MX Class
Properties Methods Events Config Settings Errors
The MX class enables querying of mail exchange (MX) records from a Domain Name Server (DNS). Thus, it will find out the names of the mail servers accepting email for a given email address or domain.
Syntax
MX
Remarks
The class will attempt to automatically determine the name of a DNS server from the system settings or from the value of the DNSServer property.
The class operates in synchronous or asynchronous mode, depending on the value of the Timeout property. Calling the Resolve method makes the class query the DNSServer. The Response event is fired for each server that handles mail for the email address. The class will fill out the MailServer property with the most preferred mail server and will set the Status property to "OK" or to an error message upon completion.
The RequestId property may be used to identify requests and is used in the Response event. The user may set its value before sending out requests and then match the responses to the request using the RequestId parameter in the Response event.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
DNSPort | This property includes the port where the DNS server is listening. |
DNSServer | This is the address of the DNS server. |
Idle | The current status of the class. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
MailServer | This property includes the mail server with the lowest precedence value (lowest cost to reach). |
RequestId | This property identifies each request. |
Status | The status of the request is empty while in progress. This property is set to OK or to an error message upon completion. |
Timeout | This property includes the timeout for the class. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
DoEvents | This method processes events from the internal message queue. |
Interrupt | This method interrupts the current method. |
Reset | This method will reset the class. |
Resolve | This method resolves an email address. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Error | Fired when information is available about errors during data delivery. |
Response | This event is fired for each MailServer accepting email for the domain. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
CaptureIPPacketInfo | Used to capture the packet information. |
DelayHostResolution | Whether the hostname is resolved when RemoteHost is set. |
DestinationAddress | Used to get the destination address from the packet information. |
DontFragment | Used to set the Don't Fragment flag of outgoing packets. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
MaxPacketSize | The maximum length of the packets that can be received. |
QOSDSCPValue | Used to specify an arbitrary QOS/DSCP setting (optional). |
QOSTrafficType | Used to specify QOS/DSCP settings (optional). |
ShareLocalPort | If set to True, allows more than one instance of the class to be active on the same local port. |
SourceIPAddress | Used to set the source IP address used when sending a packet. |
SourceMacAddress | Used to set the source MAC address used when sending a packet. |
UseConnection | Determines whether to use a connected socket. |
UseIPv6 | Whether or not to use IPv6. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
DNSPort Property (MX Class)
This property includes the port where the DNS server is listening.
Syntax
ANSI (Cross Platform) int GetDNSPort();
int SetDNSPort(int iDNSPort); Unicode (Windows) INT GetDNSPort();
INT SetDNSPort(INT iDNSPort);
int ipworks_mx_getdnsport(void* lpObj);
int ipworks_mx_setdnsport(void* lpObj, int iDNSPort);
int GetDNSPort();
int SetDNSPort(int iDNSPort);
Default Value
53
Remarks
This property contains the port where the DNS server is listening. The default value is 53, but you may set this property to any other value for use with experimental servers and such.
This property is not available at design time.
Data Type
Integer
DNSServer Property (MX Class)
This is the address of the DNS server.
Syntax
ANSI (Cross Platform) char* GetDNSServer();
int SetDNSServer(const char* lpszDNSServer); Unicode (Windows) LPWSTR GetDNSServer();
INT SetDNSServer(LPCWSTR lpszDNSServer);
char* ipworks_mx_getdnsserver(void* lpObj);
int ipworks_mx_setdnsserver(void* lpObj, const char* lpszDNSServer);
QString GetDNSServer();
int SetDNSServer(QString qsDNSServer);
Default Value
""
Remarks
This property contains the address of the DNS server. The class attempts to find the default DNS server for the machine where it is installed, and provide it in the DNSServer property. You may change it to any particular DNS server you want to query. While any internet host running a DNS service will suffice, it is preferable to use either the DNS server for your network or the DNS server for the domain that you are querying.
If the class cannot determine the default DNS server address, the property value will be an empty string.
Note: Automatic discovery of the default DNS server is not supported in the Java edition.
This property is not available at design time.
Data Type
String
Idle Property (MX Class)
The current status of the class.
Syntax
ANSI (Cross Platform) int GetIdle(); Unicode (Windows) BOOL GetIdle();
int ipworks_mx_getidle(void* lpObj);
bool GetIdle();
Default Value
TRUE
Remarks
This property will be False if the component is currently busy (communicating or waiting for an answer), and True at all other times.
This property is read-only.
Data Type
Boolean
LocalHost Property (MX Class)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
ANSI (Cross Platform) char* GetLocalHost();
int SetLocalHost(const char* lpszLocalHost); Unicode (Windows) LPWSTR GetLocalHost();
INT SetLocalHost(LPCWSTR lpszLocalHost);
char* ipworks_mx_getlocalhost(void* lpObj);
int ipworks_mx_setlocalhost(void* lpObj, const char* lpszLocalHost);
QString GetLocalHost();
int SetLocalHost(QString qsLocalHost);
Default Value
""
Remarks
This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.
If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Note: LocalHost is not persistent. You must always set it in code, and never in the property window.
Data Type
String
MailServer Property (MX Class)
This property includes the mail server with the lowest precedence value (lowest cost to reach).
Syntax
ANSI (Cross Platform) char* GetMailServer(); Unicode (Windows) LPWSTR GetMailServer();
char* ipworks_mx_getmailserver(void* lpObj);
QString GetMailServer();
Default Value
""
Remarks
This property contains the mail server with lowest precedence value (lowest cost to reach). After all events are fired, this property holds the name of the best mail server for the supplied email address, and the Status property holds the completion status.
This property is read-only.
Data Type
String
RequestId Property (MX Class)
This property identifies each request.
Syntax
ANSI (Cross Platform) int GetRequestId();
int SetRequestId(int iRequestId); Unicode (Windows) INT GetRequestId();
INT SetRequestId(INT iRequestId);
int ipworks_mx_getrequestid(void* lpObj);
int ipworks_mx_setrequestid(void* lpObj, int iRequestId);
int GetRequestId();
int SetRequestId(int iRequestId);
Default Value
0
Remarks
This property identifies each request. This may be useful if several email addresses need to be resolved. Each request may be identified by the user before starting a query by calling the Resolve method.
If a custom value is needed for RequestId, the property must be set before resolving an email address. The class increments RequestId automatically after sending each request.
This property is not available at design time.
Data Type
Integer
Status Property (MX Class)
The status of the request is empty while in progress. This property is set to OK or to an error message upon completion.
Syntax
ANSI (Cross Platform) char* GetStatus(); Unicode (Windows) LPWSTR GetStatus();
char* ipworks_mx_getstatus(void* lpObj);
QString GetStatus();
Default Value
""
Remarks
This property is reset each time the Resolve method is called. When a response comes from the DNSServer, this property is set to "OK" in case of success or to an error message as described in the Response event.
This property is read-only.
Data Type
String
Timeout Property (MX Class)
This property includes the timeout for the class.
Syntax
ANSI (Cross Platform) int GetTimeout();
int SetTimeout(int iTimeout); Unicode (Windows) INT GetTimeout();
INT SetTimeout(INT iTimeout);
int ipworks_mx_gettimeout(void* lpObj);
int ipworks_mx_settimeout(void* lpObj, int iTimeout);
int GetTimeout();
int SetTimeout(int iTimeout);
Default Value
60
Remarks
If the Timeout property is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.
If Timeout is set to a positive value, data is sent in a blocking manner and the class will wait for the operation to complete before returning control. The class will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of Timeout seconds.
The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.
If Timeout expires, and the operation is not yet complete, the class fails with an error.
Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 60 seconds.
Data Type
Integer
Config Method (MX Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworks_mx_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
DoEvents Method (MX Class)
This method processes events from the internal message queue.
Syntax
ANSI (Cross Platform) int DoEvents(); Unicode (Windows) INT DoEvents();
int ipworks_mx_doevents(void* lpObj);
int DoEvents();
Remarks
When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Interrupt Method (MX Class)
This method interrupts the current method.
Syntax
ANSI (Cross Platform) int Interrupt(); Unicode (Windows) INT Interrupt();
int ipworks_mx_interrupt(void* lpObj);
int Interrupt();
Remarks
If there is no method in progress, Interrupt simply returns, doing nothing.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reset Method (MX Class)
This method will reset the class.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int ipworks_mx_reset(void* lpObj);
int Reset();
Remarks
This method will reset the class's properties to their default values.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Resolve Method (MX Class)
This method resolves an email address.
Syntax
ANSI (Cross Platform) int Resolve(const char* lpszEmailAddress); Unicode (Windows) INT Resolve(LPCWSTR lpszEmailAddress);
int ipworks_mx_resolve(void* lpObj, const char* lpszEmailAddress);
int Resolve(const QString& qsEmailAddress);
Remarks
This method resolves an email address. Calling this method directs the class to query DNSServer at port DNSPort about MX records related to EmailAddress.
The server's response is provided through one or more Response events.
After the query completes, the MailServer property is set to the best mail server and the Status property includes the result description of the response.
Valid queries are email addresses like name@company.com or hostnames and domains like domain.com.
Example. Determine Top Priority Mail Server of Email Address:
MXControl.Resolve "email@server.com"
While MXControl.MailServer = ""
MXControl.DoEvents()
End While
BestMailServer = MXControl.MailServer
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Error Event (MX Class)
Fired when information is available about errors during data delivery.
Syntax
ANSI (Cross Platform) virtual int FireError(MXErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } MXErrorEventParams;
Unicode (Windows) virtual INT FireError(MXErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } MXErrorEventParams;
#define EID_MX_ERROR 1 virtual INT IPWORKS_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class MXErrorEventParams { public: int ErrorCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(MXErrorEventParams *e);
// Or, subclass MX and override this emitter function. virtual int FireError(MXErrorEventParams *e) {...}
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Response Event (MX Class)
This event is fired for each MailServer accepting email for the domain.
Syntax
ANSI (Cross Platform) virtual int FireResponse(MXResponseEventParams *e);
typedef struct {
int RequestId;
const char *Domain;
const char *MailServer;
int Precedence;
int TimeToLive;
int StatusCode;
const char *Description;
int Authoritative; int reserved; } MXResponseEventParams;
Unicode (Windows) virtual INT FireResponse(MXResponseEventParams *e);
typedef struct {
INT RequestId;
LPCWSTR Domain;
LPCWSTR MailServer;
INT Precedence;
INT TimeToLive;
INT StatusCode;
LPCWSTR Description;
BOOL Authoritative; INT reserved; } MXResponseEventParams;
#define EID_MX_RESPONSE 2 virtual INT IPWORKS_CALL FireResponse(INT &iRequestId, LPSTR &lpszDomain, LPSTR &lpszMailServer, INT &iPrecedence, INT &iTimeToLive, INT &iStatusCode, LPSTR &lpszDescription, BOOL &bAuthoritative);
class MXResponseEventParams { public: int RequestId(); const QString &Domain(); const QString &MailServer(); int Precedence(); int TimeToLive(); int StatusCode(); const QString &Description(); bool Authoritative(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Response(MXResponseEventParams *e);
// Or, subclass MX and override this emitter function. virtual int FireResponse(MXResponseEventParams *e) {...}
Remarks
A Response event is fired for each mail server handling email for the requested domain. The RequestId parameter identifies the request and equals the value of RequestId property right before the Resolve method is called. MailServer is the name of the server handling the email for the requested Domain. A lower Precedence value should be preferred. The TimeToLive parameter gives the validity time in seconds before the DNSServer should be queried again.
Possible values for the StatusCode and Description parameters are as follows:
StatusCode | Description |
0 | Ok |
1 | Format error |
2 | Server failure |
3 | Name error |
4 | Not implemented |
5 | Refused |
After the last Response event is fired, the class sets the MailServer and Status properties to the best MailServer and the error or success code, respectively.
Config Settings (MX Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.UDP Config Settings
If this is set to True, the component will capture the IP packet information.
The default value for this setting is False.
Note: This configuration setting is available only in Windows.
This configuration setting specifies whether a hostname is resolved immediately when RemoteHost is set. If true the class will resolve the hostname and the IP address will be present in the RemoteHost property. If false, the hostname is not resolved until needed by the component when a method to connect or send data is called. If desired, ResolveRemoteHost may be called to manually resolve the value in RemoteHost at any time.
The default value is false.
If CaptureIPPacketInfo is set to True, then this will be populated with the packet's destination address when a packet is received. This information will be accessible in the DataIn event.
Note: This configuration setting is available only in Windows.
When set to True, packets sent by the class will have the Don't Fragment flag set. The default value is False.
The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
This configuration setting must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.
This configuration setting specifies the maximum size of the datagrams that the class will accept without truncation.
UseConnection must be True to use this configuration setting. This option allows you to specify an arbitrary DSCP value between 0 and 63. The default is 0. When set to the default value, the component will not set a DSCP value.
Note: This configuration setting uses the qWAVE API and is available only on Windows 7, Windows Server 2008 R2, and later.
UseConnection must be True to use this setting. You may specify either the text or integer values: BestEffort (0), Background (1), ExcellentEffort (2), AudioVideo (3), Voice (4), and Control (5).
Note: This configuration setting uses the qWAVE API and is available only on Windows Vista and Windows Server 2008 or above.
Note: QOSTrafficType must be set before setting Active to True.
This option must be set before the class is activated through the Active property or it will have no effect.
The default value for this setting is False.
This configuration setting can be used to override the source IP address when sending a packet.
Note: This configuration setting is available only in Windows and requires that the winpcap library be installed (or npcap with winpcap compatibility).
This configuration setting can be used to override the source MAC address when sending a packet.
Note: This configuration setting is available only in Windows and requires that the winpcap library be installed (or npcap with winpcap compatibility).
UseConnection specifies whether or not the class should use a connected socket. The connection is defined as an association in between the local address/port and the remote address/port. As such, this is not a connection in the traditional Transmission Control Protocol (TCP) sense. It means only that the class will send and receive data to and from the specified destination.
The default value for this setting is False.
By default, the component expects an IPv4 address for local and remote host properties, and it will create an IPv4 socket. To use IPv6 instead, set this to True.
Socket Config Settings
If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.
Note: This option is not valid for User Datagram Protocol (UDP) ports.
When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).
This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
When queried, this setting will return a string containing information about the product's build.
The default code page is Unicode UTF-8 (65001).
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.
If there are no events to process when DoEvents is called, the class will wait for the amount of time specified here before returning. The default value is 20.
When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
Trappable Errors (MX Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
MX Errors
290 | No DNS server specified. |
530 | Busy performing current action. |
The class may also return one of the following error codes, which are inherited from other classes.
UDP Errors
104 | UDP is already Active. |
106 | You cannot change the LocalPort while the class is Active. |
107 | You cannot change the LocalHost at this time. A connection is in progress. |
109 | The class must be Active for this operation. |
112 | You cannot change MaxPacketSize while the class is Active. |
113 | You cannot change ShareLocalPort option while the class is Active. |
114 | You cannot change RemoteHost when UseConnection is set and the class Active. |
115 | You cannot change RemotePort when UseConnection is set and the class is Active. |
116 | RemotePort cannot be zero when UseConnection is set. Please specify a valid service port number. |
117 | You cannot change UseConnection while the class is Active. |
118 | Message cannot be longer than MaxPacketSize. |
119 | Message too short. |
434 | Unable to convert string to selected CodePage. |
SSL Errors
270 | Cannot load specified security library. |
271 | Cannot open certificate store. |
272 | Cannot find specified certificate. |
273 | Cannot acquire security credentials. |
274 | Cannot find certificate chain. |
275 | Cannot verify certificate chain. |
276 | Error during handshake. |
280 | Error verifying certificate. |
281 | Could not find client certificate. |
282 | Could not find server certificate. |
283 | Error encrypting data. |
284 | Error decrypting data. |
TCP/IP Errors
10004 | [10004] Interrupted system call. |
10009 | [10009] Bad file number. |
10013 | [10013] Access denied. |
10014 | [10014] Bad address. |
10022 | [10022] Invalid argument. |
10024 | [10024] Too many open files. |
10035 | [10035] Operation would block. |
10036 | [10036] Operation now in progress. |
10037 | [10037] Operation already in progress. |
10038 | [10038] Socket operation on nonsocket. |
10039 | [10039] Destination address required. |
10040 | [10040] Message is too long. |
10041 | [10041] Protocol wrong type for socket. |
10042 | [10042] Bad protocol option. |
10043 | [10043] Protocol is not supported. |
10044 | [10044] Socket type is not supported. |
10045 | [10045] Operation is not supported on socket. |
10046 | [10046] Protocol family is not supported. |
10047 | [10047] Address family is not supported by protocol family. |
10048 | [10048] Address already in use. |
10049 | [10049] Cannot assign requested address. |
10050 | [10050] Network is down. |
10051 | [10051] Network is unreachable. |
10052 | [10052] Net dropped connection or reset. |
10053 | [10053] Software caused connection abort. |
10054 | [10054] Connection reset by peer. |
10055 | [10055] No buffer space available. |
10056 | [10056] Socket is already connected. |
10057 | [10057] Socket is not connected. |
10058 | [10058] Cannot send after socket shutdown. |
10059 | [10059] Too many references, cannot splice. |
10060 | [10060] Connection timed out. |
10061 | [10061] Connection refused. |
10062 | [10062] Too many levels of symbolic links. |
10063 | [10063] File name is too long. |
10064 | [10064] Host is down. |
10065 | [10065] No route to host. |
10066 | [10066] Directory is not empty |
10067 | [10067] Too many processes. |
10068 | [10068] Too many users. |
10069 | [10069] Disc Quota Exceeded. |
10070 | [10070] Stale NFS file handle. |
10071 | [10071] Too many levels of remote in path. |
10091 | [10091] Network subsystem is unavailable. |
10092 | [10092] WINSOCK DLL Version out of range. |
10093 | [10093] Winsock is not loaded yet. |
11001 | [11001] Host not found. |
11002 | [11002] Nonauthoritative 'Host not found' (try again or check DNS setup). |
11003 | [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP. |
11004 | [11004] Valid name, no data record (check DNS setup). |