Docs

IPWorks 2022 Python Edition

Version 22.0 [Build 8171]

Telnet Class

Properties   Methods   Events   Configuration Settings   Errors  

The Telnet Class is used to communicate with servers implementing the TELNET protocol.

Syntax

class ipworks.Telnet

Remarks

The Telnet Class supports both plaintext and SSL/TLS connections. When connecting over SSL/TLS the on_ssl_server_authentication event allows you to check the server identity and other security attributes. The on_ssl_status event provides information about the SSL handshake. Additional SSL related settings are also supported via the config method.

The Telnet Class provides a simple interface to Telnet communications as specified by RFC 854. It allows sending of Telnet command codes to remote Telnet servers and it scans the input data for Telnet commands. Appropriate events are fired for received commands.

The connection interface is very similar to that of IPPort. The same properties and events are used for sending and receiving normal data, and the same property set is used for setting properties of the connection. The Telnet Class adds a number of properties like command, do_option, etc. which allow sending of Telnet commands to the other end. The respective events (on_command, on_do, etc.) are fired when the corresponding Telnet commands are received.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

accept_dataEnables or disables data reception (the DataIn event).
bytes_sentThe number of bytes actually sent after an assignment to DataToSend .
commandA single character Telnet command code to be sent to the server.
connectedTriggers a connection or disconnection.
data_to_sendA string of data to be sent to the remote host.
dont_optionA single character Telnet option code to be sent to the server with the Telnet DONT command.
do_optionA single character Telnet option code to be sent to the server with the Telnet DO command.
do_sub_optionA Telnet SubOption to send to the server with the SubOption command.
firewall_auto_detectThis property tells the class whether or not to automatically detect and use firewall system settings, if available.
firewall_typeThis property determines the type of firewall to connect through.
firewall_hostThis property contains the name or IP address of firewall (optional).
firewall_passwordThis property contains a password if authentication is to be used when connecting through the firewall.
firewall_portThis property contains the TCP port for the firewall Host .
firewall_userThis property contains a user name if authentication is to be used connecting through a firewall.
keep_aliveWhen True, KEEPALIVE packets are enabled (for long connections).
lingerWhen set to True, connections are terminated gracefully.
local_hostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
local_portThe TCP port in the local host where IPPort binds.
remote_hostThe address of the remote host. Domain names are resolved to IP addresses.
remote_portThe secure Telnet port in the remote host (default is 23).
ssl_accept_server_cert_encodedThis is the certificate (PEM/base64 encoded).
ssl_cert_encodedThis is the certificate (PEM/base64 encoded).
ssl_cert_storeThis is the name of the certificate store for the client certificate.
ssl_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_cert_store_typeThis is the type of certificate store for this certificate.
ssl_cert_subjectThis is the subject of the certificate used for client authentication.
ssl_enabledWhether TLS/SSL is enabled.
ssl_providerTBD.
ssl_server_cert_encodedThis is the certificate (PEM/base64 encoded).
ssl_start_modeDetermines how the class starts the SSL negotiation.
timeoutA timeout for the class.
transparentWhen True, Telnet command processing is disabled.
urgent_dataA string of data to be sent urgently (out-of-band) to the remote host.
will_optionA single character Telnet option code to be sent to the server with the Telnet WILL command.
wont_optionA single character Telnet option code to be sent to the server with the Telnet WONT command.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

configSets or retrieves a configuration setting.
connectConnects to a remote host.
connect_toConnects to a remote host.
disconnectDisconnect from the remote host.
do_eventsProcesses events from the internal message queue.
pause_dataPauses data reception.
process_dataRe-enables data reception after a call to PauseData .
resetReset the class.
sendSends binary data to the remote host.
send_bytesSends binary data to the remote host.
send_commandSends a single character Telnet command code to the server.
send_dont_optionThis method sends a single character Telnet option code to the server with the Telnet DONT command.
send_do_optionThis method sends a single character Telnet option code to the server with the Telnet DO command.
send_do_sub_optionThis methods sends a Telnet SubOption to send to the server with the SubOption command.
send_textSends text to the remote host.
send_urgent_bytesUrgently sends binary data to the remote host.
send_urgent_textUrgently sends text to the remote host.
send_will_optionThis method sends a single character Telnet option code the server with the Telnet WILL command.
send_wont_optionThis method sends a single character Telnet option code to the server with the Telnet WONT command.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

on_commandFired when a Telnet command comes from the Telnet server.
on_connectedFired immediately after a connection completes (or fails).
on_connection_statusFired to indicate changes in connection state.
on_data_inFired when data is received from the remote host.
on_disconnectedFired when a connection is closed.
on_doFired when a Telnet DO OPTION command comes from the Telnet server.
on_dontFired when a Telnet DONT OPTION command comes from the Telnet server.
on_errorInformation about errors during data delivery.
on_ready_to_sendFired when the class is ready to send data.
on_ssl_server_authenticationFired after the server presents its certificate to the client.
on_ssl_statusShows the progress of the secure connection.
on_sub_optionFired when a Telnet SubOption command comes from the Telnet server.
on_willFired when a Telnet WILL OPTION command comes from the Telnet server.
on_wontFired when a Telnet WONT OPTION command comes from the Telnet server.

Configuration Settings


The following is a list of configuration settings for the class with short descriptions. Click on the links for further details.

ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertFilePathsThe paths to CA certificate files on Unix/Linux.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated ciphersuite.
SSLNegotiatedCipherStrengthReturns the negotiated ciphersuite strength.
SSLNegotiatedCipherSuiteReturns the negotiated ciphersuite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedProtocolReturns the negotiated protocol version.
SSLProviderThe name of the security provider to use.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when UseInternalSecurityAPI is True.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13ProviderThe TLS 1.3 implementation to be used.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseInternalSecurityAPITells the class whether or not to use the system security libraries or an internal implementation.

accept_data Property

Enables or disables data reception (the DataIn event).

Syntax

def get_accept_data() -> bool: ...

def set_accept_data(value: bool) -> None: ...


accept_data = property(get_accept_data, set_accept_data)

Default Value

TRUE

Remarks

This property enables or disables data reception (the DataIn event). Setting this property to False, temporarily disables data reception (and the on_data_in event). Setting this property to True, re-enables data reception.

Note: It is recommended to use the pause_data or process_data method instead of setting this property.

bytes_sent Property

The number of bytes actually sent after an assignment to DataToSend .

Syntax

def get_bytes_sent() -> int: ...


bytes_sent = property(get_bytes_sent, None)

Default Value

0

Remarks

The bytes_sent property shows how many bytes were sent after the last assignment to data_to_send or urgent_data. Please check the data_to_send property for more information.

This property is read-only.

command Property

A single character Telnet command code to be sent to the server.

Syntax

def set_command(value: int) -> None: ...


command = property(None, set_command)

Default Value

0

Remarks

Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Here are some examples:

241 (NOP)No operation.
242 (Data Mark)The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification.
243 (Break)NVT character BRK.
244 (Interrupt Process)The function IP.
245 (Abort Output)The function AO.
246 (Are You There)The function AYT.
247 (Erase Character)The function EC.
248 (Erase Line)The function EL.
249 (Go Ahead)The GA signal.

This property is write-only.

connected Property

Triggers a connection or disconnection.

Syntax

def get_connected() -> bool: ...

def set_connected(value: bool) -> None: ...


connected = property(get_connected, set_connected)

Default Value

FALSE

Remarks

Setting the connected property to True makes the class attempt to connect to the host identified by the remote_host property. If successful, after the connection is achieved, the value of the property changes to True and the on_connected event is fired.

Setting Connected to False closes the connection. How and when the connection is closed is controlled by the linger property.

Note: It is recommended to use the connect or disconnect method instead of setting this property.

data_to_send Property

A string of data to be sent to the remote host.

Syntax

def set_data_to_send(value: bytes) -> None: ...


data_to_send = property(None, set_data_to_send)

Default Value

""

Remarks

Assigning a string to the data_to_send property makes the class send the string to the remote host. The send method provides similar functionality.

If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation fails with error 10035: "[10035] Operation would block" (WSAEWOULDBLOCK). You can check this error, and then try to send the data again. The bytes_sent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the on_ready_to_send event before attempting to send data again. (However, please note that on_ready_to_send is not fired when part of the data is successfully sent).

This property is write-only.

dont_option Property

A single character Telnet option code to be sent to the server with the Telnet DONT command.

Syntax

def set_dont_option(value: int) -> None: ...


dont_option = property(None, set_dont_option)

Default Value

0

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

This property is write-only.

do_option Property

A single character Telnet option code to be sent to the server with the Telnet DO command.

Syntax

def set_do_option(value: int) -> None: ...


do_option = property(None, set_do_option)

Default Value

0

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

This property is write-only.

do_sub_option Property

A Telnet SubOption to send to the server with the SubOption command.

Syntax

def set_do_sub_option(value: bytes) -> None: ...


do_sub_option = property(None, set_do_sub_option)

Default Value

""

Remarks

For a list of valid Telnet suboptions and their descriptions please look at the Telnet RFCs.

You don't need to specify the suboption start and suboption end codes. Those are appended automatically by the class. For example, to send a terminal type suboption to request setting the terminal type to 'vt100', you must send ASCII 24, followed by ASCII 0, followed by "vt100" (without the quotes).

This property is write-only.

firewall_auto_detect Property

This property tells the class whether or not to automatically detect and use firewall system settings, if available.

Syntax

def get_firewall_auto_detect() -> bool: ...

def set_firewall_auto_detect(value: bool) -> None: ...


firewall_auto_detect = property(get_firewall_auto_detect, set_firewall_auto_detect)

Default Value

FALSE

Remarks

This property tells the class whether or not to automatically detect and use firewall system settings, if available.

firewall_type Property

This property determines the type of firewall to connect through.

Syntax

def get_firewall_type() -> int: ...

def set_firewall_type(value: int) -> None: ...


firewall_type = property(get_firewall_type, set_firewall_type)

Default Value

0

Remarks

This property determines the type of firewall to connect through. The applicable values are the following:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. firewall_port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. firewall_port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. firewall_port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. firewall_port is set to 1080.

firewall_host Property

This property contains the name or IP address of firewall (optional).

Syntax

def get_firewall_host() -> str: ...

def set_firewall_host(value: str) -> None: ...


firewall_host = property(get_firewall_host, set_firewall_host)

Default Value

""

Remarks

This property contains the name or IP address of firewall (optional). If a firewall_host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.

firewall_password Property

This property contains a password if authentication is to be used when connecting through the firewall.

Syntax

def get_firewall_password() -> str: ...

def set_firewall_password(value: str) -> None: ...


firewall_password = property(get_firewall_password, set_firewall_password)

Default Value

""

Remarks

This property contains a password if authentication is to be used when connecting through the firewall. If firewall_host is specified, the firewall_user and firewall_password properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

firewall_port Property

This property contains the TCP port for the firewall Host .

Syntax

def get_firewall_port() -> int: ...

def set_firewall_port(value: int) -> None: ...


firewall_port = property(get_firewall_port, set_firewall_port)

Default Value

0

Remarks

This property contains the TCP port for the firewall firewall_host. See the description of the firewall_host property for details.

Note that this property is set automatically when firewall_type is set to a valid value. See the description of the firewall_type property for details.

firewall_user Property

This property contains a user name if authentication is to be used connecting through a firewall.

Syntax

def get_firewall_user() -> str: ...

def set_firewall_user(value: str) -> None: ...


firewall_user = property(get_firewall_user, set_firewall_user)

Default Value

""

Remarks

This property contains a user name if authentication is to be used connecting through a firewall. If the firewall_host is specified, this property and firewall_password properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

keep_alive Property

When True, KEEPALIVE packets are enabled (for long connections).

Syntax

def get_keep_alive() -> bool: ...

def set_keep_alive(value: bool) -> None: ...


keep_alive = property(get_keep_alive, set_keep_alive)

Default Value

FALSE

Remarks

The keep_alive enables the SO_KEEPALIVE option on the socket. This option prevents long connections from timing out in case of inactivity.

Please note that system TCP/IP stack implementations are not required to support SO_KEEPALIVE.

linger Property

When set to True, connections are terminated gracefully.

Syntax

def get_linger() -> bool: ...

def set_linger(value: bool) -> None: ...


linger = property(get_linger, set_linger)

Default Value

TRUE

Remarks

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), there are two scenarios for determining how long the connection will linger. The first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP protocol timeout expires.

In the second scenario, LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data is sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (by a client acknowledgment, for example), setting this property to False might be the appropriate course of action.

local_host Property

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

def get_local_host() -> str: ...

def set_local_host(value: str) -> None: ...


local_host = property(get_local_host, set_local_host)

Default Value

""

Remarks

The local_host property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the local_host property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

NOTE: local_host is not persistent. You must always set it in code, and never in the property window.

local_port Property

The TCP port in the local host where IPPort binds.

Syntax

def get_local_port() -> int: ...

def set_local_port(value: int) -> None: ...


local_port = property(get_local_port, set_local_port)

Default Value

0

Remarks

The local_port property must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting it to 0 (default) enables the TCP/IP stack to choose a port at random. The chosen port will be shown by the local_port property after the connection is established.

local_port cannot be changed once a connection is made. Any attempt to set the local_port property when a connection is active will generate an error.

The local_port property is useful when trying to connect to services that require a trusted port in the client side.

remote_host Property

The address of the remote host. Domain names are resolved to IP addresses.

Syntax

def get_remote_host() -> str: ...

def set_remote_host(value: str) -> None: ...


remote_host = property(get_remote_host, set_remote_host)

Default Value

""

Remarks

This property specifies the IP address (IP number in dotted internet format) or Domain Name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.

If this property is set to a Domain Name, a DNS request is initiated, and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.

If the class is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.

Example (Connecting)

IPPortControl.RemoteHost = "MyHostNameOrIP" IPPortControl.RemotePort = 777 IPPortControl.Connected = true

remote_port Property

The secure Telnet port in the remote host (default is 23).

Syntax

def get_remote_port() -> int: ...

def set_remote_port(value: int) -> None: ...


remote_port = property(get_remote_port, set_remote_port)

Default Value

23

Remarks

For implicit SSL, use port 992 (please refer to the ssl_start_mode property for more information).

A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.

ssl_accept_server_cert_encoded Property

This is the certificate (PEM/base64 encoded).

Syntax

def get_ssl_accept_server_cert_encoded() -> bytes: ...

def set_ssl_accept_server_cert_encoded(value: bytes) -> None: ...


ssl_accept_server_cert_encoded = property(get_ssl_accept_server_cert_encoded, set_ssl_accept_server_cert_encoded)

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The ssl_accept_server_cert_store and ssl_accept_server_cert_subject properties also may be used to specify a certificate.

When ssl_accept_server_cert_encoded is set, a search is initiated in the current ssl_accept_server_cert_store for the private key of the certificate. If the key is found, ssl_accept_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_accept_server_cert_subject is set to an empty string.

ssl_cert_encoded Property

This is the certificate (PEM/base64 encoded).

Syntax

def get_ssl_cert_encoded() -> bytes: ...

def set_ssl_cert_encoded(value: bytes) -> None: ...


ssl_cert_encoded = property(get_ssl_cert_encoded, set_ssl_cert_encoded)

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The ssl_cert_store and ssl_cert_subject properties also may be used to specify a certificate.

When ssl_cert_encoded is set, a search is initiated in the current ssl_cert_store for the private key of the certificate. If the key is found, ssl_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_cert_subject is set to an empty string.

ssl_cert_store Property

This is the name of the certificate store for the client certificate.

Syntax

def get_ssl_cert_store() -> bytes: ...

def set_ssl_cert_store(value: bytes) -> None: ...


ssl_cert_store = property(get_ssl_cert_store, set_ssl_cert_store)

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The ssl_cert_store_type property denotes the type of the certificate store specified by ssl_cert_store. If the store is password protected, specify the password in ssl_cert_store_password.

ssl_cert_store is used in conjunction with the ssl_cert_subject property to specify client certificates. If ssl_cert_store has a value, and ssl_cert_subject or ssl_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_cert_subject property for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

ssl_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_cert_store_password() -> str: ...

def set_ssl_cert_store_password(value: str) -> None: ...


ssl_cert_store_password = property(get_ssl_cert_store_password, set_ssl_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

ssl_cert_store_type Property

This is the type of certificate store for this certificate.

Syntax

def get_ssl_cert_store_type() -> int: ...

def set_ssl_cert_store_type(value: int) -> None: ...


ssl_cert_store_type = property(get_ssl_cert_store_type, set_ssl_cert_store_type)

Default Value

0

Remarks

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
20 (cstSecurityKey)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstSecurityKey, cert_store_password to the PIN, and cert_store to the full path of the PKCS11 dll. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_cert_store and set ssl_cert_store_password to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstSecurityKey; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstSecurityKey, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

ssl_cert_subject Property

This is the subject of the certificate used for client authentication.

Syntax

def get_ssl_cert_subject() -> str: ...

def set_ssl_cert_subject(value: str) -> None: ...


ssl_cert_subject = property(get_ssl_cert_subject, set_ssl_cert_subject)

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properites are set. When this property is set, a search is performed in the current certificate store certificate with matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

ssl_enabled Property

Whether TLS/SSL is enabled.

Syntax

def get_ssl_enabled() -> bool: ...

def set_ssl_enabled(value: bool) -> None: ...


ssl_enabled = property(get_ssl_enabled, set_ssl_enabled)

Default Value

FALSE

Remarks

This setting specifies whether TLS/SSL is enabled in the class. When False (default) the class operates in plaintext mode. When True TLS/SSL is enabled.

TLS/SSL may also be enabled by setting ssl_start_mode. Setting ssl_start_mode will automatically update this property value.

ssl_provider Property

TBD.

Syntax

def get_ssl_provider() -> int: ...

def set_ssl_provider(value: int) -> None: ...


ssl_provider = property(get_ssl_provider, set_ssl_provider)

Default Value

0

Remarks

TBD.

ssl_server_cert_encoded Property

This is the certificate (PEM/base64 encoded).

Syntax

def get_ssl_server_cert_encoded() -> bytes: ...


ssl_server_cert_encoded = property(get_ssl_server_cert_encoded, None)

Default Value

""

Remarks

This is the certificate (PEM/base64 encoded). This property is used to assign a specific certificate. The ssl_server_cert_store and ssl_server_cert_subject properties also may be used to specify a certificate.

When ssl_server_cert_encoded is set, a search is initiated in the current ssl_server_cert_store for the private key of the certificate. If the key is found, ssl_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_server_cert_subject is set to an empty string.

This property is read-only.

ssl_start_mode Property

Determines how the class starts the SSL negotiation.

Syntax

def get_ssl_start_mode() -> int: ...

def set_ssl_start_mode(value: int) -> None: ...


ssl_start_mode = property(get_ssl_start_mode, set_ssl_start_mode)

Default Value

3

Remarks

The ssl_start_mode property may have one of the following values:

0 (sslAutomatic)If the remote port is set to the standard plaintext port of the protocol (where applicable), the class will behave the same as if ssl_start_mode is set to sslExplicit. In all other cases, SSL negotiation will be implicit (sslImplicit).
1 (sslImplicit)The SSL negotiation will start immediately after the connection is established.
2 (sslExplicit)The class will first connect in plaintext, and then explicitly start SSL negotiation through a protocol command such as STARTTLS.
3 (sslNone - default)No SSL negotiation, no SSL security. All communication will be in plaintext mode.

timeout Property

A timeout for the class.

Syntax

def get_timeout() -> int: ...

def set_timeout(value: int) -> None: ...


timeout = property(get_timeout, set_timeout)

Default Value

0

Remarks

If the timeout property is set to 0, all operations return immediately, potentially failing with an 'WOULDBLOCK' error if data can't be sent or received immediately.

If timeout is set to a positive value, the class will automatically retry each operation that would otherwise result in a 'WOULDBLOCK' error for a maximum of timeout seconds.

The class will use do_events to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.

If timeout expires, and the operation is not yet complete, the class fails with an error.

Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by timeout seconds when any amount of data is successfully sent or received.

The default value for the timeout property is 0 (asynchronous operation).

transparent Property

When True, Telnet command processing is disabled.

Syntax

def get_transparent() -> bool: ...

def set_transparent(value: bool) -> None: ...


transparent = property(get_transparent, set_transparent)

Default Value

FALSE

Remarks

The transparent property allows you to enable or disable Telnet command processing. When command processing is disabled, any data received is provided with no modifications.

urgent_data Property

A string of data to be sent urgently (out-of-band) to the remote host.

Syntax

def set_urgent_data(value: bytes) -> None: ...


urgent_data = property(None, set_urgent_data)

Default Value

""

Remarks

The urgent_data property behaves exactly like the data_to_send property except that the data is sent Out Of Band (urgent). This means that the data assigned to urgent_data will bypass the normal TCP queuing mechanism. Use this property with caution.

This property is write-only.

will_option Property

A single character Telnet option code to be sent to the server with the Telnet WILL command.

Syntax

def set_will_option(value: int) -> None: ...


will_option = property(None, set_will_option)

Default Value

0

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

This property is write-only.

wont_option Property

A single character Telnet option code to be sent to the server with the Telnet WONT command.

Syntax

def set_wont_option(value: int) -> None: ...


wont_option = property(None, set_wont_option)

Default Value

0

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

This property is write-only.

config Method

Sets or retrieves a configuration setting.

Syntax

def config(configuration_string: str) -> str: ...

Remarks

on_config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the on_config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

connect Method

Connects to a remote host.

Syntax

def connect() -> None: ...

Remarks

This method connects to the remote host specified by remote_host. For instance: component.RemoteHost = "MyHostNameOrIP"; component.Connect();

To specify a non-standard port number set remote_port before calling this method.

connect_to Method

Connects to a remote host.

Syntax

def connect_to(host: str) -> None: ...

Remarks

This method connects to the remote host specified by the Host. For instance: component.Connect("MyTelnetServer");

To specify a non-standard port number set remote_port before calling this method.

disconnect Method

Disconnect from the remote host.

Syntax

def disconnect() -> None: ...

Remarks

Calling this method is equivalent to setting the connected property to False.

do_events Method

Processes events from the internal message queue.

Syntax

def do_events() -> None: ...

Remarks

When on_do_events is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

pause_data Method

Pauses data reception.

Syntax

def pause_data() -> None: ...

Remarks

This method pauses data reception when called. While data reception is paused the on_data_in event will not fire. Call process_data to re-enable data reception.

process_data Method

Re-enables data reception after a call to PauseData .

Syntax

def process_data() -> None: ...

Remarks

This method re-enables data reception after a previous call to pause_data. When pause_data is called the on_data_in event will not fire. To re-enable data reception and allow on_data_in to fire call this method.

Note: This method is only used after previously calling pause_data. It does not need to be called to process incoming data by default.

reset Method

Reset the class.

Syntax

def reset() -> None: ...

Remarks

This method will reset the class's properties to their default values.

send Method

Sends binary data to the remote host.

Syntax

def send(text: bytes) -> None: ...

Remarks

This method sends the specified binary data to the remote host. To send text use the send_text method instead.

send_bytes Method

Sends binary data to the remote host.

Syntax

def send_bytes(data: bytes) -> None: ...

Remarks

This method sends the specified binary data to the remote host. To send text use the send_text method instead.

send_command Method

Sends a single character Telnet command code to the server.

Syntax

def send_command(command: int) -> None: ...

Remarks

This method sends the single character command code specified by Command to the server. Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Some common commands are:

241 (NOP)No operation.
242 (Data Mark)The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification.
243 (Break)NVT character BRK.
244 (Interrupt Process)The function IP.
245 (Abort Output)The function AO.
246 (Are You There)The function AYT.
247 (Erase Character)The function EC.
248 (Erase Line)The function EL.
249 (Go Ahead)The GA signal.

send_dont_option Method

This method sends a single character Telnet option code to the server with the Telnet DONT command.

Syntax

def send_dont_option(dont_option: int) -> None: ...

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

send_do_option Method

This method sends a single character Telnet option code to the server with the Telnet DO command.

Syntax

def send_do_option(do_option: int) -> None: ...

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

send_do_sub_option Method

This methods sends a Telnet SubOption to send to the server with the SubOption command.

Syntax

def send_do_sub_option(do_sub_option: bytes) -> None: ...

Remarks

Valid suboptions and their descriptions are defined in the Telnet RFCs.

For example, to send a terminal type suboption to request setting the terminal type to 'vt100', send ASCII 24, followed by ASCII 0, followed by vt100.

Suboption start and end codes are automatically added by the class.

send_text Method

Sends text to the remote host.

Syntax

def send_text(text: str) -> None: ...

Remarks

This method sends the specified text to the remote host. To send binary data use the send_bytes method instead.

send_urgent_bytes Method

Urgently sends binary data to the remote host.

Syntax

def send_urgent_bytes(urgent_bytes: bytes) -> None: ...

Remarks

This method sends the bytes specified by UrgentBytes as urgent data (out-of-band) to the remote host. To send text urgently use the send_urgent_text method instead.

Data sent using this method will bypass the normal TCP queuing mechanism. Use this method with caution.

send_urgent_text Method

Urgently sends text to the remote host.

Syntax

def send_urgent_text(urgent_text: str) -> None: ...

Remarks

This method sends the text specified by UrgentText as urgent data (out-of-band) to the remote host. To send binary data urgently use the send_urgent_bytes method instead.

Data sent using this method will bypass the normal TCP queuing mechanism. Use this method with caution.

send_will_option Method

This method sends a single character Telnet option code the server with the Telnet WILL command.

Syntax

def send_will_option(will_option: int) -> None: ...

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

send_wont_option Method

This method sends a single character Telnet option code to the server with the Telnet WONT command.

Syntax

def send_wont_option(wont_option: int) -> None: ...

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

on_command Event

Fired when a Telnet command comes from the Telnet server.

Syntax

class TelnetCommandEventParams(object):
  @property
  def command_code() -> int: ...

# In class Telnet:
@property
def on_command() -> Callable[[TelnetCommandEventParams], None]: ...
@on_command.setter
def on_command(event_hook: Callable[[TelnetCommandEventParams], None]) -> None: ...

Remarks

Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Here are some examples:

241 (NOP)No operation.
242 (Data Mark)The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification.
243 (Break)NVT character BRK.
244 (Interrupt Process)The function IP.
245 (Abort Output)The function AO.
246 (Are You There)The function AYT.
247 (Erase Character)The function EC.
248 (Erase Line)The function EL.
249 (Go Ahead)The GA signal.

on_connected Event

Fired immediately after a connection completes (or fails).

Syntax

class TelnetConnectedEventParams(object):
  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class Telnet:
@property
def on_connected() -> Callable[[TelnetConnectedEventParams], None]: ...
@on_connected.setter
def on_connected(event_hook: Callable[[TelnetConnectedEventParams], None]) -> None: ...

Remarks

If the connection is made normally, StatusCode is 0 and Description is "OK".

If the connection fails, StatusCode has the error code returned by the TCP/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

on_connection_status Event

Fired to indicate changes in connection state.

Syntax

class TelnetConnectionStatusEventParams(object):
  @property
  def connection_event() -> str: ...

  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class Telnet:
@property
def on_connection_status() -> Callable[[TelnetConnectionStatusEventParams], None]: ...
@on_connection_status.setter
def on_connection_status(event_hook: Callable[[TelnetConnectionStatusEventParams], None]) -> None: ...

Remarks

The on_connection_status event is fired when the connection state changes: completion of a firewall or proxy connection, completion of a security handshake, etc.

The ConnectionEvent parameter indicates the type of connection event. Values may include:

Firewall connection complete.
SSL or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.

StatusCode has the error code returned by the TCP/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

on_data_in Event

Fired when data is received from the remote host.

Syntax

class TelnetDataInEventParams(object):
  @property
  def text() -> bytes: ...

# In class Telnet:
@property
def on_data_in() -> Callable[[TelnetDataInEventParams], None]: ...
@on_data_in.setter
def on_data_in(event_hook: Callable[[TelnetDataInEventParams], None]) -> None: ...

Remarks

Trapping the on_data_in event is your only chance to get the data coming from the other end of the connection. The incoming data is provided through the Text parameter.

Note that events are not re-entrant. Performing time consuming operations within this event will prevent it from firing again in a timely manner and may impact overall performance.

on_disconnected Event

Fired when a connection is closed.

Syntax

class TelnetDisconnectedEventParams(object):
  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class Telnet:
@property
def on_disconnected() -> Callable[[TelnetDisconnectedEventParams], None]: ...
@on_disconnected.setter
def on_disconnected(event_hook: Callable[[TelnetDisconnectedEventParams], None]) -> None: ...

Remarks

If the connection is broken normally, StatusCode is 0 and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the TCP/IP subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.

Please refer to the Error Codes section for more information.

on_do Event

Fired when a Telnet DO OPTION command comes from the Telnet server.

Syntax

class TelnetDoEventParams(object):
  @property
  def option_code() -> int: ...

# In class Telnet:
@property
def on_do() -> Callable[[TelnetDoEventParams], None]: ...
@on_do.setter
def on_do(event_hook: Callable[[TelnetDoEventParams], None]) -> None: ...

Remarks

The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

on_dont Event

Fired when a Telnet DONT OPTION command comes from the Telnet server.

Syntax

class TelnetDontEventParams(object):
  @property
  def option_code() -> int: ...

# In class Telnet:
@property
def on_dont() -> Callable[[TelnetDontEventParams], None]: ...
@on_dont.setter
def on_dont(event_hook: Callable[[TelnetDontEventParams], None]) -> None: ...

Remarks

The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

on_error Event

Information about errors during data delivery.

Syntax

class TelnetErrorEventParams(object):
  @property
  def error_code() -> int: ...

  @property
  def description() -> str: ...

# In class Telnet:
@property
def on_error() -> Callable[[TelnetErrorEventParams], None]: ...
@on_error.setter
def on_error(event_hook: Callable[[TelnetErrorEventParams], None]) -> None: ...

Remarks

The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

on_ready_to_send Event

Fired when the class is ready to send data.

Syntax

class TelnetReadyToSendEventParams(object):
# In class Telnet:
@property
def on_ready_to_send() -> Callable[[TelnetReadyToSendEventParams], None]: ...
@on_ready_to_send.setter
def on_ready_to_send(event_hook: Callable[[TelnetReadyToSendEventParams], None]) -> None: ...

Remarks

The on_ready_to_send event indicates that the underlying TCP/IP subsystem is ready to accept data after a failed data_to_send. The event is also fired immediately after a connection to the remote host is established.

on_ssl_server_authentication Event

Fired after the server presents its certificate to the client.

Syntax

class TelnetSSLServerAuthenticationEventParams(object):
  @property
  def cert_encoded() -> bytes: ...

  @property
  def cert_subject() -> str: ...

  @property
  def cert_issuer() -> str: ...

  @property
  def status() -> str: ...

  @property
  def accept() -> bool: ...
  @accept.setter
  def accept(value) -> None: ...

# In class Telnet:
@property
def on_ssl_server_authentication() -> Callable[[TelnetSSLServerAuthenticationEventParams], None]: ...
@on_ssl_server_authentication.setter
def on_ssl_server_authentication(event_hook: Callable[[TelnetSSLServerAuthenticationEventParams], None]) -> None: ...

Remarks

This event is where the client can decide whether to continue with the connection process or not. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether to continue or not.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK"). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

on_ssl_status Event

Shows the progress of the secure connection.

Syntax

class TelnetSSLStatusEventParams(object):
  @property
  def message() -> str: ...

# In class Telnet:
@property
def on_ssl_status() -> Callable[[TelnetSSLStatusEventParams], None]: ...
@on_ssl_status.setter
def on_ssl_status(event_hook: Callable[[TelnetSSLStatusEventParams], None]) -> None: ...

Remarks

The event is fired for informational and logging purposes only. Used to track the progress of the connection.

on_sub_option Event

Fired when a Telnet SubOption command comes from the Telnet server.

Syntax

class TelnetSubOptionEventParams(object):
  @property
  def sub_option() -> bytes: ...

# In class Telnet:
@property
def on_sub_option() -> Callable[[TelnetSubOptionEventParams], None]: ...
@on_sub_option.setter
def on_sub_option(event_hook: Callable[[TelnetSubOptionEventParams], None]) -> None: ...

Remarks

The SubOption parameter contains the suboption data as sent by the other end. The enclosing suboption command codes are stripped away.

For a list of valid Telnet suboptions and their descriptions please look at the Telnet RFCs.

on_will Event

Fired when a Telnet WILL OPTION command comes from the Telnet server.

Syntax

class TelnetWillEventParams(object):
  @property
  def option_code() -> int: ...

# In class Telnet:
@property
def on_will() -> Callable[[TelnetWillEventParams], None]: ...
@on_will.setter
def on_will(event_hook: Callable[[TelnetWillEventParams], None]) -> None: ...

Remarks

For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

on_wont Event

Fired when a Telnet WONT OPTION command comes from the Telnet server.

Syntax

class TelnetWontEventParams(object):
  @property
  def option_code() -> int: ...

# In class Telnet:
@property
def on_wont() -> Callable[[TelnetWontEventParams], None]: ...
@on_wont.setter
def on_wont(event_hook: Callable[[TelnetWontEventParams], None]) -> None: ...

Remarks

The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:

0 (TRANSMIT-BINARY)Enables or disables binary (8 bit) transmission.
1 (ECHO)Telnet ECHO option. Specifies whether bytes sent should be echoed or not.
3 (SUPPRESS-GO-AHEAD)Used to enable or disable transmission of the Telnet GO_AHEAD command.
24 (TERMINAL-TYPE)Allows or disallows terminal type negotiation.
31 (NAWS)Allows or disallows window size negotiation.

Telnet Configuration

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

IPPort Configuration Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

NOTE: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

NOTE: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

Note that the FirewallPort is set automatically when FirewallType is set to a valid value.

NOTE: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

NOTE: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.

NOTE: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to true. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgement is received from the remote host the keep-alive packet will be re-sent. This setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to true. By default the operating system will determine the time a connection is idle before a TCP keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), there are two scenarios for determining how long the connection will linger. The first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP protocol timeout expires.

In the second scenario, LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data is sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (by a client acknowledgment, for example), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, to leave the socket connection linger. This value is 0 by default, which means it will use the default IP protocol timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The local_host setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the local_host setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by local_port after the connection is established.

local_port cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an eol string.

If an eol string is found in the input stream before MaxLineLength bytes are received, the on_data_in event is fired with the EOL parameter set to True, and the buffer is reset.

If no eol is found, and MaxLineLength bytes are accumulated in the buffer, the on_data_in event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This setting optionally specifies a semicolon separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to true, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback

SSL Configuration Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When the UseInternalSecurityAPI configuration setting is True, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the on_ssl_status event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if UseInternalSecurityAPI is False.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACertFilePaths:   The paths to CA certificate files on Unix/Linux.

This setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server certificates.

The default value is:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the class will check the Certificate Revocation List specified by the server certificate. If set to True the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class fails with an error.

When set to False (default) the CRL check will not be performed by the class.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the on_ssl_status event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when UseInternalSecurityAPI is False (default): obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when UseInternalSecurityAPI is False (default) include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when UseInternalSecurityAPI is True: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when UseInternalSecurityAPI is True include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList setting.

Note: TLS 1.1 and TLS1.2 support are only available starting with Windows 7.

Note: Enabling TLS 1.3 will automatically set UseInternalSecurityAPI to True.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is True by default, but can be set to False to disable the extension.

This setting is only applicable when UseInternalSecurityAPI is set to True.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the on_ssl_server_authentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the on_ssl_server_authentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the on_ssl_server_authentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.

Note: This setting is only applicable when UseInternalSecurityAPI is set to True.

SSLNegotiatedCipher:   Returns the negotiated ciphersuite.

Returns the ciphersuite negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated ciphersuite strength.

Returns the strength of the ciphersuite negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated ciphersuite.

Returns the ciphersuite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedProtocol:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. IPDaemon) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedProtocol[connId]");

SSLProvider:   The name of the security provider to use.

Change this setting to use security providers other than the system default.

Use this setting with caution. Disabling SSL security or pointing to the wrong provider could potentially cause serious security vulnerabilities in your application.

The special value "*" (default) picks the default SSL provider defined in the system.

Note: On Windows systems, the default SSL Provider is "Microsoft Unified Security Protocol Provider" and cannot be changed .

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when UseInternalSecurityAPI is True.

This setting specifies the allowed server certificate signature algorithms when UseInternalSecurityAPI is True and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class fails with an error.

The format of this value is a comma separated list of hash-signature combinations. For instance: IPPort.Config("UseInternalSecurityAPI=true"); IPPort.Config("SSLEnabledProtocols=3072"); //TLS 1.2 IPPort.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and UseInternalSecurityAPI is set to True, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13Provider:   The TLS 1.3 implementation to be used.

This setting specifies the TLS 1.3 implementation which will be used when TLS 1.3 is enabled via SSLEnabledProtocols. Possible values are:

  • 0 (Internal - Default)
  • 1 (Platform)

The platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Configuration Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Configuration Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8

The following is a list of valid code page identifiers for Mac OS only:

IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when do_events is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseInternalSecurityAPI:   Tells the class whether or not to use the system security libraries or an internal implementation.

By default the class will use the system security libraries to perform cryptographic functions. Setting this to True tells the class to use the internal implementation instead of using the system's security API.

Telnet Errors

Telnet Errors

118   Firewall Error. Error message contains detailed description.
191   SubOption string too long. Truncated.
4001   Telnet protocol error (Invalid server response).

The class may also return one of the following error codes, which are inherited from other classes.

IPPort Errors

100   You cannot change the remote_port at this time. A connection is in progress.
101   You cannot change the remote_host (Server) at this time. A connection is in progress.
102   The remote_host address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the local_port at this time. A connection is in progress.
107   You cannot change the local_host at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   remote_port cannot be zero. Please specify a valid service port number.
117   Cannot change UseConnection option while the class is Active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).

Copyright (c) 2022 /n software inc. - All rights reserved.
IPWorks 2022 Python Edition - Version 22.0 [Build 8171]