Telnet Class
Properties Methods Events Config Settings Errors
The Telnet Class is used to communicate with servers implementing the TELNET protocol.
Syntax
Telnet
Remarks
The Telnet Class supports both plaintext and Secure Sockets Layer/Transport Layer Security (SSL/TLS) connections. When connecting over Secure Sockets Layer/Transport Layer Security (SSL/TLS) the SSLServerAuthentication event allows you to check the server identity and other security attributes. The SSLStatus event provides information about the SSL handshake. Additional SSL-related settings are also supported through the Config method.
The Telnet Class provides a simple interface to Telnet communications as specified by RFC 854. It allows sending of Telnet command codes to remote Telnet servers, and it scans the input data for Telnet commands. Appropriate events are fired for received commands.
The connection interface is very similar to that of TCPClient. The same properties and events are used for sending and receiving normal data, and the same property set is used to set properties of the connection. The Telnet Class adds a number of methods like SendCommand, SendDoOption, and others that allow for sending of Telnet commands to the other end. The respective events (e.g., Command, Do) are fired when the corresponding Telnet commands are received.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
AcceptData | This property indicates whether data reception is currently enabled. |
BytesSent | This property includes the number of bytes actually sent after a call to the SendBytes method. |
Connected | This property indicates whether the class is connected. |
Firewall | A set of properties related to firewall access. |
KeepAlive | When True, KEEPALIVE packets are enabled (for long connections). |
Linger | When set to True, this property ensures that connections are terminated gracefully. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
LocalPort | This property includes the Transmission Control Protocol (TCP) port in the local host where the TCPClient binds. |
RemoteHost | This property includes the address of the remote host. Domain names are resolved to IP addresses. |
RemotePort | This property includes the secure Telnet port in the remote host (default is 23). |
SSLAcceptServerCert | Instructs the class to unconditionally accept the server certificate that matches the supplied certificate. |
SSLCert | The certificate to be used during Secure Sockets Layer (SSL) negotiation. |
SSLProvider | The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use. |
SSLServerCert | The server certificate for the last established connection. |
SSLStartMode | This property determines how the class starts the Secure Sockets Layer (SSL) negotiation. |
Timeout | This property specifies the timeout for the class. |
Transparent | When this property is True, Telnet command processing is disabled. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Connect | This method connects to a remote host. |
ConnectTo | This method connects to a remote host. |
Disconnect | This method disconnects from the remote host. |
DoEvents | This method processes events from the internal message queue. |
PauseData | This method pauses data reception. |
ProcessData | This method reenables data reception after a call to PauseData . |
Reset | This method will reset the class. |
Send | This method sends binary data to the remote host. |
SendBytes | This method sends binary data to the remote host. |
SendCommand | This method sends a single-character Telnet command code to the server. |
SendDontOption | This method sends a single-character Telnet option code to the server with the Telnet DONT command. |
SendDoOption | This method sends a single-character Telnet option code to the server with the Telnet DO command. |
SendDoSubOption | This methods sends a Telnet SubOption to send to the server with the SubOption command. |
SendText | This method sends text to the remote host. |
SendUrgentBytes | This method urgently sends binary data to the remote host. |
SendUrgentText | This method urgently sends text to the remote host. |
SendWillOption | This method sends a single-character Telnet option code the server with the Telnet WILL command. |
SendWontOption | This method sends a single-character Telnet option code to the server with the Telnet WONT command. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Command | This event is fired when a Telnet command comes from the Telnet server. |
Connected | Fired immediately after a connection completes (or fails). |
ConnectionStatus | Fired to indicate changes in the connection state. |
DataIn | This event is fired when data are received from the remote host. |
Disconnected | Fired when a connection is closed. |
Do | This event is fired when a Telnet DO OPTION command comes from the Telnet server. |
Dont | This event is fired when a Telnet DONT OPTION command comes from the Telnet server. |
Error | Fired when information is available about errors during data delivery. |
ReadyToSend | This event is fired when the class is ready to send data. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
SubOption | This event is fired when a Telnet SubOption command comes from the Telnet server. |
Will | This event is fired when a Telnet WILL OPTION command comes from the Telnet server. |
Wont | This event is fired when a Telnet WONT OPTION command comes from the Telnet server. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveRetryCount | The number of keep-alive packets to be sent before the remotehost is considered disconnected. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACerts | A newline separated list of CA certificates to be included when performing an SSL handshake. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLClientCACerts | A newline separated list of CA certificates to use during SSL client certificate validation. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificates to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
AcceptData Property (Telnet Class)
This property indicates whether data reception is currently enabled.
Syntax
ANSI (Cross Platform) int GetAcceptData(); Unicode (Windows) BOOL GetAcceptData();
int ipworksssl_telnet_getacceptdata(void* lpObj);
bool GetAcceptData();
Default Value
TRUE
Remarks
This property indicates whether data reception is currently enabled. When false, data reception is disabled and the DataIn event will not fire. Use the PauseData and ProcessData methods to pause and resume data reception.
This property is read-only and not available at design time.
Data Type
Boolean
BytesSent Property (Telnet Class)
This property includes the number of bytes actually sent after a call to the SendBytes method.
Syntax
ANSI (Cross Platform) int GetBytesSent(); Unicode (Windows) INT GetBytesSent();
int ipworksssl_telnet_getbytessent(void* lpObj);
int GetBytesSent();
Default Value
0
Remarks
The BytesSent property shows how many bytes were sent after the last call to SendBytes or SendUrgentBytes. Please check the SendBytes method for more information.
This property is read-only and not available at design time.
Data Type
Integer
Connected Property (Telnet Class)
This property indicates whether the class is connected.
Syntax
ANSI (Cross Platform) int GetConnected(); Unicode (Windows) BOOL GetConnected();
int ipworksssl_telnet_getconnected(void* lpObj);
bool GetConnected();
Default Value
FALSE
Remarks
This property indicates whether the class is connected to the remote host. Use the Connect and Disconnect methods to manage the connection.
This property is read-only and not available at design time.
Data Type
Boolean
Firewall Property (Telnet Class)
A set of properties related to firewall access.
Syntax
IPWorksSSLFirewall* GetFirewall(); int SetFirewall(IPWorksSSLFirewall* val);
int ipworksssl_telnet_getfirewallautodetect(void* lpObj);
int ipworksssl_telnet_setfirewallautodetect(void* lpObj, int bFirewallAutoDetect);
int ipworksssl_telnet_getfirewalltype(void* lpObj);
int ipworksssl_telnet_setfirewalltype(void* lpObj, int iFirewallType);
char* ipworksssl_telnet_getfirewallhost(void* lpObj);
int ipworksssl_telnet_setfirewallhost(void* lpObj, const char* lpszFirewallHost);
char* ipworksssl_telnet_getfirewallpassword(void* lpObj);
int ipworksssl_telnet_setfirewallpassword(void* lpObj, const char* lpszFirewallPassword);
int ipworksssl_telnet_getfirewallport(void* lpObj);
int ipworksssl_telnet_setfirewallport(void* lpObj, int iFirewallPort);
char* ipworksssl_telnet_getfirewalluser(void* lpObj);
int ipworksssl_telnet_setfirewalluser(void* lpObj, const char* lpszFirewallUser);
bool GetFirewallAutoDetect();
int SetFirewallAutoDetect(bool bFirewallAutoDetect); int GetFirewallType();
int SetFirewallType(int iFirewallType); QString GetFirewallHost();
int SetFirewallHost(QString qsFirewallHost); QString GetFirewallPassword();
int SetFirewallPassword(QString qsFirewallPassword); int GetFirewallPort();
int SetFirewallPort(int iFirewallPort); QString GetFirewallUser();
int SetFirewallUser(QString qsFirewallUser);
Remarks
This is a Firewall-type property, which contains fields describing the firewall through which the class will attempt to connect.
Data Type
KeepAlive Property (Telnet Class)
When True, KEEPALIVE packets are enabled (for long connections).
Syntax
ANSI (Cross Platform) int GetKeepAlive();
int SetKeepAlive(int bKeepAlive); Unicode (Windows) BOOL GetKeepAlive();
INT SetKeepAlive(BOOL bKeepAlive);
int ipworksssl_telnet_getkeepalive(void* lpObj);
int ipworksssl_telnet_setkeepalive(void* lpObj, int bKeepAlive);
bool GetKeepAlive();
int SetKeepAlive(bool bKeepAlive);
Default Value
FALSE
Remarks
The KeepAlive enables the SO_KEEPALIVE option on the socket. This option prevents long connections from timing out in case of inactivity.
Note: System Transmission Control Protocol (TCP)/IP stack implementations are not required to support SO_KEEPALIVE.
Data Type
Boolean
Linger Property (Telnet Class)
When set to True, this property ensures that connections are terminated gracefully.
Syntax
ANSI (Cross Platform) int GetLinger();
int SetLinger(int bLinger); Unicode (Windows) BOOL GetLinger();
INT SetLinger(BOOL bLinger);
int ipworksssl_telnet_getlinger(void* lpObj);
int ipworksssl_telnet_setlinger(void* lpObj, int bLinger);
bool GetLinger();
int SetLinger(bool bLinger);
Default Value
TRUE
Remarks
This property controls how a connection is closed. The default is True.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
Data Type
Boolean
LocalHost Property (Telnet Class)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
ANSI (Cross Platform) char* GetLocalHost();
int SetLocalHost(const char* lpszLocalHost); Unicode (Windows) LPWSTR GetLocalHost();
INT SetLocalHost(LPCWSTR lpszLocalHost);
char* ipworksssl_telnet_getlocalhost(void* lpObj);
int ipworksssl_telnet_setlocalhost(void* lpObj, const char* lpszLocalHost);
QString GetLocalHost();
int SetLocalHost(QString qsLocalHost);
Default Value
""
Remarks
This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.
If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Note: LocalHost is not persistent. You must always set it in code, and never in the property window.
Data Type
String
LocalPort Property (Telnet Class)
This property includes the Transmission Control Protocol (TCP) port in the local host where the TCPClient binds.
Syntax
ANSI (Cross Platform) int GetLocalPort();
int SetLocalPort(int iLocalPort); Unicode (Windows) INT GetLocalPort();
INT SetLocalPort(INT iLocalPort);
int ipworksssl_telnet_getlocalport(void* lpObj);
int ipworksssl_telnet_setlocalport(void* lpObj, int iLocalPort);
int GetLocalPort();
int SetLocalPort(int iLocalPort);
Default Value
0
Remarks
The LocalPort property must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.
Setting it to 0 (default) enables the TCP/IP stack to choose a port at random. The chosen port will be shown by the LocalPort property after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set the LocalPort property when a connection is active will generate an error.
The LocalPort property is useful when trying to connect to services that require a trusted port in the client side.
Data Type
Integer
RemoteHost Property (Telnet Class)
This property includes the address of the remote host. Domain names are resolved to IP addresses.
Syntax
ANSI (Cross Platform) char* GetRemoteHost();
int SetRemoteHost(const char* lpszRemoteHost); Unicode (Windows) LPWSTR GetRemoteHost();
INT SetRemoteHost(LPCWSTR lpszRemoteHost);
char* ipworksssl_telnet_getremotehost(void* lpObj);
int ipworksssl_telnet_setremotehost(void* lpObj, const char* lpszRemoteHost);
QString GetRemoteHost();
int SetRemoteHost(QString qsRemoteHost);
Default Value
""
Remarks
This property specifies the IP address (IP number in dotted internet format) or the domain name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.
If this property is set to a domain name, a DNS request is initiated, and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.
If the class is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.
Example. Connecting:
TCPClientControl.RemoteHost = "MyHostNameOrIP"
TCPClientControl.RemotePort = 777
TCPClientControl.Connected = true
Data Type
String
RemotePort Property (Telnet Class)
This property includes the secure Telnet port in the remote host (default is 23).
Syntax
ANSI (Cross Platform) int GetRemotePort();
int SetRemotePort(int iRemotePort); Unicode (Windows) INT GetRemotePort();
INT SetRemotePort(INT iRemotePort);
int ipworksssl_telnet_getremoteport(void* lpObj);
int ipworksssl_telnet_setremoteport(void* lpObj, int iRemotePort);
int GetRemotePort();
int SetRemotePort(int iRemotePort);
Default Value
23
Remarks
For the implicit Secure Sockets Layer (SSL), use port 992 (for more information, please refer to the SSLStartMode property).
A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.
This property is not available at design time.
Data Type
Integer
SSLAcceptServerCert Property (Telnet Class)
Instructs the class to unconditionally accept the server certificate that matches the supplied certificate.
Syntax
IPWorksSSLCertificate* GetSSLAcceptServerCert(); int SetSSLAcceptServerCert(IPWorksSSLCertificate* val);
char* ipworksssl_telnet_getsslacceptservercerteffectivedate(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertexpirationdate(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertextendedkeyusage(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertfingerprint(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertfingerprintsha1(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertfingerprintsha256(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertissuer(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertprivatekey(void* lpObj);
int ipworksssl_telnet_getsslacceptservercertprivatekeyavailable(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertprivatekeycontainer(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertpublickey(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertpublickeyalgorithm(void* lpObj);
int ipworksssl_telnet_getsslacceptservercertpublickeylength(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertserialnumber(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertsignaturealgorithm(void* lpObj);
int ipworksssl_telnet_getsslacceptservercertstore(void* lpObj, char** lpSSLAcceptServerCertStore, int* lenSSLAcceptServerCertStore);
int ipworksssl_telnet_setsslacceptservercertstore(void* lpObj, const char* lpSSLAcceptServerCertStore, int lenSSLAcceptServerCertStore);
char* ipworksssl_telnet_getsslacceptservercertstorepassword(void* lpObj);
int ipworksssl_telnet_setsslacceptservercertstorepassword(void* lpObj, const char* lpszSSLAcceptServerCertStorePassword);
int ipworksssl_telnet_getsslacceptservercertstoretype(void* lpObj);
int ipworksssl_telnet_setsslacceptservercertstoretype(void* lpObj, int iSSLAcceptServerCertStoreType);
char* ipworksssl_telnet_getsslacceptservercertsubjectaltnames(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertthumbprintmd5(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertthumbprintsha1(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertthumbprintsha256(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertusage(void* lpObj);
int ipworksssl_telnet_getsslacceptservercertusageflags(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertversion(void* lpObj);
char* ipworksssl_telnet_getsslacceptservercertsubject(void* lpObj);
int ipworksssl_telnet_setsslacceptservercertsubject(void* lpObj, const char* lpszSSLAcceptServerCertSubject);
int ipworksssl_telnet_getsslacceptservercertencoded(void* lpObj, char** lpSSLAcceptServerCertEncoded, int* lenSSLAcceptServerCertEncoded);
int ipworksssl_telnet_setsslacceptservercertencoded(void* lpObj, const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded);
QString GetSSLAcceptServerCertEffectiveDate(); QString GetSSLAcceptServerCertExpirationDate(); QString GetSSLAcceptServerCertExtendedKeyUsage(); QString GetSSLAcceptServerCertFingerprint(); QString GetSSLAcceptServerCertFingerprintSHA1(); QString GetSSLAcceptServerCertFingerprintSHA256(); QString GetSSLAcceptServerCertIssuer(); QString GetSSLAcceptServerCertPrivateKey(); bool GetSSLAcceptServerCertPrivateKeyAvailable(); QString GetSSLAcceptServerCertPrivateKeyContainer(); QString GetSSLAcceptServerCertPublicKey(); QString GetSSLAcceptServerCertPublicKeyAlgorithm(); int GetSSLAcceptServerCertPublicKeyLength(); QString GetSSLAcceptServerCertSerialNumber(); QString GetSSLAcceptServerCertSignatureAlgorithm(); QByteArray GetSSLAcceptServerCertStore();
int SetSSLAcceptServerCertStore(QByteArray qbaSSLAcceptServerCertStore); QString GetSSLAcceptServerCertStorePassword();
int SetSSLAcceptServerCertStorePassword(QString qsSSLAcceptServerCertStorePassword); int GetSSLAcceptServerCertStoreType();
int SetSSLAcceptServerCertStoreType(int iSSLAcceptServerCertStoreType); QString GetSSLAcceptServerCertSubjectAltNames(); QString GetSSLAcceptServerCertThumbprintMD5(); QString GetSSLAcceptServerCertThumbprintSHA1(); QString GetSSLAcceptServerCertThumbprintSHA256(); QString GetSSLAcceptServerCertUsage(); int GetSSLAcceptServerCertUsageFlags(); QString GetSSLAcceptServerCertVersion(); QString GetSSLAcceptServerCertSubject();
int SetSSLAcceptServerCertSubject(QString qsSSLAcceptServerCertSubject); QByteArray GetSSLAcceptServerCertEncoded();
int SetSSLAcceptServerCertEncoded(QByteArray qbaSSLAcceptServerCertEncoded);
Remarks
If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.
You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.
Note: This functionality is provided only for cases in which you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.
Data Type
SSLCert Property (Telnet Class)
The certificate to be used during Secure Sockets Layer (SSL) negotiation.
Syntax
IPWorksSSLCertificate* GetSSLCert(); int SetSSLCert(IPWorksSSLCertificate* val);
char* ipworksssl_telnet_getsslcerteffectivedate(void* lpObj);
char* ipworksssl_telnet_getsslcertexpirationdate(void* lpObj);
char* ipworksssl_telnet_getsslcertextendedkeyusage(void* lpObj);
char* ipworksssl_telnet_getsslcertfingerprint(void* lpObj);
char* ipworksssl_telnet_getsslcertfingerprintsha1(void* lpObj);
char* ipworksssl_telnet_getsslcertfingerprintsha256(void* lpObj);
char* ipworksssl_telnet_getsslcertissuer(void* lpObj);
char* ipworksssl_telnet_getsslcertprivatekey(void* lpObj);
int ipworksssl_telnet_getsslcertprivatekeyavailable(void* lpObj);
char* ipworksssl_telnet_getsslcertprivatekeycontainer(void* lpObj);
char* ipworksssl_telnet_getsslcertpublickey(void* lpObj);
char* ipworksssl_telnet_getsslcertpublickeyalgorithm(void* lpObj);
int ipworksssl_telnet_getsslcertpublickeylength(void* lpObj);
char* ipworksssl_telnet_getsslcertserialnumber(void* lpObj);
char* ipworksssl_telnet_getsslcertsignaturealgorithm(void* lpObj);
int ipworksssl_telnet_getsslcertstore(void* lpObj, char** lpSSLCertStore, int* lenSSLCertStore);
int ipworksssl_telnet_setsslcertstore(void* lpObj, const char* lpSSLCertStore, int lenSSLCertStore);
char* ipworksssl_telnet_getsslcertstorepassword(void* lpObj);
int ipworksssl_telnet_setsslcertstorepassword(void* lpObj, const char* lpszSSLCertStorePassword);
int ipworksssl_telnet_getsslcertstoretype(void* lpObj);
int ipworksssl_telnet_setsslcertstoretype(void* lpObj, int iSSLCertStoreType);
char* ipworksssl_telnet_getsslcertsubjectaltnames(void* lpObj);
char* ipworksssl_telnet_getsslcertthumbprintmd5(void* lpObj);
char* ipworksssl_telnet_getsslcertthumbprintsha1(void* lpObj);
char* ipworksssl_telnet_getsslcertthumbprintsha256(void* lpObj);
char* ipworksssl_telnet_getsslcertusage(void* lpObj);
int ipworksssl_telnet_getsslcertusageflags(void* lpObj);
char* ipworksssl_telnet_getsslcertversion(void* lpObj);
char* ipworksssl_telnet_getsslcertsubject(void* lpObj);
int ipworksssl_telnet_setsslcertsubject(void* lpObj, const char* lpszSSLCertSubject);
int ipworksssl_telnet_getsslcertencoded(void* lpObj, char** lpSSLCertEncoded, int* lenSSLCertEncoded);
int ipworksssl_telnet_setsslcertencoded(void* lpObj, const char* lpSSLCertEncoded, int lenSSLCertEncoded);
QString GetSSLCertEffectiveDate(); QString GetSSLCertExpirationDate(); QString GetSSLCertExtendedKeyUsage(); QString GetSSLCertFingerprint(); QString GetSSLCertFingerprintSHA1(); QString GetSSLCertFingerprintSHA256(); QString GetSSLCertIssuer(); QString GetSSLCertPrivateKey(); bool GetSSLCertPrivateKeyAvailable(); QString GetSSLCertPrivateKeyContainer(); QString GetSSLCertPublicKey(); QString GetSSLCertPublicKeyAlgorithm(); int GetSSLCertPublicKeyLength(); QString GetSSLCertSerialNumber(); QString GetSSLCertSignatureAlgorithm(); QByteArray GetSSLCertStore();
int SetSSLCertStore(QByteArray qbaSSLCertStore); QString GetSSLCertStorePassword();
int SetSSLCertStorePassword(QString qsSSLCertStorePassword); int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType); QString GetSSLCertSubjectAltNames(); QString GetSSLCertThumbprintMD5(); QString GetSSLCertThumbprintSHA1(); QString GetSSLCertThumbprintSHA256(); QString GetSSLCertUsage(); int GetSSLCertUsageFlags(); QString GetSSLCertVersion(); QString GetSSLCertSubject();
int SetSSLCertSubject(QString qsSSLCertSubject); QByteArray GetSSLCertEncoded();
int SetSSLCertEncoded(QByteArray qbaSSLCertEncoded);
Remarks
This property includes the digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.
Data Type
SSLProvider Property (Telnet Class)
The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
Syntax
ANSI (Cross Platform) int GetSSLProvider();
int SetSSLProvider(int iSSLProvider); Unicode (Windows) INT GetSSLProvider();
INT SetSSLProvider(INT iSSLProvider);
Possible Values
SSLP_AUTOMATIC(0),
SSLP_PLATFORM(1),
SSLP_INTERNAL(2)
int ipworksssl_telnet_getsslprovider(void* lpObj);
int ipworksssl_telnet_setsslprovider(void* lpObj, int iSSLProvider);
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider);
Default Value
0
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are as follows:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.
When Automatic is selected, on Windows, the class will use the platform implementation. On Linux/macOS, the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used on all platforms.
Data Type
Integer
SSLServerCert Property (Telnet Class)
The server certificate for the last established connection.
Syntax
IPWorksSSLCertificate* GetSSLServerCert();
char* ipworksssl_telnet_getsslservercerteffectivedate(void* lpObj);
char* ipworksssl_telnet_getsslservercertexpirationdate(void* lpObj);
char* ipworksssl_telnet_getsslservercertextendedkeyusage(void* lpObj);
char* ipworksssl_telnet_getsslservercertfingerprint(void* lpObj);
char* ipworksssl_telnet_getsslservercertfingerprintsha1(void* lpObj);
char* ipworksssl_telnet_getsslservercertfingerprintsha256(void* lpObj);
char* ipworksssl_telnet_getsslservercertissuer(void* lpObj);
char* ipworksssl_telnet_getsslservercertprivatekey(void* lpObj);
int ipworksssl_telnet_getsslservercertprivatekeyavailable(void* lpObj);
char* ipworksssl_telnet_getsslservercertprivatekeycontainer(void* lpObj);
char* ipworksssl_telnet_getsslservercertpublickey(void* lpObj);
char* ipworksssl_telnet_getsslservercertpublickeyalgorithm(void* lpObj);
int ipworksssl_telnet_getsslservercertpublickeylength(void* lpObj);
char* ipworksssl_telnet_getsslservercertserialnumber(void* lpObj);
char* ipworksssl_telnet_getsslservercertsignaturealgorithm(void* lpObj);
int ipworksssl_telnet_getsslservercertstore(void* lpObj, char** lpSSLServerCertStore, int* lenSSLServerCertStore);
char* ipworksssl_telnet_getsslservercertstorepassword(void* lpObj);
int ipworksssl_telnet_getsslservercertstoretype(void* lpObj);
char* ipworksssl_telnet_getsslservercertsubjectaltnames(void* lpObj);
char* ipworksssl_telnet_getsslservercertthumbprintmd5(void* lpObj);
char* ipworksssl_telnet_getsslservercertthumbprintsha1(void* lpObj);
char* ipworksssl_telnet_getsslservercertthumbprintsha256(void* lpObj);
char* ipworksssl_telnet_getsslservercertusage(void* lpObj);
int ipworksssl_telnet_getsslservercertusageflags(void* lpObj);
char* ipworksssl_telnet_getsslservercertversion(void* lpObj);
char* ipworksssl_telnet_getsslservercertsubject(void* lpObj);
int ipworksssl_telnet_getsslservercertencoded(void* lpObj, char** lpSSLServerCertEncoded, int* lenSSLServerCertEncoded);
QString GetSSLServerCertEffectiveDate(); QString GetSSLServerCertExpirationDate(); QString GetSSLServerCertExtendedKeyUsage(); QString GetSSLServerCertFingerprint(); QString GetSSLServerCertFingerprintSHA1(); QString GetSSLServerCertFingerprintSHA256(); QString GetSSLServerCertIssuer(); QString GetSSLServerCertPrivateKey(); bool GetSSLServerCertPrivateKeyAvailable(); QString GetSSLServerCertPrivateKeyContainer(); QString GetSSLServerCertPublicKey(); QString GetSSLServerCertPublicKeyAlgorithm(); int GetSSLServerCertPublicKeyLength(); QString GetSSLServerCertSerialNumber(); QString GetSSLServerCertSignatureAlgorithm(); QByteArray GetSSLServerCertStore(); QString GetSSLServerCertStorePassword(); int GetSSLServerCertStoreType(); QString GetSSLServerCertSubjectAltNames(); QString GetSSLServerCertThumbprintMD5(); QString GetSSLServerCertThumbprintSHA1(); QString GetSSLServerCertThumbprintSHA256(); QString GetSSLServerCertUsage(); int GetSSLServerCertUsageFlags(); QString GetSSLServerCertVersion(); QString GetSSLServerCertSubject(); QByteArray GetSSLServerCertEncoded();
Remarks
This property contains the server certificate for the last established connection.
SSLServerCert is reset every time a new connection is attempted.
This property is read-only.
Data Type
SSLStartMode Property (Telnet Class)
This property determines how the class starts the Secure Sockets Layer (SSL) negotiation.
Syntax
ANSI (Cross Platform) int GetSSLStartMode();
int SetSSLStartMode(int iSSLStartMode); Unicode (Windows) INT GetSSLStartMode();
INT SetSSLStartMode(INT iSSLStartMode);
Possible Values
SSL_AUTOMATIC(0),
SSL_IMPLICIT(1),
SSL_EXPLICIT(2)
int ipworksssl_telnet_getsslstartmode(void* lpObj);
int ipworksssl_telnet_setsslstartmode(void* lpObj, int iSSLStartMode);
int GetSSLStartMode();
int SetSSLStartMode(int iSSLStartMode);
Default Value
0
Remarks
The SSLStartMode property may have one of the following values:
0 (sslAutomatic) | If the remote port is set to the standard plaintext port of the protocol (where applicable), the class will behave the same as if SSLStartMode is set to sslExplicit. In all other cases, SSL negotiation will be implicit (sslImplicit). |
1 (sslImplicit) | The SSL negotiation will start immediately after the connection is established. |
2 (sslExplicit) | The class will first connect in plaintext, and then will explicitly start SSL negotiation through a protocol command such as STARTTLS. |
Data Type
Integer
Timeout Property (Telnet Class)
This property specifies the timeout for the class.
Syntax
ANSI (Cross Platform) int GetTimeout();
int SetTimeout(int iTimeout); Unicode (Windows) INT GetTimeout();
INT SetTimeout(INT iTimeout);
int ipworksssl_telnet_gettimeout(void* lpObj);
int ipworksssl_telnet_settimeout(void* lpObj, int iTimeout);
int GetTimeout();
int SetTimeout(int iTimeout);
Default Value
0
Remarks
If the Timeout property is set to 0, all operations return immediately, potentially failing with an WOULDBLOCK error if data cannot be sent or received immediately.
If Timeout is set to a positive value, the class will automatically retry each operation that otherwise would result in a WOULDBLOCK error for a maximum of Timeout seconds.
The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.
If Timeout expires, and the operation is not yet complete, the class fails with an error.
Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 0 (asynchronous operation).
Data Type
Integer
Transparent Property (Telnet Class)
When this property is True, Telnet command processing is disabled.
Syntax
ANSI (Cross Platform) int GetTransparent();
int SetTransparent(int bTransparent); Unicode (Windows) BOOL GetTransparent();
INT SetTransparent(BOOL bTransparent);
int ipworksssl_telnet_gettransparent(void* lpObj);
int ipworksssl_telnet_settransparent(void* lpObj, int bTransparent);
bool GetTransparent();
int SetTransparent(bool bTransparent);
Default Value
FALSE
Remarks
The Transparent property allows you to enable or disable Telnet command processing. When command processing is disabled, any data received are provided with no modifications.
Data Type
Boolean
Config Method (Telnet Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksssl_telnet_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Connect Method (Telnet Class)
This method connects to a remote host.
Syntax
ANSI (Cross Platform) int Connect(); Unicode (Windows) INT Connect();
int ipworksssl_telnet_connect(void* lpObj);
int Connect();
Remarks
This method connects to the remote host specified by RemoteHost. For instance:
component.RemoteHost = "MyHostNameOrIP";
component.Connect();
To specify a nonstandard port number, set RemotePort before calling this method.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ConnectTo Method (Telnet Class)
This method connects to a remote host.
Syntax
ANSI (Cross Platform) int ConnectTo(const char* lpszHost); Unicode (Windows) INT ConnectTo(LPCWSTR lpszHost);
int ipworksssl_telnet_connectto(void* lpObj, const char* lpszHost);
int ConnectTo(const QString& qsHost);
Remarks
This method connects to the remote host specified by the Host. For instance:
component.Connect("MyTelnetServer");
To specify a nonstandard port number set RemotePort before calling this method.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Disconnect Method (Telnet Class)
This method disconnects from the remote host.
Syntax
ANSI (Cross Platform) int Disconnect(); Unicode (Windows) INT Disconnect();
int ipworksssl_telnet_disconnect(void* lpObj);
int Disconnect();
Remarks
Calling this method is equivalent to setting the Connected property to False.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
DoEvents Method (Telnet Class)
This method processes events from the internal message queue.
Syntax
ANSI (Cross Platform) int DoEvents(); Unicode (Windows) INT DoEvents();
int ipworksssl_telnet_doevents(void* lpObj);
int DoEvents();
Remarks
When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
PauseData Method (Telnet Class)
This method pauses data reception.
Syntax
ANSI (Cross Platform) int PauseData(); Unicode (Windows) INT PauseData();
int ipworksssl_telnet_pausedata(void* lpObj);
int PauseData();
Remarks
This method pauses data reception when called. While data reception is paused, the DataIn event will not fire. Call ProcessData to reenable data reception.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ProcessData Method (Telnet Class)
This method reenables data reception after a call to PauseData .
Syntax
ANSI (Cross Platform) int ProcessData(); Unicode (Windows) INT ProcessData();
int ipworksssl_telnet_processdata(void* lpObj);
int ProcessData();
Remarks
This method reenables data reception after a previous call to PauseData. When PauseData is called, the DataIn event will not fire. To reenable data reception and allow DataIn to fire, call this method.
Note: This method is used only after previously calling PauseData. It does not need to be called to process incoming data by default.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reset Method (Telnet Class)
This method will reset the class.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int ipworksssl_telnet_reset(void* lpObj);
int Reset();
Remarks
This method will reset the class's properties to their default values.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Send Method (Telnet Class)
This method sends binary data to the remote host.
Syntax
ANSI (Cross Platform) int Send(const char* lpText, int lenText); Unicode (Windows) INT Send(LPCSTR lpText, INT lenText);
int ipworksssl_telnet_send(void* lpObj, const char* lpText, int lenText);
int Send(QByteArray qbaText);
Remarks
This method sends the specified binary data to the remote host. To send text, use the SendText method instead.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendBytes Method (Telnet Class)
This method sends binary data to the remote host.
Syntax
ANSI (Cross Platform) int SendBytes(const char* lpData, int lenData); Unicode (Windows) INT SendBytes(LPCSTR lpData, INT lenData);
int ipworksssl_telnet_sendbytes(void* lpObj, const char* lpData, int lenData);
int SendBytes(QByteArray qbaData);
Remarks
This method sends the specified binary data to the remote host. To send text, use the SendText method instead.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendCommand Method (Telnet Class)
This method sends a single-character Telnet command code to the server.
Syntax
ANSI (Cross Platform) int SendCommand(int iCommand); Unicode (Windows) INT SendCommand(INT iCommand);
int ipworksssl_telnet_sendcommand(void* lpObj, int iCommand);
int SendCommand(int iCommand);
Remarks
This method sends the single-character command code specified by Command to the server. Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Some common commands are as follows:
241 (NOP) | No operation. |
242 (Data Mark) | The data stream portion of a Synch. This code should always be accompanied by a TCP Urgent notification. |
243 (Break) | NVT character BRK. |
244 (Interrupt Process) | The function IP. |
245 (Abort Output) | The function AO. |
246 (Are You There) | The function AYT. |
247 (Erase Character) | The function EC. |
248 (Erase Line) | The function EL. |
249 (Go Ahead) | The GA signal. |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendDontOption Method (Telnet Class)
This method sends a single-character Telnet option code to the server with the Telnet DONT command.
Syntax
ANSI (Cross Platform) int SendDontOption(int iDontOption); Unicode (Windows) INT SendDontOption(INT iDontOption);
int ipworksssl_telnet_senddontoption(void* lpObj, int iDontOption);
int SendDontOption(int iDontOption);
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. Following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether or not bytes sent should be echoed. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal-type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendDoOption Method (Telnet Class)
This method sends a single-character Telnet option code to the server with the Telnet DO command.
Syntax
ANSI (Cross Platform) int SendDoOption(int iDoOption); Unicode (Windows) INT SendDoOption(INT iDoOption);
int ipworksssl_telnet_senddooption(void* lpObj, int iDoOption);
int SendDoOption(int iDoOption);
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. Following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether or not bytes sent should be echoed. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal-type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendDoSubOption Method (Telnet Class)
This methods sends a Telnet SubOption to send to the server with the SubOption command.
Syntax
ANSI (Cross Platform) int SendDoSubOption(const char* lpDoSubOption, int lenDoSubOption); Unicode (Windows) INT SendDoSubOption(LPCSTR lpDoSubOption, INT lenDoSubOption);
int ipworksssl_telnet_senddosuboption(void* lpObj, const char* lpDoSubOption, int lenDoSubOption);
int SendDoSubOption(QByteArray qbaDoSubOption);
Remarks
Valid suboptions and their descriptions are defined in the Telnet RFCs.
For example, to send a terminal type suboption to request setting the terminal type to 'vt100', send ASCII 24, followed by ASCII 0, followed by vt100.
Suboption start and end codes are automatically added by the class.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendText Method (Telnet Class)
This method sends text to the remote host.
Syntax
ANSI (Cross Platform) int SendText(const char* lpszText); Unicode (Windows) INT SendText(LPCWSTR lpszText);
int ipworksssl_telnet_sendtext(void* lpObj, const char* lpszText);
int SendText(const QString& qsText);
Remarks
This method sends the specified text to the remote host. To send binary data, use the SendBytes method instead.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendUrgentBytes Method (Telnet Class)
This method urgently sends binary data to the remote host.
Syntax
ANSI (Cross Platform) int SendUrgentBytes(const char* lpUrgentBytes, int lenUrgentBytes); Unicode (Windows) INT SendUrgentBytes(LPCSTR lpUrgentBytes, INT lenUrgentBytes);
int ipworksssl_telnet_sendurgentbytes(void* lpObj, const char* lpUrgentBytes, int lenUrgentBytes);
int SendUrgentBytes(QByteArray qbaUrgentBytes);
Remarks
This method sends the bytes specified by UrgentBytes as urgent data (out-of-band) to the remote host. To send text urgently, use the SendUrgentText method instead.
Data sent using this method will bypass the normal Transmission Control Protocol (TCP) queuing mechanism. Use this method with caution.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendUrgentText Method (Telnet Class)
This method urgently sends text to the remote host.
Syntax
ANSI (Cross Platform) int SendUrgentText(const char* lpszUrgentText); Unicode (Windows) INT SendUrgentText(LPCWSTR lpszUrgentText);
int ipworksssl_telnet_sendurgenttext(void* lpObj, const char* lpszUrgentText);
int SendUrgentText(const QString& qsUrgentText);
Remarks
This method sends the text specified by UrgentText as urgent data (out-of-band) to the remote host. To send binary data urgently, use the SendUrgentBytes method instead.
Data sent using this method will bypass the normal Transmission Control Protocol (TCP) queuing mechanism. Use this method with caution.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendWillOption Method (Telnet Class)
This method sends a single-character Telnet option code the server with the Telnet WILL command.
Syntax
ANSI (Cross Platform) int SendWillOption(int iWillOption); Unicode (Windows) INT SendWillOption(INT iWillOption);
int ipworksssl_telnet_sendwilloption(void* lpObj, int iWillOption);
int SendWillOption(int iWillOption);
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. Following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether or not bytes sent should be echoed. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal-type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendWontOption Method (Telnet Class)
This method sends a single-character Telnet option code to the server with the Telnet WONT command.
Syntax
ANSI (Cross Platform) int SendWontOption(int iWontOption); Unicode (Windows) INT SendWontOption(INT iWontOption);
int ipworksssl_telnet_sendwontoption(void* lpObj, int iWontOption);
int SendWontOption(int iWontOption);
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. Following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether or not bytes sent should be echoed. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal-type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Command Event (Telnet Class)
This event is fired when a Telnet command comes from the Telnet server.
Syntax
ANSI (Cross Platform) virtual int FireCommand(TelnetCommandEventParams *e);
typedef struct {
int CommandCode; int reserved; } TelnetCommandEventParams;
Unicode (Windows) virtual INT FireCommand(TelnetCommandEventParams *e);
typedef struct {
INT CommandCode; INT reserved; } TelnetCommandEventParams;
#define EID_TELNET_COMMAND 1 virtual INT IPWORKSSSL_CALL FireCommand(INT &iCommandCode);
class TelnetCommandEventParams { public: int CommandCode(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Command(TelnetCommandEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireCommand(TelnetCommandEventParams *e) {...}
Remarks
Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Following are some examples:
241 (NOP) | No operation. |
242 (Data Mark) | The data stream portion of a Synch. This code should always be accompanied by a TCP Urgent notification. |
243 (Break) | NVT character BRK. |
244 (Interrupt Process) | The function IP. |
245 (Abort Output) | The function AO. |
246 (Are You There) | The function AYT. |
247 (Erase Character) | The function EC. |
248 (Erase Line) | The function EL. |
249 (Go Ahead) | The GA signal. |
Connected Event (Telnet Class)
Fired immediately after a connection completes (or fails).
Syntax
ANSI (Cross Platform) virtual int FireConnected(TelnetConnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } TelnetConnectedEventParams;
Unicode (Windows) virtual INT FireConnected(TelnetConnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } TelnetConnectedEventParams;
#define EID_TELNET_CONNECTED 2 virtual INT IPWORKSSSL_CALL FireConnected(INT &iStatusCode, LPSTR &lpszDescription);
class TelnetConnectedEventParams { public: int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Connected(TelnetConnectedEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireConnected(TelnetConnectedEventParams *e) {...}
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.
Please refer to the Error Codes section for more information.
ConnectionStatus Event (Telnet Class)
Fired to indicate changes in the connection state.
Syntax
ANSI (Cross Platform) virtual int FireConnectionStatus(TelnetConnectionStatusEventParams *e);
typedef struct {
const char *ConnectionEvent;
int StatusCode;
const char *Description; int reserved; } TelnetConnectionStatusEventParams;
Unicode (Windows) virtual INT FireConnectionStatus(TelnetConnectionStatusEventParams *e);
typedef struct {
LPCWSTR ConnectionEvent;
INT StatusCode;
LPCWSTR Description; INT reserved; } TelnetConnectionStatusEventParams;
#define EID_TELNET_CONNECTIONSTATUS 3 virtual INT IPWORKSSSL_CALL FireConnectionStatus(LPSTR &lpszConnectionEvent, INT &iStatusCode, LPSTR &lpszDescription);
class TelnetConnectionStatusEventParams { public: const QString &ConnectionEvent(); int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ConnectionStatus(TelnetConnectionStatusEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireConnectionStatus(TelnetConnectionStatusEventParams *e) {...}
Remarks
This event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.
The ConnectionEvent parameter indicates the type of connection event. Values may include the following:
Firewall connection complete. | |
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable). | |
Remote host connection complete. | |
Remote host disconnected. | |
SSL or S/Shell connection broken. | |
Firewall host disconnected. |
DataIn Event (Telnet Class)
This event is fired when data are received from the remote host.
Syntax
ANSI (Cross Platform) virtual int FireDataIn(TelnetDataInEventParams *e);
typedef struct {
const char *Text; int lenText; int reserved; } TelnetDataInEventParams;
Unicode (Windows) virtual INT FireDataIn(TelnetDataInEventParams *e);
typedef struct {
LPCSTR Text; INT lenText; INT reserved; } TelnetDataInEventParams;
#define EID_TELNET_DATAIN 4 virtual INT IPWORKSSSL_CALL FireDataIn(LPSTR &lpText, INT &lenText);
class TelnetDataInEventParams { public: const QByteArray &Text(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void DataIn(TelnetDataInEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireDataIn(TelnetDataInEventParams *e) {...}
Remarks
Trapping the DataIn event is your only chance to get the data coming from the other end of the connection. Incoming data are provided through the Text parameter.
Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.
Disconnected Event (Telnet Class)
Fired when a connection is closed.
Syntax
ANSI (Cross Platform) virtual int FireDisconnected(TelnetDisconnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } TelnetDisconnectedEventParams;
Unicode (Windows) virtual INT FireDisconnected(TelnetDisconnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } TelnetDisconnectedEventParams;
#define EID_TELNET_DISCONNECTED 5 virtual INT IPWORKSSSL_CALL FireDisconnected(INT &iStatusCode, LPSTR &lpszDescription);
class TelnetDisconnectedEventParams { public: int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Disconnected(TelnetDisconnectedEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireDisconnected(TelnetDisconnectedEventParams *e) {...}
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.
Please refer to the Error Codes section for more information.
Do Event (Telnet Class)
This event is fired when a Telnet DO OPTION command comes from the Telnet server.
Syntax
ANSI (Cross Platform) virtual int FireDo(TelnetDoEventParams *e);
typedef struct {
int OptionCode; int reserved; } TelnetDoEventParams;
Unicode (Windows) virtual INT FireDo(TelnetDoEventParams *e);
typedef struct {
INT OptionCode; INT reserved; } TelnetDoEventParams;
#define EID_TELNET_DO 6 virtual INT IPWORKSSSL_CALL FireDo(INT &iOptionCode);
class TelnetDoEventParams { public: int OptionCode(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Do(TelnetDoEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireDo(TelnetDoEventParams *e) {...}
Remarks
The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. Following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether or not bytes sent should be echoed. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal-type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Dont Event (Telnet Class)
This event is fired when a Telnet DONT OPTION command comes from the Telnet server.
Syntax
ANSI (Cross Platform) virtual int FireDont(TelnetDontEventParams *e);
typedef struct {
int OptionCode; int reserved; } TelnetDontEventParams;
Unicode (Windows) virtual INT FireDont(TelnetDontEventParams *e);
typedef struct {
INT OptionCode; INT reserved; } TelnetDontEventParams;
#define EID_TELNET_DONT 7 virtual INT IPWORKSSSL_CALL FireDont(INT &iOptionCode);
class TelnetDontEventParams { public: int OptionCode(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Dont(TelnetDontEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireDont(TelnetDontEventParams *e) {...}
Remarks
The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. Following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether or not bytes sent should be echoed. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal-type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Error Event (Telnet Class)
Fired when information is available about errors during data delivery.
Syntax
ANSI (Cross Platform) virtual int FireError(TelnetErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } TelnetErrorEventParams;
Unicode (Windows) virtual INT FireError(TelnetErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } TelnetErrorEventParams;
#define EID_TELNET_ERROR 8 virtual INT IPWORKSSSL_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class TelnetErrorEventParams { public: int ErrorCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(TelnetErrorEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireError(TelnetErrorEventParams *e) {...}
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
ReadyToSend Event (Telnet Class)
This event is fired when the class is ready to send data.
Syntax
ANSI (Cross Platform) virtual int FireReadyToSend(TelnetReadyToSendEventParams *e);
typedef struct { int reserved; } TelnetReadyToSendEventParams;
Unicode (Windows) virtual INT FireReadyToSend(TelnetReadyToSendEventParams *e);
typedef struct { INT reserved; } TelnetReadyToSendEventParams;
#define EID_TELNET_READYTOSEND 9 virtual INT IPWORKSSSL_CALL FireReadyToSend();
class TelnetReadyToSendEventParams { public: int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ReadyToSend(TelnetReadyToSendEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireReadyToSend(TelnetReadyToSendEventParams *e) {...}
Remarks
The ReadyToSend event indicates that the underlying Transmission Control Protocol (TCP)/IP subsystem is ready to accept data after a failed SendBytes. The event is also fired immediately after a connection to the remote host is established.
SSLServerAuthentication Event (Telnet Class)
Fired after the server presents its certificate to the client.
Syntax
ANSI (Cross Platform) virtual int FireSSLServerAuthentication(TelnetSSLServerAuthenticationEventParams *e);
typedef struct {
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *Status;
int Accept; int reserved; } TelnetSSLServerAuthenticationEventParams;
Unicode (Windows) virtual INT FireSSLServerAuthentication(TelnetSSLServerAuthenticationEventParams *e);
typedef struct {
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR Status;
BOOL Accept; INT reserved; } TelnetSSLServerAuthenticationEventParams;
#define EID_TELNET_SSLSERVERAUTHENTICATION 10 virtual INT IPWORKSSSL_CALL FireSSLServerAuthentication(LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszStatus, BOOL &bAccept);
class TelnetSSLServerAuthenticationEventParams { public: const QByteArray &CertEncoded(); const QString &CertSubject(); const QString &CertIssuer(); const QString &Status(); bool Accept(); void SetAccept(bool bAccept); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSLServerAuthentication(TelnetSSLServerAuthenticationEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireSSLServerAuthentication(TelnetSSLServerAuthenticationEventParams *e) {...}
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (Telnet Class)
Fired when secure connection progress messages are available.
Syntax
ANSI (Cross Platform) virtual int FireSSLStatus(TelnetSSLStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } TelnetSSLStatusEventParams;
Unicode (Windows) virtual INT FireSSLStatus(TelnetSSLStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } TelnetSSLStatusEventParams;
#define EID_TELNET_SSLSTATUS 11 virtual INT IPWORKSSSL_CALL FireSSLStatus(LPSTR &lpszMessage);
class TelnetSSLStatusEventParams { public: const QString &Message(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSLStatus(TelnetSSLStatusEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireSSLStatus(TelnetSSLStatusEventParams *e) {...}
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
SubOption Event (Telnet Class)
This event is fired when a Telnet SubOption command comes from the Telnet server.
Syntax
ANSI (Cross Platform) virtual int FireSubOption(TelnetSubOptionEventParams *e);
typedef struct {
const char *SubOption; int lenSubOption; int reserved; } TelnetSubOptionEventParams;
Unicode (Windows) virtual INT FireSubOption(TelnetSubOptionEventParams *e);
typedef struct {
LPCSTR SubOption; INT lenSubOption; INT reserved; } TelnetSubOptionEventParams;
#define EID_TELNET_SUBOPTION 12 virtual INT IPWORKSSSL_CALL FireSubOption(LPSTR &lpSubOption, INT &lenSubOption);
class TelnetSubOptionEventParams { public: const QByteArray &SubOption(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SubOption(TelnetSubOptionEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireSubOption(TelnetSubOptionEventParams *e) {...}
Remarks
The SubOption parameter contains the suboption data as sent by the other end. The enclosing suboption command codes are stripped away.
For a list of valid Telnet suboptions and their descriptions, please look at the Telnet RFCs.
Will Event (Telnet Class)
This event is fired when a Telnet WILL OPTION command comes from the Telnet server.
Syntax
ANSI (Cross Platform) virtual int FireWill(TelnetWillEventParams *e);
typedef struct {
int OptionCode; int reserved; } TelnetWillEventParams;
Unicode (Windows) virtual INT FireWill(TelnetWillEventParams *e);
typedef struct {
INT OptionCode; INT reserved; } TelnetWillEventParams;
#define EID_TELNET_WILL 13 virtual INT IPWORKSSSL_CALL FireWill(INT &iOptionCode);
class TelnetWillEventParams { public: int OptionCode(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Will(TelnetWillEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireWill(TelnetWillEventParams *e) {...}
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. Following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether or not bytes sent should be echoed. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal-type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Wont Event (Telnet Class)
This event is fired when a Telnet WONT OPTION command comes from the Telnet server.
Syntax
ANSI (Cross Platform) virtual int FireWont(TelnetWontEventParams *e);
typedef struct {
int OptionCode; int reserved; } TelnetWontEventParams;
Unicode (Windows) virtual INT FireWont(TelnetWontEventParams *e);
typedef struct {
INT OptionCode; INT reserved; } TelnetWontEventParams;
#define EID_TELNET_WONT 14 virtual INT IPWORKSSSL_CALL FireWont(INT &iOptionCode);
class TelnetWontEventParams { public: int OptionCode(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Wont(TelnetWontEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireWont(TelnetWontEventParams *e) {...}
Remarks
The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. Following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether or not bytes sent should be echoed. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal-type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Certificate Type
This is the digital certificate being used.
Syntax
IPWorksSSLCertificate (declared in ipworksssl.h)
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
EffectiveDate
char* (read-only)
Default Value: ""
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
ExpirationDate
char* (read-only)
Default Value: ""
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
ExtendedKeyUsage
char* (read-only)
Default Value: ""
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
Fingerprint
char* (read-only)
Default Value: ""
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
FingerprintSHA1
char* (read-only)
Default Value: ""
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
FingerprintSHA256
char* (read-only)
Default Value: ""
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
Issuer
char* (read-only)
Default Value: ""
The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.
PrivateKey
char* (read-only)
Default Value: ""
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.
PrivateKeyAvailable
int (read-only)
Default Value: FALSE
Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
PrivateKeyContainer
char* (read-only)
Default Value: ""
The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
PublicKey
char* (read-only)
Default Value: ""
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
PublicKeyAlgorithm
char* (read-only)
Default Value: ""
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
PublicKeyLength
int (read-only)
Default Value: 0
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
SerialNumber
char* (read-only)
Default Value: ""
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
SignatureAlgorithm
char* (read-only)
Default Value: ""
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
Store
char*
Default Value: "MY"
The name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StorePassword
char*
Default Value: ""
If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.
StoreType
int
Default Value: 0
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
SubjectAltNames
char* (read-only)
Default Value: ""
Comma-separated lists of alternative subject names for the certificate.
ThumbprintMD5
char* (read-only)
Default Value: ""
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA1
char* (read-only)
Default Value: ""
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA256
char* (read-only)
Default Value: ""
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
Usage
char* (read-only)
Default Value: ""
The text description of UsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
UsageFlags
int (read-only)
Default Value: 0
The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the Usage field for a text representation of UsageFlags.
This functionality currently is not available when the provider is OpenSSL.
Version
char* (read-only)
Default Value: ""
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
Subject
char*
Default Value: ""
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the field is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Encoded
char*
Default Value: ""
The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
Constructors
Certificate()
Creates a instance whose properties can be set. This is useful for use with when generating new certificates.
Certificate(const char* lpEncoded, int lenEncoded)
Parses Encoded as an X.509 public key.
Certificate(int iStoreType, const char* lpStore, int lenStore, const char* lpszStorePassword, const char* lpszSubject)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
Firewall Type
The firewall the component will connect through.
Syntax
IPWorksSSLFirewall (declared in ipworksssl.h)
Remarks
When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.
Fields
AutoDetect
int
Default Value: FALSE
Whether to automatically detect and use firewall system settings, if available.
FirewallType
int
Default Value: 0
The type of firewall to connect through. The applicable values are as follows:
fwNone (0) | No firewall (default setting). |
fwTunnel (1) | Connect through a tunneling proxy. Port is set to 80. |
fwSOCKS4 (2) | Connect through a SOCKS4 Proxy. Port is set to 1080. |
fwSOCKS5 (3) | Connect through a SOCKS5 Proxy. Port is set to 1080. |
fwSOCKS4A (10) | Connect through a SOCKS4A Proxy. Port is set to 1080. |
Host
char*
Default Value: ""
The name or IP address of the firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.
If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the class fails with an error.
Password
char*
Default Value: ""
A password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.
Port
int
Default Value: 0
The Transmission Control Protocol (TCP) port for the firewall Host. See the description of the Host field for details.
Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.
User
char*
Default Value: ""
A username if authentication is to be used when connecting through a firewall. If Host is specified, this field and the Password field are used to connect and authenticate to the given Firewall. If the authentication fails, the class fails with an error.
Constructors
Firewall()
Config Settings (Telnet Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this configuration setting is set to False.
0 | IPv4 only |
1 | IPv6 only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this configuration setting has no effect if SSLProvider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to True, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is as follows:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform include the following:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include the following:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include the following:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default - Client and Server) |
TLS1.1 | 768 (Hex 300) (Default - Client) |
TLS1 | 192 (Hex C0) (Default - Client) |
SSL3 | 48 (Hex 30) |
SSL2 | 12 (Hex 0C) |
Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.
SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:
By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider), please be aware of the following notes:
- The platform provider is available only on Windows 11/Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This configuration setting is applicable only when SSLProvider is set to Internal.
If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.
Note: This configuration setting is applicable only when SSLProvider is set to Internal.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown certificate authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown certificate authority revocation status. |
0x00000800 | Ignore unknown root revocation status. |
0x00008000 | Allow test root certificate. |
0x00004000 | Trust test root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN non-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.
The format of this value is a comma-separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.
In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for User Datagram Protocol (UDP) ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
Trappable Errors (Telnet Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Telnet Errors
118 | Firewall error. Error message contains detailed description. |
191 | SubOption string too long. Truncated. |
4001 | Telnet protocol error. Invalid server response. |
The class may also return one of the following error codes, which are inherited from other classes.
SSLClient Errors
100 | You cannot change the RemotePort at this time. A connection is in progress. |
101 | You cannot change the RemoteHost (Server) at this time. A connection is in progress. |
102 | The RemoteHost address is invalid (0.0.0.0). |
104 | Already connected. If you want to reconnect, close the current connection first. |
106 | You cannot change the LocalPort at this time. A connection is in progress. |
107 | You cannot change the LocalHost at this time. A connection is in progress. |
112 | You cannot change MaxLineLength at this time. A connection is in progress. |
116 | RemotePort cannot be zero. Please specify a valid service port number. |
117 | You cannot change the UseConnection option while the class is active. |
135 | Operation would block. |
201 | Timeout. |
211 | Action impossible in control's present state. |
212 | Action impossible while not connected. |
213 | Action impossible while listening. |
301 | Timeout. |
302 | Could not open file. |
434 | Unable to convert string to selected CodePage. |
1105 | Already connecting. If you want to reconnect, close the current connection first. |
1117 | You need to connect first. |
1119 | You cannot change the LocalHost at this time. A connection is in progress. |
1120 | Connection dropped by remote host. |
SSL Errors
270 | Cannot load specified security library. |
271 | Cannot open certificate store. |
272 | Cannot find specified certificate. |
273 | Cannot acquire security credentials. |
274 | Cannot find certificate chain. |
275 | Cannot verify certificate chain. |
276 | Error during handshake. |
280 | Error verifying certificate. |
281 | Could not find client certificate. |
282 | Could not find server certificate. |
283 | Error encrypting data. |
284 | Error decrypting data. |
TCP/IP Errors
10004 | [10004] Interrupted system call. |
10009 | [10009] Bad file number. |
10013 | [10013] Access denied. |
10014 | [10014] Bad address. |
10022 | [10022] Invalid argument. |
10024 | [10024] Too many open files. |
10035 | [10035] Operation would block. |
10036 | [10036] Operation now in progress. |
10037 | [10037] Operation already in progress. |
10038 | [10038] Socket operation on nonsocket. |
10039 | [10039] Destination address required. |
10040 | [10040] Message is too long. |
10041 | [10041] Protocol wrong type for socket. |
10042 | [10042] Bad protocol option. |
10043 | [10043] Protocol is not supported. |
10044 | [10044] Socket type is not supported. |
10045 | [10045] Operation is not supported on socket. |
10046 | [10046] Protocol family is not supported. |
10047 | [10047] Address family is not supported by protocol family. |
10048 | [10048] Address already in use. |
10049 | [10049] Cannot assign requested address. |
10050 | [10050] Network is down. |
10051 | [10051] Network is unreachable. |
10052 | [10052] Net dropped connection or reset. |
10053 | [10053] Software caused connection abort. |
10054 | [10054] Connection reset by peer. |
10055 | [10055] No buffer space available. |
10056 | [10056] Socket is already connected. |
10057 | [10057] Socket is not connected. |
10058 | [10058] Cannot send after socket shutdown. |
10059 | [10059] Too many references, cannot splice. |
10060 | [10060] Connection timed out. |
10061 | [10061] Connection refused. |
10062 | [10062] Too many levels of symbolic links. |
10063 | [10063] File name is too long. |
10064 | [10064] Host is down. |
10065 | [10065] No route to host. |
10066 | [10066] Directory is not empty |
10067 | [10067] Too many processes. |
10068 | [10068] Too many users. |
10069 | [10069] Disc Quota Exceeded. |
10070 | [10070] Stale NFS file handle. |
10071 | [10071] Too many levels of remote in path. |
10091 | [10091] Network subsystem is unavailable. |
10092 | [10092] WINSOCK DLL Version out of range. |
10093 | [10093] Winsock is not loaded yet. |
11001 | [11001] Host not found. |
11002 | [11002] Nonauthoritative 'Host not found' (try again or check DNS setup). |
11003 | [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP. |
11004 | [11004] Valid name, no data record (check DNS setup). |