CoAP Class
Properties Methods Events Config Settings Errors
An easy-to-use CoAP client and server implementation.
Syntax
ipworksiot.CoAP
Remarks
The CoAP class provides a lightweight, fully-featured CoAP client and server implementation with DTLS support.
Using the Class in Client Mode
While in client mode (i.e., the Listening property is disabled; its default setting), the class can be used to send requests to a CoAP server. It can also be used to register as an observer for various server-side resources, causing the server to send notifications anytime said resources change.
By default, the component operates in NoSec mode as defined by RFC 7252. Certificate mode DTLS can be enabled by setting SSLEnabled to True. UseRawPublicKey can be used to enable Raw Public Key mode.
When DTLS is enabled, relevant handshake details will be reported by the SSLStatus event. Initially, the server will present its certificate to the client. The certificate is validated by the system and the status is provided within the SSLServerAuthentication event. If the Accept parameter of the SSLServerAuthentication event is false, the Status parameter will tell you why. You can then set the Accept parameter to true to manually force acceptance of the server certificate.
In some cases, the server requires the client to present a certificate as well. In this case, a valid certificate will need to be specified via the SSLCert property. This process may look like the following:
coapclient.OnSSLServerAuthentication += (o, e) => {
if (e.Accept) return;
Console.Write("Server provided the following certificate:\nIssuer: " + e.CertIssuer + "\nSubject: " + e.CertSubject + "\n");
Console.Write("The following problems have been determined for this certificate: " + e.Status + "\n");
Console.Write("Would you like to accept anyways? [y/n] ");
if (Console.Read() == 'y') e.Accept = true;
};
coapclient.SSLEnabled = true;
coapclient.RemoteHost = "remote_ip";
coapclient.RemotePort = 1234;
coapclient.Timeout = 30;
// if client authentication is applicable
coapclient.SSLCert = new Certificate("/path/to/cert.pfx", CertStoreTypes.cstPFXFile, "cert_password", "cert_subject");
To send a request, populate the RequestData, RequestContentFormat, RequestETag, and RequestOptions properties (if necessary, and as applicable), then call one of the following methods:
The methods above require a URI as a parameter. The format of the URI parameter is coap://hostname:port/resource. The port is optional, and if not specified will default to 5683. For instance coap://myserver/test and coap://myserver:5683/test are equivalent.
Once a response is received, the ResponseCode, ResponseData, ResponseContentFormat, ResponseETag, and ResponseOptions properties will be populated, and the RequestComplete event will fire. (If the request times out, the properties are not populated, but the event still fires.)
coap.OnRequestComplete += (s, e) => {
Console.WriteLine("Request complete!");
Console.WriteLine(coap.ResponseCode);
};
// Make a GET request to download a picture.
coap.Get("coap://mycoapserver/pictures/animals/cats4.dat?format=png");
// Imaginary function which accepts PNG image data and displays the picture to the user.
showPicture(coap.ResponseDataB);
To observe a resource, call the StartObserving method. Assuming the server accepts the observer registration request, it will begin sending notifications for the resource anytime it changes. Each change notification will cause the ResponseCode, ResponseData, ResponseContentFormat, ResponseETag, and ResponseOptions properties to be populated, and the Notification event to fire.
To stop observing a resource, either call StopObserving with the same URI value used to call StartObserving, or set the Notification event's StopObserving parameter to True.
coap.OnNotification += (s, e) => {
// Notifications can arrive out of order; only print to the log if this is the latest one we've received.
if (e.IsLatest) {
Console.WriteLine("Received notification for the resource at: " + e.URI);
Console.WriteLine("New Value: " + coap.ResponseData);
}
}
// Start observing a temperature sensor's data. Assume temperature values are sent back in text format.
coap.StartObserving("coap://mycoapserver/home/living_room/sensors/temperature?unit=fahrenheit");
// Assume the server accepts the request and starts sending notifications every so often.
// ...
// Later, stop observing the resource.
coap.StopObserving("coap://mycoapserver/home/living_room/sensors/temperature?unit=fahrenheit");
Using the Class in Server Mode
To operate in server mode, set the LocalPort to the port the class should listen on (typically 5683, the standard CoAP port), then enable the Listening property. Each time a request arrives, the RequestData, RequestContentFormat, RequestETag, and RequestOptions properties will be populated, and the Request event will fire.
By default, the component operates in NoSec mode as defined by RFC 7252. Certificate mode DTLS can be enabled by setting SSLEnabled to True. UseRawPublicKey can be used to enable Raw Public Key mode.
When DTLS is enabled, a valid certificate must be selected before the server can start listening for incoming connections. The certificate can be specified via the SSLCert property. Note the certificate must contain a private key.
After doing so, calling StartListening will cause the class to start listening for incoming connections. The class will listen on the interface defined by LocalHost and LocalPort, if specified. Otherwise, these values will be set by the class. If applicable, these values must be set before calling StartListening. For example:
//coapserver.LocalHost = "some_ip_address";
//coapserver.LocalPort = 1234;
coapserver.SSLCert = new Certificate("/path/to/cert.pfx", CertStoreTypes.cstPFXFile, "cert_password", "cert_subject");
coapserver.StartListening();
Console.WriteLine("Listening on: " + coapserver.LocalHost + ":" + coapserver.LocalPort);
while (coapserver.Listening) {
coapserver.DoEvents();
}
A response can be sent by populating the ResponseCode, ResponseData, ResponseContentFormat, ResponseETag, and ResponseOptions properties as desired before the event finishes. Alternatively, the Request event's SendResponse parameter can be set to False in order to send a response back later. In this case, the RequestId value from the event should be used to call the SendResponse method later.
coap.OnRequest += (s, e) => {
// For the purpose of this snippet, assume we only service GET requests, which have a method code of 1.
if (e.Method == 1) {
Console.WriteLine("GET request received for URI path: " + e.URIPath + " and URI query params: " + e.URIQuery);
coap.ResponseCode = "2.05"; // "Content".
// Imaginary methods that look up the data and content format of the resource based on the URI path and URI query parameters.
coap.ResponseData = lookupResourceData(e.URIPath, e.URIQuery);
coap.ResponseContentFormat = lookupResourceContentFormat(e.URIPath, e.URIQuery);
} else {
coap.ResponseCode = "4.05"; // "Method Not Allowed".
coap.ResponseData = "Only GET requests are allowed."; // Include a diagnostic payload.
coap.ResponseContentFormat = "";
}
// Alternatively, this event could simply save the e.RequestId value somewhere, then some other code could fill in the Response*
// properties and call the SendResponse() method later.
};
coap.OnResponseComplete += (s, e) => {
Console.WriteLine("Response sent for request with Id " + e.RequestId);
};
In server mode, the class can also support resource observation. When a client attempts to register itself as an observer of a resource, the Register event will fire; setting this event's Accept parameter to True will cause the class to accept the registration.
To notify clients that a resource has changed, populate the ResponseCode, ResponseData, ResponseContentFormat, ResponseETag, and ResponseOptions properties as desired, and then call the SendNotification method, passing it the URI of a resource that has registered observers.
When a client has unregistered from further change notifications, the Unregistered event will fire.
coap.OnRegister += (s, e) => {
Console.WriteLine("Client " + e.RemoteHost + ":" + e.RemotePort + " has registered for notifications for the URI " + e.URI);
// Imaginary method that helps ensure the application keeps track of observed URIs. The class itself maintains the
// list of observers for each URI, so the application just needs to know that there are observers in the first place.
observerRegisteredForURI(e.URI);
e.Accept = true;
};
coap.OnUnregistered += (s, e) => {
Console.WriteLine("Client " + e.RemoteHost + ":" + e.RemotePort + " has unregistered from notifications for the URI " + e.URI);
// As above, imaginary method that helps ensure the application keeps track of observed URIs.
observerUnregisteredForURI(e.URI);
};
// Somewhere else in the application, this sort of code might get called after a resource changes to inform any observers of
// the change. We use another imaginary method here to check if the changed resource is observed, and to get its information.
if (isResourceObserved()) {
coap.ResponseCode = "2.05"; // "Content".
coap.ResponseDataB = getResourceContent();
coap.ResponseContentFormat = getResourceContentFormat();
coap.SendNotification(getResourceURI());
}
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
Listening | Whether the class should operate in server mode by listening for incoming requests. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
LocalPort | This property includes the User Datagram Protocol (UDP) port in the local host where UDP binds. |
PendingRequests | Collection of pending requests. |
RequestContentFormat | The request content format. |
RequestData | The request data. |
RequestETag | The request ETag. |
RequestOptions | Collection of request options. |
ResponseCode | The response code. |
ResponseContentFormat | The response content format. |
ResponseData | The response data. |
ResponseETag | The response ETag. |
ResponseOptions | Collection of response options. |
SSLAcceptServerCert | Instructs the class to unconditionally accept the server certificate that matches the supplied certificate. |
SSLAuthenticateClients | If set to True, the server asks the client(s) for a certificate. |
SSLCert | The certificate to be used during Secure Sockets Layer (SSL) negotiation. |
SSLEnabled | This property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled. |
SSLServerCert | The server certificate for the last established connection. |
Timeout | A timeout for the class. |
UseConfirmableMessages | Whether to use confirmable message. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
CancelRequest | Cancels a pending request. |
Config | Sets or retrieves a configuration setting. |
Delete | Sends a DELETE request to the server. |
DoEvents | This method processes events from the internal message queue. |
Get | Sends a GET request to the server. |
Post | Sends a POST request to the server. |
Put | Sends a PUT request to the server. |
Reset | This method will reset the class. |
SendCustomRequest | Sends a custom request to the server. |
SendNotification | Sends a notification to all clients observing a given resource. |
SendResponse | Sends a response for a given pending request to the corresponding client. |
StartListening | This method starts listening for incoming connections. |
StartObserving | Registers the class as an observer for a given resource. |
StopListening | This method stops listening for new connections. |
StopObserving | Unregisters the class as an observer for a given resource. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Error | Fired when information is available about errors during data delivery. |
Log | Fires once for each log message. |
Notification | Fires when a notification is received from the server. |
Register | Fires when a client wishes to register for notifications. |
Request | Fires when a request is received from a client. |
RequestComplete | Fires when a request completes. |
ResponseComplete | Fires when a response has been sent to a client. |
SSLClientAuthentication | This event is fired when the client presents its credentials to the server. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
Unregistered | Fires when a client has unregistered from notifications. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
MessageId | Sets the MessageId for a request. |
UseEmptyToken | Uses an empty value for the request token. |
UseRawPublicKey | Whether to enable Raw Public Key mode. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACerts | A newline separated list of CA certificates to be included when performing an SSL handshake. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLClientCACerts | A newline separated list of CA certificates to use during SSL client certificate validation. |
SSLContextProtocol | The protocol used when getting an SSLContext instance. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLServerCACerts | A newline separated list of CA certificates to use during SSL server certificate validation. |
SSLTrustManagerFactoryAlgorithm | The algorithm to be used to create a TrustManager through TrustManagerFactory. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
CaptureIPPacketInfo | Used to capture the packet information. |
DelayHostResolution | Whether the hostname is resolved when RemoteHost is set. |
DestinationAddress | Used to get the destination address from the packet information. |
DontFragment | Used to set the Don't Fragment flag of outgoing packets. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
MaxPacketSize | The maximum length of the packets that can be received. |
QOSDSCPValue | Used to specify an arbitrary QOS/DSCP setting (optional). |
QOSTrafficType | Used to specify QOS/DSCP settings (optional). |
ShareLocalPort | If set to True, allows more than one instance of the class to be active on the same local port. |
UseConnection | Determines whether to use a connected socket. |
UseIPv6 | Whether or not to use IPv6. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
GUIAvailable | Whether or not a message loop is available for processing events. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
UseDaemonThreads | Whether threads created by the class are daemon threads. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
Listening Property (CoAP Class)
Whether the class should operate in server mode by listening for incoming requests.
Syntax
public boolean isListening(); public void setListening(boolean listening);
Default Value
False
Remarks
This property indicates whether the class operates in server mode or client mode.
When this property is false (default), the class operate in client mode, allowing applications to send requests using the Get, Post, SendCustomRequest, etc. methods.
When this property is true, the class listens on LocalPort for incoming CoAP requests, firing the Request event anytime one arrives. Applications can service these requests directly during Request events, or send separate responses later using the SendResponse method.
Applications that wish to use the class in server mode should set the LocalPort property to the desired listening port (such as 5683, the standard CoAP port) before calling StartListening. Otherwise the system will choose a port at random.
Use the StartListening and StopListening methods to control whether the class is listening.
This property is not available at design time.
LocalHost Property (CoAP Class)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
public String getLocalHost(); public void setLocalHost(String localHost);
Default Value
""
Remarks
This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.
If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Note: LocalHost is not persistent. You must always set it in code, and never in the property window.
LocalPort Property (CoAP Class)
This property includes the User Datagram Protocol (UDP) port in the local host where UDP binds.
Syntax
public int getLocalPort(); public void setLocalPort(int localPort);
Default Value
0
Remarks
The LocalPort property must be set before UDP is activated (Active is set to True). This instructs the class to bind to a specific port (or communication endpoint) in the local machine.
Setting it to 0 (default) enables the Transmission Control Protocol (TCP)/IP stack to choose a port at random. The chosen port will be shown by the LocalPort property after the connection is established.
LocalPort cannot be changed once the class is Active. Any attempt to set the LocalPort property when the class is Active will generate an error.
The LocalPort property is useful when trying to connect to services that require a trusted port on the client side.
PendingRequests Property (CoAP Class)
Collection of pending requests.
Syntax
public CoAPRequestMap getPendingRequests();
Remarks
This collection property holds a list of CoAPRequest items.
When the class is operating in client mode (i.e., the Listening property is disabled), each item represents an outgoing request for which a response has not yet been received.
When the class is operating in server mode (i.e., the Listening property is enabled), each item represents an incoming request for which a response has not yet been sent.
This property is read-only and not available at design time.
Please refer to the CoAPRequest type for a complete list of fields.RequestContentFormat Property (CoAP Class)
The request content format.
Syntax
public int getRequestContentFormat(); public void setRequestContentFormat(int requestContentFormat);
Default Value
-1
Remarks
When the class is operating in client mode (i.e., the Listening property is disabled), this property specifies the content format that should be included in outgoing requests.
When the class is operating in server mode (i.e., the Listening property is enabled), this property is populated with the content format included in incoming requests (if any) anytime the Request event fires.
In either case, the valid set of values for this property is -1, or a value in the range 0 to 65535. -1 prevents a Content-Format option from being included when sending a request, or indicates that one was not included in a received response.
The following table provides a (non-exhaustive) list of some of the more common content formats; refer to the IANA's CoAP Content-Formats registry for a full list.
-1 (default) | Content-Format option not included. | |
Value | Media Type | Encoding |
0 | text/plain; charset=utf-8 | |
40 | application/link-format | |
41 | application/xml | |
42 | application/octet-stream | |
47 | application/exi | |
50 | application/json | |
51 | application/json-patch+json | |
52 | application/merge-patch+json | |
60 | application/cbor | |
61 | application/cwt | |
62 | application/multipart-core | |
63 | application/cbor-seq | |
11050 | application/json | deflate |
11060 | application/cbor | deflate |
This property is not available at design time.
RequestData Property (CoAP Class)
The request data.
Syntax
public byte[] getRequestData(); public void setRequestData(byte[] requestData);
Default Value
""
Remarks
When the class is operating in client mode (i.e., the Listening property is disabled), this property specifies the data that should be included in requests sent using Post, Put, or SendCustomRequest.
When the class is operating in server mode (i.e., the Listening property is enabled), this property is populated with the data included in incoming requests (if any) anytime the Request event fires.
This property is not available at design time.
RequestETag Property (CoAP Class)
The request ETag.
Syntax
public byte[] getRequestETag(); public void setRequestETag(byte[] requestETag);
Default Value
""
Remarks
When the class is operating in client mode (i.e., the Listening property is disabled), this property specifies the ETag that should be included in outgoing requests. Leave it empty to prevent an Etag option from being included.
When the class is operating in server mode (i.e., the Listening property is enabled), this property is populated with the ETag included in incoming requests (if any) anytime the Request event fires. It will be empty if an Etag option was not included.
This property is not available at design time.
RequestOptions Property (CoAP Class)
Collection of request options.
Syntax
public CoAPOptionList getRequestOptions(); public void setRequestOptions(CoAPOptionList requestOptions);
Remarks
This collection property holds a list of CoAPOption items.
When the class is operating in client mode (i.e., the Listening property is disabled), each item represents an option that will be included in the next outgoing request.
When the class is operating in server mode (i.e., the Listening property is enabled), each item represents an option included in the most-recently-received request.
This property is not available at design time.
Please refer to the CoAPOption type for a complete list of fields.ResponseCode Property (CoAP Class)
The response code.
Syntax
public String getResponseCode(); public void setResponseCode(String responseCode);
Default Value
""
Remarks
When the class is operating in client mode (i.e., the Listening property is disabled), this property is populated with the response code included in incoming responses anytime the RequestComplete event fires.
When the class is operating in server mode (i.e., the Listening property is enabled), this property specifies the response code that should be included in outgoing responses (regardless of whether they are sent immediately after Request fires, or later using SendResponse or SendNotification).
In either case, the valid set of values for this property are strings of the format c.dd, where c is a class value in the range 2 to 7, and dd is a detail value in the range 00 to 31.
The following table provides a (non-exhaustive) list of some of the more common response codes; refer to the IANA's CoAP Response Codes registry for a full list.
Code | Description |
2.01 | Created |
2.02 | Deleted |
2.03 | Valid |
2.04 | Changed |
2.05 | Content |
2.31 | Continue |
4.00 | Bad Request |
4.01 | Unauthorized |
4.02 | Bad Option |
4.03 | Forbidden |
4.04 | Not Found |
4.12 | Precondition Failed |
5.00 | Internal Server Error |
5.01 | Not Implemented |
5.02 | Bad Gateway |
5.03 | Service Unavailable |
5.04 | Gateway Timeout |
This property is not available at design time.
ResponseContentFormat Property (CoAP Class)
The response content format.
Syntax
public int getResponseContentFormat(); public void setResponseContentFormat(int responseContentFormat);
Default Value
-1
Remarks
When the class is operating in client mode (i.e., the Listening property is disabled), this property is populated with the content format included in incoming responses anytime the RequestComplete event fires.
When the class is operating in server mode (i.e., the Listening property is enabled), this property specifies the content format that should be included in outgoing responses (regardless of whether they are sent immediately after Request fires, or later using SendResponse or SendNotification).
In either case, the valid set of values for this property is -1, or a value in the range 0 to 65535. -1 prevents a Content-Format option from being included when sending a response, or indicates that one was not included in a received response.
The following table provides a (non-exhaustive) list of some of the more common content formats; refer to the IANA's CoAP Content-Formats registry for a full list.
-1 (default) | Content-Format option not included. | |
Value | Media Type | Encoding |
0 | text/plain; charset=utf-8 | |
40 | application/link-format | |
41 | application/xml | |
42 | application/octet-stream | |
47 | application/exi | |
50 | application/json | |
51 | application/json-patch+json | |
52 | application/merge-patch+json | |
60 | application/cbor | |
61 | application/cwt | |
62 | application/multipart-core | |
63 | application/cbor-seq | |
11050 | application/json | deflate |
11060 | application/cbor | deflate |
This property is not available at design time.
ResponseData Property (CoAP Class)
The response data.
Syntax
public byte[] getResponseData(); public void setResponseData(byte[] responseData);
Default Value
""
Remarks
When the class is operating in client mode (i.e., the Listening property is disabled), this property is populated with the data included in incoming responses (if any) anytime the RequestComplete event fires.
When the class is operating in server mode (i.e., the Listening property is enabled), this property specifies the data that should be included in outgoing responses (regardless of whether they are sent immediately after Request fires, or later using SendResponse or SendNotification).
This property is not available at design time.
ResponseETag Property (CoAP Class)
The response ETag.
Syntax
public byte[] getResponseETag(); public void setResponseETag(byte[] responseETag);
Default Value
""
Remarks
When the class is operating in client mode (i.e., the Listening property is disabled), this property is populated with the ETag included in incoming responses (if any) anytime the RequestComplete event fires. It will be empty if an Etag option was not included.
When the class is operating in server mode (i.e., the Listening property is enabled), this property specifies the ETag that should be included in outgoing responses (regardless of whether they are sent immediately after Request fires, or later using SendResponse or SendNotification). Leave it empty to prevent an Etag option from being included.
This property is not available at design time.
ResponseOptions Property (CoAP Class)
Collection of response options.
Syntax
public CoAPOptionList getResponseOptions(); public void setResponseOptions(CoAPOptionList responseOptions);
Remarks
This collection property holds a list of CoAPOption items.
When the class is operating in client mode (i.e., the Listening property is disabled), each item represents an option included in the most-recently-received response.
When the class is operating in server mode (i.e., the Listening property is enabled), each item represents an option that will be included in the next outgoing response.
This property is not available at design time.
Please refer to the CoAPOption type for a complete list of fields.SSLAcceptServerCert Property (CoAP Class)
Instructs the class to unconditionally accept the server certificate that matches the supplied certificate.
Syntax
public Certificate getSSLAcceptServerCert(); public void setSSLAcceptServerCert(Certificate SSLAcceptServerCert);
Remarks
If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.
You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.
Note: This functionality is provided only for cases in which you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.
Please refer to the Certificate type for a complete list of fields.SSLAuthenticateClients Property (CoAP Class)
If set to True, the server asks the client(s) for a certificate.
Syntax
public boolean isSSLAuthenticateClients(); public void setSSLAuthenticateClients(boolean SSLAuthenticateClients);
Default Value
False
Remarks
This property is used in conjunction with the SSLClientAuthentication event. Please refer to the documentation of the SSLClientAuthentication event for details.
SSLCert Property (CoAP Class)
The certificate to be used during Secure Sockets Layer (SSL) negotiation.
Syntax
public Certificate getSSLCert(); public void setSSLCert(Certificate SSLCert);
Remarks
This property includes the digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.
Please refer to the Certificate type for a complete list of fields.SSLEnabled Property (CoAP Class)
This property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled.
Syntax
public boolean isSSLEnabled(); public void setSSLEnabled(boolean SSLEnabled);
Default Value
False
Remarks
This property specifies whether TLS/SSL is enabled in the class. When False (default), the class operates in plaintext mode. When True, TLS/SSL is enabled.
TLS/SSL may also be enabled by setting SSLStartMode. Setting SSLStartMode will automatically update this property value.
This property is not available at design time.
SSLServerCert Property (CoAP Class)
The server certificate for the last established connection.
Syntax
public Certificate getSSLServerCert();
Remarks
This property contains the server certificate for the last established connection.
SSLServerCert is reset every time a new connection is attempted. &
This property is read-only.
Please refer to the Certificate type for a complete list of fields.Timeout Property (CoAP Class)
A timeout for the class.
Syntax
public int getTimeout(); public void setTimeout(int timeout);
Default Value
60
Remarks
This property specifies the number of seconds that the class should wait, synchronously, for a response to be received. A value of 0 means that the class will send the request data (when operating in client mode) or the response data (when operating in server mode) asynchronously, and then wait indefinitely, firing the applicable event once complete.
The class will use DoEvents to enter an efficient wait loop during any potential waiting period, ensuring that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.
If Timeout expires, and the response has not yet been received, the class throws an exception.
UseConfirmableMessages Property (CoAP Class)
Whether to use confirmable message.
Syntax
public boolean isUseConfirmableMessages(); public void setUseConfirmableMessages(boolean useConfirmableMessages);
Default Value
True
Remarks
This property specifies whether the class should send requests (if operating in client mode; i.e., when the Listening property is disabled) or responses (if operating in server mode; i.e., when the Listening property is enabled) using confirmable messages instead of unconfirmable messages.
Using confirmable messages increases reliability, since the class will automatically retransmit a message until it receives a confirmation from the remote host that the message was received. Note that the retransmission period is not infinite; eventually the class will assume that the message is undeliverable and time out the retransmission process.
Using non-confirmable messages reduces the amount of network traffic, but at the cost of reliability, since the class has no way to know whether a given message was received by the remote host, or lost in transit.
CancelRequest Method (CoAP Class)
Cancels a pending request.
Syntax
public void cancelRequest(String requestId);
Remarks
This method cancels the request in the PendingRequests collection identified by RequestId.
When the class is operating in client mode, the requests in the PendingRequests collection represent outgoing requests for which responses have not yet been received. Canceling one will cause the RequestComplete event to fire with an appropriate ErrorCode and ErrorDescription.
When the class is operating in server mode, the requests in the PendingRequests collection represent incoming requests for which responses have not yet been sent. Canceling one will cause the ResponseComplete event to fire with an appropriate ErrorCode and ErrorDescription.
Config Method (CoAP Class)
Sets or retrieves a configuration setting.
Syntax
public String config(String configurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Delete Method (CoAP Class)
Sends a DELETE request to the server.
Syntax
public String delete(String URI);
Remarks
This method sends the server a DELETE request for the resource identified by URI. If the RequestETag property is non-empty, its value will be used to include an Etag option in the request. Any additional options present in the RequestOptions collection will be included as well.
The format of the URI parameter is coap://hostname:port/resource. The port is optional, and if not specified will default to 5683. For instance coap://myserver/test and coap://myserver:5683/test are equivalent.
If the UseConfirmableMessages property is enabled when this method is called, the class will automatically retransmit the request message (if necessary) until it receives confirmation from the server that it was received. Note that the retransmission period is not infinite; eventually the class will assume that the message is undeliverable and time out the request.
If the Timeout property is greater than 0, this method will block until either a response is received, the specified timeout interval elapses, or (if UseConfirmableMessages is enabled) the retransmission period elapses; whichever occurs first. It will then return empty string.
If the Timeout property is 0, a record of the request will be added to the PendingRequests collection, and this method will finish immediately, returning an Id for the request. Passing this Id to the CancelRequest method will cancel the request (assuming it is still pending at that time).
Once a response is received, or the request times out, the class will do the following:
- Populate the Response* properties (unless the request timed out).
- Remove the request record from the PendingRequests collection, if necessary.
- Fire the RequestComplete event.
Note: This method can only be called when the class is operating in client mode (i.e., when the Listening property is disabled).
DoEvents Method (CoAP Class)
This method processes events from the internal message queue.
Syntax
public void doEvents();
Remarks
When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Get Method (CoAP Class)
Sends a GET request to the server.
Syntax
public String get(String URI);
Remarks
This method sends the server a GET request for the resource identified by URI. If the RequestETag property is non-empty, its value will be used to include an Etag option in the request. Any additional options present in the RequestOptions collection will be included as well.
The format of the URI parameter is coap://hostname:port/resource. The port is optional, and if not specified will default to 5683. For instance coap://myserver/test and coap://myserver:5683/test are equivalent.
If the UseConfirmableMessages property is enabled when this method is called, the class will automatically retransmit the request message (if necessary) until it receives confirmation from the server that it was received. Note that the retransmission period is not infinite; eventually the class will assume that the message is undeliverable and time out the request.
If the Timeout property is greater than 0, this method will block until either a response is received, the specified timeout interval elapses, or (if UseConfirmableMessages is enabled) the retransmission period elapses; whichever occurs first. It will then return empty string.
If the Timeout property is 0, a record of the request will be added to the PendingRequests collection, and this method will finish immediately, returning an Id for the request. Passing this Id to the CancelRequest method will cancel the request (assuming it is still pending at that time).
Once a response is received, or the request times out, the class will do the following:
- Populate the Response* properties (unless the request timed out).
- Remove the request record from the PendingRequests collection, if necessary.
- Fire the RequestComplete event.
Note: This method can only be called when the class is operating in client mode (i.e., when the Listening property is disabled).
Post Method (CoAP Class)
Sends a POST request to the server.
Syntax
public String post(String URI);
Remarks
This method sends the server a POST request for the resource identified by URI. The RequestData property specifies the data that will be sent in the request. If the RequestContentFormat and/or RequestETag properties are non-empty, their values will be used to include Content-Format and Etag options in the request (respectively). Any additional options present in the RequestOptions collection will be included as well.
The format of the URI parameter is coap://hostname:port/resource. The port is optional, and if not specified will default to 5683. For instance coap://myserver/test and coap://myserver:5683/test are equivalent.
If the UseConfirmableMessages property is enabled when this method is called, the class will automatically retransmit the request message (if necessary) until it receives confirmation from the server that it was received. Note that the retransmission period is not infinite; eventually the class will assume that the message is undeliverable and time out the request.
If the Timeout property is greater than 0, this method will block until either a response is received, the specified timeout interval elapses, or (if UseConfirmableMessages is enabled) the retransmission period elapses; whichever occurs first. It will then return empty string.
If the Timeout property is 0, a record of the request will be added to the PendingRequests collection, and this method will finish immediately, returning an Id for the request. Passing this Id to the CancelRequest method will cancel the request (assuming it is still pending at that time).
Once a response is received, or the request times out, the class will do the following:
- Populate the Response* properties (unless the request timed out).
- Remove the request record from the PendingRequests collection, if necessary.
- Fire the RequestComplete event.
Note: This method can only be called when the class is operating in client mode (i.e., when the Listening property is disabled).
Put Method (CoAP Class)
Sends a PUT request to the server.
Syntax
public String put(String URI);
Remarks
This method sends the server a PUT request for the resource identified by URI. The RequestData property specifies the data that will be sent in the request. If the RequestContentFormat and/or RequestETag properties are non-empty, their values will be used to include Content-Format and Etag options in the request (respectively). Any additional options present in the RequestOptions collection will be included as well.
The format of the URI parameter is coap://hostname:port/resource. The port is optional, and if not specified will default to 5683. For instance coap://myserver/test and coap://myserver:5683/test are equivalent.
If the UseConfirmableMessages property is enabled when this method is called, the class will automatically retransmit the request message (if necessary) until it receives confirmation from the server that it was received. Note that the retransmission period is not infinite; eventually the class will assume that the message is undeliverable and time out the request.
If the Timeout property is greater than 0, this method will block until either a response is received, the specified timeout interval elapses, or (if UseConfirmableMessages is enabled) the retransmission period elapses; whichever occurs first. It will then return empty string.
If the Timeout property is 0, a record of the request will be added to the PendingRequests collection, and this method will finish immediately, returning an Id for the request. Passing this Id to the CancelRequest method will cancel the request (assuming it is still pending at that time).
Once a response is received, or the request times out, the class will do the following:
- Populate the Response* properties (unless the request timed out).
- Remove the request record from the PendingRequests collection, if necessary.
- Fire the RequestComplete event.
Note: This method can only be called when the class is operating in client mode (i.e., when the Listening property is disabled).
Reset Method (CoAP Class)
This method will reset the class.
Syntax
public void reset();
Remarks
This method will reset the class's properties to their default values.
SendCustomRequest Method (CoAP Class)
Sends a custom request to the server.
Syntax
public String sendCustomRequest(String URI, int method);
Remarks
This method sends the server a custom request for the resource identified by URI. The Method parameter specifies the request's method code. The following table provides a (non-exhaustive) list of some of the more common method codes; refer to the IANA's CoAP Method Codes registry for a full list.
Method Code | Name |
1 | GET |
2 | POST |
3 | PUT |
4 | DELETE |
5 | FETCH |
6 | PATCH |
The RequestData property specifies the data that will be sent in the request. If the RequestContentFormat and/or RequestETag properties are non-empty, their values will be used to include Content-Format and Etag options in the request (respectively). Any additional options present in the RequestOptions collection will be included as well.
The format of the URI parameter is coap://hostname:port/resource. The port is optional, and if not specified will default to 5683. For instance coap://myserver/test and coap://myserver:5683/test are equivalent.
If the UseConfirmableMessages property is enabled when this method is called, the class will automatically retransmit the request message (if necessary) until it receives confirmation from the server that it was received. Note that the retransmission period is not infinite; eventually the class will assume that the message is undeliverable and time out the request.
If the Timeout property is greater than 0, this method will block until either a response is received, the specified timeout interval elapses, or (if UseConfirmableMessages is enabled) the retransmission period elapses; whichever occurs first. It will then return empty string.
If the Timeout property is 0, a record of the request will be added to the PendingRequests collection, and this method will finish immediately, returning an Id for the request. Passing this Id to the CancelRequest method will cancel the request (assuming it is still pending at that time).
Once a response is received, or the request times out, the class will do the following:
- Populate the Response* properties (unless the request timed out).
- Remove the request record from the PendingRequests collection, if necessary.
- Fire the RequestComplete event.
Note: This method can only be called when the class is operating in client mode (i.e., when the Listening property is disabled).
SendNotification Method (CoAP Class)
Sends a notification to all clients observing a given resource.
Syntax
public void sendNotification(String URI);
Remarks
This method sends a notification to all clients observing the resource identified by URI, notifying them of its latest state. Clients should be notified whenever a resource's content changes (or periodically, if it changes very often) by sending a 2.xx response code; typically 2.03 "Valid" or 2.05 "Content". Clients should also be notified if a resource can no longer be observed (e.g., when it is deleted) by sending a notification with a non-2.xx response code (e.g., 4.04 "Not Found"). The class will automatically unregister all observers when a non-2.xx notification is sent.
The ResponseData property specifies the data that will be sent in the response, and the ResponseCode property specifies the response code. If the ResponseContentFormat and/or ResponseETag properties are non-empty, their values will be used to include Content-Format and Etag options in the response (respectively). Any additional options present in the ResponseOptions collection will be included as well.
If the UseConfirmableMessages property is enabled when this method is called, the class will automatically retransmit the response message (if necessary) until it receives confirmation from the client that it was received. Note that the retransmission period is not infinite; eventually the class will assume that the message is undeliverable and time out the response.
Note: This method can only be called when the class is operating in server mode (i.e., when the Listening property is enabled).
SendResponse Method (CoAP Class)
Sends a response for a given pending request to the corresponding client.
Syntax
public void sendResponse(String requestId);
Remarks
This method sends a response for the request in the PendingRequests collection identified by RequestId. The ResponseData property specifies the data that will be sent in the response, and the ResponseCode property specifies the response code. If the ResponseContentFormat and/or ResponseETag properties are non-empty, their values will be used to include Content-Format and Etag options in the response (respectively). Any additional options present in the ResponseOptions collection will be included as well.
If the UseConfirmableMessages property is enabled when this method is called, the class will automatically retransmit the response message (if necessary) until it receives confirmation from the client that it was received. Note that the retransmission period is not infinite; eventually the class will assume that the message is undeliverable and time out the response. The ResponseComplete event will fire once the message receipt is confirmed (or once the retransmission period elapses).
If the UseConfirmableMessages property is disabled, the ResponseComplete event will fire immediately instead, since there is no way to know whether the client received the response.
Note: This method can only be called when the class is operating in server mode (i.e., when the Listening property is enabled).
StartListening Method (CoAP Class)
This method starts listening for incoming connections.
Syntax
public void startListening();
Remarks
This method begins listening for incoming connections on the port specified by LocalPort. Once listening, events will fire as new clients connect and data are transferred.
To stop listening for new connections, call StopListening. To stop listening for new connections and to disconnect all existing clients, call Shutdown.
StartObserving Method (CoAP Class)
Registers the class as an observer for a given resource.
Syntax
public String startObserving(String URI);
Remarks
This method registers the class as an observer for the resource identified by URI. If the server accepts the registration, then it will periodically notify the class about any changes to the specified resource. These "change notifications" are exposed via the Notification event.
This method operates in the exact same manner as the Get method, with the exception of the two things listed below. Refer to the Get method's documentation for more information.
- When constructing the request, the class automatically includes an Observe option. The presence of this option is what indicates to the server that the class wishes to register itself as an observer for the specified resource.
- When the server receives the request, its response causes the Notification event to fire instead of the RequestComplete event. (Unless it decides to reject the registration, in which case it will handle the request just like a normal GET request, and the RequestComplete event will fire when its response is received, just like it would if Get had been called.)
Once the class has successfully registered itself as an observer, the server will continue to deliver change notifications for the specified resource until the class unregisters, or the resource can no longer be observed (e.g., if it is deleted). To unregister, either call the StopObserving method with the same URI value, or set the Notification event's StopObserving parameter to True.
Note: This method can only be called when the class is operating in client mode (i.e., when the Listening property is disabled).
StopListening Method (CoAP Class)
This method stops listening for new connections.
Syntax
public void stopListening();
Remarks
This method stops listening for new connections. After being called, any new connection attempts will be rejected. Calling this method does not disconnect existing connections.
To stop listening and to disconnect all existing clients, call Shutdown instead.
StopObserving Method (CoAP Class)
Unregisters the class as an observer for a given resource.
Syntax
public void stopObserving(String URI);
Remarks
This method unregisters the class as an observer for the resource identified by URI. This method operates in the exact same manner as the Get method, with the exception of the two things below; refer to the Get method's documentation for more information:
- When constructing the request, the class automatically includes an Observe option with a value of 1. The presence of this option indicates to the server that the class wishes to unregister from further change notifications.
- This method, unlike Get, does not return a request Id.
Note: This method can only be called when the class is operating in client mode (i.e., when the Listening property is disabled).
Error Event (CoAP Class)
Fired when information is available about errors during data delivery.
Syntax
public class DefaultCoAPEventListener implements CoAPEventListener { ... public void error(CoAPErrorEvent e) {} ... } public class CoAPErrorEvent { public int errorCode; public String description; }
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class throws an exception.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Log Event (CoAP Class)
Fires once for each log message.
Syntax
public class DefaultCoAPEventListener implements CoAPEventListener { ... public void log(CoAPLogEvent e) {} ... } public class CoAPLogEvent { public int logLevel; public String message; }
Remarks
This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.
LogLevel indicates the level of the Message. Possible values are:
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
Notification Event (CoAP Class)
Fires when a notification is received from the server.
Syntax
public class DefaultCoAPEventListener implements CoAPEventListener { ... public void notification(CoAPNotificationEvent e) {} ... } public class CoAPNotificationEvent { public String URI; public boolean isLatest; public boolean stopObserving; //read-write }
Remarks
This event fires when the class receives a notification from that server that some observed resource has changed. Query the ResponseCode, ResponseData, ResponseContentFormat, ResponseETag, and ResponseOptions properties to obtain the new resource information.
Note that, in some cases, the server may no longer be able to deliver notifications for a resource (e.g., if it is deleted). In such cases, the ResponseCode property will be populated with a non-2.xx code (e.g., 4.04 "Not Found") to indicate why the resource can no longer be observed. No further notifications will be delivered for the resource after such a notification arrives.
The URI parameter identifies the resource that has changed.
The IsLatest parameter reflects whether this notification actually has the most recent resource information available, since it is possible for notifications to arrive out of order under certain circumstances.
The StopObserving parameter specifies whether the class should stop observing the resource identified by URI. This parameter is False by default, set it to True to have the class unregister itself from further notifications. (Note: in the event of a non-2.xx notification, this parameter will be True by default instead, and changing it to False will have no effect.)
Note: This event is only used when the class is operating in client mode (i.e., when the Listening property is disabled).
Register Event (CoAP Class)
Fires when a client wishes to register for notifications.
Syntax
public class DefaultCoAPEventListener implements CoAPEventListener { ... public void register(CoAPRegisterEvent e) {} ... } public class CoAPRegisterEvent { public String remoteHost; public int remotePort; public String URI; public String URIHost; public int URIPort; public String URIPath; public String URIQuery; public byte[] token; public boolean accept; //read-write }
Remarks
This event fires anytime a client wishes to register itself as an observer for the resource identified by URI. Refer to the StartObserving and SendNotification methods, as well as the Notification event, for more information about observing resources and resource change notifications.
Any options included in the request can be obtained by querying the RequestOptions collection.
To correctly handle this event, populate the ResponseCode, ResponseData, ResponseContentFormat, ResponseETag, and ResponseOptions properties as desired before this event finishes. (This must be done regardless of the Accept parameter's final value; see below for more information on why).
The RemoteHost parameter reflects the client's IP address or hostname.
The RemotePort parameter reflects the client's port.
The URI parameter reflects the exact resource URI that the client wishes to observe (the CoAP specification states that the full URI must be used to track observers). This value must be passed exactly as-is to the SendNotification method to notify observers of changes to the resource.
The URIHost, URIPort, URIPath, and URIQuery parameters are provided for additional convenience
The Token parameter reflects the token included in the registration request.
The Accept parameter specifies whether the class should accept the registration. By default, it is False, and the request will be treated like a normal GET request. Setting it to True will cause the class to add the client to its internal list of registered observers for the specified URI.
Note: This event is only used when the class is operating in server mode (i.e., when the Listening property is enabled).
Request Event (CoAP Class)
Fires when a request is received from a client.
Syntax
public class DefaultCoAPEventListener implements CoAPEventListener { ... public void request(CoAPRequestEvent e) {} ... } public class CoAPRequestEvent { public String remoteHost; public int remotePort; public int method; public String URIHost; public int URIPort; public String URIPath; public String URIQuery; public byte[] token; public String requestId; public boolean sendResponse; //read-write }
Remarks
This event fires anytime a request is received from a client. Information about the request is exposed both via this event's parameters and the following properties: RequestData, RequestContentFormat, RequestETag, and RequestOptions.
A response can either be sent back to the client immediately when the event finishes, or later using the SendResponse method. Refer to the RequestId and SendResponse parameters' documentation, below, for more information. If a response is to be sent back immediately, populate the ResponseCode, ResponseData, ResponseContentFormat, ResponseETag, and ResponseOptions properties as desired before this event finishes.
The RemoteHost parameter reflects the client's IP address or hostname.
The RemotePort parameter reflects the client's port.
The Method parameter reflects the request method code. The following table provides a (non-exhaustive) list of some of the more common method codes; refer to the IANA's CoAP Method Codes registry for a full list.
Method Code | Name |
1 | GET |
2 | POST |
3 | PUT |
4 | DELETE |
5 | FETCH |
6 | PATCH |
The URIHost, URIPort, URIPath, and URIQuery parameters, when taken together, identify the resource that the client is making a request against. This event exposes the URI in pieces for convenience.
The Token parameter reflects the token included in the request.
The RequestId parameter reflects the class-generated Id for the request. If the final value of the SendResponse parameter is False, this Id can be passed to the SendResponse method later to send a response. (Alternatively, it can be passed to the CancelRequest later to ignore the request.)
The SendResponse parameter specifies whether the class should send a response back to the client immediately; it is True by default. Set it to False to send the response later instead.
Note: This event is only used when the class is operating in server mode (i.e., when the Listening property is enabled).
RequestComplete Event (CoAP Class)
Fires when a request completes.
Syntax
public class DefaultCoAPEventListener implements CoAPEventListener { ... public void requestComplete(CoAPRequestCompleteEvent e) {} ... } public class CoAPRequestCompleteEvent { public int method; public String URI; public String requestId; public int errorCode; public String errorDescription; }
Remarks
This event fires when a request completes. Usually, a request is considered complete when a response has been received. However, requests can also be considered "complete" if either of the following occurs:
- If the UseConfirmableMessages property is enabled, and the class did not receive confirmation that the request was received before the retransmission period elapsed.
- If Timeout property is greater than 0, and the class did not receive a response before the timeout period elapsed.
Assuming a response was received (i.e., the ErrorCode parameter is either 0 or 709; see below), then the response code, payload, and options can be obtained by querying the ResponseCode, ResponseData, ResponseContentFormat, ResponseETag, and ResponseOptions properties.
The Method parameter reflects the request method code. The following table provides a (non-exhaustive) list of some of the more common method codes; refer to the IANA's CoAP Method Codes registry for a full list.
Method Code | Name |
1 | GET |
2 | POST |
3 | PUT |
4 | DELETE |
5 | FETCH |
6 | PATCH |
The URI parameter reflects the requested resource's URI.
The ErrorCode parameter indicates whether the request encountered an error. If no error was encountered, it will be 0; if the server returned a non-2.xx response code, it will be 709; if some other error occurred (e.g., the request timed out), it will be another non-zero value.
The ErrorDescription parameter provides a description of the error that occurred (or, if ErrorCode is 709, a string version of the response code returned by the server). It will be empty if no error was encountered.
Note: This event is only used when the class is operating in client mode (i.e., when the Listening property is disabled).
ResponseComplete Event (CoAP Class)
Fires when a response has been sent to a client.
Syntax
public class DefaultCoAPEventListener implements CoAPEventListener { ... public void responseComplete(CoAPResponseCompleteEvent e) {} ... } public class CoAPResponseCompleteEvent { public String requestId; public int errorCode; public String errorDescription; }
Remarks
This event fires anytime a response has been sent to a client. If the UseConfirmableMessages property is enabled, then the response is considered complete once the client has confirmed that it received the response (or once the retransmission period elapses). If the UseConfirmableMessages property is disabled, the response is considered complete immediately (since there is no way to know if the client received it).
The RequestId parameter reflects the class-generated Id of the request for which the response was sent.
The ErrorCode parameter indicates whether the response encountered an error (e.g., transmission timed out). If no error was encountered, it will be 0.
The ErrorDescription parameter provides a description of the error that occurred. It will be empty if no error was encountered.
Note: This event is only used when the class is operating in server mode (i.e., when the Listening property is enabled).
SSLClientAuthentication Event (CoAP Class)
This event is fired when the client presents its credentials to the server.
Syntax
public class DefaultCoAPEventListener implements CoAPEventListener { ... public void SSLClientAuthentication(CoAPSSLClientAuthenticationEvent e) {} ... } public class CoAPSSLClientAuthenticationEvent { public String connectionId; public byte[] certEncoded; public String certSubject; public String certIssuer; public String status; public boolean accept; //read-write }
Remarks
This event enables the server to decide whether or not to continue. The Accept parameter is a recommendation on whether to continue or to close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK").
SSLServerAuthentication Event (CoAP Class)
Fired after the server presents its certificate to the client.
Syntax
public class DefaultCoAPEventListener implements CoAPEventListener { ... public void SSLServerAuthentication(CoAPSSLServerAuthenticationEvent e) {} ... } public class CoAPSSLServerAuthenticationEvent { public byte[] certEncoded; public String certSubject; public String certIssuer; public String status; public boolean accept; //read-write }
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (CoAP Class)
Fired when secure connection progress messages are available.
Syntax
public class DefaultCoAPEventListener implements CoAPEventListener { ... public void SSLStatus(CoAPSSLStatusEvent e) {} ... } public class CoAPSSLStatusEvent { public String message; }
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
Unregistered Event (CoAP Class)
Fires when a client has unregistered from notifications.
Syntax
public class DefaultCoAPEventListener implements CoAPEventListener { ... public void unregistered(CoAPUnregisteredEvent e) {} ... } public class CoAPUnregisteredEvent { public String remoteHost; public int remotePort; public String URI; public String URIHost; public int URIPort; public String URIPath; public String URIQuery; }
Remarks
This event fires anytime a client has unregistered itself from further notifications for the resource identified by URI. Refer to the StartObserving and SendNotification methods, as well as the Notification and Register events, for more information about observing resources and resource change notifications.
The RemoteHost parameter reflects the client's IP address or hostname.
The RemotePort parameter reflects the client's port.
The URI parameter identifies the resource that the client has stopped observing.
The URIHost, URIPort, URIPath, and URIQuery parameters are provided for additional convenience
Note: This event is only used when the class is operating in server mode (i.e., when the Listening property is enabled).
Certificate Type
This is the digital certificate being used.
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
EffectiveDate
String (read-only)
Default Value: ""
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
ExpirationDate
String (read-only)
Default Value: ""
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
ExtendedKeyUsage
String (read-only)
Default Value: ""
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
Fingerprint
String (read-only)
Default Value: ""
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
FingerprintSHA1
String (read-only)
Default Value: ""
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
FingerprintSHA256
String (read-only)
Default Value: ""
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
Issuer
String (read-only)
Default Value: ""
The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.
KeyPassword
String
Default Value: ""
The password for the certificate's private key (if any).
Some certificate stores may individually protect certificates' private keys, separate from the standard protection offered by the StorePassword. This field can be used to read such password-protected private keys.
Note: This property defaults to the value of StorePassword. To clear it, you must set the property to the empty string (""). It can be set at any time, but when the private key's password is different from the store's password, then it must be set before calling PrivateKey.
PrivateKey
String (read-only)
Default Value: ""
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.
PrivateKeyAvailable
boolean (read-only)
Default Value: False
Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
PrivateKeyContainer
String (read-only)
Default Value: ""
The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
PublicKey
String (read-only)
Default Value: ""
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
PublicKeyAlgorithm
String (read-only)
Default Value: ""
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
PublicKeyLength
int (read-only)
Default Value: 0
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
SerialNumber
String (read-only)
Default Value: ""
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
SignatureAlgorithm
String (read-only)
Default Value: ""
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
Store
String
Default Value: "MY"
The name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
In Java, the certificate store normally is a file containing certificates and optional private keys.
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StoreB
byte[]
Default Value: "MY"
The name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
In Java, the certificate store normally is a file containing certificates and optional private keys.
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StorePassword
String
Default Value: ""
If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.
StoreType
int
Default Value: 0
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
SubjectAltNames
String (read-only)
Default Value: ""
Comma-separated lists of alternative subject names for the certificate.
ThumbprintMD5
String (read-only)
Default Value: ""
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA1
String (read-only)
Default Value: ""
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA256
String (read-only)
Default Value: ""
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
Usage
String (read-only)
Default Value: ""
The text description of UsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
UsageFlags
int (read-only)
Default Value: 0
The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the Usage field for a text representation of UsageFlags.
This functionality currently is not available when the provider is OpenSSL.
Version
String (read-only)
Default Value: ""
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
Subject
String
Default Value: ""
The subject of the certificate used for client authentication.
This field will be populated with the full subject of the loaded certificate. When loading a certificate, the subject is used to locate the certificate in the store.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Encoded
String
Default Value: ""
The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
EncodedB
byte[]
Default Value: ""
The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
Constructors
public Certificate();
Creates a instance whose properties can be set. This is useful for use with when generating new certificates.
public Certificate( certificateFile);
Opens CertificateFile and reads out the contents as an X.509 public key.
public Certificate( encoded);
Parses Encoded as an X.509 public key.
public Certificate( storeType, store, storePassword, subject);
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.
After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public Certificate( storeType, store, storePassword, subject, configurationString);
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.
ConfigurationString is a newline-separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to the cstUser , cstMachine , cstPublicKeyFile , and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations.
After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public Certificate( storeType, store, storePassword, encoded);
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.
After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.
public Certificate( storeType, store, storePassword, subject);
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public Certificate( storeType, store, storePassword, subject, configurationString);
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public Certificate( storeType, store, storePassword, encoded);
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.
CoAPOption Type
A CoAP option.
Remarks
This type represents a CoAP option.
Fields
Critical
boolean (read-only)
Default Value: False
Whether the option is critical.
This field reflects whether the option is critical or elective. Receivers that do not recognize a critical option must return a 4.02 "Bad Option" response code back to the sender. Unrecognized elective options can be safely ignored.
NoCacheKey
boolean (read-only)
Default Value: False
Whether the option is to be excluded from the cache-key.
This field reflects whether the option should be excluded from any cache-key calculations. This information is generally only needed for caching and proxying.
Number
int
Default Value: 0
The option's number.
The field reflects the option's number, which must be a value in the range 0 to 65535 (inclusive). Setting this field to a recognized option number (see table below) will automatically set the ValueType field to the correct value (it should be set manually otherwise).
The following table provides a (non-exhaustive) list of some of the more common option numbers; refer to the IANA's CoAP Option Numbers registry for a full list.
Number | Option |
1 | If-Match |
3 | Uri-Host |
4 | ETag |
5 | If-None-Match |
6 | Observe |
7 | Uri-Port |
8 | Location-Path |
11 | Uri-Path |
12 | Content-Format |
14 | Max-Age |
15 | Uri-Query |
17 | Accept |
20 | Location-Query |
23 | Block2 |
27 | Block1 |
35 | Proxy-Uri |
39 | Proxy-Scheme |
60 | Size1 |
Unsafe
boolean (read-only)
Default Value: False
Whether the option is unsafe to forward.
This field reflects whether the option is unsafe to forward. This information is generally only needed for proxying.
Value
String
Default Value: ""
The option's value.
This field specifies the option's value. The ValueType field specifies the data type of the value.
ValueType
int
Default Value: 0
The option's value data type.
This field specifies the data type of the option's Value. If Number is set to a recognized value (refer to the table in its documentation), this field will automatically be set to the correct value. The table below shows the possible value types, their descriptions, and how to format the data assigned to Value.
Type | Description | Value Format |
ovtString (0) (default) | String | String |
ovtUInt (1) | Unsigned integer | 0 to 4294967295 |
ovtBinary (2) | Binary data | Hex-encoded byte string |
Constructors
public CoAPOption();
public CoAPOption( number, value);
CoAPRequest Type
A pending CoAP request.
Remarks
This type represents a pending CoAP request.
Fields
Method
int (read-only)
Default Value: 0
The request's method.
This field reflects the request's method code, which must be a value in the range 0 to 31. The following table provides a (non-exhaustive) list of some of the more common method codes; refer to the IANA's CoAP Method Codes registry for a full list.
Method Code | Name |
1 | GET |
2 | POST |
3 | PUT |
4 | DELETE |
5 | FETCH |
6 | PATCH |
RemoteHost
String (read-only)
Default Value: ""
The remote host associated with the request.
This field reflects the remote host associated with the request. When the class is operating in client mode (i.e., the Listening property is disabled), this is the remote host to which the request was sent; when the class is operating in server mode (i.e., the Listening property is enabled), this is the remote host from which the request was received.
RemotePort
int (read-only)
Default Value: 0
The remote port associated with the request.
This field reflects the remote port associated with the request. Refer to the RemoteHost field's documentation for more information.
RequestId
String (read-only)
Default Value: ""
The request's Id.
This field reflects the request's class-generated Id.
Token
String (read-only)
Default Value: ""
The request's token.
This field reflects the request's token.
TokenB
byte[] (read-only)
Default Value: ""
The request's token.
This field reflects the request's token.
Config Settings (CoAP Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.CoAP Config Settings
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this configuration setting has no effect if SSLProvider is set to Platform.
If set to True, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When set to 0 (default), the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
When set to 0 (default), the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Note: This value must be set after SSLProvider is set.
Example values:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA");
obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA; SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA");
Possible values when SSLProvider is set to Platform include the following:
- SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
- SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- SSL_RSA_WITH_RC4_128_SHA
- SSL_RSA_WITH_DES_CBC_SHA
- SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
- SSL_DH_anon_WITH_DES_CBC_SHA
- SSL_RSA_EXPORT_WITH_RC4_40_MD5
- SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
- SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
- SSL_DHE_DSS_WITH_DES_CBC_SHA
- SSL_RSA_WITH_NULL_MD5
- SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
- SSL_DHE_RSA_WITH_DES_CBC_SHA
- SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
- SSL_RSA_WITH_NULL_SHA
- SSL_DH_anon_WITH_RC4_128_MD5
- SSL_RSA_WITH_RC4_128_MD5
- SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- SSL_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_NULL_SHA
- TLS_DH_anon_WITH_AES_128_CBC_SHA256 (Not Recommended)
- TLS_ECDH_anon_WITH_RC4_128_SHA
- TLS_DH_anon_WITH_AES_128_CBC_SHA (Not Recommended)
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_KRB5_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_KRB5_EXPORT_WITH_RC4_40_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_RC4_128_SHA
- TLS_ECDH_ECDSA_WITH_RC4_128_SHA
- TLS_ECDH_anon_WITH_NULL_SHA
- TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_RSA_WITH_NULL_SHA256
- TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
- TLS_KRB5_WITH_RC4_128_MD5
- TLS_ECDHE_ECDSA_WITH_NULL_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_RC4_128_SHA
- TLS_EMPTY_RENEGOTIATION_INFO_SCSV
- TLS_KRB5_WITH_3DES_EDE_CBC_MD5
- TLS_KRB5_WITH_RC4_128_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_NULL_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_KRB5_WITH_DES_CBC_MD5
- TLS_KRB5_EXPORT_WITH_RC4_40_MD5
- TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
- TLS_ECDH_anon_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_KRB5_WITH_DES_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_NULL_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
Possible values when SSLProvider is set to Internal include the following:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default - Client and Server) |
TLS1.1 | 768 (Hex 300) (Default - Client) |
TLS1 | 192 (Hex C0) (Default - Client) |
SSL3 | 48 (Hex 30) |
SSL2 | 12 (Hex 0C) |
Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.
SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:
By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider), please be aware of the following notes:
- The platform provider is available only on Windows 11/Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This configuration setting is applicable only when SSLProvider is set to Internal.
If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.
Note: This configuration setting is applicable only when SSLProvider is set to Internal.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class throws an exception.
The format of this value is a comma-separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.
In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
UDP Config Settings
The default value for this setting is False.
Note: This configuration setting is available only in Windows.
The default value is false.
Note: This configuration setting is available only in Windows.
In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.
Note: This configuration setting uses the qWAVE API and is available only on Windows 7, Windows Server 2008 R2, and later.
Note: This configuration setting uses the qWAVE API and is available only on Windows Vista and Windows Server 2008 or above.
Note: QOSTrafficType must be set before setting Active to True.
The default value for this setting is False.
The default value for this setting is False.
Socket Config Settings
Note: This option is not valid for User Datagram Protocol (UDP) ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the class does not attempt to process external events.
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
The Java edition requires installation of the FIPS-certified Bouncy Castle library regardless of the target operating system. This can be downloaded from https://www.bouncycastle.org/fips-java/. Only the "Provider" library is needed. The jar file should then be installed in a JRE search path.
The following classes must be imported in the application in which the component will be used:
import java.security.Security;
import org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider;
The Bouncy Castle provider must be added as a valid provider and must also be configured to operate in FIPS mode:
System.setProperty("org.bouncycastle.fips.approved_only","true");
Security.addProvider(new BouncyCastleFipsProvider());
When UseFIPSCompliantAPI is true, Secure Sockets Layer (SSL)-enabled classes can optionally be configured to use the Transport Layer Security (TLS) Bouncy Castle library. When SSLProvider is set to sslpAutomatic (default) or sslpInternal, an internal TLS implementation is used, but all cryptographic operations are offloaded to the Bouncy Castle FIPS provider to achieve FIPS-compliant operation. If SSLProvider is set to sslpPlatform, the Bouncy Castle JSSE will be used in place of the internal TLS implementation.
To enable the use of the Bouncy Castle JSSE take the following steps in addition to the steps above. Both the Bouncy Castle FIPS provider and the Bouncy Castle JSSE must be configured to use the Bouncy Castle TLS library in FIPS mode. Obtain the Bouncy Castle TLS library from https://www.bouncycastle.org/fips-java/. The jar file should then be installed in a JRE search path.
The following classes must be imported in the application in which the component will be used:
import java.security.Security;
import org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider;
//required to use BCJSSE when SSLProvider is set to sslpPlatform
import org.bouncycastle.jsse.provider.BouncyCastleJsseProvider;
The Bouncy Castle provider must be added as a valid provider and also must be configured to operate in FIPS mode:
System.setProperty("org.bouncycastle.fips.approved_only","true");
Security.addProvider(new BouncyCastleFipsProvider());
//required to use BCJSSE when SSLProvider is set to sslpPlatform
Security.addProvider(new BouncyCastleJsseProvider("fips:BCFIPS"));
//optional - configure logging level of BCJSSE
Logger.getLogger("org.bouncycastle.jsse").setLevel(java.util.logging.Level.OFF);
//configure the class to use BCJSSE
component.setSSLProvider(1); //platform
component.config("UseFIPSCompliantAPI=true");
Note: TLS 1.3 support requires the Bouncy Castle TLS library version 1.0.14 or later.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
This setting is set to false by default on all platforms.
Trappable Errors (CoAP Class)
CoAP Errors
700 | Invalid or malformed URI. |
701 | Invalid or malformed option. |
702 | Invalid block. |
703 | Malformed message. |
704 | Message transmission timed out. |
705 | Message rejected by remote host. |
706 | Invalid/unexpected request Id. |
707 | Invalid response code. |
708 | "Reset" message received from remote host. |
709 | Error response received from server. Refer to the error message for more information. |
710 | Observation not supported for the requested URI. |
711 | Request canceled. |
712 | The requested operation cannot be performed in the current mode. |