by the ObjOid and ObjValue properties.

Possible object type values include:

otInteger (2) 2
otOctetString (4) 4
otNull (5) 5
otObjectID (6) 6
otIPAddress (64)64
otCounter32 (65)65
otGauge32 (66)66
otTimeTicks (67)67
otOpaque (68)68
otNSAP (69)69
otCounter64 (70)70
otUnsignedInteger32 (71)71

The control also supports the following artificial object values used to designate error conditions:

otNoSuchObject (128)No such object error.
otNoSuchInstance (129)No such instance error.
otEndOfMibView (130)End of MIB View error.

The ObjIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjCount property.

This property is not available at design time.

Data Type

Integer

ObjId Property (SNMPMgr Control)

The current object's id which is encoded as a string of numbers separated by periods.

Syntax

snmpmgrcontrol.ObjId(ObjIndex)[=string]

Default Value

""

Remarks

The current object's id which is encoded as a string of numbers separated by periods. For instance: "1.3.6.1.2.1.1.1.0" (OID for "system description").

The corresponding object type and value (if any) are specified by the ObjectType and ObjValue properties.

Example

SNMPControl.ObjCount = 1 SNMPControl.ObjId(0) = "1.3.6.1.2.1.1.1.0"

The ObjIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjCount property.

This property is not available at design time.

Data Type

String

ObjTypeString Property (SNMPMgr Control)

A string representation of the current object's ObjectType .

Syntax

snmpmgrcontrol.ObjTypeString(ObjIndex)

Default Value

""

Remarks

A string representation of the current object's ObjectType.

The corresponding object id and value are specified by the ObjOid and ObjValue properties.

The ObjIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjCount property.

This property is read-only and not available at design time.

Data Type

String

ObjValue Property (SNMPMgr Control)

The current object's value.

Syntax

snmpmgrcontrol.ObjValue(ObjIndex)[=string]

Default Value

""

Remarks

The current object's value. The corresponding object id and type are specified by the ObjOid and ObjectType properties.

Example

SNMPControl.ObjCount = 1 SNMPControl.ObjId(0) = "1.3.6.1.2.1.1.1.0" SNMPControl.ObjValue(0) = "New Value"

The ObjIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjCount property.

To read or write binary data to the property, a Variant (Byte Array) version is provided in .ObjValueB.

This property is not available at design time.

Data Type

Binary String

RemoteEngineBoots Property (SNMPMgr Control)

The remote engine boots (SNMPv3).

Syntax

snmpmgrcontrol.RemoteEngineBoots[=integer]

Default Value

0

Remarks

This property is used in conjunction with the RemoteEngineTime property. Please refer to the description of the RemoteEngineTime property, and the Discover method for further information.

Data Type

Integer

RemoteEngineId Property (SNMPMgr Control)

The Engine Id of the remote agent.

Syntax

snmpmgrcontrol.RemoteEngineId[=string]

Default Value

""

Remarks

This property is only used for SNMPv3 packets (see SNMPVersion), and is reset every time RemoteHost or RemotePort changes.

RemoteEngineId is normally discovered through the Discover method. However, by manually supplying a value for the property, RemoteEngineId discovery step may be eliminated, thus avoiding the extra roundtrip to the agent (RemoteEngineBoots and RemoteEngineTime are also required for User authentication - please refer to the Discover method for more information).

To read or write binary data to the property, a Variant (Byte Array) version is provided in .RemoteEngineIdB.

Data Type

Binary String

RemoteEngineTime Property (SNMPMgr Control)

The remote engine time (SNMPv3).

Syntax

snmpmgrcontrol.RemoteEngineTime[=integer]

Default Value

0

Remarks

RemoteEngineTime is used by SNMPv3 authentication to ensure timeliness of requests, and avoid replay attacks.

The value of RemoteEngineTime is provided as what is expected to be the current value of the remote engine clock based on a cached time differential between the remote engine clock and the local engine time obtained during the discovery process (see Discover).

This property is used in conjunction with RemoteEngineBoots. Please refer to the RemoteEngineBoots property and the Discover method for more information.

Data Type

Integer

RemoteHost Property (SNMPMgr Control)

The address of the remote host. Domain names are resolved to IP addresses.

Syntax

snmpmgrcontrol.RemoteHost[=string]

Default Value

""

Remarks

The RemoteHost property specifies the IP address (IP number in dotted internet format) or Domain Name of the host SNMP requests or traps are sent to.

If RemoteHost is set to 255.255.255.255, the control broadcasts data on the local subnet.

If the RemoteHost property is set to a Domain Name, a DNS request is initiated and upon successful termination of the request, the RemoteHost property is set to the corresponding address. If the search is not successful, an error is returned.

Data Type

String

RemotePort Property (SNMPMgr Control)

The port where the remote SNMP agent is listening.

Syntax

snmpmgrcontrol.RemotePort[=integer]

Default Value

161

Remarks

The RemotePort is the port on the RemoteHost to send SNMP requests to.

A valid port number (a value between 1 and 65535) is required. The default value is 161.

Data Type

Integer

RequestId Property (SNMPMgr Control)

The request-id to mark outgoing packets with.

Syntax

snmpmgrcontrol.RequestId[=integer]

Default Value

1

Remarks

If a custom value is needed for RequestId, the property must be set before sending the request. The control increments RequestId automatically after sending each packet.

This property is not available at design time.

Data Type

Integer

SNMPVersion Property (SNMPMgr Control)

Version of SNMP used for outgoing requests.

Syntax

snmpmgrcontrol.SNMPVersion[=integer]

Possible Values

snmpverV1(1), 
snmpverV2c(2), 
snmpverV3(3)

Default Value

2

Remarks

This property takes one of the following values:

snmpverV1 (1)SNMP Version 1.
snmpverV2c (2)SNMP Version 2c.
snmpverV3 (3)SNMP Version 3.

Data Type

Integer

StoreWalkObjects Property (SNMPMgr Control)

Tells the control whether or not to store returned objects.

Syntax

snmpmgrcontrol.StoreWalkObjects[=boolean]

Default Value

True

Remarks

When a Walk is performed, this property tells the control whether or not to store the objects that are returned by the server in the Objects collection. If the data is accumulated through the events, and not desired to be saved by the control, set this property to false.

Data Type

Boolean

Timeout Property (SNMPMgr Control)

A timeout for the control.

Syntax

snmpmgrcontrol.Timeout[=integer]

Default Value

60

Remarks

If the Timeout property is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.

If Timeout is set to a positive value, data is sent in a blocking manner and the control will wait for the operation to complete before returning control. The control will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of Timeout seconds.

The control will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.

If Timeout expires, and the operation is not yet complete, the control fails with an error.

Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

Data Type

Integer

User Property (SNMPMgr Control)

The user name used for SNMPv3 authentication.

Syntax

snmpmgrcontrol.User[=string]

Default Value

""

Remarks

If authentication is desired, this property must be set before the control attempts to connect to an SNMPv3 Agent.

Data Type

String

WalkLimit Property (SNMPMgr Control)

The limit of oid's returned in a walk.

Syntax

snmpmgrcontrol.WalkLimit[=integer]

Default Value

0

Remarks

This property specifies the limit of how many oid's are to be traversed during an SNMP Walk. If set to 0, the control will traverse all oid's in the specified table that are lexographically greater than the value of the specified table oid.

Data Type

Integer

Activate Method (SNMPMgr Control)

Activates the control.

Syntax

snmpmgrcontrol.Activate 

Remarks

This method activates the component and will allow it to send or receive data.

The control will be automatically activated if it is not already and you attempt to perform an operation which requires the control to be active.

Note: Use the Active property to check whether the component is active.

Config Method (SNMPMgr Control)

Sets or retrieves a configuration setting.

Syntax

snmpmgrcontrol.Config ConfigurationString

Remarks

Config is a generic method available in every control. It is used to set and retrieve configuration settings for the control.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the control, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Deactivate Method (SNMPMgr Control)

Deactivates the control.

Syntax

snmpmgrcontrol.Deactivate 

Remarks

This method deactivates the component and will prohibit it from sending and receiving data.

Note: Use the Active property to check whether the component is active.

Discover Method (SNMPMgr Control)

Performs SNMPv3 discovery.

Syntax

snmpmgrcontrol.Discover 

Remarks

When the method is called an SNMPv3 engine discovery request is sent to RemoteHost.

If an AuthenticationPassword is provided, the engine id discovery request is followed by an engine time discovery request, as required by the SNMPv3 User Security Model (USM). In this case Timeout must be set to a non-zero value before calling Discover and the control will wait until a response is received from RemoteHost.

The DiscoveryResponse event is fired upon receipt of a valid discovery response and the values of RemoteEngineId, RemoteEngineBoots, and RemoteEngineTime will then be updated with the received Engine Id, Time, and Boots.

DoEvents Method (SNMPMgr Control)

Processes events from the internal message queue.

Syntax

snmpmgrcontrol.DoEvents 

Remarks

When DoEvents is called, the control processes any available events. If no events are available, it waits for a preset period of time, and then returns.

HashPasswords Method (SNMPMgr Control)

Hashes all passwords in the cache.

Syntax

snmpmgrcontrol.HashPasswords 

Remarks

Forces computation of all passwords hashes in the cache. Used together with the HashPassword event to enable implementations of external password hash storage.

Interrupt Method (SNMPMgr Control)

Interrupt the current method.

Syntax

snmpmgrcontrol.Interrupt 

Remarks

If there is no method in progress, Interrupt simply returns, doing nothing.

Reset Method (SNMPMgr Control)

Clears the object arrays.

Syntax

snmpmgrcontrol.Reset 

Remarks

Clears the object arrays, and sets the trap and error properties to their default values. This is useful for reinitializing all the properties that are used to create outgoing packets before building a new packet.

Note: SNMPVersion will be reset to snmpverV2c (2).

SendGetBulkRequest Method (SNMPMgr Control)

Send a GetBulkRequest packet.

Syntax

snmpmgrcontrol.SendGetBulkRequest NonRepeaters, MaxRepetitions

Remarks

Sends a GetBulkRequest packet. This is only available for SNMP versions 2 and 3.

NonRepeaters specifies the number of variables for which a single lexicographic successor is to be returned.

MaxRepetitions specifies the number of lexicographic successors to be returned for variables other than those in the NonRepeaters list.

The object identifiers, types, and values for the request are taken from the Objects collection.

A GetBulkRequest is very similar to a GetNextRequest, the difference is that Getbulk performs a continuous GetNext operation based on the MaxRepitions value. The NonRepeaters value will determine the number of Objects for which a simple GetNext operation should be performed. For the remaining variables, a continuous GetNext operation is performed based on the MaxRepitions value.

So if you send a request containing X objects, the agent will perform N simple GetNext operations and M continuous GetNext operations X - N times. With X being the number of objects received, N being the number of NonRepeaters, and M being the number of MaxRepitions. Thus the SNMPMgr is expecting to receive N + M x (X - N) objects, assuming that each object has M successors.

Example (Sending a GetBulk Request)

SNMPControl.RemoteHost = "MyAgent" SNMPControl.ObjCount = 2 SNMPControl.ObjId(0) = "1.3.6.1.2.1.1.1.0" SNMPControl.objId(1) = "1.3.6.1.2.1.1.3.0" SNMPControl.SendGetBulkRequest(1,4)

The code sample above will send a GetBulkRequest with 1 non repeater, and a maxrepetitions of 4. Since there is only 1 non repeater, only one ObjID will "not repeat" and will only return one successor. The rest of the ObjID's (in this case, only 1) will return 4 successors. This particular example will return the following ObjID's:

1 1.3.6.1.2.1.1.2.0
2 1.3.6.1.2.1.1.4.0
3 1.3.6.1.2.1.1.5.0
4 1.3.6.1.2.1.1.6.0
5 1.3.6.1.2.1.1.7.0

SendGetNextRequest Method (SNMPMgr Control)

Send GetNextRequest packet.

Syntax

snmpmgrcontrol.SendGetNextRequest 

Remarks

Sends a GetNextRequest packet. The object identifiers, types, and values for the request are taken from the Objects collection.

Example (Sending a GetNext Request)

SNMPControl.ObjCount = 2 SNMPControl.ObjId(0) = "1.3.6.1.2.1.1.1.0" SNMPControl.SendGetNextRequest() The agent will respond with the "next" (relative to the ObjID(s) you specify) OID in the table.

SendGetRequest Method (SNMPMgr Control)

Send GetRequest packet.

Syntax

snmpmgrcontrol.SendGetRequest 

Remarks

Sends a GetRequest packet. The object identifiers, types, and values for the request are taken from the Objects collection.

Example (Sending a GetRequest)

SNMPControl.RemoteHost = "MyAgent" SNMPControl.ObjCount = 2 SNMPControl.ObjId(0) = "1.3.6.1.2.1.1.1.0" SNMPControl.ObjId(1) = "1.3.6.1.2.1.1.2.0" SNMPControl.SendGetRequest()

SendInformRequest Method (SNMPMgr Control)

Send an InformRequest packet.

Syntax

snmpmgrcontrol.SendInformRequest 

Remarks

Sends an InformRequest packet. The object identifiers, types, and values for the request are taken from the Objects collection.

SendSetRequest Method (SNMPMgr Control)

Send Set Request packet.

Syntax

snmpmgrcontrol.SendSetRequest 

Remarks

Sends a SetRequest packet. The object identifiers, types, and values for the request are taken from the Objects collection.

Example (Sending a SetRequest)

SNMPControl.RemoteHost = "MyAgent" SNMPControl.ObjCount = 1 SNMPControl.ObjId(0) = "1.3.6.1.2.1.1.1.0" SNMPControl.ObjValue(0) = "New Value" SNMPControl.ObjType(0) = otOctetString SNMPControl.SendSetRequest()

Value Method (SNMPMgr Control)

Returns the value corresponding to an OID.

Syntax

snmpmgrcontrol.Value OID

Remarks

If the OID does not exist in the Objects collection, a trappable error is generated.

Please refer to the SNMPObject type for more information.

Walk Method (SNMPMgr Control)

Does an SNMP walk starting with the specified oid.

Syntax

snmpmgrcontrol.Walk TableOid

Remarks

A walk will traverse all OIDs in the TableOid that are lexographically greater than the value of the TableOid.

The results of the walk may be obtained through the Response events. During the event, the current returned object will exist inside of the Objects collection. If StoreWalkObjects is set to true, the Objects collection will contain all returned objects when the Walk completes.

Use the WalkLimit property to regulate how many objects the walk will traverse in the table.

NOTE: The collection of objects is cleared before the walk begins.

BadPacket Event (SNMPMgr Control)

Fired for erroneous and/or malformed messages.

Syntax

Sub snmpmgrcontrol_BadPacket(Packet As String, SourceAddress As String, SourcePort As Integer, ErrorCode As Integer, ErrorDescription As String, Report As Boolean)

Remarks

The full message is provided in the Packet parameter.

The BadPacket event is also fired when authentication fails for received packets due to a bad password or other reasons.

If the Report parameter is set to True, an unauthenticated error report will be sent to the client, otherwise the packet will be silently ignored.

DiscoveryRequest Event (SNMPMgr Control)

Fired when an SNMPv3 discovery packet is received.

Syntax

Sub snmpmgrcontrol_DiscoveryRequest(EngineId As String, EngineBoots As Integer, EngineTime As Integer, User As String, SecurityLevel As Integer, SourceAddress As String, SourcePort As Integer, Respond As Boolean)

Remarks

EngineId, EngineBoots, EngineTime, and User are the values received from SourceAddress.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

Respond is True by default, and will automatically send a response using the value in LocalEngineId. To suppress the response, set Respond to False.

The value returned to SourceAddress for EngineBoots is always 0, and EngineTime is the number of seconds since January 1st, 1970 (GMT).

DiscoveryResponse Event (SNMPMgr Control)

Fired when an SNMPv3 discovery response is received.

Syntax

Sub snmpmgrcontrol_DiscoveryResponse(EngineId As String, EngineBoots As Integer, EngineTime As Integer, User As String, SecurityLevel As Integer, SourceAddress As String, SourcePort As Integer)

Remarks

EngineId, EngineBoots, EngineTime, and User are the values received from SourceAddress and SourcePort.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated request, SecurityLevel is at least 1.

Error Event (SNMPMgr Control)

Fired when information is available about errors during data delivery.

Syntax

Sub snmpmgrcontrol_Error(ErrorCode As Integer, Description As String)

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the control fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

HashPassword Event (SNMPMgr Control)

Fired before and after a password is hashed.

Syntax

Sub snmpmgrcontrol_HashPassword(Password As String, AuthAlgorithm As Integer, Hash As String)

Remarks

SNMPv3 passwords are hashed in order to obtain authentication and encryption keys. This is an expensive operation, and in certain situations it may be preferable to store the hashed passwords externally and supply them on demand.

If a hash is required, the event fires with an empty string in the Hash parameter. In this case, you can choose to supply a value for the hash and stop the control from computing the hash.

The event also fires every time a hash is computed. In this case, the Hash parameter contains the value of the computed hash.

AuthAlgorithm contains either 1 for HMAC-MD5-96, 2 for HMAC-SHA-96 or 3 for HMAC-192-SHA-256

InformRequest Event (SNMPMgr Control)

Fired when an InformRequest packet is received.

Syntax

Sub snmpmgrcontrol_InformRequest(RequestId As Integer, SNMPVersion As Integer, Community As String, User As String, SecurityLevel As Integer, SourceAddress As String, SourcePort As Integer, ErrorIndex As Integer, ErrorStatus As Integer, ErrorDescription As String, Respond As Boolean)

Remarks

The user in an InformRequest packet (SNMPv3) must match the user in the User property. If not, the request is rejected, and a BadPacket event is fired before InformRequest is fired.

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the ObjId, ObjType, and ObjValue of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

The MessageId parameter identifies the received request.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

To send a response, the Respond parameter must be set to true. By default, this value is false, which means no response will be sent. The ErrorStatus parameter may also be set to a valid SNMP status code (the default value is 0, which represents no error).

The following is a list of valid SNMP status code values:

0 (noError) No error.
1 (tooBig) The response cannot fit in a single SNMP message.
2 (noSuchName) Variable does not exist.
3 (badValue) Invalid value or syntax.
4 (readOnly) Variable is read-only.
5 (genError) Other error (SNMPv1).
6 (noAccess) Access denied.
7 (wrongType) Wrong object type.
8 (wrongLength) Wrong length.
9 (wrongEncoding) Wrong encoding.
10 (wrongValue) Wrong value.
11 (noCreation) No creation.
12 (inconsistentValue) Inconsistent value.
13 (resourceUnavailable) Resource unavailable.
14 (commitFailed) Commit failed.
15 (undoFailed) Undo failed.
16 (authorizationError) Authorization error.
17 (notWritable) Variable is not writable.
18 (inconsistentName) Inconsistent name.
The ErrorIndex parameter indicates the index of the first variable (object) that caused an error. The default value is 0.

Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).

PacketTrace Event (SNMPMgr Control)

Fired for every packet sent or received.

Syntax

Sub snmpmgrcontrol_PacketTrace(Packet As String, Direction As Integer, PacketAddress As String, PacketPort As Integer)

Remarks

The PacketTrace event shows all the packets sent or received by the control.

Packet contains the full contents of the datagram.

Direction shows the direction of the packet: 1 for incoming packets, and 2 for outgoing packets.

In the case of an incoming packet, PacketAddress and PacketPort identify the source of the packet.

In the case of an outgoing packet, PacketAddress and PacketPort identify the destination of the packet.

ReadyToSend Event (SNMPMgr Control)

Fired when the control is ready to send data.

Syntax

Sub snmpmgrcontrol_ReadyToSend()

Remarks

The ReadyToSend event indicates that the underlying TCP/IP subsystem is ready to accept data after a failed DataToSend.

Report Event (SNMPMgr Control)

Fired when a Report packet is received.

Syntax

Sub snmpmgrcontrol_Report(RequestId As Integer, SNMPVersion As Integer, Community As String, User As String, SecurityLevel As Integer, SourceAddress As String, SourcePort As Integer, ErrorIndex As Integer, ErrorStatus As Integer, ErrorDescription As String)

Remarks

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the ObjId, ObjType, and ObjValue of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

Response Event (SNMPMgr Control)

Fired when a GetResponse packet is received.

Syntax

Sub snmpmgrcontrol_Response(RequestId As Integer, SNMPVersion As Integer, Community As String, User As String, SecurityLevel As Integer, SourceAddress As String, SourcePort As Integer, ErrorIndex As Integer, ErrorStatus As Integer, ErrorDescription As String)

Remarks

The ErrorStatus and ErrorIndex parameters contain information about possible errors. ErrorDescription is a textual description of ErrorStatus. This value is parsed directly from the SNMP response, which will be a one-based value, so a value of i here maps to index i-1 in the Objects collection.

The following is a list of valid SNMP status code values:

0 (noError) No error.
1 (tooBig) The response cannot fit in a single SNMP message.
2 (noSuchName) Variable does not exist.
3 (badValue) Invalid value or syntax.
4 (readOnly) Variable is read-only.
5 (genError) Other error (SNMPv1).
6 (noAccess) Access denied.
7 (wrongType) Wrong object type.
8 (wrongLength) Wrong length.
9 (wrongEncoding) Wrong encoding.
10 (wrongValue) Wrong value.
11 (noCreation) No creation.
12 (inconsistentValue) Inconsistent value.
13 (resourceUnavailable) Resource unavailable.
14 (commitFailed) Commit failed.
15 (undoFailed) Undo failed.
16 (authorizationError) Authorization error.
17 (notWritable) Variable is not writable.
18 (inconsistentName) Inconsistent name.
The ErrorIndex parameter indicates the index of the first variable (object) that caused an error. The default value is 0.

Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the ObjId, ObjType, and ObjValue of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

Trap Event (SNMPMgr Control)

Fired when a SNMP trap packet is received.

Syntax

Sub snmpmgrcontrol_Trap(RequestId As Integer, SNMPVersion As Integer, Community As String, User As String, SecurityLevel As Integer, TrapOID As String, TimeStamp As Long64, SourceAddress As String, SourcePort As Integer)

Remarks

The SNMPTrapMgr control should normally be used to receive traps, since it was designed and contains functionality specifically for that purpose. The SNMPMgr component can only receive traps from the agent that it is has most recently discovered with the Discover method.

The TrapOID and TimeStamp parameters contain the Trap OID and TimeStamp. In the case of an SNMPv1 trap, there are two possible scenarios:

First, if the enterprise of the trap is "1.3.6.1.6.3.1.1.5", TrapOID will be a concatenation of TrapEnterprise and GenericTrap + 1. For instance a TrapOID of "1.3.6.1.6.3.1.1.5.5" has a TrapEnterprise of "1.3.6.1.6.3.1.1.5" and a GenericTrap of "4".

Second, In all other cases TrapOID will be a concatenation of the values for TrapEnterprise, GenericTrap, and SpecificTrap, separated by '.'.

For SNMPv2 and above, they are read from the variable-value list (if available).

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

The SNMPMgr control is limited to accepting authenticated traps only for the user specified in User and Password and from the engine specified in RemoteEngineId with time parameters in RemoteEngineBoots and RemoteEngineTime (usually this is the SNMP engine discovered through the last call to Discover). If authenticated traps come from a different engine, or for a different user, they are ignored, and a BadPacket event is fired instead.

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the ObjId, ObjType, and ObjValue of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

Config Settings (SNMPMgr Control)

The control accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the control, access to these internal properties is provided through the Config method.

SNMPManager Config Settings

AllowSingleStepDiscovery:   Whether to allow discovery to be completed in a single step.

When making a discovery request in SNMPv3 while this setting is set to False (default), the component will send a second discovery request even if the agent responds to the first request with the EngineBoots and EngineTime. If set to True, the component will skip the second request if all the necessary information is returned in the first response.

CheckMessageOrigin:   Whether to match the origin IP address when receiving responses.

This setting specifies whether the control matches the source IP address in the response to the destination IP address of the request. When True (default) the control makes sure that response are received from the same IP to which the request was sent. In most cases this does not need to be changed. If there is a specific reason that responses are expected to originate from a different IP from that which the request was sent, this may be set to False. When False the control will not check the origin of received responses.

CheckSNMPVersion:   Whether to check the version of incoming packets.

By default only packets matching SNMPVersion can be received. Set this to to ignore the version of incoming packets. The default is .

CompatibilityMode:   Whether to operate the component in a specific compatibility mode.

This setting will cause the component to operate in a manner different than normal so that it is compatible with third-party products and libraries. The following table lists the possible values for this setting:

0 (default)Component operates normally for greatest compatibility.
1Component uses SNMP4j-compatible encryption (AES192 and AES256).
2Component automatically detects whether to use SNMP4j-compatible encryption (AES192 and AES256). Note: This option is only applicable when receiving packets. If you are using SNMPMgr or sending secure traps, you will need to select either 0 or 1.
ContextEngineId:   Sets the context engine id of the SNMP entity.

If set, the context engine id included in the PDU will be set.

ContextName:   Sets the context name of the SNMP entity.

If set, the context name included in the PDU will be set.

DecryptLogPackets:   Whether to decrypt logged packets.

When set to this setting will cause the control to decrypt packets logged in PacketTrace. This only applies when using SNMP Version 3. The default is .

ForceLocalPort:   Forces the control to bind to a specific port.

The default value is True, which makes the control throw an error if LocalPort is busy. When ForceLocalPort is set to False and the port is busy, the control silently chooses another random port.

IgnoreDuplicateResponse:   Whether to ignore duplicate responses.

In some scenarios an agent may send a duplicate response (identified by it's RequestID). To prevent processing of a duplicate response set this to . The default is

IgnorePortMismatch:   Whether to check if the port matches when a response is received.

When a response is received, the control will validate that the port in the response is the same as the port in the request. To disable this, set this to True.

IncomingContextEngineId:   The engine Id of the received packet.

This setting holds the engine Id of the received packet. This may be queried at any time, including from within an event, and returns the engine Id of the received packet. This is not needed in most cases, but can be used to store the incoming engine Id to send an asynchronous response later. This value is read-only.

IncomingContextName:   The context name of the received packet.

This setting holds the context name of the received packet. This may be queried at any time, including from within an event, and returns the context name of the received packet. This is not needed in most cases, but can be used to store the incoming context name to send an asynchronous response later. This value is read-only.

MsgMaxSize:   The maximum supported message size.

This setting specifies the maximum supported message size in bytes. This is only applicable when SNMPVersion is set to 3. This corresponds to the "msgMaxSize" field in the request.

SourceAddress:   The source address of the received packet.

This setting holds the source address of the received packet. This may be queried at any time, including from within an event, and returns the source address of the received packet. This value is read-only.

SourcePort:   The source port of the received packet.

This setting holds the source port of the received packet. This may be queried at any time, including from within an event, and returns the source port of the received packet. This value is read-only.

TimeoutInMilliseconds:   The timeout is treated as milliseconds.

Setting TimeoutInMilliseconds to true causes the control to use the value in Timeout as milliseconds instead of seconds, which is the default.

WalkInsideRange:   Stops the SNMP walk if the OID value returned from an agent is outside the table.

When WalkInsideRange is set to true the Walk will continue only while the OID Values returned from the agent are greater than the current OID Value. If an object is returned with an OID value that is out of this range it is not added to the Objects collection, the Error event will fire, and Walk will return. The default value is true.

WalkStartOID:   Specifies the OID to be used when a Walk is performed.

When this property is set and Walk is called, the first request sent will contain the specified WalkStartOID value. This feature is particularly useful in the case of errors, such as timeouts, that may occur during a Walk. In such a case, you can set WalkStartOID to the last OID returned before the Timeout occurred then call Walk again (using the original tableOID parameter value). This will allow you to continue the Walk where it left off (when the Timeout error occurred).

Note that when StoreWalkObjects is set to true and WalkStartOID is set, the existing entries in Objects will be maintained when Walk is called and new returned objects will be added (just as if no error occurred in the initial Walk call).

UDP Config Settings

CaptureIPPacketInfo:   Used to capture the packet information.

If this is set to true, the component will capture the IP packet information.

The default value for this setting is False.

Note: This setting is only available in Windows.

DelayHostResolution:   Whether the hostname is resolved when RemoteHost is set.

This setting specifies whether a hostname is resolved immediately when RemoteHost is set. If the control will resolve the hostname and the IP address will be present in the RemoteHost property. If , the hostname is not resolved until needed by the component when a method to connect or send data is called. If desired, ResolveRemoteHost may called to manually resolve the value in RemoteHost at any time.

The default value is .

DestinationAddress:   Used to get the destination address from the packet information.

If CaptureIPPacketInfo is set to true, then this will be populated with the packet's destination address when a packet is received. This information will be accessible in the DataIn event.

Note: This setting is only available in Windows.

DontFragment:   Used to set the Don't Fragment flag of outgoing packets.

When set to True, packets sent by the control will have the Don't Fragment flag set. The default value is False.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.

If the control is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the control binds.

This must be set before a connection is attempted. It instructs the control to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxPacketSize:   The maximum length of the packets that can be received.

This setting specifies the maximum size of the datagrams that the control will accept without truncation.

QOSDSCPValue:   Used to specify an arbitrary QOS/DSCP setting (optional).

UseConnection must be True to use this setting. This option allows you to specify an arbitrary DSCP value between 0 and 63. The default is 0. When set to the default value the component will not set a DSCP value.

Note: This setting uses the qWAVE API is only available on Windows 7, Windows Server 2008 R2, and later.

QOSTrafficType:   Used to specify QOS/DSCP settings (optional).

UseConnection must be True to use this setting. You may specify either the text or integer values: BestEffort (0), Background (1), ExcellentEffort (2), AudioVideo (3), Voice (4), and Control (5).

Note: This setting uses the qWAVE API which is only available on Windows Vista and Windows Server 2008 or above.

Note: QOSTrafficType must be set before setting Active to true.

ShareLocalPort:   If set to True, allows more than one instance of the control to be active on the same local port.

This option must be set before the control is activated through the Active property or it will have no effect.

The default value for this setting is False.

UseConnection:   Determines whether to use a connected socket.

UseConnection specifies whether the control should use a connected socket or not. The connection is defined as an association in between the local address/port and the remote address/port. As such, this is not a connection in the traditional TCP sense. What it means is only that the control will send and receive data only to and from the specified destination.

The default value for this setting is False.

UseIPv6:   Whether or not to use IPv6.

By default, the component expects an IPv4 address for local and remote host properties, and will create an IPv4 socket. To use IPv6 instead, set this to True.

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to to mask sensitive data. The default is .

This setting only works on these controls: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to , the control will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to tells the control to use the internal implementation instead of using the system security libraries.

This setting is set to by default on all platforms.

Trappable Errors (SNMPMgr Control)

SNMPMgr Errors

20202    Timeout.
20302    Bad Object Index when accessing the Obj* properties. Timeout when performing an operation. Check the error description for details.
20303    Value exceeds maximum number of objects allowed.
20304    The value must be an IP address in dotted format.
20306    Unsupported SNMP version.
20307    Unknown PDU type.
20308    The control is busy performing the current action.
20309    Verification failed.
20310    Missing password for Verification.
20311    Missing signature.
20312    Missing remote time.
20313    Missing timeout value.
20314    Decryption Failed.
20315    Missing password for decryption.
20316    Not encrypted.
20317    Security model not supported.
20318    Defective packet
20319    Not from bound point.
20320    Operation not permitted in current role.
20321    Bad packet.
20322    Message not authenticated.
20323    No such oid.
20324    Missing privacy parameter.
20325    Bad engine id.
20326    Bad time frame.
20327    Bad user name.
20328    Security level was not accepted.
20329    Discovery failed.
20330    Incorrect key length.
20331    No authentication password supplied.
20334    Returned OID was out of range. This is applicable only when WalkInsideRange is set to true.

The control may also return one of the following error codes, which are inherited from other controls.

UDP Errors

20105    UDP is already Active.
20107    You cannot change the LocalPort while the control is Active.
20108    You cannot change the LocalHost at this time. A connection is in progress.
20110    The control must be Active for this operation.
20113    Cannot change MaxPacketSize while the control is Active.
20114    Cannot change ShareLocalPort option while the control is Active.
20115    Cannot change RemoteHost when UseConnection is set and the control Active.
20116    Cannot change RemotePort when UseConnection is set and the control is Active.
20117    RemotePort can't be zero when UseConnection is set. Please specify a valid service port number.
20118    Cannot change UseConnection while the control is Active.
20119    Message can't be longer than MaxPacketSize.
20120    Message too short.
20435    Unable to convert string to selected CodePage

SSL Errors

20271    Cannot load specified security library.
20272    Cannot open certificate store.
20273    Cannot find specified certificate.
20274    Cannot acquire security credentials.
20275    Cannot find certificate chain.
20276    Cannot verify certificate chain.
20277    Error during handshake.
20281    Error verifying certificate.
20282    Could not find client certificate.
20283    Could not find server certificate.
20284    Error encrypting data.
20285    Error decrypting data.

TCP/IP Errors

25005    [10004] Interrupted system call.
25010    [10009] Bad file number.
25014    [10013] Access denied.
25015    [10014] Bad address.
25023    [10022] Invalid argument.
25025    [10024] Too many open files.
25036    [10035] Operation would block.
25037    [10036] Operation now in progress.
25038    [10037] Operation already in progress.
25039    [10038] Socket operation on non-socket.
25040    [10039] Destination address required.
25041    [10040] Message too long.
25042    [10041] Protocol wrong type for socket.
25043    [10042] Bad protocol option.
25044    [10043] Protocol not supported.
25045    [10044] Socket type not supported.
25046    [10045] Operation not supported on socket.
25047    [10046] Protocol family not supported.
25048    [10047] Address family not supported by protocol family.
25049    [10048] Address already in use.
25050    [10049] Can't assign requested address.
25051    [10050] Network is down.
25052    [10051] Network is unreachable.
25053    [10052] Net dropped connection or reset.
25054    [10053] Software caused connection abort.
25055    [10054] Connection reset by peer.
25056    [10055] No buffer space available.
25057    [10056] Socket is already connected.
25058    [10057] Socket is not connected.
25059    [10058] Can't send after socket shutdown.
25060    [10059] Too many references, can't splice.
25061    [10060] Connection timed out.
25062    [10061] Connection refused.
25063    [10062] Too many levels of symbolic links.
25064    [10063] File name too long.
25065    [10064] Host is down.
25066    [10065] No route to host.
25067    [10066] Directory not empty
25068    [10067] Too many processes.
25069    [10068] Too many users.
25070    [10069] Disc Quota Exceeded.
25071    [10070] Stale NFS file handle.
25072    [10071] Too many levels of remote in path.
25092    [10091] Network subsystem is unavailable.
25093    [10092] WINSOCK DLL Version out of range.
25094    [10093] Winsock not loaded yet.
26002    [11001] Host not found.
26003    [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
26004    [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
26005    [11004] Valid name, no data record (check DNS setup).