SNMPTrapMgr Component
Properties Methods Events Config Settings Errors
The SNMPTrapMgr component provides a UDP-based listening point for SNMP traps.
Syntax
TipnSNMPTrapMgr
Remarks
The SNMPTrapMgr component provides a UDP-based listening point for SNMP traps and informs as specified by the SNMP RFCs. The component supports v1, v2c, and v3 traps.
The component provides both encoding/decoding and transport capabilities, making the task of developing a custom SNMP Trap manager as simple as setting a few key properties and handling a few events. SNMP data, such as for instance SNMP object id-s (OID-s) are exchanged as text strings, thus further simplifying the task of handling them.
The component is activated/deactivated by calling the Activate or Deactivate method. These methods enable or disable sending and receiving. The activation status can be found in the Active property.
Messages are received through events such as Trap, InformRequest, or DiscoveryRequest.
SNMP OIDs, types, and values are provided in the Objects collection of SNMP objects for both sent and received packets.
SNMPv3 USM security passwords are requested through the GetUserPassword event, and event parameters such as User and SecurityLevel provide information about the security attributes of received requests, and enable granular decision capability about what to provide and what not to provide.
The AddUser, RemoveUser, ShowCache, ClearCache, AddEngine, and RemoveEngine methods are used to manage an internal authentication cache. This internal cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
AcceptData | Enables or disables data reception. |
Active | Indicates whether the component is active. |
LocalEngineId | The Engine Id (for SNMPv3). |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
LocalPort | The port in the local host where the component is bound to. |
ObjCount | The number of records in the Obj arrays. |
ObjType | The current object's type. |
ObjId | The current object's id which is encoded as a string of numbers separated by periods. |
ObjTypeString | A string representation of the current object's ObjectType . |
ObjValue | The current object's value. |
RequestId | The request-id to mark outgoing packets with. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Activate | Activates the component. |
AddEngine | Adds the engine specified by EngineId to the internal authentication cache. |
AddUser | Adds a user for the engine specified by EngineId to the internal authentication cache. |
ClearCache | Clears the internal authentication database. |
Config | Sets or retrieves a configuration setting. |
Deactivate | Deactivates the component. |
DoEvents | Processes events from the internal message queue. |
HashPasswords | Hashes all passwords in the cache. |
RemoveEngine | Removes the engine specified by EngineId from the internal authentication cache. |
RemoveUser | Removes the user specified by User of the engine specified by EngineId from the internal authentication cache. |
Reset | Clears the object arrays. |
ShowCache | Lists all entries in the internal user and engine database. |
Value | Returns the value corresponding to an OID. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
BadPacket | Fired for erroneous and/or malformed messages. |
CacheEntry | Shows engines and users in the internal cache. |
CheckEngine | Fired to check engine parameters (timeliness, etc.). |
DiscoveryRequest | Fired when an SNMPv3 discovery packet is received. |
Error | Fired when information is available about errors during data delivery. |
GetUserPassword | Retrieves a password associated with a user. |
GetUserSecurityLevel | Sets the security level for an incoming packet. |
HashPassword | Fired before and after a password is hashed. |
InformRequest | Fired when an InformRequest packet is received. |
PacketTrace | Fired for every packet sent or received. |
Trap | Fired when a SNMP trap packet is received. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
AuthenticationKey | The key to use for authentication. |
CompatibilityMode | Whether to operate the component in a specific compatibility mode. |
ContextEngineId | Sets the context engine id of the SNMP entity. |
ContextName | Sets the context name of the SNMP entity. |
DecryptLogPackets | Whether to decrypt logged packets. |
EncryptionKey | The key to use for encryption. |
ForceLocalPort | Forces the component to bind to a specific port. |
IncomingContextEngineId | The engine Id of the received packet. |
IncomingContextName | The context name of the received packet. |
ShowCacheForUser | Shows the cache entry for a single user. |
SourceAddress | The source address of the received packet. |
SourcePort | The source port of the received packet. |
TimeWindow | The time window used for SNMPv3 timeliness checking (authentication). |
CaptureIPPacketInfo | Used to capture the packet information. |
DelayHostResolution | Whether the hostname is resolved when RemoteHost is set. |
DestinationAddress | Used to get the destination address from the packet information. |
DontFragment | Used to set the Don't Fragment flag of outgoing packets. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the component binds. |
MaxPacketSize | The maximum length of the packets that can be received. |
QOSDSCPValue | Used to specify an arbitrary QOS/DSCP setting (optional). |
QOSTrafficType | Used to specify QOS/DSCP settings (optional). |
ShareLocalPort | If set to True, allows more than one instance of the component to be active on the same local port. |
UseConnection | Determines whether to use a connected socket. |
UseIPv6 | Whether or not to use IPv6. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
AcceptData Property (SNMPTrapMgr Component)
Enables or disables data reception.
Syntax
__property bool AcceptData = { read=FAcceptData, write=FSetAcceptData };
Default Value
True
Remarks
Setting the property to False temporarily disables data reception. Setting the property to True re-enables data reception.
This property is not available at design time.
Data Type
Boolean
Active Property (SNMPTrapMgr Component)
Indicates whether the component is active.
Syntax
__property bool Active = { read=FActive, write=FSetActive };
Default Value
False
Remarks
This property indicates whether the component is currently active and can send or receive data.
The component will be automatically activated if it is not already and you attempt to perform an operation which requires the component to be active.
Note: Use the Activate or Deactivate method to control whether the component is active.
This property is not available at design time.
Data Type
Boolean
LocalEngineId Property (SNMPTrapMgr Component)
The Engine Id (for SNMPv3).
Syntax
__property String LocalEngineId = { read=FLocalEngineId, write=FSetLocalEngineId }; __property DynamicArray<Byte> LocalEngineIdB = { read=FLocalEngineIdB, write=FSetLocalEngineIdB };
Default Value
""
Remarks
This property is necessary for properly handling InformRequest packets.
Data Type
Byte Array
LocalHost Property (SNMPTrapMgr Component)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
__property String LocalHost = { read=FLocalHost, write=FSetLocalHost };
Default Value
""
Remarks
The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.
If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.
Data Type
String
LocalPort Property (SNMPTrapMgr Component)
The port in the local host where the component is bound to.
Syntax
__property int LocalPort = { read=FLocalPort, write=FSetLocalPort };
Default Value
162
Remarks
The LocalPort property must be set before the component is activated (Active is set to True). It instructs the component to bind to a specific port (or communication endpoint) in the local machine.
The default port is 162 (standard trap port). If that port is busy, an error will be returned, unless the ForceLocalPort configuration setting is set to False, in which case a random port will be chosen.
LocalPort cannot be changed once the component is Active. Any attempt to set the LocalPort property when the component is Active will generate an error.
Note: on macOS and iOS, root permissions are required to set LocalPort to any value below 1024.
Data Type
Integer
ObjCount Property (SNMPTrapMgr Component)
The number of records in the Obj arrays.
Syntax
__property int ObjCount = { read=FObjCount, write=FSetObjCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at ObjCount - 1.This property is not available at design time.
Data Type
Integer
ObjType Property (SNMPTrapMgr Component)
The current object's type.
Syntax
__property TipnSNMPTrapMgrObjTypes ObjType[int ObjIndex] = { read=FObjType, write=FSetObjType };
enum TipnSNMPTrapMgrObjTypes { otInteger=2, otOctetString=4, otNull=5, otObjectId=6, otIPAddress=64, otCounter32=65, otGauge32=66, otTimeTicks=67, otOpaque=68, otNSAP=69, otCounter64=70, otUnsignedInteger32=71, otNoSuchObject=128, otNoSuchInstance=129, otEndOfMibView=130 };
Default Value
otNull
Remarks
The current object's type. The default type is NULL (5).
The corresponding object id and value are specified by the ObjOid and ObjValue properties.
Possible object type values include:
otInteger (2) | 2 |
otOctetString (4) | 4 |
otNull (5) | 5 |
otObjectID (6) | 6 |
otIPAddress (64) | 64 |
otCounter32 (65) | 65 |
otGauge32 (66) | 66 |
otTimeTicks (67) | 67 |
otOpaque (68) | 68 |
otNSAP (69) | 69 |
otCounter64 (70) | 70 |
otUnsignedInteger32 (71) | 71 |
The component also supports the following artificial object values used to designate error conditions:
otNoSuchObject (128) | No such object error. |
otNoSuchInstance (129) | No such instance error. |
otEndOfMibView (130) | End of MIB View error. |
The ObjIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjCount property.
This property is not available at design time.
Data Type
Integer
ObjId Property (SNMPTrapMgr Component)
The current object's id which is encoded as a string of numbers separated by periods.
Syntax
__property String ObjId[int ObjIndex] = { read=FObjId, write=FSetObjId };
Default Value
""
Remarks
The current object's id which is encoded as a string of numbers separated by periods. For instance: "1.3.6.1.2.1.1.1.0" (OID for "system description").
The corresponding object type and value (if any) are specified by the ObjectType and ObjValue properties.
Example
SNMPControl.ObjCount = 1
SNMPControl.ObjId(0) = "1.3.6.1.2.1.1.1.0"
The ObjIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjCount property.
This property is not available at design time.
Data Type
String
ObjTypeString Property (SNMPTrapMgr Component)
A string representation of the current object's ObjectType .
Syntax
__property String ObjTypeString[int ObjIndex] = { read=FObjTypeString };
Default Value
""
Remarks
A string representation of the current object's ObjectType.
The corresponding object id and value are specified by the ObjOid and ObjValue properties.
The ObjIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjCount property.
This property is read-only and not available at design time.
Data Type
String
ObjValue Property (SNMPTrapMgr Component)
The current object's value.
Syntax
__property String ObjValue[int ObjIndex] = { read=FObjValue, write=FSetObjValue }; __property DynamicArray<Byte> ObjValueB[int ObjIndex] = { read=FObjValueB, write=FSetObjValueB };
Default Value
""
Remarks
The current object's value. The corresponding object id and type are specified by the ObjOid and ObjectType properties.
Example
SNMPControl.ObjCount = 1
SNMPControl.ObjId(0) = "1.3.6.1.2.1.1.1.0"
SNMPControl.ObjValue(0) = "New Value"
The ObjIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjCount property.
This property is not available at design time.
Data Type
Byte Array
RequestId Property (SNMPTrapMgr Component)
The request-id to mark outgoing packets with.
Syntax
__property int RequestId = { read=FRequestId, write=FSetRequestId };
Default Value
1
Remarks
If a custom value is needed for RequestId, the property must be set before sending the request. The component increments RequestId automatically after sending each packet.
This property is not available at design time.
Data Type
Integer
Activate Method (SNMPTrapMgr Component)
Activates the component.
Syntax
void __fastcall Activate();
Remarks
This method activates the component and will allow it to send or receive data.
The component will be automatically activated if it is not already and you attempt to perform an operation which requires the component to be active.
Note: Use the Active property to check whether the component is active.
AddEngine Method (SNMPTrapMgr Component)
Adds the engine specified by EngineId to the internal authentication cache.
Syntax
void __fastcall AddEngine(DynamicArray<Byte> EngineId, int EngineBoots, int EngineTime);
Remarks
The internal authentication cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.
The ShowCache method is used to show the contents of the internal authentication cache.
The ClearCache method can be used to completely clear the cache.
If the engine parameters are unknown, the SNMPMgr component's Discover method can be used to perform a discovery with the agent. The RemoteEngineId, RemoteEngineTime, and RemoteEngineBoots properties will hold the values that can then be passed to this method.
AddUser Method (SNMPTrapMgr Component)
Adds a user for the engine specified by EngineId to the internal authentication cache.
Syntax
void __fastcall AddUser(String User, DynamicArray<Byte> EngineId, int AuthenticationProtocol, String AuthenticationPassword, int EncryptionAlgorithm, String EncryptionPassword);
Remarks
The internal authentication cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.
The ShowCache method is used to show the contents of the internal authentication cache.
The ClearCache method can be used to completely clear the cache.
Valid Authentication Protocols are:
HMAC-MD5-96 (1) | Message-Digest algorithm 5. |
HMAC-SHA-96 (2) | Secure Hash Algorithm. |
HMAC-192-SHA-256 (3) | Secure Hash Algorithm. |
HMAC-384-SHA-512 (4) | Secure Hash Algorithm. |
Valid Encryption Algorithms are:
DES (1) | Data Encryption Standard. |
AES (2) | Advanced Encryption Standard with key length of 128. |
3DES (3) | Triple Data Encryption Standard. |
AES192 (4) | Advanced Encryption Standard with key length of 192. |
AES256 (5) | Advanced Encryption Standard with key length of 256. |
ClearCache Method (SNMPTrapMgr Component)
Clears the internal authentication database.
Syntax
void __fastcall ClearCache();
Remarks
All user and engine records are removed from the internal authentication cache as a result of this call.
Config Method (SNMPTrapMgr Component)
Sets or retrieves a configuration setting.
Syntax
String __fastcall Config(String ConfigurationString);
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Deactivate Method (SNMPTrapMgr Component)
Deactivates the component.
Syntax
void __fastcall Deactivate();
Remarks
This method deactivates the component and will prohibit it from sending and receiving data.
Note: Use the Active property to check whether the component is active.
DoEvents Method (SNMPTrapMgr Component)
Processes events from the internal message queue.
Syntax
void __fastcall DoEvents();
Remarks
When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.
HashPasswords Method (SNMPTrapMgr Component)
Hashes all passwords in the cache.
Syntax
void __fastcall HashPasswords();
Remarks
Forces computation of all passwords hashes in the cache. Used together with the HashPassword event to enable implementations of external password hash storage.
RemoveEngine Method (SNMPTrapMgr Component)
Removes the engine specified by EngineId from the internal authentication cache.
Syntax
void __fastcall RemoveEngine(DynamicArray<Byte> EngineId);
Remarks
The internal authentication cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.
The ShowCache method is used to show the contents of the internal authentication cache.
The ClearCache method can be used to completely clear the cache.
RemoveUser Method (SNMPTrapMgr Component)
Removes the user specified by User of the engine specified by EngineId from the internal authentication cache.
Syntax
void __fastcall RemoveUser(String User, DynamicArray<Byte> EngineId);
Remarks
The internal authentication cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.
The ShowCache method is used to show the contents of the internal authentication cache.
The ClearCache method can be used to completely clear the cache.
Reset Method (SNMPTrapMgr Component)
Clears the object arrays.
Syntax
void __fastcall Reset();
Remarks
Clears the object arrays, and sets the trap and error properties to their default values. This is useful for reinitializing all the properties that are used to create outgoing packets before building a new packet.
Note: SNMPVersion will be reset to snmpverV2c (2).
ShowCache Method (SNMPTrapMgr Component)
Lists all entries in the internal user and engine database.
Syntax
void __fastcall ShowCache();
Remarks
A CacheEntry event is fired for every record in the database.
Value Method (SNMPTrapMgr Component)
Returns the value corresponding to an OID.
Syntax
String __fastcall Value(String OID);
Remarks
If the OID does not exist in the Objects collection, a trappable error is generated.
Please refer to the SNMPObject type for more information.
BadPacket Event (SNMPTrapMgr Component)
Fired for erroneous and/or malformed messages.
Syntax
typedef struct { String Packet; DynamicArray<Byte> PacketB; String SourceAddress; int SourcePort; int ErrorCode; String ErrorDescription; bool Report; } TipnSNMPTrapMgrBadPacketEventParams; typedef void __fastcall (__closure *TipnSNMPTrapMgrBadPacketEvent)(System::TObject* Sender, TipnSNMPTrapMgrBadPacketEventParams *e); __property TipnSNMPTrapMgrBadPacketEvent OnBadPacket = { read=FOnBadPacket, write=FOnBadPacket };
Remarks
The full message is provided in the Packet parameter.
The BadPacket event is also fired when authentication fails for received packets due to a bad password or other reasons.
If the Report parameter is set to True, an unauthenticated error report will be sent to the client, otherwise the packet will be silently ignored.
Please refer to the GetUserPassword event for more information concerning SNMPv3 authentication.
CacheEntry Event (SNMPTrapMgr Component)
Shows engines and users in the internal cache.
Syntax
typedef struct { String EngineId; DynamicArray<Byte> EngineIdB; int EngineBoots; int EngineTime; String User; String AuthenticationProtocol; String AuthenticationPassword; String EncryptionAlgorithm; String EncryptionPassword; } TipnSNMPTrapMgrCacheEntryEventParams; typedef void __fastcall (__closure *TipnSNMPTrapMgrCacheEntryEvent)(System::TObject* Sender, TipnSNMPTrapMgrCacheEntryEventParams *e); __property TipnSNMPTrapMgrCacheEntryEvent OnCacheEntry = { read=FOnCacheEntry, write=FOnCacheEntry };
Remarks
CacheEntry events are triggered by a call to ShowCache. One event is fired for each user and engine. If there are no users for a particular engine, a single event is fired with the engine information, but empty values for user information.
CheckEngine Event (SNMPTrapMgr Component)
Fired to check engine parameters (timeliness, etc.).
Syntax
typedef struct { String EngineId; DynamicArray<Byte> EngineIdB; int EngineBoots; int EngineTime; String User; int SecurityLevel; String RemoteAddress; int RemotePort; bool IsNew; bool Accept; } TipnSNMPTrapMgrCheckEngineEventParams; typedef void __fastcall (__closure *TipnSNMPTrapMgrCheckEngineEvent)(System::TObject* Sender, TipnSNMPTrapMgrCheckEngineEventParams *e); __property TipnSNMPTrapMgrCheckEngineEvent OnCheckEngine = { read=FOnCheckEngine, write=FOnCheckEngine };
Remarks
The Accept parameter determines if the engine will be accepted or not. If you set Accept to False prior to exiting the event, the processing on the message will stop and a BadPacket event will be fired.
The default value of Accept is True if and only if:
a) the engine already exists in the internal authentication cache (the IsNew parameter is False) and the timeliness has been verified;
b) the engine does not exist in the internal authentication cache (the IsNew parameter is True), but the packet has been authenticated by the component (SecurityLevel >= 1).
In all other cases, the default value for Accept is False, and you are responsible for accepting or not accepting the engine based on other considerations.
If Accept is true upon event exit, then:
a) if the engine already exists in the internal authentication cache, its time is updated to reflect the new time and the processing of the packet continues;
b) if the engine does not exist in the internal authentication cache, it is added there and if User is authenticated, the User will be added too.
DiscoveryRequest Event (SNMPTrapMgr Component)
Fired when an SNMPv3 discovery packet is received.
Syntax
typedef struct { String EngineId; DynamicArray<Byte> EngineIdB; int EngineBoots; int EngineTime; String User; int SecurityLevel; String SourceAddress; int SourcePort; bool Respond; } TipnSNMPTrapMgrDiscoveryRequestEventParams; typedef void __fastcall (__closure *TipnSNMPTrapMgrDiscoveryRequestEvent)(System::TObject* Sender, TipnSNMPTrapMgrDiscoveryRequestEventParams *e); __property TipnSNMPTrapMgrDiscoveryRequestEvent OnDiscoveryRequest = { read=FOnDiscoveryRequest, write=FOnDiscoveryRequest };
Remarks
EngineId, EngineBoots, EngineTime, and User are the values received from SourceAddress.
For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.
The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.
Respond is True by default, and will automatically send a response using the value in LocalEngineId. To suppress the response, set Respond to False.
The value returned to SourceAddress for EngineBoots is always 0, and EngineTime is the number of seconds since January 1st, 1970 (GMT).
Error Event (SNMPTrapMgr Component)
Fired when information is available about errors during data delivery.
Syntax
typedef struct { int ErrorCode; String Description; } TipnSNMPTrapMgrErrorEventParams; typedef void __fastcall (__closure *TipnSNMPTrapMgrErrorEvent)(System::TObject* Sender, TipnSNMPTrapMgrErrorEventParams *e); __property TipnSNMPTrapMgrErrorEvent OnError = { read=FOnError, write=FOnError };
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the component raises an exception.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
GetUserPassword Event (SNMPTrapMgr Component)
Retrieves a password associated with a user.
Syntax
typedef struct { int PasswordType; String User; String EngineId; DynamicArray<Byte> EngineIdB; String Password; int Algorithm; } TipnSNMPTrapMgrGetUserPasswordEventParams; typedef void __fastcall (__closure *TipnSNMPTrapMgrGetUserPasswordEvent)(System::TObject* Sender, TipnSNMPTrapMgrGetUserPasswordEventParams *e); __property TipnSNMPTrapMgrGetUserPasswordEvent OnGetUserPassword = { read=FOnGetUserPassword, write=FOnGetUserPassword };
Remarks
The GetUserPassword event is fired after initial inspection of SNMPv3 requests.
The type of password required is provided in the PasswordType parameter: 1 for authentication, and 2 for encryption (privacy).
The password corresponding to User and EngineId must be provided in the Password parameter. If the password is valid, processing will continue to other events such as GetRequest, SetRequest, etc.
If the PasswordType parameter is 1 (authentication is used), the Algorithm parameter can be set. Possible values are:
Value | Authentication Algorithm |
0 (default) | Any |
1 | MD5 |
2 | SHA1 |
3 | SHA256 |
4 | SHA512 |
Value | Encryption Algorithm |
1 (default) | DES |
2 | AES |
3 | 3DES |
4 | AES192 |
5 | AES256 |
If the password does not match the signature in the request, a BadPacket event will be fired, at which point you can decide whether to report the error to the client (see the description of the BadPacket event for more information).
If the User is invalid or unknown, set the password to empty string (default) to ignore the request. This will result in a BadPacket event being fired, at which point you can decide whether to report the error to the client or not.
GetUserSecurityLevel Event (SNMPTrapMgr Component)
Sets the security level for an incoming packet.
Syntax
typedef struct { String User; String EngineId; DynamicArray<Byte> EngineIdB; int SecurityLevel; } TipnSNMPTrapMgrGetUserSecurityLevelEventParams; typedef void __fastcall (__closure *TipnSNMPTrapMgrGetUserSecurityLevelEvent)(System::TObject* Sender, TipnSNMPTrapMgrGetUserSecurityLevelEventParams *e); __property TipnSNMPTrapMgrGetUserSecurityLevelEvent OnGetUserSecurityLevel = { read=FOnGetUserSecurityLevel, write=FOnGetUserSecurityLevel };
Remarks
The GetUserSecurityLevel event is fired after the first inspection of each SNMPv3 request. The SecurityLevel parameter determines the level of security for the message.
On entry, the SecurityLevel parameter contains the default security level for User if the user is located in the internal cache, or if the User is not found in the cache, the SecurityLevel will be -1.
The value of SecurityLevel upon exiting the event, determines how the message will be processed:
-1 | The message will be ignored and a BadPacket event will be fired. |
0 | No security. The message will be processed without any authentication and/or encryption. |
1 | Authentication only. The message will be checked for a valid signature and the GetUserPassword event will be fired to verify the authentication password. |
2 | Authentication and Privacy. The message will be checked for a valid signature and the GetUserPassword event will be fired twice: first to verify the authentication password, and then to verify the privacy password. |
HashPassword Event (SNMPTrapMgr Component)
Fired before and after a password is hashed.
Syntax
typedef struct { String Password; int AuthAlgorithm; String Hash; } TipnSNMPTrapMgrHashPasswordEventParams; typedef void __fastcall (__closure *TipnSNMPTrapMgrHashPasswordEvent)(System::TObject* Sender, TipnSNMPTrapMgrHashPasswordEventParams *e); __property TipnSNMPTrapMgrHashPasswordEvent OnHashPassword = { read=FOnHashPassword, write=FOnHashPassword };
Remarks
SNMPv3 passwords are hashed in order to obtain authentication and encryption keys. This is an expensive operation, and in certain situations it may be preferable to store the hashed passwords externally and supply them on demand.
If a hash is required, the event fires with an empty string in the Hash parameter. In this case, you can choose to supply a value for the hash and stop the component from computing the hash.
The event also fires every time a hash is computed. In this case, the Hash parameter contains the value of the computed hash.
AuthAlgorithm contains either 1 for HMAC-MD5-96, 2 for HMAC-SHA-96 or 3 for HMAC-192-SHA-256
InformRequest Event (SNMPTrapMgr Component)
Fired when an InformRequest packet is received.
Syntax
typedef struct { int RequestId; int SNMPVersion; String Community; String User; int SecurityLevel; String SourceAddress; int SourcePort; int ErrorIndex; int ErrorStatus; String ErrorDescription; bool Respond; } TipnSNMPTrapMgrInformRequestEventParams; typedef void __fastcall (__closure *TipnSNMPTrapMgrInformRequestEvent)(System::TObject* Sender, TipnSNMPTrapMgrInformRequestEventParams *e); __property TipnSNMPTrapMgrInformRequestEvent OnInformRequest = { read=FOnInformRequest, write=FOnInformRequest };
Remarks
For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.
The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.
The user in an InformRequest packet (SNMPv3) must be a valid user in the internal authentication cache (see the AddUser method and the CheckEngine event for more information). If not, the request is rejected, and a BadPacket event is fired before InformRequest is fired.
The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the ObjId, ObjType, and ObjValue of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.
The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.
The MessageId parameter identifies the received request.
For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.
The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.
To send a response, the Respond parameter must be set to true. By default, this value is false, which means no response will be sent. The ErrorStatus parameter may also be set to a valid SNMP status code (the default value is 0, which represents no error).
The following is a list of valid SNMP status code values:
0 (noError) | No error. |
1 (tooBig) | The response cannot fit in a single SNMP message. |
2 (noSuchName) | Variable does not exist. |
3 (badValue) | Invalid value or syntax. |
4 (readOnly) | Variable is read-only. |
5 (genError) | Other error (SNMPv1). |
6 (noAccess) | Access denied. |
7 (wrongType) | Wrong object type. |
8 (wrongLength) | Wrong length. |
9 (wrongEncoding) | Wrong encoding. |
10 (wrongValue) | Wrong value. |
11 (noCreation) | No creation. |
12 (inconsistentValue) | Inconsistent value. |
13 (resourceUnavailable) | Resource unavailable. |
14 (commitFailed) | Commit failed. |
15 (undoFailed) | Undo failed. |
16 (authorizationError) | Authorization error. |
17 (notWritable) | Variable is not writable. |
18 (inconsistentName) | Inconsistent name. |
Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).
PacketTrace Event (SNMPTrapMgr Component)
Fired for every packet sent or received.
Syntax
typedef struct { String Packet; DynamicArray<Byte> PacketB; int Direction; String PacketAddress; int PacketPort; } TipnSNMPTrapMgrPacketTraceEventParams; typedef void __fastcall (__closure *TipnSNMPTrapMgrPacketTraceEvent)(System::TObject* Sender, TipnSNMPTrapMgrPacketTraceEventParams *e); __property TipnSNMPTrapMgrPacketTraceEvent OnPacketTrace = { read=FOnPacketTrace, write=FOnPacketTrace };
Remarks
The PacketTrace event shows all the packets sent or received by the component.
Packet contains the full contents of the datagram.
Direction shows the direction of the packet: 1 for incoming packets, and 2 for outgoing packets.
In the case of an incoming packet, PacketAddress and PacketPort identify the source of the packet.
In the case of an outgoing packet, PacketAddress and PacketPort identify the destination of the packet.
Trap Event (SNMPTrapMgr Component)
Fired when a SNMP trap packet is received.
Syntax
typedef struct { int RequestId; int SNMPVersion; String Community; String User; int SecurityLevel; String TrapOID; __int64 TimeStamp; String AgentAddress; String SourceAddress; int SourcePort; } TipnSNMPTrapMgrTrapEventParams; typedef void __fastcall (__closure *TipnSNMPTrapMgrTrapEvent)(System::TObject* Sender, TipnSNMPTrapMgrTrapEventParams *e); __property TipnSNMPTrapMgrTrapEvent OnTrap = { read=FOnTrap, write=FOnTrap };
Remarks
The TrapOID and TimeStamp parameters contain the Trap OID and TimeStamp. In the case of an SNMPv1 trap, there are two possible scenarios:
First, if the enterprise of the trap is "1.3.6.1.6.3.1.1.5", TrapOID will be a concatenation of TrapEnterprise and GenericTrap + 1. For instance a TrapOID of "1.3.6.1.6.3.1.1.5.5" has a TrapEnterprise of "1.3.6.1.6.3.1.1.5" and a GenericTrap of "4".
Second, In all other cases TrapOID will be a concatenation of the values for TrapEnterprise, GenericTrap, and SpecificTrap, separated by '.'.
For SNMPv2 and above, they are read from the variable-value list (if available).
For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.
The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.
The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the ObjId, ObjType, and ObjValue of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.
The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.
Some parameters are only applicable depending on the SNMPVersion value. The table below shows which parameters are applicable to which SNMP versions.
SNMPv1 | SNMPv2 | SNMPv3 | |
AgentAddress | X | ||
Community | X | X | |
RequestId | X | X | |
SecurityLevel | X | ||
User | X | ||
SNMPVersion | X | X | X |
SourceAddress | X | X | X |
SourcePort | X | X | X |
TimeStamp | X | X | X |
TrapOID | X | X | X |
Config Settings (SNMPTrapMgr Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.SNMPTrapMgr Config Settings
0 (default) | Component operates normally for greatest compatibility. |
1 | Component uses SNMP4j-compatible encryption (AES192 and AES256). |
2 | Component automatically detects whether to use SNMP4j-compatible encryption (AES192 and AES256). Note: This option is only applicable when receiving packets. If you are using SNMPMgr or sending secure traps, you will need to select either 0 or 1. |
UDP Config Settings
The default value for this setting is False.
Note: This setting is only available in Windows.
The default value is false.
Note: This setting is only available in Windows.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.
If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
Note: This setting uses the qWAVE API is only available on Windows 7, Windows Server 2008 R2, and later.
Note: This setting uses the qWAVE API which is only available on Windows Vista and Windows Server 2008 or above.
Note: QOSTrafficType must be set before setting Active to true.
The default value for this setting is False.
The default value for this setting is False.
Socket Config Settings
Note: This option is not valid for UDP ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.
This setting is set to false by default on all platforms.
Trappable Errors (SNMPTrapMgr Component)
SNMPTrapMgr Errors
301 Bad Object Index. | |
302 Value exceeds maximum number of objects allowed. | |
303 The value must be an IP address in dotted format. | |
305 Unsupported SNMP version. | |
306 Unknown PDU type. | |
307 The component is busy performing the current action. | |
308 Verification failed. | |
309 Missing password for Verification. | |
310 Missing signature. | |
311 Missing remote time. | |
312 Missing timeout value. | |
313 Decryption Failed. | |
314 Missing password for decryption. | |
315 Not encrypted. | |
316 Security model not supported. | |
317 Defective packet | |
318 Not from bound point. | |
319 Operation not permitted in current role. | |
320 Bad packet. | |
321 Message not authenticated. | |
322 No such oid. | |
323 Missing privacy parameter. | |
324 Bad engine id. | |
325 Bad time frame. | |
326 Bad user name. | |
327 Security level was not accepted. | |
328 Discovery failed. | |
329 Incorrect key length. |
The component may also return one of the following error codes, which are inherited from other components.
UDP Errors
104 UDP is already Active. | |
106 You cannot change the LocalPort while the component is Active. | |
107 You cannot change the LocalHost at this time. A connection is in progress. | |
109 The component must be Active for this operation. | |
112 Cannot change MaxPacketSize while the component is Active. | |
113 Cannot change ShareLocalPort option while the component is Active. | |
114 Cannot change RemoteHost when UseConnection is set and the component Active. | |
115 Cannot change RemotePort when UseConnection is set and the component is Active. | |
116 RemotePort can't be zero when UseConnection is set. Please specify a valid service port number. | |
117 Cannot change UseConnection while the component is Active. | |
118 Message can't be longer than MaxPacketSize. | |
119 Message too short. | |
434 Unable to convert string to selected CodePage |
SSL Errors
270 Cannot load specified security library. | |
271 Cannot open certificate store. | |
272 Cannot find specified certificate. | |
273 Cannot acquire security credentials. | |
274 Cannot find certificate chain. | |
275 Cannot verify certificate chain. | |
276 Error during handshake. | |
280 Error verifying certificate. | |
281 Could not find client certificate. | |
282 Could not find server certificate. | |
283 Error encrypting data. | |
284 Error decrypting data. |
TCP/IP Errors
10004 [10004] Interrupted system call. | |
10009 [10009] Bad file number. | |
10013 [10013] Access denied. | |
10014 [10014] Bad address. | |
10022 [10022] Invalid argument. | |
10024 [10024] Too many open files. | |
10035 [10035] Operation would block. | |
10036 [10036] Operation now in progress. | |
10037 [10037] Operation already in progress. | |
10038 [10038] Socket operation on non-socket. | |
10039 [10039] Destination address required. | |
10040 [10040] Message too long. | |
10041 [10041] Protocol wrong type for socket. | |
10042 [10042] Bad protocol option. | |
10043 [10043] Protocol not supported. | |
10044 [10044] Socket type not supported. | |
10045 [10045] Operation not supported on socket. | |
10046 [10046] Protocol family not supported. | |
10047 [10047] Address family not supported by protocol family. | |
10048 [10048] Address already in use. | |
10049 [10049] Can't assign requested address. | |
10050 [10050] Network is down. | |
10051 [10051] Network is unreachable. | |
10052 [10052] Net dropped connection or reset. | |
10053 [10053] Software caused connection abort. | |
10054 [10054] Connection reset by peer. | |
10055 [10055] No buffer space available. | |
10056 [10056] Socket is already connected. | |
10057 [10057] Socket is not connected. | |
10058 [10058] Can't send after socket shutdown. | |
10059 [10059] Too many references, can't splice. | |
10060 [10060] Connection timed out. | |
10061 [10061] Connection refused. | |
10062 [10062] Too many levels of symbolic links. | |
10063 [10063] File name too long. | |
10064 [10064] Host is down. | |
10065 [10065] No route to host. | |
10066 [10066] Directory not empty | |
10067 [10067] Too many processes. | |
10068 [10068] Too many users. | |
10069 [10069] Disc Quota Exceeded. | |
10070 [10070] Stale NFS file handle. | |
10071 [10071] Too many levels of remote in path. | |
10091 [10091] Network subsystem is unavailable. | |
10092 [10092] WINSOCK DLL Version out of range. | |
10093 [10093] Winsock not loaded yet. | |
11001 [11001] Host not found. | |
11002 [11002] Non-authoritative 'Host not found' (try again or check DNS setup). | |
11003 [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP. | |
11004 [11004] Valid name, no data record (check DNS setup). |