SNMPTrapMgr Class

Properties   Methods   Events   Config Settings   Errors  

The SNMPTrapMgr class provides a UDP-based listening point for SNMP traps.

Syntax

class ipworkssnmp.SNMPTrapMgr

Remarks

The SNMPTrapMgr class provides a UDP-based listening point for SNMP traps and informs as specified by the SNMP RFCs. The class supports v1, v2c, and v3 traps.

The class provides both encoding/decoding and transport capabilities, making the task of developing a custom SNMP Trap manager as simple as setting a few key properties and handling a few events. SNMP data, such as for instance SNMP object id-s (OID-s) are exchanged as text strings, thus further simplifying the task of handling them.

The class is activated/deactivated by calling the activate or deactivate method. These methods enable or disable sending and receiving. The activation status can be found in the active property.

Messages are received through events such as on_trap, on_inform_request, or on_discovery_request.

SNMP OIDs, types, and values are provided in the objects collection of SNMP objects for both sent and received packets.

SNMPv3 USM security passwords are requested through the on_get_user_password event, and event parameters such as User and SecurityLevel provide information about the security attributes of received requests, and enable granular decision capability about what to provide and what not to provide.

The add_user, remove_user, show_cache, clear_cache, add_engine, and remove_engine methods are used to manage an internal authentication cache. This internal cache can be used as an alternative to the on_get_user_password event, automatically checking the cache against the security parameters provided in the request signature.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

accept_dataEnables or disables data reception.
activeIndicates whether the class is active.
local_engine_idThe Engine Id (for SNMPv3).
local_hostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
local_portThe port in the local host where the class is bound to.
obj_countThe number of records in the Obj arrays.
obj_typeThe current object's type.
obj_idThe current object's id which is encoded as a string of numbers separated by periods.
obj_type_stringA string representation of the current object's ObjectType .
obj_valueThe current object's value.
request_idThe request-id to mark outgoing packets with.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

activateActivates the class.
add_engineAdds the engine specified by EngineId to the internal authentication cache.
add_userAdds a user for the engine specified by EngineId to the internal authentication cache.
clear_cacheClears the internal authentication database.
configSets or retrieves a configuration setting.
deactivateDeactivates the class.
do_eventsProcesses events from the internal message queue.
hash_passwordsHashes all passwords in the cache.
remove_engineRemoves the engine specified by EngineId from the internal authentication cache.
remove_userRemoves the user specified by User of the engine specified by EngineId from the internal authentication cache.
resetClears the object arrays.
show_cacheLists all entries in the internal user and engine database.
valueReturns the value corresponding to an OID.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

on_bad_packetFired for erroneous and/or malformed messages.
on_cache_entryShows engines and users in the internal cache.
on_check_engineFired to check engine parameters (timeliness, etc.).
on_discovery_requestFired when an SNMPv3 discovery packet is received.
on_errorFired when information is available about errors during data delivery.
on_get_user_passwordRetrieves a password associated with a user.
on_get_user_security_levelSets the security level for an incoming packet.
on_hash_passwordFired before and after a password is hashed.
on_inform_requestFired when an InformRequest packet is received.
on_packet_traceFired for every packet sent or received.
on_trapFired when a SNMP trap packet is received.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AuthenticationKeyThe key to use for authentication.
CompatibilityModeWhether to operate the class in a specific compatibility mode.
ContextEngineIdSets the context engine id of the SNMP entity.
ContextNameSets the context name of the SNMP entity.
DecryptLogPacketsWhether to decrypt logged packets.
EncryptionKeyThe key to use for encryption.
ForceLocalPortForces the class to bind to a specific port.
IncomingContextEngineIdThe engine Id of the received packet.
IncomingContextNameThe context name of the received packet.
ShowCacheForUserShows the cache entry for a single user.
SourceAddressThe source address of the received packet.
SourcePortThe source port of the received packet.
TimeWindowThe time window used for SNMPv3 timeliness checking (authentication).
CaptureIPPacketInfoUsed to capture the packet information.
DelayHostResolutionWhether the hostname is resolved when RemoteHost is set.
DestinationAddressUsed to get the destination address from the packet information.
DontFragmentUsed to set the Don't Fragment flag of outgoing packets.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxPacketSizeThe maximum length of the packets that can be received.
QOSDSCPValueUsed to specify an arbitrary QOS/DSCP setting (optional).
QOSTrafficTypeUsed to specify QOS/DSCP settings (optional).
ShareLocalPortIf set to True, allows more than one instance of the class to be active on the same local port.
SourceIPAddressUsed to set the source IP address used when sending a packet.
SourceMacAddressUsed to set the source MAC address used when sending a packet.
UseConnectionDetermines whether to use a connected socket.
UseIPv6Whether or not to use IPv6.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

accept_data Property

Enables or disables data reception.

Syntax

def get_accept_data() -> bool: ...
def set_accept_data(value: bool) -> None: ...

accept_data = property(get_accept_data, set_accept_data)

Default Value

TRUE

Remarks

Setting the property to False temporarily disables data reception. Setting the property to True re-enables data reception.

active Property

Indicates whether the class is active.

Syntax

def get_active() -> bool: ...
def set_active(value: bool) -> None: ...

active = property(get_active, set_active)

Default Value

FALSE

Remarks

This property indicates whether the class is currently active and can send or receive data.

The class will be automatically activated if it is not already and you attempt to perform an operation which requires the class to be active.

Note: Use the activate or deactivate method to control whether the class is active.

local_engine_id Property

The Engine Id (for SNMPv3).

Syntax

def get_local_engine_id() -> bytes: ...
def set_local_engine_id(value: bytes) -> None: ...

local_engine_id = property(get_local_engine_id, set_local_engine_id)

Default Value

""

Remarks

This property is necessary for properly handling on_inform_request packets.

local_host Property

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

def get_local_host() -> str: ...
def set_local_host(value: str) -> None: ...

local_host = property(get_local_host, set_local_host)

Default Value

""

Remarks

The local_host property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the local_host property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

NOTE: local_host is not persistent. You must always set it in code, and never in the property window.

local_port Property

The port in the local host where the class is bound to.

Syntax

def get_local_port() -> int: ...
def set_local_port(value: int) -> None: ...

local_port = property(get_local_port, set_local_port)

Default Value

162

Remarks

The local_port property must be set before the class is activated (active is set to True). It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

The default port is 162 (standard trap port). If that port is busy, an error will be returned, unless the ForceLocalPort configuration setting is set to False, in which case a random port will be chosen.

local_port cannot be changed once the class is active. Any attempt to set the local_port property when the class is active will generate an error.

Note: on macOS and iOS, root permissions are required to set local_port to any value below 1024.

obj_count Property

The number of records in the Obj arrays.

Syntax

def get_obj_count() -> int: ...
def set_obj_count(value: int) -> None: ...

obj_count = property(get_obj_count, set_obj_count)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at obj_count - 1.

obj_type Property

The current object's type.

Syntax

def get_obj_type(obj_index: int) -> int: ...
def set_obj_type(obj_index: int, value: int) -> None: ...

Default Value

5

Remarks

The current object's type. The default type is NULL (5).

The corresponding object id and value are specified by the obj_oid and obj_value properties.

Possible object type values include:

otInteger (2) 2
otOctetString (4) 4
otNull (5) 5
otObjectID (6) 6
otIPAddress (64)64
otCounter32 (65)65
otGauge32 (66)66
otTimeTicks (67)67
otOpaque (68)68
otNSAP (69)69
otCounter64 (70)70
otUnsignedInteger32 (71)71

The class also supports the following artificial object values used to designate error conditions:

otNoSuchObject (128)No such object error.
otNoSuchInstance (129)No such instance error.
otEndOfMibView (130)End of MIB View error.

The obj_index parameter specifies the index of the item in the array. The size of the array is controlled by the obj_count property.

obj_id Property

The current object's id which is encoded as a string of numbers separated by periods.

Syntax

def get_obj_id(obj_index: int) -> str: ...
def set_obj_id(obj_index: int, value: str) -> None: ...

Default Value

""

Remarks

The current object's id which is encoded as a string of numbers separated by periods. For instance: "1.3.6.1.2.1.1.1.0" (OID for "system description").

The corresponding object type and value (if any) are specified by the object_type and obj_value properties.

Example

SNMPControl.ObjCount = 1 SNMPControl.ObjId(0) = "1.3.6.1.2.1.1.1.0"

The obj_index parameter specifies the index of the item in the array. The size of the array is controlled by the obj_count property.

obj_type_string Property

A string representation of the current object's ObjectType .

Syntax

def get_obj_type_string(obj_index: int) -> str: ...

Default Value

""

Remarks

A string representation of the current object's object_type.

The corresponding object id and value are specified by the obj_oid and obj_value properties.

The obj_index parameter specifies the index of the item in the array. The size of the array is controlled by the obj_count property.

This property is read-only.

obj_value Property

The current object's value.

Syntax

def get_obj_value(obj_index: int) -> bytes: ...
def set_obj_value(obj_index: int, value: bytes) -> None: ...

Default Value

""

Remarks

The current object's value. The corresponding object id and type are specified by the obj_oid and object_type properties.

Example

SNMPControl.ObjCount = 1 SNMPControl.ObjId(0) = "1.3.6.1.2.1.1.1.0" SNMPControl.ObjValue(0) = "New Value"

The obj_index parameter specifies the index of the item in the array. The size of the array is controlled by the obj_count property.

request_id Property

The request-id to mark outgoing packets with.

Syntax

def get_request_id() -> int: ...
def set_request_id(value: int) -> None: ...

request_id = property(get_request_id, set_request_id)

Default Value

1

Remarks

If a custom value is needed for request_id, the property must be set before sending the request. The class increments request_id automatically after sending each packet.

activate Method

Activates the class.

Syntax

def activate() -> None: ...

Remarks

This method activates the component and will allow it to send or receive data.

The class will be automatically activated if it is not already and you attempt to perform an operation which requires the class to be active.

Note: Use the active property to check whether the component is active.

add_engine Method

Adds the engine specified by EngineId to the internal authentication cache.

Syntax

def add_engine(engine_id: bytes, engine_boots: int, engine_time: int) -> None: ...

Remarks

The internal authentication cache can be used as an alternative to the on_get_user_password event, automatically checking the cache against the security parameters provided in the request signature.

The show_cache method is used to show the contents of the internal authentication cache.

The clear_cache method can be used to completely clear the cache.

If the engine parameters are unknown, the SNMPMgr class's Discover method can be used to perform a discovery with the agent. The RemoteEngineId, RemoteEngineTime, and RemoteEngineBoots properties will hold the values that can then be passed to this method.

add_user Method

Adds a user for the engine specified by EngineId to the internal authentication cache.

Syntax

def add_user(user: str, engine_id: bytes, authentication_protocol: int, authentication_password: str, encryption_algorithm: int, encryption_password: str) -> None: ...

Remarks

The internal authentication cache can be used as an alternative to the on_get_user_password event, automatically checking the cache against the security parameters provided in the request signature.

The show_cache method is used to show the contents of the internal authentication cache.

The clear_cache method can be used to completely clear the cache.

Valid Authentication Protocols are:

HMAC-MD5-96 (1)Message-Digest algorithm 5.
HMAC-SHA-96 (2)Secure Hash Algorithm.
HMAC-192-SHA-256 (3)Secure Hash Algorithm.
HMAC-384-SHA-512 (4)Secure Hash Algorithm.

Valid Encryption Algorithms are:

DES (1)Data Encryption Standard.
AES (2)Advanced Encryption Standard with key length of 128.
3DES (3)Triple Data Encryption Standard.
AES192 (4)Advanced Encryption Standard with key length of 192.
AES256 (5)Advanced Encryption Standard with key length of 256.

clear_cache Method

Clears the internal authentication database.

Syntax

def clear_cache() -> None: ...

Remarks

All user and engine records are removed from the internal authentication cache as a result of this call.

config Method

Sets or retrieves a configuration setting.

Syntax

def config(configuration_string: str) -> str: ...

Remarks

config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

deactivate Method

Deactivates the class.

Syntax

def deactivate() -> None: ...

Remarks

This method deactivates the component and will prohibit it from sending and receiving data.

Note: Use the active property to check whether the component is active.

do_events Method

Processes events from the internal message queue.

Syntax

def do_events() -> None: ...

Remarks

When do_events is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

hash_passwords Method

Hashes all passwords in the cache.

Syntax

def hash_passwords() -> None: ...

Remarks

Forces computation of all passwords hashes in the cache. Used together with the on_hash_password event to enable implementations of external password hash storage.

remove_engine Method

Removes the engine specified by EngineId from the internal authentication cache.

Syntax

def remove_engine(engine_id: bytes) -> None: ...

Remarks

The internal authentication cache can be used as an alternative to the on_get_user_password event, automatically checking the cache against the security parameters provided in the request signature.

The show_cache method is used to show the contents of the internal authentication cache.

The clear_cache method can be used to completely clear the cache.

remove_user Method

Removes the user specified by User of the engine specified by EngineId from the internal authentication cache.

Syntax

def remove_user(user: str, engine_id: bytes) -> None: ...

Remarks

The internal authentication cache can be used as an alternative to the on_get_user_password event, automatically checking the cache against the security parameters provided in the request signature.

The show_cache method is used to show the contents of the internal authentication cache.

The clear_cache method can be used to completely clear the cache.

reset Method

Clears the object arrays.

Syntax

def reset() -> None: ...

Remarks

Clears the object arrays, and sets the trap and error properties to their default values. This is useful for reinitializing all the properties that are used to create outgoing packets before building a new packet.

Note: snmp_version will be reset to snmpverV2c (2).

show_cache Method

Lists all entries in the internal user and engine database.

Syntax

def show_cache() -> None: ...

Remarks

A on_cache_entry event is fired for every record in the database.

value Method

Returns the value corresponding to an OID.

Syntax

def value(oid: str) -> str: ...

Remarks

If the OID does not exist in the objects collection, a trappable error is generated.

Please refer to the SNMPObject type for more information.

on_bad_packet Event

Fired for erroneous and/or malformed messages.

Syntax

class SNMPTrapMgrBadPacketEventParams(object):
  @property
  def packet() -> bytes: ...

  @property
  def source_address() -> str: ...

  @property
  def source_port() -> int: ...

  @property
  def error_code() -> int: ...

  @property
  def error_description() -> str: ...

  @property
  def report() -> bool: ...
  @report.setter
  def report(value) -> None: ...

# In class SNMPTrapMgr:
@property
def on_bad_packet() -> Callable[[SNMPTrapMgrBadPacketEventParams], None]: ...
@on_bad_packet.setter
def on_bad_packet(event_hook: Callable[[SNMPTrapMgrBadPacketEventParams], None]) -> None: ...

Remarks

The full message is provided in the Packet parameter.

The on_bad_packet event is also fired when authentication fails for received packets due to a bad password or other reasons.

If the Report parameter is set to True, an unauthenticated error report will be sent to the client, otherwise the packet will be silently ignored.

Please refer to the on_get_user_password event for more information concerning SNMPv3 authentication.

on_cache_entry Event

Shows engines and users in the internal cache.

Syntax

class SNMPTrapMgrCacheEntryEventParams(object):
  @property
  def engine_id() -> bytes: ...

  @property
  def engine_boots() -> int: ...

  @property
  def engine_time() -> int: ...

  @property
  def user() -> str: ...

  @property
  def authentication_protocol() -> str: ...

  @property
  def authentication_password() -> str: ...

  @property
  def encryption_algorithm() -> str: ...

  @property
  def encryption_password() -> str: ...

# In class SNMPTrapMgr:
@property
def on_cache_entry() -> Callable[[SNMPTrapMgrCacheEntryEventParams], None]: ...
@on_cache_entry.setter
def on_cache_entry(event_hook: Callable[[SNMPTrapMgrCacheEntryEventParams], None]) -> None: ...

Remarks

on_cache_entry events are triggered by a call to show_cache. One event is fired for each user and engine. If there are no users for a particular engine, a single event is fired with the engine information, but empty values for user information.

on_check_engine Event

Fired to check engine parameters (timeliness, etc.).

Syntax

class SNMPTrapMgrCheckEngineEventParams(object):
  @property
  def engine_id() -> bytes: ...

  @property
  def engine_boots() -> int: ...

  @property
  def engine_time() -> int: ...

  @property
  def user() -> str: ...

  @property
  def security_level() -> int: ...

  @property
  def remote_address() -> str: ...

  @property
  def remote_port() -> int: ...

  @property
  def is_new() -> bool: ...

  @property
  def accept() -> bool: ...
  @accept.setter
  def accept(value) -> None: ...

# In class SNMPTrapMgr:
@property
def on_check_engine() -> Callable[[SNMPTrapMgrCheckEngineEventParams], None]: ...
@on_check_engine.setter
def on_check_engine(event_hook: Callable[[SNMPTrapMgrCheckEngineEventParams], None]) -> None: ...

Remarks

The Accept parameter determines if the engine will be accepted or not. If you set Accept to False prior to exiting the event, the processing on the message will stop and a on_bad_packet event will be fired.

The default value of Accept is True if and only if:

a) the engine already exists in the internal authentication cache (the IsNew parameter is False) and the timeliness has been verified;

b) the engine does not exist in the internal authentication cache (the IsNew parameter is True), but the packet has been authenticated by the class (SecurityLevel >= 1).

In all other cases, the default value for Accept is False, and you are responsible for accepting or not accepting the engine based on other considerations.

If Accept is true upon event exit, then:

a) if the engine already exists in the internal authentication cache, its time is updated to reflect the new time and the processing of the packet continues;

b) if the engine does not exist in the internal authentication cache, it is added there and if User is authenticated, the User will be added too.

on_discovery_request Event

Fired when an SNMPv3 discovery packet is received.

Syntax

class SNMPTrapMgrDiscoveryRequestEventParams(object):
  @property
  def engine_id() -> bytes: ...

  @property
  def engine_boots() -> int: ...

  @property
  def engine_time() -> int: ...

  @property
  def user() -> str: ...

  @property
  def security_level() -> int: ...

  @property
  def source_address() -> str: ...

  @property
  def source_port() -> int: ...

  @property
  def respond() -> bool: ...
  @respond.setter
  def respond(value) -> None: ...

# In class SNMPTrapMgr:
@property
def on_discovery_request() -> Callable[[SNMPTrapMgrDiscoveryRequestEventParams], None]: ...
@on_discovery_request.setter
def on_discovery_request(event_hook: Callable[[SNMPTrapMgrDiscoveryRequestEventParams], None]) -> None: ...

Remarks

EngineId, EngineBoots, EngineTime, and User are the values received from SourceAddress.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

Respond is True by default, and will automatically send a response using the value in local_engine_id. To suppress the response, set Respond to False.

The value returned to SourceAddress for EngineBoots is always 0, and EngineTime is the number of seconds since January 1st, 1970 (GMT).

on_error Event

Fired when information is available about errors during data delivery.

Syntax

class SNMPTrapMgrErrorEventParams(object):
  @property
  def error_code() -> int: ...

  @property
  def description() -> str: ...

# In class SNMPTrapMgr:
@property
def on_error() -> Callable[[SNMPTrapMgrErrorEventParams], None]: ...
@on_error.setter
def on_error(event_hook: Callable[[SNMPTrapMgrErrorEventParams], None]) -> None: ...

Remarks

The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

on_get_user_password Event

Retrieves a password associated with a user.

Syntax

class SNMPTrapMgrGetUserPasswordEventParams(object):
  @property
  def password_type() -> int: ...

  @property
  def user() -> str: ...

  @property
  def engine_id() -> bytes: ...

  @property
  def password() -> str: ...
  @password.setter
  def password(value) -> None: ...

  @property
  def algorithm() -> int: ...
  @algorithm.setter
  def algorithm(value) -> None: ...

# In class SNMPTrapMgr:
@property
def on_get_user_password() -> Callable[[SNMPTrapMgrGetUserPasswordEventParams], None]: ...
@on_get_user_password.setter
def on_get_user_password(event_hook: Callable[[SNMPTrapMgrGetUserPasswordEventParams], None]) -> None: ...

Remarks

The on_get_user_password event is fired after initial inspection of SNMPv3 requests.

The type of password required is provided in the PasswordType parameter: 1 for authentication, and 2 for encryption (privacy).

The password corresponding to User and EngineId must be provided in the Password parameter. If the password is valid, processing will continue to other events such as on_get_request, on_set_request, etc.

If the PasswordType parameter is 1 (authentication is used), the Algorithm parameter can be set. Possible values are:

ValueAuthentication Algorithm
0 (default)Any
1MD5
2SHA1
3SHA256
4SHA512
If the PasswordType parameter is 2 (encryption is used), the Algorithm parameter must also be set. Possible values are:
ValueEncryption Algorithm
1 (default)DES
2AES
33DES
4AES192
5AES256

If the password does not match the signature in the request, a on_bad_packet event will be fired, at which point you can decide whether to report the error to the client (see the description of the on_bad_packet event for more information).

If the User is invalid or unknown, set the password to empty string (default) to ignore the request. This will result in a on_bad_packet event being fired, at which point you can decide whether to report the error to the client or not.

on_get_user_security_level Event

Sets the security level for an incoming packet.

Syntax

class SNMPTrapMgrGetUserSecurityLevelEventParams(object):
  @property
  def user() -> str: ...

  @property
  def engine_id() -> bytes: ...

  @property
  def security_level() -> int: ...
  @security_level.setter
  def security_level(value) -> None: ...

# In class SNMPTrapMgr:
@property
def on_get_user_security_level() -> Callable[[SNMPTrapMgrGetUserSecurityLevelEventParams], None]: ...
@on_get_user_security_level.setter
def on_get_user_security_level(event_hook: Callable[[SNMPTrapMgrGetUserSecurityLevelEventParams], None]) -> None: ...

Remarks

The on_get_user_security_level event is fired after the first inspection of each SNMPv3 request. The SecurityLevel parameter determines the level of security for the message.

On entry, the SecurityLevel parameter contains the default security level for User if the user is located in the internal cache, or if the User is not found in the cache, the SecurityLevel will be -1.

The value of SecurityLevel upon exiting the event, determines how the message will be processed:

-1The message will be ignored and a on_bad_packet event will be fired.
0No security. The message will be processed without any authentication and/or encryption.
1Authentication only. The message will be checked for a valid signature and the on_get_user_password event will be fired to verify the authentication password.
2Authentication and Privacy. The message will be checked for a valid signature and the on_get_user_password event will be fired twice: first to verify the authentication password, and then to verify the privacy password.

on_hash_password Event

Fired before and after a password is hashed.

Syntax

class SNMPTrapMgrHashPasswordEventParams(object):
  @property
  def password() -> str: ...

  @property
  def auth_algorithm() -> int: ...

  @property
  def hash() -> str: ...
  @hash.setter
  def hash(value) -> None: ...

# In class SNMPTrapMgr:
@property
def on_hash_password() -> Callable[[SNMPTrapMgrHashPasswordEventParams], None]: ...
@on_hash_password.setter
def on_hash_password(event_hook: Callable[[SNMPTrapMgrHashPasswordEventParams], None]) -> None: ...

Remarks

SNMPv3 passwords are hashed in order to obtain authentication and encryption keys. This is an expensive operation, and in certain situations it may be preferable to store the hashed passwords externally and supply them on demand.

If a hash is required, the event fires with an empty string in the Hash parameter. In this case, you can choose to supply a value for the hash and stop the class from computing the hash.

The event also fires every time a hash is computed. In this case, the Hash parameter contains the value of the computed hash.

AuthAlgorithm contains either 1 for HMAC-MD5-96, 2 for HMAC-SHA-96 or 3 for HMAC-192-SHA-256

on_inform_request Event

Fired when an InformRequest packet is received.

Syntax

class SNMPTrapMgrInformRequestEventParams(object):
  @property
  def request_id() -> int: ...

  @property
  def snmp_version() -> int: ...

  @property
  def community() -> str: ...

  @property
  def user() -> str: ...

  @property
  def security_level() -> int: ...

  @property
  def source_address() -> str: ...

  @property
  def source_port() -> int: ...

  @property
  def error_index() -> int: ...
  @error_index.setter
  def error_index(value) -> None: ...

  @property
  def error_status() -> int: ...
  @error_status.setter
  def error_status(value) -> None: ...

  @property
  def error_description() -> str: ...

  @property
  def respond() -> bool: ...
  @respond.setter
  def respond(value) -> None: ...

# In class SNMPTrapMgr:
@property
def on_inform_request() -> Callable[[SNMPTrapMgrInformRequestEventParams], None]: ...
@on_inform_request.setter
def on_inform_request(event_hook: Callable[[SNMPTrapMgrInformRequestEventParams], None]) -> None: ...

Remarks

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

The user in an InformRequest packet (SNMPv3) must be a valid user in the internal authentication cache (see the add_user method and the on_check_engine event for more information). If not, the request is rejected, and a on_bad_packet event is fired before on_inform_request is fired.

The list of variables in the SNMP packet, including optional values and types, is provided through the objects collection. Each object is of type SNMPObject. This type describes the obj_id, obj_type, and obj_value of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

The MessageId parameter identifies the received request.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

To send a response, the Respond parameter must be set to true. By default, this value is false, which means no response will be sent. The ErrorStatus parameter may also be set to a valid SNMP status code (the default value is 0, which represents no error).

The following is a list of valid SNMP status code values:

0 (noError) No error.
1 (tooBig) The response cannot fit in a single SNMP message.
2 (noSuchName) Variable does not exist.
3 (badValue) Invalid value or syntax.
4 (readOnly) Variable is read-only.
5 (genError) Other error (SNMPv1).
6 (noAccess) Access denied.
7 (wrongType) Wrong object type.
8 (wrongLength) Wrong length.
9 (wrongEncoding) Wrong encoding.
10 (wrongValue) Wrong value.
11 (noCreation) No creation.
12 (inconsistentValue) Inconsistent value.
13 (resourceUnavailable) Resource unavailable.
14 (commitFailed) Commit failed.
15 (undoFailed) Undo failed.
16 (authorizationError) Authorization error.
17 (notWritable) Variable is not writable.
18 (inconsistentName) Inconsistent name.
The ErrorIndex parameter indicates the index of the first variable (object) that caused an error. The default value is 0.

Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).

on_packet_trace Event

Fired for every packet sent or received.

Syntax

class SNMPTrapMgrPacketTraceEventParams(object):
  @property
  def packet() -> bytes: ...

  @property
  def direction() -> int: ...

  @property
  def packet_address() -> str: ...

  @property
  def packet_port() -> int: ...

# In class SNMPTrapMgr:
@property
def on_packet_trace() -> Callable[[SNMPTrapMgrPacketTraceEventParams], None]: ...
@on_packet_trace.setter
def on_packet_trace(event_hook: Callable[[SNMPTrapMgrPacketTraceEventParams], None]) -> None: ...

Remarks

The on_packet_trace event shows all the packets sent or received by the class.

Packet contains the full contents of the datagram.

Direction shows the direction of the packet: 1 for incoming packets, and 2 for outgoing packets.

In the case of an incoming packet, PacketAddress and PacketPort identify the source of the packet.

In the case of an outgoing packet, PacketAddress and PacketPort identify the destination of the packet.

on_trap Event

Fired when a SNMP trap packet is received.

Syntax

class SNMPTrapMgrTrapEventParams(object):
  @property
  def request_id() -> int: ...

  @property
  def snmp_version() -> int: ...

  @property
  def community() -> str: ...

  @property
  def user() -> str: ...

  @property
  def security_level() -> int: ...

  @property
  def trap_oid() -> str: ...

  @property
  def time_stamp() -> int: ...

  @property
  def agent_address() -> str: ...

  @property
  def source_address() -> str: ...

  @property
  def source_port() -> int: ...

# In class SNMPTrapMgr:
@property
def on_trap() -> Callable[[SNMPTrapMgrTrapEventParams], None]: ...
@on_trap.setter
def on_trap(event_hook: Callable[[SNMPTrapMgrTrapEventParams], None]) -> None: ...

Remarks

The TrapOID and TimeStamp parameters contain the Trap OID and TimeStamp. In the case of an SNMPv1 trap, there are two possible scenarios:

First, if the enterprise of the trap is "1.3.6.1.6.3.1.1.5", TrapOID will be a concatenation of TrapEnterprise and GenericTrap + 1. For instance a TrapOID of "1.3.6.1.6.3.1.1.5.5" has a TrapEnterprise of "1.3.6.1.6.3.1.1.5" and a GenericTrap of "4".

Second, In all other cases TrapOID will be a concatenation of the values for TrapEnterprise, GenericTrap, and SpecificTrap, separated by '.'.

For SNMPv2 and above, they are read from the variable-value list (if available).

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

The list of variables in the SNMP packet, including optional values and types, is provided through the objects collection. Each object is of type SNMPObject. This type describes the obj_id, obj_type, and obj_value of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

Some parameters are only applicable depending on the SNMPVersion value. The table below shows which parameters are applicable to which SNMP versions.

SNMPv1 SNMPv2 SNMPv3
AgentAddress X
Community X X
RequestId X X
SecurityLevel X
User X
SNMPVersion X X X
SourceAddress X X X
SourcePort X X X
TimeStamp X X X
TrapOID X X X

SNMPTrapMgr Config Settings

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

SNMPTrapMgr Config Settings

AuthenticationKey:   The key to use for authentication.

This setting takes the hex-encoded key for authentication and may be set inside on_get_user_password.

CompatibilityMode:   Whether to operate the component in a specific compatibility mode.

This setting will cause the component to operate in a manner different than normal so that it is compatible with third-party products and libraries. The following table lists the possible values for this setting:

0 (default)Component operates normally for greatest compatibility.
1Component uses SNMP4j-compatible encryption (AES192 and AES256).
2Component automatically detects whether to use SNMP4j-compatible encryption (AES192 and AES256). Note: This option is only applicable when receiving packets. If you are using SNMPMgr or sending secure traps, you will need to select either 0 or 1.
ContextEngineId:   Sets the context engine id of the SNMP entity.

If set, the context engine id included in the PDU will be set.

ContextName:   Sets the context name of the SNMP entity.

If set, the context name included in the PDU will be set.

DecryptLogPackets:   Whether to decrypt logged packets.

When set to True this setting will cause the class to decrypt packets logged in on_packet_trace. This only applies when using SNMP Version 3. The default is False.

EncryptionKey:   The key to use for encryption.

This setting takes the hex-encoded key for encryption and may be set inside on_get_user_password.

ForceLocalPort:   Forces the class to bind to a specific port.

The default value is True, which makes the class throw an error if local_port is busy. When ForceLocalPort is set to False and the port is busy, the class silently chooses another random port.

IncomingContextEngineId:   The engine Id of the received packet.

This setting holds the engine Id of the received packet. This may be queried at any time, including from within an event, and returns the engine Id of the received packet. This is not needed in most cases, but can be used to store the incoming engine Id to send an asynchronous response later. This value is read-only.

IncomingContextName:   The context name of the received packet.

This setting holds the context name of the received packet. This may be queried at any time, including from within an event, and returns the context name of the received packet. This is not needed in most cases, but can be used to store the incoming context name to send an asynchronous response later. This value is read-only.

ShowCacheForUser:   Shows the cache entry for a single user.

This configuration setting causes the class to call ShowCache internally, and only fire the CacheEntry event for the user specified.

SourceAddress:   The source address of the received packet.

This setting holds the source address of the received packet. This may be queried at any time, including from within an event, and returns the source address of the received packet. This value is read-only.

SourcePort:   The source port of the received packet.

This setting holds the source port of the received packet. This may be queried at any time, including from within an event, and returns the source port of the received packet. This value is read-only.

TimeWindow:   The time window used for SNMPv3 timeliness checking (authentication).

The default value is 150 (seconds).

UDP Config Settings

CaptureIPPacketInfo:   Used to capture the packet information.

If this is set to true, the component will capture the IP packet information.

The default value for this setting is False.

Note: This setting is only available in Windows.

DelayHostResolution:   Whether the hostname is resolved when RemoteHost is set.

This setting specifies whether a hostname is resolved immediately when remote_host is set. If True the class will resolve the hostname and the IP address will be present in the remote_host property. If False, the hostname is not resolved until needed by the component when a method to connect or send data is called. If desired, resolve_remote_host may called to manually resolve the value in remote_host at any time.

The default value is False.

DestinationAddress:   Used to get the destination address from the packet information.

If CaptureIPPacketInfo is set to true, then this will be populated with the packet's destination address when a packet is received. This information will be accessible in the DataIn event.

Note: This setting is only available in Windows.

DontFragment:   Used to set the Don't Fragment flag of outgoing packets.

When set to True, packets sent by the class will have the Don't Fragment flag set. The default value is False.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The local_host setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the local_host setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by local_port after the connection is established.

local_port cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxPacketSize:   The maximum length of the packets that can be received.

This setting specifies the maximum size of the datagrams that the class will accept without truncation.

QOSDSCPValue:   Used to specify an arbitrary QOS/DSCP setting (optional).

UseConnection must be True to use this setting. This option allows you to specify an arbitrary DSCP value between 0 and 63. The default is 0. When set to the default value the component will not set a DSCP value.

Note: This setting uses the qWAVE API is only available on Windows 7, Windows Server 2008 R2, and later.

QOSTrafficType:   Used to specify QOS/DSCP settings (optional).

UseConnection must be True to use this setting. You may specify either the text or integer values: BestEffort (0), Background (1), ExcellentEffort (2), AudioVideo (3), Voice (4), and Control (5).

Note: This setting uses the qWAVE API which is only available on Windows Vista and Windows Server 2008 or above.

Note: QOSTrafficType must be set before setting active to true.

ShareLocalPort:   If set to True, allows more than one instance of the class to be active on the same local port.

This option must be set before the class is activated through the active property or it will have no effect.

The default value for this setting is False.

SourceIPAddress:   Used to set the source IP address used when sending a packet.

This configuration setting can be used to override the source IP address when sending a packet.

Note: This setting is only available in Windows and requires that the winpcap library be installed (or npcap with winpcap compatibility).

SourceMacAddress:   Used to set the source MAC address used when sending a packet.

This configuration setting can be used to override the source MAC address when sending a packet.

Note: This setting is only available in Windows and requires that the winpcap library be installed (or npcap with winpcap compatibility).

UseConnection:   Determines whether to use a connected socket.

UseConnection specifies whether the class should use a connected socket or not. The connection is defined as an association in between the local address/port and the remote address/port. As such, this is not a connection in the traditional TCP sense. What it means is only that the class will send and receive data only to and from the specified destination.

The default value for this setting is False.

UseIPv6:   Whether or not to use IPv6.

By default, the component expects an IPv4 address for local and remote host properties, and will create an IPv4 socket. To use IPv6 instead, set this to True.

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to True to mask sensitive data. The default is True.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when do_events is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to False, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to True tells the class to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to False by default. On Linux/macOS, this setting is set to True by default.

To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.

SNMPTrapMgr Errors

SNMPTrapMgr Errors

301   Bad Object Index.
302   Value exceeds maximum number of objects allowed.
303   The value must be an IP address in dotted format.
305   Unsupported SNMP version.
306   Unknown PDU type.
307   The class is busy performing the current action.
308   Verification failed.
309   Missing password for Verification.
310   Missing signature.
311   Missing remote time.
312   Missing timeout value.
313   Decryption Failed.
314   Missing password for decryption.
315   Not encrypted.
316   Security model not supported.
317   Defective packet
318   Not from bound point.
319   Operation not permitted in current role.
320   Bad packet.
321   Message not authenticated.
322   No such oid.
323   Missing privacy parameter.
324   Bad engine id.
325   Bad time frame.
326   Bad user name.
327   Security level was not accepted.
328   Discovery failed.
329   Incorrect key length.

The class may also return one of the following error codes, which are inherited from other classes.

UDP Errors

104   UDP is already active.
106   You cannot change the local_port while the class is active.
107   You cannot change the local_host at this time. A connection is in progress.
109   The class must be active for this operation.
112   Cannot change MaxPacketSize while the class is active.
113   Cannot change ShareLocalPort option while the class is active.
114   Cannot change remote_host when UseConnection is set and the class active.
115   Cannot change remote_port when UseConnection is set and the class is active.
116   remote_port can't be zero when UseConnection is set. Please specify a valid service port number.
117   Cannot change UseConnection while the class is active.
118   Message can't be longer than MaxPacketSize.
119   Message too short.
434   Unable to convert string to selected CodePage

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).