SNMPTCPAgent Control

Properties   Methods   Events   Config Settings   Errors  

The SNMPTCPAgent control is used to implement TCP-based SNMP Agent Applications.

Syntax

SNMPTCPAgent

Remarks

The SNMPTCPAgent control implements a TCP-based standard SNMP Agent as specified in the SNMP RFCs. The control supports SNMP v1, v2c, and v3.

The control provides both encoding/decoding and transport capabilities, making the task of developing a custom SNMP agent as simple as setting a few key properties and handling a few events. SNMP data such as SNMP object id-s (OID-s) are exchanged as text strings, thus further simplifying the task of handling them.

The control is activated/deactivated by calling the Activate or Deactivate method. These methods enable or disable sending and receiving. The activation status can be found in the Active property.

The control operates asynchronously. Requests are received through events such as GetRequest, GetBulkRequest, GetNextRequest, etc. and the corresponding responses are automatically sent when the events return. Traps are sent through the SendTrap method.

SNMPv3 USM security passwords are requested through the GetUserPassword event, and event parameters such as User and SecurityLevel provide information about the security attributes of received requests, and enable granular decision capability about what to provide and what not to provide. The SendSecureTrap method is used to send authenticated (secure) SNMPv3 traps.

The AddUser, RemoveUser, ShowCache, and ClearCache methods are used to manage an internal authentication cache. This internal cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.

SNMP OIDs, types, and values are provided in the Objects collection of SNMP objects for both sent and received packets.

Other packet information is provided through corresponding event parameters, such as Community, or RequestId.

Property List


The following is the full list of the properties of the control with short descriptions. Click on the links for further details.

AcceptDataEnables or disables data reception.
ActiveIndicates whether the control is active.
LocalEngineIdThe Engine Id of the SNMP Agent.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
LocalPortThe port in the local host where the control listens.
ObjCountThe number of records in the Obj arrays.
ObjTypeThe current object's type.
ObjIdThe current object's id which is encoded as a string of numbers separated by periods.
ObjTypeStringA string representation of the current object's ObjectType .
ObjValueThe current object's value.
RequestIdThe request-id to mark outgoing packets with.
SNMPVersionVersion of SNMP used for outgoing requests (traps).
SSLAcceptServerCertEffectiveDateThe date on which this certificate becomes valid.
SSLAcceptServerCertExpirationDateThe date on which the certificate expires.
SSLAcceptServerCertExtendedKeyUsageA comma-delimited list of extended key usage identifiers.
SSLAcceptServerCertFingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
SSLAcceptServerCertFingerprintSHA1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
SSLAcceptServerCertFingerprintSHA256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
SSLAcceptServerCertIssuerThe issuer of the certificate.
SSLAcceptServerCertPrivateKeyThe private key of the certificate (if available).
SSLAcceptServerCertPrivateKeyAvailableWhether a PrivateKey is available for the selected certificate.
SSLAcceptServerCertPrivateKeyContainerThe name of the PrivateKey container for the certificate (if available).
SSLAcceptServerCertPublicKeyThe public key of the certificate.
SSLAcceptServerCertPublicKeyAlgorithmThe textual description of the certificate's public key algorithm.
SSLAcceptServerCertPublicKeyLengthThe length of the certificate's public key (in bits).
SSLAcceptServerCertSerialNumberThe serial number of the certificate encoded as a string.
SSLAcceptServerCertSignatureAlgorithmThe text description of the certificate's signature algorithm.
SSLAcceptServerCertStoreThe name of the certificate store for the client certificate.
SSLAcceptServerCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SSLAcceptServerCertStoreTypeThe type of certificate store for this certificate.
SSLAcceptServerCertSubjectAltNamesComma-separated lists of alternative subject names for the certificate.
SSLAcceptServerCertThumbprintMD5The MD5 hash of the certificate.
SSLAcceptServerCertThumbprintSHA1The SHA-1 hash of the certificate.
SSLAcceptServerCertThumbprintSHA256The SHA-256 hash of the certificate.
SSLAcceptServerCertUsageThe text description of UsageFlags .
SSLAcceptServerCertUsageFlagsThe flags that show intended use for the certificate.
SSLAcceptServerCertVersionThe certificate's version number.
SSLAcceptServerCertSubjectThe subject of the certificate used for client authentication.
SSLAcceptServerCertEncodedThe certificate (PEM/Base64 encoded).
SSLAuthenticateClientsIf set to True, the server asks the client(s) for a certificate.
SSLCertEffectiveDateThe date on which this certificate becomes valid.
SSLCertExpirationDateThe date on which the certificate expires.
SSLCertExtendedKeyUsageA comma-delimited list of extended key usage identifiers.
SSLCertFingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
SSLCertFingerprintSHA1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
SSLCertFingerprintSHA256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
SSLCertIssuerThe issuer of the certificate.
SSLCertPrivateKeyThe private key of the certificate (if available).
SSLCertPrivateKeyAvailableWhether a PrivateKey is available for the selected certificate.
SSLCertPrivateKeyContainerThe name of the PrivateKey container for the certificate (if available).
SSLCertPublicKeyThe public key of the certificate.
SSLCertPublicKeyAlgorithmThe textual description of the certificate's public key algorithm.
SSLCertPublicKeyLengthThe length of the certificate's public key (in bits).
SSLCertSerialNumberThe serial number of the certificate encoded as a string.
SSLCertSignatureAlgorithmThe text description of the certificate's signature algorithm.
SSLCertStoreThe name of the certificate store for the client certificate.
SSLCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SSLCertStoreTypeThe type of certificate store for this certificate.
SSLCertSubjectAltNamesComma-separated lists of alternative subject names for the certificate.
SSLCertThumbprintMD5The MD5 hash of the certificate.
SSLCertThumbprintSHA1The SHA-1 hash of the certificate.
SSLCertThumbprintSHA256The SHA-256 hash of the certificate.
SSLCertUsageThe text description of UsageFlags .
SSLCertUsageFlagsThe flags that show intended use for the certificate.
SSLCertVersionThe certificate's version number.
SSLCertSubjectThe subject of the certificate used for client authentication.
SSLCertEncodedThe certificate (PEM/Base64 encoded).
SSLEnabledWhether TLS/SSL is enabled.
SSLServerCertEffectiveDateThe date on which this certificate becomes valid.
SSLServerCertExpirationDateThe date on which the certificate expires.
SSLServerCertExtendedKeyUsageA comma-delimited list of extended key usage identifiers.
SSLServerCertFingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
SSLServerCertFingerprintSHA1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
SSLServerCertFingerprintSHA256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
SSLServerCertIssuerThe issuer of the certificate.
SSLServerCertPrivateKeyThe private key of the certificate (if available).
SSLServerCertPrivateKeyAvailableWhether a PrivateKey is available for the selected certificate.
SSLServerCertPrivateKeyContainerThe name of the PrivateKey container for the certificate (if available).
SSLServerCertPublicKeyThe public key of the certificate.
SSLServerCertPublicKeyAlgorithmThe textual description of the certificate's public key algorithm.
SSLServerCertPublicKeyLengthThe length of the certificate's public key (in bits).
SSLServerCertSerialNumberThe serial number of the certificate encoded as a string.
SSLServerCertSignatureAlgorithmThe text description of the certificate's signature algorithm.
SSLServerCertStoreThe name of the certificate store for the client certificate.
SSLServerCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SSLServerCertStoreTypeThe type of certificate store for this certificate.
SSLServerCertSubjectAltNamesComma-separated lists of alternative subject names for the certificate.
SSLServerCertThumbprintMD5The MD5 hash of the certificate.
SSLServerCertThumbprintSHA1The SHA-1 hash of the certificate.
SSLServerCertThumbprintSHA256The SHA-256 hash of the certificate.
SSLServerCertUsageThe text description of UsageFlags .
SSLServerCertUsageFlagsThe flags that show intended use for the certificate.
SSLServerCertVersionThe certificate's version number.
SSLServerCertSubjectThe subject of the certificate used for client authentication.
SSLServerCertEncodedThe certificate (PEM/Base64 encoded).
SysUpTimeTime passed since the agent was initialized (in hundredths of a second).

Method List


The following is the full list of the methods of the control with short descriptions. Click on the links for further details.

ActivateActivates the control.
AddUserAdds a user to the internal authentication cache.
ClearCacheClears the internal authentication database.
ConfigSets or retrieves a configuration setting.
DeactivateDeactivates the control.
DoEventsThis method processes events from the internal message queue.
HashPasswordsHashes all passwords in the cache.
RemoveUserRemoves the user specified by User from the internal authentication cache.
ResetClears the object arrays.
SendResponseSends a response packet to a Get, Get-Next, Get-Bulk, or Set request.
SendSecureResponseSends an authenticated and/or encrypted SNMPv3 response.
SendSecureTrapSends an authenticated and/or encrypted SNMPv3 trap.
SendTrapSends an SNMP Trap.
ShowCacheLists all entries in the internal user authentication cache.
ValueReturns the value corresponding to an OID.

Event List


The following is the full list of the events fired by the control with short descriptions. Click on the links for further details.

BadPacketFired for erroneous and/or malformed messages.
CacheEntryShows in the internal cache.
ConnectedFired immediately after a connection completes (or fails).
ConnectionStatusThis event is fired to indicate changes in the connection state.
DisconnectedFired when a connection is closed.
DiscoveryRequestFired when an SNMPv3 discovery packet is received.
ErrorFired when information is available about errors during data delivery.
GetBulkRequestFired when a GetBulkRequest packet is received.
GetNextRequestFired when a GetNextRequest packet is received.
GetRequestFired when a GetRequest packet is received.
GetUserPasswordRetrieves a password associated with a user.
GetUserSecurityLevelSets the security level for an incoming packet.
HashPasswordFired before and after a password is hashed.
PacketTraceFired for every packet sent or received.
ReadyToSendFired when the control is ready to send data.
ReportFired when a Report packet is received.
SetRequestFired when a SetRequest packet is received.
SSLClientAuthenticationFired when the client presents its credentials to the server.
SSLServerAuthenticationFires when connecting to the server.
SSLStatusShows the progress of the secure connection.

Config Settings


The following is a list of config settings for the control with short descriptions. Click on the links for further details.

AuthenticationKeyThe key to use for authentication.
CompatibilityModeWhether to operate the control in a specific compatibility mode.
ContextEngineIdSets the context engine id of the SNMP entity.
ContextNameSets the context name of the SNMP entity.
DecryptLogPacketsWhether to decrypt logged packets.
EncryptionKeyThe key to use for encryption.
ForceLocalPortForces the control to bind to a specific port.
IncomingContextEngineIdThe engine Id of the received packet.
IncomingContextNameThe context name of the received packet.
MsgMaxSizeThe maximum supported message size.
RespondFromDestIPWhether to respond from the IP address that the request was sent to.
SourceAddressThe source address of the received packet.
SourcePortThe source port of the received packet.
TimeWindowThe time window used for SNMPv3 timeliness checking (authentication).
TrapAgentAddressThe address of the object generating the trap.
TrapCommunityThe value of the Community parameter for SNMP traps.
TrapEnterpriseThe type of the object generating the trap.
TrapPortThe port where SNMP traps are sent.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the control whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the control binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
CodePageThe system code page used for Unicode to Multibyte translations.
MaskSensitiveDataWhether sensitive data is masked in log messages.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

AcceptData Property (SNMPTCPAgent Control)

Enables or disables data reception.

Syntax

snmptcpagentcontrol.AcceptData[=boolean]

Default Value

True

Remarks

Setting the property to False temporarily disables data reception. Setting the property to True re-enables data reception.

This property is not available at design time.

Data Type

Boolean

Active Property (SNMPTCPAgent Control)

Indicates whether the control is active.

Syntax

snmptcpagentcontrol.Active[=boolean]

Default Value

False

Remarks

This property indicates whether the control is currently active and can send or receive data.

The control will be automatically activated if it is not already and you attempt to perform an operation which requires the control to be active.

Use the Activate and Deactivate methods to control whether the control is active.

This property is not available at design time.

Data Type

Boolean

LocalEngineId Property (SNMPTCPAgent Control)

The Engine Id of the SNMP Agent.

Syntax

snmptcpagentcontrol.LocalEngineId[=string]

Default Value

""

Remarks

This property is only used for SNMPv3 packets (when SNMPVersion is 3).

To read or write binary data to the property, a Variant (Byte Array) version is provided in .LocalEngineIdB.

Data Type

Binary String

LocalHost Property (SNMPTCPAgent Control)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

snmptcpagentcontrol.LocalHost[=string]

Default Value

""

Remarks

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the control is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: LocalHost is not persistent. You must always set it in code, and never in the property window.

Data Type

String

LocalPort Property (SNMPTCPAgent Control)

The port in the local host where the control listens.

Syntax

snmptcpagentcontrol.LocalPort[=integer]

Default Value

161

Remarks

The LocalPort property must be set before the control is activated (Active is set to True). It instructs the control to bind to a specific port (or communication endpoint) in the local machine (default 161).

You may also set LocalPort to 0. This allows the TCP/IP stack to choose a port at random. The value chosen is provided via the LocalPort property after the control is activated through the Active property.

LocalPort cannot be changed once the control is Active. Any attempt to set the LocalPort property when the control is Active will generate an error.

Note: on macOS and iOS, root permissions are required to set LocalPort to any value below 1024.

Data Type

Integer

ObjCount Property (SNMPTCPAgent Control)

The number of records in the Obj arrays.

Syntax

snmptcpagentcontrol.ObjCount[=integer]

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at ObjCount - 1.

This property is not available at design time.

Data Type

Integer

ObjType Property (SNMPTCPAgent Control)

The current object's type.

Syntax

snmptcpagentcontrol.ObjType(ObjIndex)[=integer]

Possible Values

otInteger(2), 
otOctetString(4), 
otNull(5), 
otObjectId(6), 
otIPAddress(64), 
otCounter32(65), 
otGauge32(66), 
otTimeTicks(67), 
otOpaque(68), 
otNSAP(69), 
otCounter64(70), 
otUnsignedInteger32(71), 
otNoSuchObject(128), 
otNoSuchInstance(129), 
otEndOfMibView(130)

Default Value

5

Remarks

The current object's type. The default type is NULL (5).

The corresponding object id and value are specified by the ObjOid and ObjValue properties.

Possible object type values include:

otInteger (2) 2
otOctetString (4) 4
otNull (5) 5
otObjectID (6) 6
otIPAddress (64)64
otCounter32 (65)65
otGauge32 (66)66
otTimeTicks (67)67
otOpaque (68)68
otNSAP (69)69
otCounter64 (70)70
otUnsignedInteger32 (71)71

The control also supports the following artificial object values used to designate error conditions:

otNoSuchObject (128)No such object error.
otNoSuchInstance (129)No such instance error.
otEndOfMibView (130)End of MIB View error.

The ObjIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjCount property.

This property is not available at design time.

Data Type

Integer

ObjId Property (SNMPTCPAgent Control)

The current object's id which is encoded as a string of numbers separated by periods.

Syntax

snmptcpagentcontrol.ObjId(ObjIndex)[=string]

Default Value

""

Remarks

The current object's id which is encoded as a string of numbers separated by periods. For instance: "1.3.6.1.2.1.1.1.0" (OID for "system description").

The corresponding object type and value (if any) are specified by the ObjectType and ObjValue properties.

Example

SNMPControl.ObjCount = 1 SNMPControl.ObjId(0) = "1.3.6.1.2.1.1.1.0"

The ObjIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjCount property.

This property is not available at design time.

Data Type

String

ObjTypeString Property (SNMPTCPAgent Control)

A string representation of the current object's ObjectType .

Syntax

snmptcpagentcontrol.ObjTypeString(ObjIndex)

Default Value

""

Remarks

A string representation of the current object's ObjectType.

The corresponding object id and value are specified by the ObjOid and ObjValue properties.

The ObjIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjCount property.

This property is read-only and not available at design time.

Data Type

String

ObjValue Property (SNMPTCPAgent Control)

The current object's value.

Syntax

snmptcpagentcontrol.ObjValue(ObjIndex)[=string]

Default Value

""

Remarks

The current object's value. The corresponding object id and type are specified by the ObjOid and ObjectType properties.

Example

SNMPControl.ObjCount = 1 SNMPControl.ObjId(0) = "1.3.6.1.2.1.1.1.0" SNMPControl.ObjValue(0) = "New Value"

The ObjIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ObjCount property.

To read or write binary data to the property, a Variant (Byte Array) version is provided in .ObjValueB.

This property is not available at design time.

Data Type

Binary String

RequestId Property (SNMPTCPAgent Control)

The request-id to mark outgoing packets with.

Syntax

snmptcpagentcontrol.RequestId[=integer]

Default Value

1

Remarks

If a custom value is needed for RequestId, the property must be set before sending the request. The control increments RequestId automatically after sending each packet.

This property is not available at design time.

Data Type

Integer

SNMPVersion Property (SNMPTCPAgent Control)

Version of SNMP used for outgoing requests (traps).

Syntax

snmptcpagentcontrol.SNMPVersion[=integer]

Possible Values

snmpverV1(1), 
snmpverV2c(2), 
snmpverV3(3)

Default Value

2

Remarks

This property takes one of the following values:

snmpverV1 (1)SNMP Version 1.
snmpverV2c (2)SNMP Version 2c.
snmpverV3 (3)SNMP Version 3.

Data Type

Integer

SSLAcceptServerCertEffectiveDate Property (SNMPTCPAgent Control)

The date on which this certificate becomes valid.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertEffectiveDate

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

Data Type

String

SSLAcceptServerCertExpirationDate Property (SNMPTCPAgent Control)

The date on which the certificate expires.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertExpirationDate

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

Data Type

String

SSLAcceptServerCertExtendedKeyUsage Property (SNMPTCPAgent Control)

A comma-delimited list of extended key usage identifiers.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertExtendedKeyUsage

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

Data Type

String

SSLAcceptServerCertFingerprint Property (SNMPTCPAgent Control)

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertFingerprint

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

Data Type

String

SSLAcceptServerCertFingerprintSHA1 Property (SNMPTCPAgent Control)

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertFingerprintSHA1

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

Data Type

String

SSLAcceptServerCertFingerprintSHA256 Property (SNMPTCPAgent Control)

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertFingerprintSHA256

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

Data Type

String

SSLAcceptServerCertIssuer Property (SNMPTCPAgent Control)

The issuer of the certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertIssuer

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

Data Type

String

SSLAcceptServerCertPrivateKey Property (SNMPTCPAgent Control)

The private key of the certificate (if available).

Syntax

snmptcpagentcontrol.SSLAcceptServerCertPrivateKey

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The SSLAcceptServerCertPrivateKey may be available but not exportable. In this case, SSLAcceptServerCertPrivateKey returns an empty string.

This property is read-only.

Data Type

String

SSLAcceptServerCertPrivateKeyAvailable Property (SNMPTCPAgent Control)

Whether a PrivateKey is available for the selected certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertPrivateKeyAvailable

Default Value

False

Remarks

Whether a SSLAcceptServerCertPrivateKey is available for the selected certificate. If SSLAcceptServerCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

Data Type

Boolean

SSLAcceptServerCertPrivateKeyContainer Property (SNMPTCPAgent Control)

The name of the PrivateKey container for the certificate (if available).

Syntax

snmptcpagentcontrol.SSLAcceptServerCertPrivateKeyContainer

Default Value

""

Remarks

The name of the SSLAcceptServerCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

Data Type

String

SSLAcceptServerCertPublicKey Property (SNMPTCPAgent Control)

The public key of the certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertPublicKey

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

Data Type

String

SSLAcceptServerCertPublicKeyAlgorithm Property (SNMPTCPAgent Control)

The textual description of the certificate's public key algorithm.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertPublicKeyAlgorithm

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

Data Type

String

SSLAcceptServerCertPublicKeyLength Property (SNMPTCPAgent Control)

The length of the certificate's public key (in bits).

Syntax

snmptcpagentcontrol.SSLAcceptServerCertPublicKeyLength

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

Data Type

Integer

SSLAcceptServerCertSerialNumber Property (SNMPTCPAgent Control)

The serial number of the certificate encoded as a string.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertSerialNumber

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

Data Type

String

SSLAcceptServerCertSignatureAlgorithm Property (SNMPTCPAgent Control)

The text description of the certificate's signature algorithm.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertSignatureAlgorithm

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

Data Type

String

SSLAcceptServerCertStore Property (SNMPTCPAgent Control)

The name of the certificate store for the client certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertStore[=string]

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The SSLAcceptServerCertStoreType property denotes the type of the certificate store specified by SSLAcceptServerCertStore. If the store is password-protected, specify the password in SSLAcceptServerCertStorePassword.

SSLAcceptServerCertStore is used in conjunction with the SSLAcceptServerCertSubject property to specify client certificates. If SSLAcceptServerCertStore has a value, and SSLAcceptServerCertSubject or SSLAcceptServerCertEncoded is set, a search for a certificate is initiated. Please see the SSLAcceptServerCertSubject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLAcceptServerCertStoreB.

Data Type

Binary String

SSLAcceptServerCertStorePassword Property (SNMPTCPAgent Control)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertStorePassword[=string]

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Data Type

String

SSLAcceptServerCertStoreType Property (SNMPTCPAgent Control)

The type of certificate store for this certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertStoreType[=integer]

Possible Values

cstUser(0), 
cstMachine(1), 
cstPFXFile(2), 
cstPFXBlob(3), 
cstJKSFile(4), 
cstJKSBlob(5), 
cstPEMKeyFile(6), 
cstPEMKeyBlob(7), 
cstPublicKeyFile(8), 
cstPublicKeyBlob(9), 
cstSSHPublicKeyBlob(10), 
cstP7BFile(11), 
cstP7BBlob(12), 
cstSSHPublicKeyFile(13), 
cstPPKFile(14), 
cstPPKBlob(15), 
cstXMLFile(16), 
cstXMLBlob(17), 
cstJWKFile(18), 
cstJWKBlob(19), 
cstSecurityKey(20), 
cstBCFKSFile(21), 
cstBCFKSBlob(22), 
cstPKCS11(23), 
cstAuto(99)

Default Value

0

Remarks

The type of certificate store for this certificate.

The control supports both public and private keys in a variety of formats. When the cstAuto value is used, the control will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr control. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the SSLAcceptServerCertStore and set SSLAcceptServerCertStorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Data Type

Integer

SSLAcceptServerCertSubjectAltNames Property (SNMPTCPAgent Control)

Comma-separated lists of alternative subject names for the certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertSubjectAltNames

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

Data Type

String

SSLAcceptServerCertThumbprintMD5 Property (SNMPTCPAgent Control)

The MD5 hash of the certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertThumbprintMD5

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLAcceptServerCertThumbprintSHA1 Property (SNMPTCPAgent Control)

The SHA-1 hash of the certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertThumbprintSHA1

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLAcceptServerCertThumbprintSHA256 Property (SNMPTCPAgent Control)

The SHA-256 hash of the certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertThumbprintSHA256

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLAcceptServerCertUsage Property (SNMPTCPAgent Control)

The text description of UsageFlags .

Syntax

snmptcpagentcontrol.SSLAcceptServerCertUsage

Default Value

""

Remarks

The text description of SSLAcceptServerCertUsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

Data Type

String

SSLAcceptServerCertUsageFlags Property (SNMPTCPAgent Control)

The flags that show intended use for the certificate.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertUsageFlags

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of SSLAcceptServerCertUsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the SSLAcceptServerCertUsage property for a text representation of SSLAcceptServerCertUsageFlags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

Data Type

Integer

SSLAcceptServerCertVersion Property (SNMPTCPAgent Control)

The certificate's version number.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertVersion

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

Data Type

String

SSLAcceptServerCertSubject Property (SNMPTCPAgent Control)

The subject of the certificate used for client authentication.

Syntax

snmptcpagentcontrol.SSLAcceptServerCertSubject[=string]

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Data Type

String

SSLAcceptServerCertEncoded Property (SNMPTCPAgent Control)

The certificate (PEM/Base64 encoded).

Syntax

snmptcpagentcontrol.SSLAcceptServerCertEncoded[=string]

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.

When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLAcceptServerCertEncodedB.

This property is not available at design time.

Data Type

Binary String

SSLAuthenticateClients Property (SNMPTCPAgent Control)

If set to True, the server asks the client(s) for a certificate.

Syntax

snmptcpagentcontrol.SSLAuthenticateClients[=boolean]

Default Value

False

Remarks

This property is used in conjunction with the SSLClientAuthentication event. Please refer to the documentation of the SSLClientAuthentication event for details.

Data Type

Boolean

SSLCertEffectiveDate Property (SNMPTCPAgent Control)

The date on which this certificate becomes valid.

Syntax

snmptcpagentcontrol.SSLCertEffectiveDate

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

Data Type

String

SSLCertExpirationDate Property (SNMPTCPAgent Control)

The date on which the certificate expires.

Syntax

snmptcpagentcontrol.SSLCertExpirationDate

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

Data Type

String

SSLCertExtendedKeyUsage Property (SNMPTCPAgent Control)

A comma-delimited list of extended key usage identifiers.

Syntax

snmptcpagentcontrol.SSLCertExtendedKeyUsage

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

Data Type

String

SSLCertFingerprint Property (SNMPTCPAgent Control)

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

snmptcpagentcontrol.SSLCertFingerprint

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

Data Type

String

SSLCertFingerprintSHA1 Property (SNMPTCPAgent Control)

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

snmptcpagentcontrol.SSLCertFingerprintSHA1

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

Data Type

String

SSLCertFingerprintSHA256 Property (SNMPTCPAgent Control)

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

snmptcpagentcontrol.SSLCertFingerprintSHA256

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

Data Type

String

SSLCertIssuer Property (SNMPTCPAgent Control)

The issuer of the certificate.

Syntax

snmptcpagentcontrol.SSLCertIssuer

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

Data Type

String

SSLCertPrivateKey Property (SNMPTCPAgent Control)

The private key of the certificate (if available).

Syntax

snmptcpagentcontrol.SSLCertPrivateKey

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The SSLCertPrivateKey may be available but not exportable. In this case, SSLCertPrivateKey returns an empty string.

This property is read-only.

Data Type

String

SSLCertPrivateKeyAvailable Property (SNMPTCPAgent Control)

Whether a PrivateKey is available for the selected certificate.

Syntax

snmptcpagentcontrol.SSLCertPrivateKeyAvailable

Default Value

False

Remarks

Whether a SSLCertPrivateKey is available for the selected certificate. If SSLCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

Data Type

Boolean

SSLCertPrivateKeyContainer Property (SNMPTCPAgent Control)

The name of the PrivateKey container for the certificate (if available).

Syntax

snmptcpagentcontrol.SSLCertPrivateKeyContainer

Default Value

""

Remarks

The name of the SSLCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

Data Type

String

SSLCertPublicKey Property (SNMPTCPAgent Control)

The public key of the certificate.

Syntax

snmptcpagentcontrol.SSLCertPublicKey

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

Data Type

String

SSLCertPublicKeyAlgorithm Property (SNMPTCPAgent Control)

The textual description of the certificate's public key algorithm.

Syntax

snmptcpagentcontrol.SSLCertPublicKeyAlgorithm

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

Data Type

String

SSLCertPublicKeyLength Property (SNMPTCPAgent Control)

The length of the certificate's public key (in bits).

Syntax

snmptcpagentcontrol.SSLCertPublicKeyLength

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

Data Type

Integer

SSLCertSerialNumber Property (SNMPTCPAgent Control)

The serial number of the certificate encoded as a string.

Syntax

snmptcpagentcontrol.SSLCertSerialNumber

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

Data Type

String

SSLCertSignatureAlgorithm Property (SNMPTCPAgent Control)

The text description of the certificate's signature algorithm.

Syntax

snmptcpagentcontrol.SSLCertSignatureAlgorithm

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

Data Type

String

SSLCertStore Property (SNMPTCPAgent Control)

The name of the certificate store for the client certificate.

Syntax

snmptcpagentcontrol.SSLCertStore[=string]

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password-protected, specify the password in SSLCertStorePassword.

SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLCertStoreB.

Data Type

Binary String

SSLCertStorePassword Property (SNMPTCPAgent Control)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

snmptcpagentcontrol.SSLCertStorePassword[=string]

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Data Type

String

SSLCertStoreType Property (SNMPTCPAgent Control)

The type of certificate store for this certificate.

Syntax

snmptcpagentcontrol.SSLCertStoreType[=integer]

Possible Values

cstUser(0), 
cstMachine(1), 
cstPFXFile(2), 
cstPFXBlob(3), 
cstJKSFile(4), 
cstJKSBlob(5), 
cstPEMKeyFile(6), 
cstPEMKeyBlob(7), 
cstPublicKeyFile(8), 
cstPublicKeyBlob(9), 
cstSSHPublicKeyBlob(10), 
cstP7BFile(11), 
cstP7BBlob(12), 
cstSSHPublicKeyFile(13), 
cstPPKFile(14), 
cstPPKBlob(15), 
cstXMLFile(16), 
cstXMLBlob(17), 
cstJWKFile(18), 
cstJWKBlob(19), 
cstSecurityKey(20), 
cstBCFKSFile(21), 
cstBCFKSBlob(22), 
cstPKCS11(23), 
cstAuto(99)

Default Value

0

Remarks

The type of certificate store for this certificate.

The control supports both public and private keys in a variety of formats. When the cstAuto value is used, the control will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr control. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Data Type

Integer

SSLCertSubjectAltNames Property (SNMPTCPAgent Control)

Comma-separated lists of alternative subject names for the certificate.

Syntax

snmptcpagentcontrol.SSLCertSubjectAltNames

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

Data Type

String

SSLCertThumbprintMD5 Property (SNMPTCPAgent Control)

The MD5 hash of the certificate.

Syntax

snmptcpagentcontrol.SSLCertThumbprintMD5

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLCertThumbprintSHA1 Property (SNMPTCPAgent Control)

The SHA-1 hash of the certificate.

Syntax

snmptcpagentcontrol.SSLCertThumbprintSHA1

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLCertThumbprintSHA256 Property (SNMPTCPAgent Control)

The SHA-256 hash of the certificate.

Syntax

snmptcpagentcontrol.SSLCertThumbprintSHA256

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLCertUsage Property (SNMPTCPAgent Control)

The text description of UsageFlags .

Syntax

snmptcpagentcontrol.SSLCertUsage

Default Value

""

Remarks

The text description of SSLCertUsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

Data Type

String

SSLCertUsageFlags Property (SNMPTCPAgent Control)

The flags that show intended use for the certificate.

Syntax

snmptcpagentcontrol.SSLCertUsageFlags

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of SSLCertUsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the SSLCertUsage property for a text representation of SSLCertUsageFlags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

Data Type

Integer

SSLCertVersion Property (SNMPTCPAgent Control)

The certificate's version number.

Syntax

snmptcpagentcontrol.SSLCertVersion

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

Data Type

String

SSLCertSubject Property (SNMPTCPAgent Control)

The subject of the certificate used for client authentication.

Syntax

snmptcpagentcontrol.SSLCertSubject[=string]

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Data Type

String

SSLCertEncoded Property (SNMPTCPAgent Control)

The certificate (PEM/Base64 encoded).

Syntax

snmptcpagentcontrol.SSLCertEncoded[=string]

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.

When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLCertEncodedB.

This property is not available at design time.

Data Type

Binary String

SSLEnabled Property (SNMPTCPAgent Control)

Whether TLS/SSL is enabled.

Syntax

snmptcpagentcontrol.SSLEnabled[=boolean]

Default Value

False

Remarks

This setting specifies whether TLS/SSL is enabled in the control. When False (default) the control operates in plaintext mode. When True TLS/SSL is enabled.

This property is not available at design time.

Data Type

Boolean

SSLServerCertEffectiveDate Property (SNMPTCPAgent Control)

The date on which this certificate becomes valid.

Syntax

snmptcpagentcontrol.SSLServerCertEffectiveDate

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

Data Type

String

SSLServerCertExpirationDate Property (SNMPTCPAgent Control)

The date on which the certificate expires.

Syntax

snmptcpagentcontrol.SSLServerCertExpirationDate

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

Data Type

String

SSLServerCertExtendedKeyUsage Property (SNMPTCPAgent Control)

A comma-delimited list of extended key usage identifiers.

Syntax

snmptcpagentcontrol.SSLServerCertExtendedKeyUsage

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

Data Type

String

SSLServerCertFingerprint Property (SNMPTCPAgent Control)

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

snmptcpagentcontrol.SSLServerCertFingerprint

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

Data Type

String

SSLServerCertFingerprintSHA1 Property (SNMPTCPAgent Control)

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

snmptcpagentcontrol.SSLServerCertFingerprintSHA1

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

Data Type

String

SSLServerCertFingerprintSHA256 Property (SNMPTCPAgent Control)

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

snmptcpagentcontrol.SSLServerCertFingerprintSHA256

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

Data Type

String

SSLServerCertIssuer Property (SNMPTCPAgent Control)

The issuer of the certificate.

Syntax

snmptcpagentcontrol.SSLServerCertIssuer

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

Data Type

String

SSLServerCertPrivateKey Property (SNMPTCPAgent Control)

The private key of the certificate (if available).

Syntax

snmptcpagentcontrol.SSLServerCertPrivateKey

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The SSLServerCertPrivateKey may be available but not exportable. In this case, SSLServerCertPrivateKey returns an empty string.

This property is read-only.

Data Type

String

SSLServerCertPrivateKeyAvailable Property (SNMPTCPAgent Control)

Whether a PrivateKey is available for the selected certificate.

Syntax

snmptcpagentcontrol.SSLServerCertPrivateKeyAvailable

Default Value

False

Remarks

Whether a SSLServerCertPrivateKey is available for the selected certificate. If SSLServerCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

Data Type

Boolean

SSLServerCertPrivateKeyContainer Property (SNMPTCPAgent Control)

The name of the PrivateKey container for the certificate (if available).

Syntax

snmptcpagentcontrol.SSLServerCertPrivateKeyContainer

Default Value

""

Remarks

The name of the SSLServerCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

Data Type

String

SSLServerCertPublicKey Property (SNMPTCPAgent Control)

The public key of the certificate.

Syntax

snmptcpagentcontrol.SSLServerCertPublicKey

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

Data Type

String

SSLServerCertPublicKeyAlgorithm Property (SNMPTCPAgent Control)

The textual description of the certificate's public key algorithm.

Syntax

snmptcpagentcontrol.SSLServerCertPublicKeyAlgorithm

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

Data Type

String

SSLServerCertPublicKeyLength Property (SNMPTCPAgent Control)

The length of the certificate's public key (in bits).

Syntax

snmptcpagentcontrol.SSLServerCertPublicKeyLength

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

Data Type

Integer

SSLServerCertSerialNumber Property (SNMPTCPAgent Control)

The serial number of the certificate encoded as a string.

Syntax

snmptcpagentcontrol.SSLServerCertSerialNumber

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

Data Type

String

SSLServerCertSignatureAlgorithm Property (SNMPTCPAgent Control)

The text description of the certificate's signature algorithm.

Syntax

snmptcpagentcontrol.SSLServerCertSignatureAlgorithm

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

Data Type

String

SSLServerCertStore Property (SNMPTCPAgent Control)

The name of the certificate store for the client certificate.

Syntax

snmptcpagentcontrol.SSLServerCertStore

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The SSLServerCertStoreType property denotes the type of the certificate store specified by SSLServerCertStore. If the store is password-protected, specify the password in SSLServerCertStorePassword.

SSLServerCertStore is used in conjunction with the SSLServerCertSubject property to specify client certificates. If SSLServerCertStore has a value, and SSLServerCertSubject or SSLServerCertEncoded is set, a search for a certificate is initiated. Please see the SSLServerCertSubject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLServerCertStoreB.

This property is read-only.

Data Type

Binary String

SSLServerCertStorePassword Property (SNMPTCPAgent Control)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

snmptcpagentcontrol.SSLServerCertStorePassword

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

This property is read-only.

Data Type

String

SSLServerCertStoreType Property (SNMPTCPAgent Control)

The type of certificate store for this certificate.

Syntax

snmptcpagentcontrol.SSLServerCertStoreType

Possible Values

cstUser(0), 
cstMachine(1), 
cstPFXFile(2), 
cstPFXBlob(3), 
cstJKSFile(4), 
cstJKSBlob(5), 
cstPEMKeyFile(6), 
cstPEMKeyBlob(7), 
cstPublicKeyFile(8), 
cstPublicKeyBlob(9), 
cstSSHPublicKeyBlob(10), 
cstP7BFile(11), 
cstP7BBlob(12), 
cstSSHPublicKeyFile(13), 
cstPPKFile(14), 
cstPPKBlob(15), 
cstXMLFile(16), 
cstXMLBlob(17), 
cstJWKFile(18), 
cstJWKBlob(19), 
cstSecurityKey(20), 
cstBCFKSFile(21), 
cstBCFKSBlob(22), 
cstPKCS11(23), 
cstAuto(99)

Default Value

0

Remarks

The type of certificate store for this certificate.

The control supports both public and private keys in a variety of formats. When the cstAuto value is used, the control will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr control. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the SSLServerCertStore and set SSLServerCertStorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

This property is read-only.

Data Type

Integer

SSLServerCertSubjectAltNames Property (SNMPTCPAgent Control)

Comma-separated lists of alternative subject names for the certificate.

Syntax

snmptcpagentcontrol.SSLServerCertSubjectAltNames

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

Data Type

String

SSLServerCertThumbprintMD5 Property (SNMPTCPAgent Control)

The MD5 hash of the certificate.

Syntax

snmptcpagentcontrol.SSLServerCertThumbprintMD5

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLServerCertThumbprintSHA1 Property (SNMPTCPAgent Control)

The SHA-1 hash of the certificate.

Syntax

snmptcpagentcontrol.SSLServerCertThumbprintSHA1

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLServerCertThumbprintSHA256 Property (SNMPTCPAgent Control)

The SHA-256 hash of the certificate.

Syntax

snmptcpagentcontrol.SSLServerCertThumbprintSHA256

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

Data Type

String

SSLServerCertUsage Property (SNMPTCPAgent Control)

The text description of UsageFlags .

Syntax

snmptcpagentcontrol.SSLServerCertUsage

Default Value

""

Remarks

The text description of SSLServerCertUsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

Data Type

String

SSLServerCertUsageFlags Property (SNMPTCPAgent Control)

The flags that show intended use for the certificate.

Syntax

snmptcpagentcontrol.SSLServerCertUsageFlags

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of SSLServerCertUsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the SSLServerCertUsage property for a text representation of SSLServerCertUsageFlags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

Data Type

Integer

SSLServerCertVersion Property (SNMPTCPAgent Control)

The certificate's version number.

Syntax

snmptcpagentcontrol.SSLServerCertVersion

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

Data Type

String

SSLServerCertSubject Property (SNMPTCPAgent Control)

The subject of the certificate used for client authentication.

Syntax

snmptcpagentcontrol.SSLServerCertSubject

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

This property is read-only.

Data Type

String

SSLServerCertEncoded Property (SNMPTCPAgent Control)

The certificate (PEM/Base64 encoded).

Syntax

snmptcpagentcontrol.SSLServerCertEncoded

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLServerCertStore and SSLServerCertSubject properties also may be used to specify a certificate.

When SSLServerCertEncoded is set, a search is initiated in the current SSLServerCertStore for the private key of the certificate. If the key is found, SSLServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLServerCertSubject is set to an empty string.

To read or write binary data to the property, a Variant (Byte Array) version is provided in .SSLServerCertEncodedB.

This property is read-only and not available at design time.

Data Type

Binary String

SysUpTime Property (SNMPTCPAgent Control)

Time passed since the agent was initialized (in hundredths of a second).

Syntax

snmptcpagentcontrol.SysUpTime[=long64]

Default Value

0

Remarks

This property is used when sending SNMP traps, and it normally provides the time since the system was restarted in 1/100s of a second.

If another value is desired, you may set this property to a custom value. From that point on, SysUpTime will return the value set plus time elapsed.

This property is not available at design time.

Data Type

Long64

Activate Method (SNMPTCPAgent Control)

Activates the control.

Syntax

snmptcpagentcontrol.Activate 

Remarks

This method activates the component and will allow it to send or receive data.

The control will be automatically activated if it is not already and you attempt to perform an operation which requires the control to be active.

Note: Use the Active property to check whether the component is active.

AddUser Method (SNMPTCPAgent Control)

Adds a user to the internal authentication cache.

Syntax

snmptcpagentcontrol.AddUser User, AuthenticationProtocol, AuthenticationPassword, EncryptionAlgorithm, EncryptionPassword

Remarks

The internal authentication cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.

The ShowCache method is used to show the contents of the internal authentication cache.

The ClearCache method can be used to completely clear the cache.

Valid Authentication Protocols are:

HMAC-MD5-96 (1)Message-Digest algorithm 5.
HMAC-SHA-96 (2)Secure Hash Algorithm.
HMAC-192-SHA-256 (3)Secure Hash Algorithm.
HMAC-384-SHA-512 (4)Secure Hash Algorithm.

Valid Encryption Algorithms are:

DES (1)Data Encryption Standard.
AES (2)Advanced Encryption Standard with key length of 128.
3DES (3)Triple Data Encryption Standard.
AES192 (4)Advanced Encryption Standard with key length of 192.
AES256 (5)Advanced Encryption Standard with key length of 256.

NOTE: Specifying an authentication protocol of 0 is a special case where the control will attempt to verify users with all valid authentication protocols.

ClearCache Method (SNMPTCPAgent Control)

Clears the internal authentication database.

Syntax

snmptcpagentcontrol.ClearCache 

Remarks

All user records are removed from the internal authentication cache as a result of this call.

Config Method (SNMPTCPAgent Control)

Sets or retrieves a configuration setting.

Syntax

snmptcpagentcontrol.Config ConfigurationString

Remarks

Config is a generic method available in every control. It is used to set and retrieve configuration settings for the control.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the control, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Deactivate Method (SNMPTCPAgent Control)

Deactivates the control.

Syntax

snmptcpagentcontrol.Deactivate 

Remarks

This method deactivates the component and will prohibit it from sending and receiving data.

Note: Use the Active property to check whether the component is active.

DoEvents Method (SNMPTCPAgent Control)

This method processes events from the internal message queue.

Syntax

snmptcpagentcontrol.DoEvents 

Remarks

When DoEvents is called, the control processes any available events. If no events are available, it waits for a preset period of time, and then returns.

HashPasswords Method (SNMPTCPAgent Control)

Hashes all passwords in the cache.

Syntax

snmptcpagentcontrol.HashPasswords 

Remarks

Forces computation of all passwords hashes in the cache. Used together with the HashPassword event to enable implementations of external password hash storage.

RemoveUser Method (SNMPTCPAgent Control)

Removes the user specified by User from the internal authentication cache.

Syntax

snmptcpagentcontrol.RemoveUser User

Remarks

The internal authentication cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.

The ShowCache method is used to show the contents of the internal authentication cache.

The ClearCache method can be used to completely clear the cache.

Reset Method (SNMPTCPAgent Control)

Clears the object arrays.

Syntax

snmptcpagentcontrol.Reset 

Remarks

Clears the object arrays, and sets the trap and error properties to their default values. This is useful for reinitializing all the properties that are used to create outgoing packets before building a new packet.

Note: SNMPVersion will be reset to snmpverV2c (2).

SendResponse Method (SNMPTCPAgent Control)

Sends a response packet to a Get, Get-Next, Get-Bulk, or Set request.

Syntax

snmptcpagentcontrol.SendResponse RemoteHost, RemotePort, RequestId, Community, ErrorStatus, ErrorIndex

Remarks

Use this method to send asynchronous response packets. A valid RequestId must be specified. SendResponse sends an unauthenticated response packet. Depending upon the value of the SNMPVersion property, the packet is constructed as an SNMPv1, SNMPv2c, or SNMPv3 (unauthenticated) response PDU. To send authenticated or encrypted SNMPv3 responses, use SendSecureResponse

The RemoteHost and RemotePort parameters are used to determine where the response is to be sent. The object identifiers, types, and values for the request are taken from the Objects collection. The RequestId, Community, ErrorStatus, and ErrorIndex parameters are used to specify other properties of the response.

SendSecureResponse Method (SNMPTCPAgent Control)

Sends an authenticated and/or encrypted SNMPv3 response.

Syntax

snmptcpagentcontrol.SendSecureResponse RemoteHost, RemotePort, RequestId, MessageId, ErrorStatus, ErrorIndex, User, AuthenticationProtocol, AuthenticationPassword, EncryptionAlgorithm, EncryptionPassword

Remarks

Similar to the SendResponse method except that User, Authentication Protocol, and AuthenticationPassword are used to authenticate the response. EncryptionAlgorithm and EncryptionPassword (if not empty) are used to encrypt the response.

The MessageId argument must match the MessageId parameter obtained from the GetRequest, GetNextRequest, SetRequest, or GetBulkRequest event.

The user and password arguments used to send the response will be added to the internal user cache. If the user is already in the cache, its passwords will be updated with those supplied.

Valid Authentication Protocols are:

HMAC-MD5-96 (1)Message-Digest algorithm 5.
HMAC-SHA-96 (2)Secure Hash Algorithm.
HMAC-192-SHA-256 (3)Secure Hash Algorithm.
HMAC-384-SHA-512 (4)Secure Hash Algorithm.

Valid Encryption Algorithms are:

DES (1)Data Encryption Standard.
AES (2)Advanced Encryption Standard with key length of 128.
3DES (3)Triple Data Encryption Standard.
AES192 (4)Advanced Encryption Standard with key length of 192.
AES256 (5)Advanced Encryption Standard with key length of 256.

SendSecureTrap Method (SNMPTCPAgent Control)

Sends an authenticated and/or encrypted SNMPv3 trap.

Syntax

snmptcpagentcontrol.SendSecureTrap RemoteHost, TrapOID, User, AuthenticationProtocol, AuthenticationPassword, EncryptionAlgorithm, EncryptionPassword

Remarks

Similar to the SendTrap method except that User, AuthenticationPassword, and Authentication Protocol are used to authenticate the trap. EncryptionPassword (if not empty) and EncryptionAlgorithm are used to encrypt the message.

The user and password arguments used to send the trap will be added to the internal user cache. If the user is already in the cache, its passwords will be updated with those supplied.

Valid Authentication Protocols are:

HMAC-MD5-96 (1)Message-Digest algorithm 5.
HMAC-SHA-96 (2)Secure Hash Algorithm.
HMAC-192-SHA-256 (3)Secure Hash Algorithm.
HMAC-384-SHA-512 (4)Secure Hash Algorithm.

Valid Encryption Algorithms are:

DES (1)Data Encryption Standard.
AES (2)Advanced Encryption Standard with key length of 128.
3DES (3)Triple Data Encryption Standard.
AES192 (4)Advanced Encryption Standard with key length of 192.
AES256 (5)Advanced Encryption Standard with key length of 256.

SendTrap Method (SNMPTCPAgent Control)

Sends an SNMP Trap.

Syntax

snmptcpagentcontrol.SendTrap RemoteHost, TrapOID

Remarks

Depending upon the value of the SNMPVersion property, the packet is constructed as an SNMPv1 or SNMPv2 Trap PDU. The following configuration settings provide more control about how traps are generated: TrapPort, TrapAgentAddress, TrapCommunity, TrapEnterprise. The SysUpTime property provides the trap timestamp.

SendTrap sends an unauthenticated trap. The SendSecureTrap method is used to send authenticated SNMPv3 traps.

If any values are provided in the Objects collection, they are sent unchanged. In the case of an SNMPv2 or SNMPv3 Trap, if Objects has a count that is equal to 0, the following values are set: sysUpTime.0 equal to SysUpTime and snmpTrapOID.0 equal to TrapOID.

For SNMPv2 and SNMPv3 Traps, TrapOID must contain the full OID of the Trap. For SNMPv1, TrapOID must be a string of the form "generic.specific" where generic and specific are numeric values providing the Trap Generic Type and Specific Type.

For SNMPv1, TrapOID must be of the form "GenericTrap.SpecificTrap". These values are sent in the PDU header. TrapAgentAddress and TrapEnterprise are taken from the corresponding configuration settings.

Additionally, the following symbolic values are recognized and translated as follows:

Trap Name OID (SNMPv2 and above) SNMPv1 GenericType
coldStart 1.3.6.1.6.3.1.1.5.1 0
warmStart 1.3.6.1.6.3.1.1.5.2 1
linkDown 1.3.6.1.6.3.1.1.5.3 2
linkUp 1.3.6.1.6.3.1.1.5.4 3
authenticationFailure 1.3.6.1.6.3.1.1.5.5 4
egpNeighborLoss 1.3.6.1.6.3.1.1.5.6 5
enterpriseSpecific 1.3.6.1.6.3.1.1.5.7 6

ShowCache Method (SNMPTCPAgent Control)

Lists all entries in the internal user authentication cache.

Syntax

snmptcpagentcontrol.ShowCache 

Remarks

A CacheEntry event is fired for every record in the internal user authentication cache.

The internal authentication cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.

The ShowCache method is used to show the contents of the internal authentication cache.

The ClearCache method can be used to completely clear the cache.

Value Method (SNMPTCPAgent Control)

Returns the value corresponding to an OID.

Syntax

snmptcpagentcontrol.Value OID

Remarks

If the OID does not exist in the Objects collection, a trappable error is generated.

Please refer to the SNMPObject type for more information.

BadPacket Event (SNMPTCPAgent Control)

Fired for erroneous and/or malformed messages.

Syntax

Sub snmptcpagentcontrol_BadPacket(Packet As String, SourceAddress As String, SourcePort As Integer, ErrorCode As Integer, ErrorDescription As String, Report As Boolean)

Remarks

The full message is provided in the Packet parameter.

The BadPacket event is also fired when authentication fails for received packets due to a bad password or other reasons.

If the Report parameter is set to True, an unauthenticated error report will be sent to the client, otherwise the packet will be silently ignored.

Please refer to the GetUserPassword event for more information concerning SNMPv3 authentication.

CacheEntry Event (SNMPTCPAgent Control)

Shows in the internal cache.

Syntax

Sub snmptcpagentcontrol_CacheEntry(User As String, AuthenticationProtocol As String, AuthenticationPassword As String, EncryptionAlgorithm As String, EncryptionPassword As String)

Remarks

CacheEntry events are triggered by a call to ShowCache. One event is fired for each user.

Connected Event (SNMPTCPAgent Control)

Fired immediately after a connection completes (or fails).

Syntax

Sub snmptcpagentcontrol_Connected(RemoteAddress As String, RemotePort As Integer, StatusCode As Integer, Description As String)

Remarks

This event fires after a connection completes or fails.

StatusCode is the value returned by the system TCP/IP stack. This will be 0 if the connection was successful.

Description contains a human readable description of the status. This will be "OK" if the connection was successful.

RemoteAddress is the IP address of the remote host.

RemotePort is the port on the remote host.

ConnectionStatus Event (SNMPTCPAgent Control)

This event is fired to indicate changes in the connection state.

Syntax

Sub snmptcpagentcontrol_ConnectionStatus(ConnectionEvent As String, StatusCode As Integer, Description As String)

Remarks

The ConnectionStatus event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.

The ConnectionEvent parameter indicates the type of connection event. Values may include the following:

Firewall connection complete.
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.
StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack.

Description contains a description of this code. The value of StatusCode is equal to the value of the error. The corresponding Visual Basic error code can be obtained by adding 15001 to this value.

Disconnected Event (SNMPTCPAgent Control)

Fired when a connection is closed.

Syntax

Sub snmptcpagentcontrol_Disconnected(RemoteAddress As String, RemotePort As Integer, StatusCode As Integer, Description As String)

Remarks

This event fires after a connection is broken.

StatusCode is the value returned by the system TCP/IP stack. This will be 0 if the connection was broken normally.

Description contains a human readable description of the status. This will be "OK" if the connection was broken normally.

RemoteAddress is the IP address of the remote host.

RemotePort is the port on the remote host.

DiscoveryRequest Event (SNMPTCPAgent Control)

Fired when an SNMPv3 discovery packet is received.

Syntax

Sub snmptcpagentcontrol_DiscoveryRequest(EngineId As String, EngineBoots As Integer, EngineTime As Integer, User As String, SecurityLevel As Integer, SourceAddress As String, SourcePort As Integer, Respond As Boolean)

Remarks

EngineId, EngineBoots, EngineTime, and User are the values received from SourceAddress.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

Respond is True by default, and will automatically send a response using the value in LocalEngineId. To suppress the response, set Respond to False.

The value returned to SourceAddress for EngineBoots is always 0, and EngineTime is the number of seconds since January 1st, 1970 (GMT).

Error Event (SNMPTCPAgent Control)

Fired when information is available about errors during data delivery.

Syntax

Sub snmptcpagentcontrol_Error(ErrorCode As Integer, Description As String)

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the control fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

GetBulkRequest Event (SNMPTCPAgent Control)

Fired when a GetBulkRequest packet is received.

Syntax

Sub snmptcpagentcontrol_GetBulkRequest(RequestId As Integer, MessageId As Integer, SNMPVersion As Integer, Community As String, User As String, SecurityLevel As Integer, SourceAddress As String, SourcePort As Integer, NonRepeaters As Integer, MaxRepetitions As Integer, ErrorIndex As Integer, ErrorStatus As Integer, ErrorDescription As String, Respond As Boolean)

Remarks

This is only available for SNMP versions 2 and 3.

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the ObjId, ObjType, and ObjValue of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

The MessageId parameter identifies the received request.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

To send a response, the Respond parameter must be set to true. By default, this value is false, which means no response will be sent. The ErrorStatus parameter may also be set to a valid SNMP status code (the default value is 0, which represents no error).

The following is a list of valid SNMP status code values:

0 (noError) No error.
1 (tooBig) The response cannot fit in a single SNMP message.
2 (noSuchName) Variable does not exist.
3 (badValue) Invalid value or syntax.
4 (readOnly) Variable is read-only.
5 (genError) Other error (SNMPv1).
6 (noAccess) Access denied.
7 (wrongType) Wrong object type.
8 (wrongLength) Wrong length.
9 (wrongEncoding) Wrong encoding.
10 (wrongValue) Wrong value.
11 (noCreation) No creation.
12 (inconsistentValue) Inconsistent value.
13 (resourceUnavailable) Resource unavailable.
14 (commitFailed) Commit failed.
15 (undoFailed) Undo failed.
16 (authorizationError) Authorization error.
17 (notWritable) Variable is not writable.
18 (inconsistentName) Inconsistent name.
The ErrorIndex parameter indicates the index of the first variable (object) that caused an error. The default value is 0.

Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).

A GetBulkRequest is very similar to a GetNextRequest, the difference is that Getbulk performs a continuous GetNext operation based on the MaxRepitions value. The NonRepeaters value will determine the number of Objects for which a simple GetNext operation should be performed. For the remaining variables, a continuous GetNext operation is performed based on the MaxRepitions value.

So if you send a request containing X objects, the agent will perform N simple GetNext operations and M continuous GetNext operations X - N times. With X being the number of objects received, N being the number of NonRepeaters, and M being the number of MaxRepitions. Thus the SNMPMgr is expecting to receive N + M x (X - N) objects, assuming that each object has M successors.

GetNextRequest Event (SNMPTCPAgent Control)

Fired when a GetNextRequest packet is received.

Syntax

Sub snmptcpagentcontrol_GetNextRequest(RequestId As Integer, MessageId As Integer, SNMPVersion As Integer, Community As String, User As String, SecurityLevel As Integer, SourceAddress As String, SourcePort As Integer, ErrorIndex As Integer, ErrorStatus As Integer, ErrorDescription As String, Respond As Boolean)

Remarks

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the ObjId, ObjType, and ObjValue of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

The MessageId parameter identifies the received request.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

To send a response, the Respond parameter must be set to true. By default, this value is false, which means no response will be sent. The ErrorStatus parameter may also be set to a valid SNMP status code (the default value is 0, which represents no error).

The following is a list of valid SNMP status code values:

0 (noError) No error.
1 (tooBig) The response cannot fit in a single SNMP message.
2 (noSuchName) Variable does not exist.
3 (badValue) Invalid value or syntax.
4 (readOnly) Variable is read-only.
5 (genError) Other error (SNMPv1).
6 (noAccess) Access denied.
7 (wrongType) Wrong object type.
8 (wrongLength) Wrong length.
9 (wrongEncoding) Wrong encoding.
10 (wrongValue) Wrong value.
11 (noCreation) No creation.
12 (inconsistentValue) Inconsistent value.
13 (resourceUnavailable) Resource unavailable.
14 (commitFailed) Commit failed.
15 (undoFailed) Undo failed.
16 (authorizationError) Authorization error.
17 (notWritable) Variable is not writable.
18 (inconsistentName) Inconsistent name.
The ErrorIndex parameter indicates the index of the first variable (object) that caused an error. The default value is 0.

Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).

GetRequest Event (SNMPTCPAgent Control)

Fired when a GetRequest packet is received.

Syntax

Sub snmptcpagentcontrol_GetRequest(RequestId As Integer, MessageId As Integer, SNMPVersion As Integer, Community As String, User As String, SecurityLevel As Integer, SourceAddress As String, SourcePort As Integer, ErrorIndex As Integer, ErrorStatus As Integer, ErrorDescription As String, Respond As Boolean)

Remarks

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the ObjId, ObjType, and ObjValue of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

The MessageId parameter identifies the received request.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

To send a response, the Respond parameter must be set to true. By default, this value is false, which means no response will be sent. The ErrorStatus parameter may also be set to a valid SNMP status code (the default value is 0, which represents no error).

The following is a list of valid SNMP status code values:

0 (noError) No error.
1 (tooBig) The response cannot fit in a single SNMP message.
2 (noSuchName) Variable does not exist.
3 (badValue) Invalid value or syntax.
4 (readOnly) Variable is read-only.
5 (genError) Other error (SNMPv1).
6 (noAccess) Access denied.
7 (wrongType) Wrong object type.
8 (wrongLength) Wrong length.
9 (wrongEncoding) Wrong encoding.
10 (wrongValue) Wrong value.
11 (noCreation) No creation.
12 (inconsistentValue) Inconsistent value.
13 (resourceUnavailable) Resource unavailable.
14 (commitFailed) Commit failed.
15 (undoFailed) Undo failed.
16 (authorizationError) Authorization error.
17 (notWritable) Variable is not writable.
18 (inconsistentName) Inconsistent name.
The ErrorIndex parameter indicates the index of the first variable (object) that caused an error. The default value is 0.

Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).

GetUserPassword Event (SNMPTCPAgent Control)

Retrieves a password associated with a user.

Syntax

Sub snmptcpagentcontrol_GetUserPassword(PasswordType As Integer, User As String, Password As String, Algorithm As Integer)

Remarks

The GetUserPassword event is fired after initial inspection of SNMPv3 requests.

The type of password required is provided in the PasswordType parameter: 1 for authentication, and 2 for encryption (privacy).

The password corresponding to User (if any) must be provided in the Password parameter. If the password is valid, processing will continue to other events such as GetRequest, SetRequest, etc.

If the PasswordType parameter is 1 (authentication is used), the Algorithm parameter can be set. Possible values are:

ValueAuthentication Algorithm
0 (default)Any
1MD5
2SHA1
3SHA256
4SHA512
If the PasswordType parameter is 2 (encryption is used), the Algorithm parameter must also be set. Possible values are:
ValueEncryption Algorithm
1 (default)DES
2AES
33DES
4AES192
5AES256

If the password does not match the signature in the request, a BadPacket event will be fired, at which point you can decide whether to report the error to the client (see the description of the BadPacket event for more information).

If the User is invalid or unknown, set the password to empty string (default) to ignore the request. This will result in a BadPacket event being fired, at which point you can decide whether to report the error to the client or not.

GetUserSecurityLevel Event (SNMPTCPAgent Control)

Sets the security level for an incoming packet.

Syntax

Sub snmptcpagentcontrol_GetUserSecurityLevel(User As String, EngineId As String, SecurityLevel As Integer)

Remarks

The GetUserSecurityLevel event is fired after the first inspection of each SNMPv3 request. The SecurityLevel parameter determines the level of security for the message.

On entry, the SecurityLevel parameter contains the default security level for User if the user is located in the internal cache, or if the User is not found in the cache, the SecurityLevel will be -1.

The value of SecurityLevel upon exiting the event, determines how the message will be processed:

-1The message will be ignored and a BadPacket event will be fired.
0No security. The message will be processed without any authentication and/or encryption.
1Authentication only. The message will be checked for a valid signature and the GetUserPassword event will be fired to verify the authentication password.
2Authentication and Privacy. The message will be checked for a valid signature and the GetUserPassword event will be fired twice: first to verify the authentication password, and then to verify the privacy password.

HashPassword Event (SNMPTCPAgent Control)

Fired before and after a password is hashed.

Syntax

Sub snmptcpagentcontrol_HashPassword(Password As String, AuthAlgorithm As Integer, Hash As String)

Remarks

SNMPv3 passwords are hashed in order to obtain authentication and encryption keys. This is an expensive operation, and in certain situations it may be preferable to store the hashed passwords externally and supply them on demand.

If a hash is required, the event fires with an empty string in the Hash parameter. In this case, you can choose to supply a value for the hash and stop the control from computing the hash.

The event also fires every time a hash is computed. In this case, the Hash parameter contains the value of the computed hash.

AuthAlgorithm contains either 1 for HMAC-MD5-96, 2 for HMAC-SHA-96 or 3 for HMAC-192-SHA-256

PacketTrace Event (SNMPTCPAgent Control)

Fired for every packet sent or received.

Syntax

Sub snmptcpagentcontrol_PacketTrace(Packet As String, Direction As Integer, PacketAddress As String, PacketPort As Integer)

Remarks

The PacketTrace event shows all the packets sent or received by the control.

Packet contains the full contents of the datagram.

Direction shows the direction of the packet: 1 for incoming packets, and 2 for outgoing packets.

In the case of an incoming packet, PacketAddress and PacketPort identify the source of the packet.

In the case of an outgoing packet, PacketAddress and PacketPort identify the destination of the packet.

ReadyToSend Event (SNMPTCPAgent Control)

Fired when the control is ready to send data.

Syntax

Sub snmptcpagentcontrol_ReadyToSend()

Remarks

The ReadyToSend event indicates that the underlying TCP/IP subsystem is ready to accept data after a failed DataToSend(TBD. DataToSend is removed).

Report Event (SNMPTCPAgent Control)

Fired when a Report packet is received.

Syntax

Sub snmptcpagentcontrol_Report(RequestId As Integer, SNMPVersion As Integer, Community As String, User As String, SecurityLevel As Integer, SourceAddress As String, SourcePort As Integer, ErrorIndex As Integer, ErrorStatus As Integer, ErrorDescription As String)

Remarks

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the ObjId, ObjType, and ObjValue of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

SetRequest Event (SNMPTCPAgent Control)

Fired when a SetRequest packet is received.

Syntax

Sub snmptcpagentcontrol_SetRequest(RequestId As Integer, MessageId As Integer, SNMPVersion As Integer, Community As String, User As String, SecurityLevel As Integer, SourceAddress As String, SourcePort As Integer, ErrorIndex As Integer, ErrorStatus As Integer, ErrorDescription As String, Respond As Boolean)

Remarks

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the ObjId, ObjType, and ObjValue of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

The MessageId parameter identifies the received request.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

To send a response, the Respond parameter must be set to true. By default, this value is false, which means no response will be sent. The ErrorStatus parameter may also be set to a valid SNMP status code (the default value is 0, which represents no error).

The following is a list of valid SNMP status code values:

0 (noError) No error.
1 (tooBig) The response cannot fit in a single SNMP message.
2 (noSuchName) Variable does not exist.
3 (badValue) Invalid value or syntax.
4 (readOnly) Variable is read-only.
5 (genError) Other error (SNMPv1).
6 (noAccess) Access denied.
7 (wrongType) Wrong object type.
8 (wrongLength) Wrong length.
9 (wrongEncoding) Wrong encoding.
10 (wrongValue) Wrong value.
11 (noCreation) No creation.
12 (inconsistentValue) Inconsistent value.
13 (resourceUnavailable) Resource unavailable.
14 (commitFailed) Commit failed.
15 (undoFailed) Undo failed.
16 (authorizationError) Authorization error.
17 (notWritable) Variable is not writable.
18 (inconsistentName) Inconsistent name.
The ErrorIndex parameter indicates the index of the first variable (object) that caused an error. The default value is 0.

Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).

SSLClientAuthentication Event (SNMPTCPAgent Control)

Fired when the client presents its credentials to the server.

Syntax

Sub snmptcpagentcontrol_SSLClientAuthentication(RemoteAddress As String, RemotePort As Integer, CertEncoded As String, CertSubject As String, CertIssuer As String, Status As String, Accept As Boolean)

Remarks

This event fires when a client connects to the control and presents a certificate for authentication. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether to continue or not.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK").

RemoteAddress is the IP address of the connecting client.

RemotePort is the source port of the connecting client.

CertEncoded is the base64 encoded certificate presented by the client.

CertSubject is the subject of the certificate presented by the client.

CertIssuer is the subject of the issuer of the certificate presented by the client.

Status is the stauts of the certificate.

Accept defines whether the certificate is accepted.

SSLServerAuthentication Event (SNMPTCPAgent Control)

Fires when connecting to the server.

Syntax

Sub snmptcpagentcontrol_SSLServerAuthentication(RemoteAddress As String, RemotePort As Integer, CertEncoded As String, CertSubject As String, CertIssuer As String, Status As String, Accept As Boolean)

Remarks

This event is where the client can decide whether to continue with the connection process or not. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether to continue or not.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK"). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

RemoteAddress is the IP address of the server.

RemotePort is the source port of the server.

CertEncoded is the base64 encoded certificate presented by the server.

CertSubject is the subject of the certificate presented by the server.

CertIssuer is the subject of the issuer of the certificate presented by the server.

Status is the stauts of the certificate.

Accept defines whether the certificate is accepted.

SSLStatus Event (SNMPTCPAgent Control)

Shows the progress of the secure connection.

Syntax

Sub snmptcpagentcontrol_SSLStatus(RemoteAddress As String, RemotePort As Integer, Message As String)

Remarks

The event is fired for informational and logging purposes only. It is used to track the progress of the connection.

RemoteAddress is the IP address of the remote machine.

RemotePort is the port of the remote machine.

Message is the log message.

Config Settings (SNMPTCPAgent Control)

The control accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the control, access to these internal properties is provided through the Config method.

SNMPTCPAgent Config Settings

AuthenticationKey:   The key to use for authentication.

This setting takes the hex-encoded key for authentication and may be set before calling SendSecureTrap.

CompatibilityMode:   Whether to operate the component in a specific compatibility mode.

This setting will cause the component to operate in a manner different than normal so that it is compatible with third-party products and libraries. The following table lists the possible values for this setting:

0 (default)Component operates normally for greatest compatibility.
1Component uses SNMP4j-compatible encryption (AES192 and AES256).
2Component automatically detects whether to use SNMP4j-compatible encryption (AES192 and AES256). Note: This option is only applicable when receiving packets. If you are using SNMPMgr or sending secure traps, you will need to select either 0 or 1.
ContextEngineId:   Sets the context engine id of the SNMP entity.

If set, the context engine id included in the PDU will be set.

ContextName:   Sets the context name of the SNMP entity.

If set, the context name included in the PDU will be set.

DecryptLogPackets:   Whether to decrypt logged packets.

When set to this setting will cause the control to decrypt packets logged in PacketTrace. This only applies when using SNMP Version 3. The default is .

EncryptionKey:   The key to use for encryption.

This setting takes the hex-encoded key for encryption and may be set before calling SendSecureTrap.

ForceLocalPort:   Forces the control to bind to a specific port.

The default value is True, which makes the control throw an error if LocalPort is busy. When ForceLocalPort is set to False and the port is busy, the control silently chooses another random port.

IncomingContextEngineId:   The engine Id of the received packet.

This setting holds the engine Id of the received packet. This may be queried at any time, including from within an event, and returns the engine Id of the received packet. This is not needed in most cases, but can be used to store the incoming engine Id to send an asynchronous response later. This value is read-only.

IncomingContextName:   The context name of the received packet.

This setting holds the context name of the received packet. This may be queried at any time, including from within an event, and returns the context name of the received packet. This is not needed in most cases, but can be used to store the incoming context name to send an asynchronous response later. This value is read-only.

MsgMaxSize:   The maximum supported message size.

This setting specifies the maximum supported message size in bytes. This is only applicable when SNMPVersion is set to 3. This corresponds to the "msgMaxSize" field in the request.

RespondFromDestIP:   Whether to respond from the IP address that the request was sent to.

By default the control will always respond from the interface defined by LocalHost. In the case where aliases have been defined on the system, incoming traffic may have a different value for the destination. This setting tells the control to respond using a source address that matches the destination address of the received packet. This setting should only be set to True if there is a specific reason to do so.

SourceAddress:   The source address of the received packet.

This setting holds the source address of the received packet. This may be queried at any time, including from within an event, and returns the source address of the received packet. This value is read-only.

SourcePort:   The source port of the received packet.

This setting holds the source port of the received packet. This may be queried at any time, including from within an event, and returns the source port of the received packet. This value is read-only.

TimeWindow:   The time window used for SNMPv3 timeliness checking (authentication).

The default value is 150 (seconds).

TrapAgentAddress:   The address of the object generating the trap.

This setting is used to specify the agent-addr field when sending V1 Traps. The default value is the address of the localhost. This value must be an IPv4 address.

TrapCommunity:   The value of the Community parameter for SNMP traps.

Typical values are "public" or "private". The default value is "public".

TrapEnterprise:   The type of the object generating the trap.

This setting specifies the type of object generating the SNMP Trap. The default value is "1.3.6.1.6.3.1.1.5" (i.e. SNMPv2-MIB::snmpTraps).

TrapPort:   The port where SNMP traps are sent.

The TrapPort is the TCP port where SNMP traps are sent.

A valid port number (a value between 1 and 65535) is required. The default value is 162.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the control will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the control whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by controls that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the control fails with an error.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by controls that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

Possible values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the control fails with an error.

Note: This setting is provided for use by controls that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the control returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the control initiate connections (or accept in the case of server controls) only through that interface.

If the control is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the control binds.

This configuration setting must be set before a connection is attempted. It instructs the control to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the control will use IPv4 exclusively. When set to 1, the control will use IPv6 exclusively. To instruct the control to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the control will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the control is the same.

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This configuration setting specifies whether the control will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the control will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The control will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the control fails with an error.

When set to 0 (default), the CRL check will not be performed by the control. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This configuration setting specifies whether the control will use OCSP to check the validity of the server certificate. If set to 1 or 2, the control will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The control will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the control fails with an error.

When set to 0 (default), the control will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the control will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform include the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include the following:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internalinclude the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include the following:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the control will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the control when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is by default, but it can be set to to enable the extension.

This configuration setting is applicable only when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the control will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the control will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown certificate authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown certificate authority revocation status.
0x00000800Ignore unknown root revocation status.
0x00008000Allow test root certificate.
0x00004000Trust test root certificate.
0x80000000Ignore non-matching CN (certificate CN non-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the control will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the control fails with an error.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the control is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to to mask sensitive data. The default is .

This setting only works on these controls: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to , the control will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to tells the control to use the internal implementation instead of using the system security libraries.

This setting is set to by default on all platforms.

Trappable Errors (SNMPTCPAgent Control)

SNMPTCPAgent Errors

20202    Timeout.
20302    Bad Object Index.
20303    Value exceeds maximum number of objects allowed.
20304    The value must be an IP address in dotted format.
20306    Unsupported SNMP version.
20307    Unknown PDU type.
20308    The control is busy performing the current action.
20309    Verification failed.
20310    Missing password for Verification.
20311    Missing signature.
20312    Missing remote time.
20313    Missing timeout value.
20314    Decryption Failed.
20315    Missing password for decryption.
20316    Not encrypted.
20317    Security model not supported.
20318    Defective packet
20319    Not from bound point.
20320    Operation not permitted in current role.
20321    Bad packet.
20322    Message not authenticated.
20323    No such oid.
20324    Missing privacy parameter.
20325    Bad engine id.
20326    Bad time frame.
20327    Bad user name.
20328    Security level was not accepted.
20329    Discovery failed.
20330    Incorrect key length.
20331    No authentication password supplied.

The control may also return one of the following error codes, which are inherited from other controls.

TCPClient Errors

20101    You cannot change the RemotePort at this time. A connection is in progress.
20102    You cannot change the RemoteHost (Server) at this time. A connection is in progress.
20103    The RemoteHost address is invalid (0.0.0.0).
20105    Already connected. If you want to reconnect, close the current connection first.
20107    You cannot change the LocalPort at this time. A connection is in progress.
20108    You cannot change the LocalHost at this time. A connection is in progress.
20113    You cannot change MaxLineLength at this time. A connection is in progress.
20117    RemotePort cannot be zero. Please specify a valid service port number.
20118    You cannot change the UseConnection option while the control is active.
20136    Operation would block.
20202    Timeout.
20212    Action impossible in control's present state.
20213    Action impossible while not connected.
20214    Action impossible while listening.
20302    Timeout.
20303    Could not open file.
20435    Unable to convert string to selected CodePage.
21106    Already connecting. If you want to reconnect, close the current connection first.
21118    You need to connect first.
21120    You cannot change the LocalHost at this time. A connection is in progress.
21121    Connection dropped by remote host.

SSL Errors

20271    Cannot load specified security library.
20272    Cannot open certificate store.
20273    Cannot find specified certificate.
20274    Cannot acquire security credentials.
20275    Cannot find certificate chain.
20276    Cannot verify certificate chain.
20277    Error during handshake.
20281    Error verifying certificate.
20282    Could not find client certificate.
20283    Could not find server certificate.
20284    Error encrypting data.
20285    Error decrypting data.

TCP/IP Errors

25005    [10004] Interrupted system call.
25010    [10009] Bad file number.
25014    [10013] Access denied.
25015    [10014] Bad address.
25023    [10022] Invalid argument.
25025    [10024] Too many open files.
25036    [10035] Operation would block.
25037    [10036] Operation now in progress.
25038    [10037] Operation already in progress.
25039    [10038] Socket operation on nonsocket.
25040    [10039] Destination address required.
25041    [10040] Message is too long.
25042    [10041] Protocol wrong type for socket.
25043    [10042] Bad protocol option.
25044    [10043] Protocol is not supported.
25045    [10044] Socket type is not supported.
25046    [10045] Operation is not supported on socket.
25047    [10046] Protocol family is not supported.
25048    [10047] Address family is not supported by protocol family.
25049    [10048] Address already in use.
25050    [10049] Cannot assign requested address.
25051    [10050] Network is down.
25052    [10051] Network is unreachable.
25053    [10052] Net dropped connection or reset.
25054    [10053] Software caused connection abort.
25055    [10054] Connection reset by peer.
25056    [10055] No buffer space available.
25057    [10056] Socket is already connected.
25058    [10057] Socket is not connected.
25059    [10058] Cannot send after socket shutdown.
25060    [10059] Too many references, cannot splice.
25061    [10060] Connection timed out.
25062    [10061] Connection refused.
25063    [10062] Too many levels of symbolic links.
25064    [10063] File name is too long.
25065    [10064] Host is down.
25066    [10065] No route to host.
25067    [10066] Directory is not empty
25068    [10067] Too many processes.
25069    [10068] Too many users.
25070    [10069] Disc Quota Exceeded.
25071    [10070] Stale NFS file handle.
25072    [10071] Too many levels of remote in path.
25092    [10091] Network subsystem is unavailable.
25093    [10092] WINSOCK DLL Version out of range.
25094    [10093] Winsock is not loaded yet.
26002    [11001] Host not found.
26003    [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
26004    [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
26005    [11004] Valid name, no data record (check DNS setup).