STOMP Component

Properties   Methods   Events   Config Settings   Errors  

A simple but powerful STOMP client implementation.

Syntax

TipqSTOMP

Remarks

The STOMP component provides an easy-to-use STOMP client implementation that supports STOMP versions 1.1 and 1.2. The component supports both plaintext and TLS-enabled connections over TCP.

Connecting

Connecting to a STOMP server is easy; in the simplest case just call the ConnectTo method, passing the server's hostname and port number.

When connecting to a STOMP server, the component sends information from the following properties, if populated:

In addition to the above properties, the following configuration settings can be set before connecting (though in most cases this is not necessary):

  • SupportedVersions: Controls which STOMP versions the component advertises support for.
  • VirtualHost: Controls the virtual host to connect to. If left empty (default), the value from RemoteHost is used.

Subscriptions & Receiving Messages

The Subscribe and Unsubscribe methods are used to subscribe to and unsubscribe from message destinations on the server.

When Subscribe is called, it will return a subscription Id. To unsubscribe, pass this subscription Id to the Unsubscribe method.

After subscribing to a message destination, any messages received will cause the MessageIn event to fire.

Basic Subscriptions Example

Copy
stomp1.OnMessageIn += (s, e) => { Console.WriteLine("Received message from destination '" + e.Destination + "':"); Console.WriteLine(e.Data); }; string subId = stomp1.Subscribe("test/a/b", false); // Some time later... stomp1.Unsubscribe(subId);

Refer to Subscribe, Unsubscribe, and MessageIn for more information about subscriptions and receiving messages.

Sending Messages

To send messages, use the SendMessage and SendData methods. SendMessage is used to send messages with string payloads, while SendData is used to send messages with binary payloads.

Send String Message Example

Copy
stomp1.SendMessage("test/a/b", "Hello, world!");

Send Binary Message Example

Copy
byte[] fileContent = File.ReadAllBytes("C:\test\stuff.dat"); stomp1.SendData("test/a/b", fileContent);

Refer to SendMessage and SendData for more information about sending messages.

Using Transactions

STOMP transactions are used to group messages together for processing on the server. Messages sent as part of a transaction will not be delivered by the server until the transaction is committed. If the transaction is aborted, the server will discard the messages without attempting to deliver them.

Basic Transaction Example

Copy
// Open a new transaction. stomp1.BeginTransaction("txn1"); // Set the Transaction property to make sure that messages are sent as part of the transaction. stomp1.Transaction = "txn1"; stomp1.SendMessage("test/a/b", "Hello, world!"); stomp1.SendMessage("test/a/b", "This is a test."); stomp1.SendMessage("test/a/b", "Another test!"); // At this point, none of the messages sent above would have been delivered to any clients // subscribed to the "test/a/b" destination yet, because the transaction is still open. // If we close and commit the transaction, the server will then deliver the messages to subscribers, // queue them, or process them in another manner; the behavior is server-dependent. stomp1.CommitTransaction("txn1"); // Or, the transaction can be aborted, in which case the server will discard the messages // without delivering them to the subscribers. //stomp1.AbortTransaction("txn1"); // Reset (or change) the Transaction property after committing or aborting a transaction // so that future messages are not associated with the previous transaction. stomp1.Transaction = "";

Refer to BeginTransaction for more information about using transactions.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

ConnectedTriggers a connection or disconnection.
ContentTypeThe content type of the outgoing message.
FirewallA set of properties related to firewall access.
HeadersUser-defined headers added to outgoing messages.
IncomingHeartbeatSpecifies the server-to-component heartbeat timing.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
LocalPortThe TCP port in the local host where the component binds.
OutgoingHeartbeatSpecifies the component-to-server heartbeat timing.
ParsedHeadersHeaders parsed from incoming messages.
PasswordA password if authentication is to be used.
ReadyToSendIndicates whether the component is ready to send data.
RemoteHostThe address of the remote host. Domain names are resolved to IP addresses.
RemotePortThe port of the STOMP server (default is 61613). The default port for SSL is 61612.
RequestReceiptsWhether the component should request that the server provide message receipts.
SSLAcceptServerCertEncodedThis is the certificate (PEM/Base64 encoded).
SSLCertEncodedThis is the certificate (PEM/Base64 encoded).
SSLCertStoreThis is the name of the certificate store for the client certificate.
SSLCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SSLCertStoreTypeThis is the type of certificate store for this certificate.
SSLCertSubjectThis is the subject of the certificate used for client authentication.
SSLEnabledWhether TLS/SSL is enabled.
SSLProviderThis specifies the SSL/TLS implementation to use.
SSLServerCertEncodedThis is the certificate (PEM/Base64 encoded).
SubscriptionsCollection of current subscriptions.
TimeoutA timeout for the component.
TransactionIdSpecifies the Id of the transaction that outgoing messages are associated with.
UserA username if authentication is to be used.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

AbortTransactionAborts an existing transaction.
AddHeaderAdds a custom header to send with outgoing messages.
BeginTransactionBegins a new transaction.
CommitTransactionCommits an existing transaction.
ConfigSets or retrieves a configuration setting.
ConnectConnects to the remote host.
ConnectToConnects to the remote host.
DisconnectThis method disconnects from the remote host.
DoEventsProcesses events from the internal message queue.
InterruptInterrupt the current action and disconnects from the remote host.
ResetReset the component.
ResetHeadersClear the user-defined headers collection.
SendDataPublishes a message with a raw data payload.
SendMessagePublishes a message with a string payload.
SubscribeSubscribes to a message destination on the server.
UnsubscribeRemoves an existing subscription.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

ConnectedThis event is fired immediately after a connection completes (or fails).
ConnectionStatusThis event is fired to indicate changes in the connection state.
DisconnectedThis event is fired when a connection is closed.
ErrorFired when a component or protocol error occurs.
LogFired once for each log message.
MessageInFired when a message has been received.
MessageOutFired after a message has been sent.
ReadyToSendFired when the component is ready to send data.
ReceiptInFires when the component receives a receipt from the server.
ReceiptOutFires when the component sends a STOMP frame that includes a 'receipt' header.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.
SubscribedFired when the component has subscribed to a message destination on the server.
UnsubscribedFired when the component has unsubscribed from a message destination on the server.

Config Settings


The following is a list of config settings for the component with short descriptions. Click on the links for further details.

AckTransactionIdThe transaction Id to include when sending a message acknowledgment.
CollapseHeadersWhether the component should collapse headers on incoming messages.
ErrorHeadersRaw headers from a STOMP 'ERROR' frame.
LogLevelThe level of detail that is logged.
OpenTransactionsA comma-separated list of currently open transactions.
ProtocolVersionThe agreed-upon STOMP protocol version that the component is using.
RequestAckReceiptsWhether the component should request receipts for any message acknowledgments that are sent.
RequestSubscriptionReceiptsWhether the component should request receipts when sending subscribe and unsubscribe requests.
RequestTransactionReceiptsWhether the component should request receipts when sending begin, commit, and abort transaction requests.
SendCustomFrameSends a frame constructed using the supplied hex byte string.
ServerInfoInformation about the currently connected server.
SessionIdThe server-assigned session Id.
SupportedVersionsWhich STOMP protocol versions the component should advertise support for when connecting.
VirtualHostThe virtual host to connect to.
CloseStreamAfterTransferIf true, the component will close the upload or download stream after the transfer.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the component whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the component binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.

Connected Property (STOMP Component)

Triggers a connection or disconnection.

Syntax

property Connected: Boolean read get_Connected write set_Connected;

Default Value

false

Remarks

This property triggers a connection or disconnection. Setting this property to True makes the component attempt to connect to the host identified by the RemoteHost property. If successful, after the connection is achieved the value of the property changes to True and the Connected event is fired.

Setting this property to False closes the connection.

When connecting to a STOMP server, the component sends information from the following properties, if populated:

In addition to the above properties, the following configuration settings can be set before connecting (though in most cases this is not necessary):

  • SupportedVersions: Controls which STOMP versions the component advertises support for.
  • VirtualHost: Controls the virtual host to connect to. If left empty (default), the value from RemoteHost is used.

This property is not available at design time.

ContentType Property (STOMP Component)

The content type of the outgoing message.

Syntax

property ContentType: String read get_ContentType write set_ContentType;

Default Value

'text/plain'

Remarks

This property is used to specify the content type (MIME type) for outgoing messages sent using SendMessage. The default value is text/plain, which should be sufficient is most cases.

Note that this property is ignored for messages sent using SendData, as such messages do not have a content-type header added to them. The absence of a content-type header indicates to the server that the data should be treated as a binary blob.

This property is not available at design time.

Firewall Property (STOMP Component)

A set of properties related to firewall access.

Syntax

property Firewall: TipqFirewall read get_Firewall write set_Firewall;

Remarks

This is a Firewall-type property, which contains fields describing the firewall through which the component will attempt to connect.

Please refer to the Firewall type for a complete list of fields.

Headers Property (STOMP Component)

User-defined headers added to outgoing messages.

Syntax

property Headers: TipqSTOMPHeaderList read get_Headers write set_Headers;

Remarks

This property holds a collection of STOMPHeader items representing user-defined headers. The headers in this collection are added to each outgoing message sent with SendMessage or SendData.

Note that the STOMP specification defines a number of standard headers necessary for implementing the STOMP protocol. When constructing an outgoing message, the component silently ignores any user-defined headers that are already set by the component.

This property is not available at design time.

Please refer to the STOMPHeader type for a complete list of fields.

IncomingHeartbeat Property (STOMP Component)

Specifies the server-to-component heartbeat timing.

Syntax

property IncomingHeartbeat: Integer read get_IncomingHeartbeat write set_IncomingHeartbeat;

Default Value

0

Remarks

This property specifies the incoming heartbeat interval, which is the number of seconds without any server-to-component communication that the server will allow to elapse before sending the component a heartbeat (keepalive). If set to 0 (default), incoming heartbeats are disabled.

For information about outgoing (component-to-server) heartbeats; see the OutgoingHeartbeat property.

Before Connecting

Before connecting, this property is used to specify the desired incoming heartbeat interval (in seconds). By default, this property is set to 0 (no heartbeat).

During the connection process, the incoming heartbeat interval requested by the component is compared to the minimum interval supported by the server, and the larger of the two values is selected. If one or both sides supply 0 as their value, then no server-to-component heartbeats will be sent.

After Connecting

After connecting, this property cannot be set. Instead, it reflects the incoming heartbeat interval agreed upon by the component and the server during the connection process.

As the incoming heartbeat interval negotiation notes above imply, it is possible that the agreed-upon incoming heartbeat interval may either be larger than what the component requested, or may be 0 (i.e., incoming heartbeats are disabled).

This property is not available at design time.

LocalHost Property (STOMP Component)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

property LocalHost: String read get_LocalHost write set_LocalHost;

Default Value

''

Remarks

The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.

LocalPort Property (STOMP Component)

The TCP port in the local host where the component binds.

Syntax

property LocalPort: Integer read get_LocalPort write set_LocalPort;

Default Value

0

Remarks

This property must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting this property to 0 (default) enables the system to choose an open port at random. The chosen port will be returned by the LocalPort property after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this property when a connection is active will generate an error.

This property is useful when trying to connect to services that require a trusted port in the client side.

OutgoingHeartbeat Property (STOMP Component)

Specifies the component-to-server heartbeat timing.

Syntax

property OutgoingHeartbeat: Integer read get_OutgoingHeartbeat write set_OutgoingHeartbeat;

Default Value

0

Remarks

This property specifies the outgoing heartbeat interval, which is the number of seconds without any component-to-server communication that the component will allow to elapse before sending the server a heartbeat (keepalive). If set to 0 (default), outgoing heartbeats are disabled.

For information about incoming (server-to-component) heartbeats; see the IncomingHeartbeat property.

Before Connecting

Before connecting, this property is used to specify the minimum supported outgoing heartbeat interval (in seconds). By default, this property is set to 0 (no heartbeat).

During the connection process, the minimum outgoing heartbeat interval supported by the component is compared to the interval requested by the server, and the larger of the two values is selected. If one or both sides supply 0 as their value, then no component-to-server heartbeats will be sent.

After Connecting

After connecting, this property cannot be set. Instead, it reflects the outgoing heartbeat interval agreed upon by the component and the server during the connection process.

As the outgoing heartbeat interval negotiation notes above imply, it is possible that the agreed-upon outgoing heartbeat interval may either be larger than the component's supported minimum, or may be 0 (i.e., outgoing heartbeats are disabled).

This property is not available at design time.

ParsedHeaders Property (STOMP Component)

Headers parsed from incoming messages.

Syntax

property ParsedHeaders: TipqSTOMPHeaderList read get_ParsedHeaders;

Remarks

This property holds a collection of STOMPHeader items, representing both standard and user-defined headers parsed from incoming messages. It is populated each time the MessageIn event fires, and is cleared after the MessageIn event completes.

Note that the component collapses headers with duplicate key names by default for incoming messages, only keeping the first header for each unique key. This behavior can be controlled using the CollapseHeaders configuration setting.

This property is read-only and not available at design time.

Please refer to the STOMPHeader type for a complete list of fields.

Password Property (STOMP Component)

A password if authentication is to be used.

Syntax

property Password: String read get_Password write set_Password;

Default Value

''

Remarks

If this property is set when connecting, the component will send the password in the passcode header.

This property is not available at design time.

ReadyToSend Property (STOMP Component)

Indicates whether the component is ready to send data.

Syntax

property ReadyToSend: Boolean read get_ReadyToSend;

Default Value

false

Remarks

This property indicates that the underlying TCP/IP subsystem is ready to accept data. This is True after connecting to the remote host, and will become False if a call to SendData or SendMessage fails due to a WOULDBLOCK condition.

Once data can be sent again, the ReadyToSend event will fire and this property will be True.

If a WOULDBLOCK error occurs while sending a message the component will automatically complete the transmission when sending is possible. No action needs to be taken to re-send the message. ReadyToSend will fire after the component completes any partially sent messages.

This property is read-only and not available at design time.

RemoteHost Property (STOMP Component)

The address of the remote host. Domain names are resolved to IP addresses.

Syntax

property RemoteHost: String read get_RemoteHost write set_RemoteHost;

Default Value

''

Remarks

This property specifies the IP address (IP number in dotted internet format) or Domain Name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.

If this property is set to a Domain Name, a DNS request is initiated, and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.

If the component is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.

By default the component will connect in plaintext. To enable SSL set SSLEnabled to True.

RemotePort Property (STOMP Component)

The port of the STOMP server (default is 61613). The default port for SSL is 61612.

Syntax

property RemotePort: Integer read get_RemotePort write set_RemotePort;

Default Value

61613

Remarks

This property specifies a service port on the remote host to connect to.

A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.

This property is not available at design time.

RequestReceipts Property (STOMP Component)

Whether the component should request that the server provide message receipts.

Syntax

property RequestReceipts: Boolean read get_RequestReceipts write set_RequestReceipts;

Default Value

false

Remarks

This property is used to specify whether the component should request that the server send back confirmations (known as a "receipts" in STOMP terminology) when it receives messages from the component. This is done by adding a receipt header to the outgoing frame.

When this property is set to True, and a message is sent, the ReceiptOut event will fire immediately after the MessageOut event fires.

Note that, while this property only controls receipt requests for outgoing messages, the component is capable of requesting receipts for any outgoing frame type. Use this table to determine which API members control receipt request for each outgoing frame type (all are False by default):

To Request Receipts For... Set The...
Messages RequestReceipts property
Message acknowledgment frames RequestAckReceipts configuration setting
Subscribe and Unsubscribe frames RequestSubscriptionReceipts configuration setting
Begin, Commit, and Abort transaction framesRequestTransactionReceipts configuration setting

Received Receipt Notes

When a receipt is received, the ReceiptIn event fires.

Note that receipts are cumulative, and a STOMP server is not required to send back discrete receipts for each frame it receives that has a receipt header. For example, if the component has sent four message frames with the following receipt header values (in chronological order):

  1. SEND-3
  2. SEND-4
  3. SEND-5
  4. SEND-6
then the server could, at some point, send back a single receipt with a receipt-id header value of SEND-5 to confirm that it has received the first three frames.

This property is not available at design time.

SSLAcceptServerCertEncoded Property (STOMP Component)

This is the certificate (PEM/Base64 encoded).

Syntax

property SSLAcceptServerCertEncoded: String read get_SSLAcceptServerCertEncoded write set_SSLAcceptServerCertEncoded;
property SSLAcceptServerCertEncodedB: TBytes read get_SSLAcceptServerCertEncodedB write set_SSLAcceptServerCertEncodedB;

Default Value

''

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The Store and Subject properties also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

This property is not available at design time.

SSLCertEncoded Property (STOMP Component)

This is the certificate (PEM/Base64 encoded).

Syntax

property SSLCertEncoded: String read get_SSLCertEncoded write set_SSLCertEncoded;
property SSLCertEncodedB: TBytes read get_SSLCertEncodedB write set_SSLCertEncodedB;

Default Value

''

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The Store and Subject properties also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

This property is not available at design time.

SSLCertStore Property (STOMP Component)

This is the name of the certificate store for the client certificate.

Syntax

property SSLCertStore: String read get_SSLCertStore write set_SSLCertStore;
property SSLCertStoreB: TBytes read get_SSLCertStoreB write set_SSLCertStoreB;

Default Value

'MY'

Remarks

This is the name of the certificate store for the client certificate.

The StoreType property denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject property to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

SSLCertStorePassword Property (STOMP Component)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

property SSLCertStorePassword: String read get_SSLCertStorePassword write set_SSLCertStorePassword;

Default Value

''

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

SSLCertStoreType Property (STOMP Component)

This is the type of certificate store for this certificate.

Syntax

property SSLCertStoreType: TipqCertStoreTypes read get_SSLCertStoreType write set_SSLCertStoreType;
TipqCertStoreTypes = ( cstUser, cstMachine, cstPFXFile, cstPFXBlob, cstJKSFile, cstJKSBlob, cstPEMKeyFile, cstPEMKeyBlob, cstPublicKeyFile, cstPublicKeyBlob, cstSSHPublicKeyBlob, cstP7BFile, cstP7BBlob, cstSSHPublicKeyFile, cstPPKFile, cstPPKBlob, cstXMLFile, cstXMLBlob, cstJWKFile, cstJWKBlob, cstSecurityKey, cstBCFKSFile, cstBCFKSBlob, cstPKCS11, cstAuto );

Default Value

cstUser

Remarks

This is the type of certificate store for this certificate.

The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key:

Copy
certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

SSLCertSubject Property (STOMP Component)

This is the subject of the certificate used for client authentication.

Syntax

property SSLCertSubject: String read get_SSLCertSubject write set_SSLCertSubject;

Default Value

''

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

SSLEnabled Property (STOMP Component)

Whether TLS/SSL is enabled.

Syntax

property SSLEnabled: Boolean read get_SSLEnabled write set_SSLEnabled;

Default Value

false

Remarks

This setting specifies whether TLS/SSL is enabled in the component. When False (default) the component operates in plaintext mode. When True TLS/SSL is enabled.

TLS/SSL may also be enabled by setting SSLStartMode. Setting SSLStartMode will automatically update this property value.

This property is not available at design time.

SSLProvider Property (STOMP Component)

This specifies the SSL/TLS implementation to use.

Syntax

property SSLProvider: TipqTSSLProviders read get_SSLProvider write set_SSLProvider;
TipqTSSLProviders = ( sslpAutomatic, sslpPlatform, sslpInternal );

Default Value

sslpAutomatic

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the component will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The component will select a provider depending on the current platform.

When Automatic is selected, on Windows the component will use the platform implementation. On Linux/macOS the component will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used on all platforms.

SSLServerCertEncoded Property (STOMP Component)

This is the certificate (PEM/Base64 encoded).

Syntax

property SSLServerCertEncoded: String read get_SSLServerCertEncoded;
property SSLServerCertEncodedB: TBytes read get_SSLServerCertEncodedB;

Default Value

''

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The Store and Subject properties also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

This property is read-only and not available at design time.

Subscriptions Property (STOMP Component)

Collection of current subscriptions.

Syntax

property Subscriptions: TipqSTOMPSubscriptionList read get_Subscriptions;

Remarks

This property holds a collection of STOMPSubscription items representing the component's current subscriptions.

This property is read-only and not available at design time.

Please refer to the STOMPSubscription type for a complete list of fields.

Timeout Property (STOMP Component)

A timeout for the component.

Syntax

property Timeout: Integer read get_Timeout write set_Timeout;

Default Value

60

Remarks

If the Timeout property is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.

If Timeout is set to a positive value, data is sent in a blocking manner and the component will wait for the operation to complete before returning control. The component will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of Timeout seconds.

The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.

If Timeout expires, and the operation is not yet complete, the component raises an exception.

Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

TransactionId Property (STOMP Component)

Specifies the Id of the transaction that outgoing messages are associated with.

Syntax

property TransactionId: String read get_TransactionId write set_TransactionId;

Default Value

''

Remarks

This property, if not empty, is used to specify which transaction outgoing messages sent using SendMessage or SendData are associated with.

This property must either be empty, or set to the Id of a currently open transaction. The OpenTransactions configuration setting can be queried at any time to retrieve a comma-separated list of currently open transactions' Ids.

Note that this property only affects outgoing messages. It is also possible to send a message acknowledgment as part of a transaction by setting the AckTransactionId configuration setting during the MessageIn event handler.

Refer to BeginTransaction for more information about transactions.

This property is not available at design time.

User Property (STOMP Component)

A username if authentication is to be used.

Syntax

property User: String read get_User write set_User;

Default Value

''

Remarks

If this property is set when connecting, the component will send the user in the login header.

This property is not available at design time.

AbortTransaction Method (STOMP Component)

Aborts an existing transaction.

Syntax

procedure AbortTransaction(Id: String);

Remarks

This method aborts a transaction previously started with BeginTransaction. Id identifies the transaction to abort.

The OpenTransactions configuration setting can be queried to obtain a list of currently-open transactions.

Refer to BeginTransaction for more information about transactions.

AddHeader Method (STOMP Component)

Adds a custom header to send with outgoing messages.

Syntax

procedure AddHeader(Key: String; Value: String);

Remarks

This method is used to add user-defined headers to the list of headers held by the Header* properties.

When SendMessage or SendData is called, all headers in the Header* properties are added to the outgoing message.

Note that the STOMP specification defines a number of standard headers necessary for implementing the STOMP protocol. When constructing an outgoing message, the component silently ignores any user-defined headers that are already set by the component.

BeginTransaction Method (STOMP Component)

Begins a new transaction.

Syntax

procedure BeginTransaction(Id: String);

Remarks

This method begins a new transaction using the specified Id, which must be unique. There is no limit to how many transactions may be open at any given time.

A transaction is a group of messages and message acknowledgments which are all processed atomically when the transaction is committed or aborted.

Messages sent in a transaction will not be delivered to clients subscribed to the messages' destinations until the transaction is committed.

Since it is possible for multiple transactions to be open at any given time, the TransactionId property is used to specify which transaction (if any) messages should be sent in. Similarly, message acknowledgments can be sent in a transaction by setting the AckTransactionId configuration setting during the MessageIn event handler.

The OpenTransactions configuration setting can be queried at any time to retrieve a comma-separated list of currently open transactions' Ids.

Basic Transaction Example

Copy
// Open a new transaction. stomp1.BeginTransaction("txn1"); // Set the Transaction property to make sure that messages are sent as part of the transaction. stomp1.Transaction = "txn1"; stomp1.SendMessage("test/a/b", "Hello, world!"); stomp1.SendMessage("test/a/b", "This is a test."); stomp1.SendMessage("test/a/b", "Another test!"); // At this point, none of the messages sent above would have been delivered to any clients // subscribed to the "test/a/b" destination yet, because the transaction is still open. // If we close and commit the transaction, the server will then deliver the messages to subscribers, // queue them, or process them in another manner; the behavior is server-dependent. stomp1.CommitTransaction("txn1"); // Or, the transaction can be aborted, in which case the server will discard the messages // without delivering them to the subscribers. //stomp1.AbortTransaction("txn1"); // Reset (or change) the Transaction property after committing or aborting a transaction // so that future messages are not associated with the previous transaction. stomp1.Transaction = "";

CommitTransaction Method (STOMP Component)

Commits an existing transaction.

Syntax

procedure CommitTransaction(Id: String);

Remarks

This method commits a transaction previously started with BeginTransaction. Id identifies the transaction to commit.

The OpenTransactions configuration setting can be queried to obtain a list of currently-open transactions.

Refer to BeginTransaction for more information about transactions.

Config Method (STOMP Component)

Sets or retrieves a configuration setting.

Syntax

function Config(ConfigurationString: String): String;

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Connect Method (STOMP Component)

Connects to the remote host.

Syntax

procedure Connect();

Remarks

This method connects to the remote host, specified by RemoteHost and RemotePort. Calling this method is equivalent to setting the Connected property to True.

By default the component will connect in plaintext. To enable SSL set SSLEnabled to True.

When connecting to a STOMP server, the component sends information from the following properties, if populated:

In addition to the above properties, the following configuration settings can be set before connecting (though in most cases this is not necessary):

  • SupportedVersions: Controls which STOMP versions the component advertises support for.
  • VirtualHost: Controls the virtual host to connect to. If left empty (default), the value from RemoteHost is used.

ConnectTo Method (STOMP Component)

Connects to the remote host.

Syntax

procedure ConnectTo(Host: String; Port: Integer);

Remarks

This method connects to the remote host specified by the Host and Port parameters. Calling this method is equivalent to setting the RemoteHost property to Host, setting RemotePort to Port, and then setting the Connected property to True.

By default the component will connect in plaintext. To enable SSL set SSLEnabled to True.

When connecting to a STOMP server, the component sends information from the following properties, if populated:

In addition to the above properties, the following configuration settings can be set before connecting (though in most cases this is not necessary):

  • SupportedVersions: Controls which STOMP versions the component advertises support for.
  • VirtualHost: Controls the virtual host to connect to. If left empty (default), the value from RemoteHost is used.

Disconnect Method (STOMP Component)

This method disconnects from the remote host.

Syntax

procedure Disconnect();

Remarks

This method disconnects from the remote host. Calling this method is equivalent to setting the Connected property to False.

DoEvents Method (STOMP Component)

Processes events from the internal message queue.

Syntax

procedure DoEvents();

Remarks

When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.

Interrupt Method (STOMP Component)

Interrupt the current action and disconnects from the remote host.

Syntax

procedure Interrupt();

Remarks

This method will interrupt the current method (if applicable) and cause the component to disconnect from the remote host.

Reset Method (STOMP Component)

Reset the component.

Syntax

procedure Reset();

Remarks

This method will reset the component's properties to their default values.

ResetHeaders Method (STOMP Component)

Clear the user-defined headers collection.

Syntax

procedure ResetHeaders();

Remarks

This method clears the Header* properties.

SendData Method (STOMP Component)

Publishes a message with a raw data payload.

Syntax

procedure SendData(Destination: String; Data: TBytes);

Remarks

This method publishes a STOMP message with a raw data payload to the specified Destination. The MessageOut event will fire after the message has been sent.

The STOMP specification does not place any restrictions on Destination names. Instead, each STOMP server is free to define its own requirements for, and/or interpretations of, a Destination name; for example, a server might prohibit certain characters, require a specific format, or interpret some patterns in a special manner. Be sure to consult the documentation for your STOMP server to determine how to build proper Destination names.

In addition to the payload, the outgoing messages will include:

  • All user-defined headers held by the Header* properties.
  • If the TransactionId property is populated, the transaction Id that it specifies (which associates the message with that transaction).
Note that the STOMP specification defines a number of standard headers necessary for implementing the STOMP protocol. When constructing an outgoing message, the component silently ignores any user-defined headers that are already set by the component.

If RequestReceipts is enabled when this method is called, the component will request that the server send back a receipt to confirm it has received the message. Refer to RequestReceipts for more information.

Note that no content type is defined for raw data payload messages; so the ContentType property is ignored by this method.

Send String Message Example

Copy
stomp1.SendMessage("test/a/b", "Hello, world!");

Send Binary Message Example

Copy
byte[] fileContent = File.ReadAllBytes("C:\test\stuff.dat"); stomp1.SendData("test/a/b", fileContent);

SendMessage Method (STOMP Component)

Publishes a message with a string payload.

Syntax

procedure SendMessage(Destination: String; Message: String);

Remarks

This method publishes a STOMP message with a string payload to the specified Destination. The MessageOut event will fire after the message has been sent.

The ContentType property can be used to specify the content type of the payload. By default, ContentType is set to text/plain.

The STOMP specification does not place any restrictions on Destination names. Instead, each STOMP server is free to define its own requirements for, and/or interpretations of, a Destination name; for example, a server might prohibit certain characters, require a specific format, or interpret some patterns in a special manner. Be sure to consult the documentation for your STOMP server to determine how to build proper Destination names.

In addition to the payload, the outgoing messages will include:

  • All user-defined headers held by the Header* properties.
  • If the TransactionId property is populated, the transaction Id that it specifies (which associates the message with that transaction).
Note that the STOMP specification defines a number of standard headers necessary for implementing the STOMP protocol. When constructing an outgoing message, the component silently ignores any user-defined headers that are already set by the component.

If RequestReceipts is enabled when this method is called, the component will request that the server send back a receipt to confirm it has received the message. Refer to RequestReceipts for more information.

Send String Message Example

Copy
stomp1.SendMessage("test/a/b", "Hello, world!");

Send Binary Message Example

Copy
byte[] fileContent = File.ReadAllBytes("C:\test\stuff.dat"); stomp1.SendData("test/a/b", fileContent);

Subscribe Method (STOMP Component)

Subscribes to a message destination on the server.

Syntax

function Subscribe(Destination: String; RequireAcks: Boolean): String;

Remarks

This method is used to subscribe to the specified message Destination on the server. The Id of the subscription is returned.

Once subscribed, the Subscribed event will fire and an item will be added to the Subscription* properties. The MessageIn event will fire anytime a message is received for any subscription.

The STOMP specification does not place any restrictions on Destination names. Instead, each STOMP server is free to define its own requirements for, and/or interpretations of, a Destination name; for example, a server might prohibit certain characters, require a specific format, or interpret some patterns in a special manner. Be sure to consult the documentation for your STOMP server to determine how to build proper Destination names.

If the RequireAcks parameter is set to True, the server will expect the component to send it a message acknowledgment for each message it delivers as part of this subscription. (Refer to the MessageIn event for more information about sending message acknowledgments).

Basic Subscriptions Example

Copy
stomp1.OnMessageIn += (s, e) => { Console.WriteLine("Received message from destination '" + e.Destination + "':"); Console.WriteLine(e.Data); }; string subId = stomp1.Subscribe("test/a/b", false); // Some time later... stomp1.Unsubscribe(subId);

Unsubscribe Method (STOMP Component)

Removes an existing subscription.

Syntax

procedure Unsubscribe(Id: String);

Remarks

This method removes an existing subscription identified by the given Id, unsubscribing the component from the destination associated with the subscription.

Once unsubscribed, the relevant item will be removed from the Subscription* properties and the Unsubscribed event will fire.

Basic Subscriptions Example

Copy
stomp1.OnMessageIn += (s, e) => { Console.WriteLine("Received message from destination '" + e.Destination + "':"); Console.WriteLine(e.Data); }; string subId = stomp1.Subscribe("test/a/b", false); // Some time later... stomp1.Unsubscribe(subId);

Connected Event (STOMP Component)

This event is fired immediately after a connection completes (or fails).

Syntax

type TConnectedEvent = procedure (
  Sender: TObject;
  StatusCode: Integer;
  const Description: String
) of Object;

property OnConnected: TConnectedEvent read FOnConnected write FOnConnected;

Remarks

If the connection is made normally, StatusCode is 0 and Description is 'OK'.

If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

ConnectionStatus Event (STOMP Component)

This event is fired to indicate changes in the connection state.

Syntax

type TConnectionStatusEvent = procedure (
  Sender: TObject;
  const ConnectionEvent: String;
  StatusCode: Integer;
  const Description: String
) of Object;

property OnConnectionStatus: TConnectionStatusEvent read FOnConnectionStatus write FOnConnectionStatus;

Remarks

The ConnectionStatus event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.

The ConnectionEvent parameter indicates the type of connection event. Values may include the following:

Firewall connection complete.
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.
StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Disconnected Event (STOMP Component)

This event is fired when a connection is closed.

Syntax

type TDisconnectedEvent = procedure (
  Sender: TObject;
  StatusCode: Integer;
  const Description: String
) of Object;

property OnDisconnected: TDisconnectedEvent read FOnDisconnected write FOnDisconnected;

Remarks

If the connection is broken normally, StatusCode is 0 and Description is 'OK'.

If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.

Please refer to the Error Codes section for more information.

Error Event (STOMP Component)

Fired when a component or protocol error occurs.

Syntax

type TErrorEvent = procedure (
  Sender: TObject;
  ErrorCode: Integer;
  const Description: String;
  Data: String;
  DataB: TBytes
) of Object;

property OnError: TErrorEvent read FOnError write FOnError;

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the component raises an exception.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

STOMP Protocol Errors

The component will fire the Error event anytime the server reports a STOMP protocol error (i.e., the component receives an ERROR frame).

When this occurs, ErrorCode will be 600, Description will reflect the value of the ERROR frame's message header, and Data will contain the body of the ERROR frame (if one is present).

The ErrorHeaders configuration setting will also be populated with the raw headers from the ERROR frame for the duration of the Error event handler.

Log Event (STOMP Component)

Fired once for each log message.

Syntax

type TLogEvent = procedure (
  Sender: TObject;
  LogLevel: Integer;
  const Message: String;
  const LogType: String
) of Object;

property OnLog: TLogEvent read FOnLog write FOnLog;

Remarks

This event fires once for each log message generated by the component. The verbosity is controlled by the LogLevel setting.

LogLevel indicates the level of the Message. Possible values are:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data is logged.
3 (Debug) Debug data is logged.

LogType identifies the type of log entry. Possible values are:

  • Info: General information about the component.
  • Acknowledgment: Information about outgoing message acknowledgments.
  • Frame: Frame content logging.

MessageIn Event (STOMP Component)

Fired when a message has been received.

Syntax

type TMessageInEvent = procedure (
  Sender: TObject;
  const MessageId: String;
  const SubscriptionId: String;
  const Destination: String;
  Data: String;
  DataB: TBytes;
  const ContentType: String;
  var Ack: Boolean
) of Object;

property OnMessageIn: TMessageInEvent read FOnMessageIn write FOnMessageIn;

Remarks

This events fires whenever the component has received a message.

In addition to the message details exposed by the event parameters, the ParsedHeader* properties are populated with the headers parsed from the message. When the MessageIn event handler exits, the parsed headers are cleared. The following parameters are available within this event:

  • MessageId: The unique Id of the message.
  • SubscriptionId: The subscription Id the message is associated with.
  • Destination: The message destination on the server which the message originated from.
  • Data: The message's payload.
  • ContentType: The content type of the message (may be empty).
  • Ack: Set to True or False to control whether the component should send back a positive (True, default) or negative (False) message acknowledgment.

Message acknowledgments are only sent back to the server for messages which require them. A positive acknowledgment indicates that the message has been accepted, while a negative acknowledgment represents that the message has been rejected.

The following two configuration settings are also relevant in the context of sending back message acknowledgments for incoming messages:

  • The AckTransactionId configuration setting, if not empty, specifies a transaction Id to associate the message acknowledgment with. It can only be set during the MessageIn event handler, and will be reset when the event handler ends.
  • The RequestAckReceipts configuration setting controls whether the component will request that the server confirm receipt of the message acknowledgment. It is False by default, and can be set at any time.

MessageOut Event (STOMP Component)

Fired after a message has been sent.

Syntax

type TMessageOutEvent = procedure (
  Sender: TObject;
  const Destination: String;
  Data: String;
  DataB: TBytes;
  const ContentType: String
) of Object;

property OnMessageOut: TMessageOutEvent read FOnMessageOut write FOnMessageOut;

Remarks

This event fires after a message has been sent using either SendMessage or SendData. The following parameters are available within this event:

  • Destination: The destination the message was sent to.
  • Data: The message's payload.
  • ContentType: The content type of the message (always empty for messages sent with SendData).

ReadyToSend Event (STOMP Component)

Fired when the component is ready to send data.

Syntax

type TReadyToSendEvent = procedure (
  Sender: TObject
) of Object;

property OnReadyToSend: TReadyToSendEvent read FOnReadyToSend write FOnReadyToSend;

Remarks

The ReadyToSend event indicates that the underlying TCP/IP subsystem is ready to accept data after a call to SendData or SendMessage fails due to a WOULDBLOCK condition. The event is also fired immediately after a connection to the remote host is established.

ReceiptIn Event (STOMP Component)

Fires when the component receives a receipt from the server.

Syntax

type TReceiptInEvent = procedure (
  Sender: TObject;
  const ReceiptId: String
) of Object;

property OnReceiptIn: TReceiptInEvent read FOnReceiptIn write FOnReceiptIn;

Remarks

This event fires anytime the component receives a receipt (that is, a confirmation that the server has received one or more frames) from the server. The ReceiptId parameter reflects the value of the receipt-id header in the incoming RECEIPT frame.

Note that receipts are cumulative, and a STOMP server is not required to send back discrete receipts for each frame it receives that has a receipt header. For example, if the component has sent four message frames with the following receipt header values (in chronological order):

  1. SEND-3
  2. SEND-4
  3. SEND-5
  4. SEND-6
then the server could, at some point, send back a single receipt with a receipt-id header value of SEND-5 to confirm that it has received the first three frames.

Refer to RequestReceipts for more information about receipts.

ReceiptOut Event (STOMP Component)

Fires when the component sends a STOMP frame that includes a 'receipt' header.

Syntax

type TReceiptOutEvent = procedure (
  Sender: TObject;
  const ReceiptId: String
) of Object;

property OnReceiptOut: TReceiptOutEvent read FOnReceiptOut write FOnReceiptOut;

Remarks

This event fires anytime the component sends any STOMP frame that includes a receipt header on it. The ReceiptId parameter reflects the value of the receipt header.

Having a receipt header on an outgoing frame indicates to the server that it should send back a receipt to confirm that it has received the frame (though it is not required to do so immediately; see ReceiptIn for details). Anytime the server sends back a receipt, the ReceiptIn event will fire.

Refer to RequestReceipts for more information about receipts.

SSLServerAuthentication Event (STOMP Component)

Fired after the server presents its certificate to the client.

Syntax

type TSSLServerAuthenticationEvent = procedure (
  Sender: TObject;
  CertEncoded: String;
  CertEncodedB: TBytes;
  const CertSubject: String;
  const CertIssuer: String;
  const Status: String;
  var Accept: Boolean
) of Object;

property OnSSLServerAuthentication: TSSLServerAuthenticationEvent read FOnSSLServerAuthentication write FOnSSLServerAuthentication;

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (STOMP Component)

Fired when secure connection progress messages are available.

Syntax

type TSSLStatusEvent = procedure (
  Sender: TObject;
  const Message: String
) of Object;

property OnSSLStatus: TSSLStatusEvent read FOnSSLStatus write FOnSSLStatus;

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

Subscribed Event (STOMP Component)

Fired when the component has subscribed to a message destination on the server.

Syntax

type TSubscribedEvent = procedure (
  Sender: TObject;
  const Id: String;
  const Destination: String;
  RequireAcks: Boolean
) of Object;

property OnSubscribed: TSubscribedEvent read FOnSubscribed write FOnSubscribed;

Remarks

This event fires each time the component has subscribed to a message destination on the server. The following parameters are available within this event:

  • Id: The Id used to identify the subscription.
  • Destination: The message destination on the server which the subscription is associated with.
  • RequireAcks: Whether messages the component receives as a result of the subscription will require acknowledgments to be sent back to the server.

Unsubscribed Event (STOMP Component)

Fired when the component has unsubscribed from a message destination on the server.

Syntax

type TUnsubscribedEvent = procedure (
  Sender: TObject;
  const Id: String;
  const Destination: String
) of Object;

property OnUnsubscribed: TUnsubscribedEvent read FOnUnsubscribed write FOnUnsubscribed;

Remarks

This event fires each time the component has unsubscribed from a message destination on the server. The following parameters are available within this event:

  • Id: The Id that was used to identify the subscription.
  • Destination: The message destination on the server which the subscription was associated with.

Firewall Type

The firewall the component will connect through.

Remarks

When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.

Fields

AutoDetect
Boolean
Default Value: False

This property tells the component whether or not to automatically detect and use firewall system settings, if available.

FirewallType
TipqFirewallTypes
Default Value: 0

This property determines the type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. Port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. Port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. Port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. Port is set to 1080.

Host
String
Default Value: ""

This property contains the name or IP address of firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the component raises an exception.

Password
String
Default Value: ""

This property contains a password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password properties are used to connect and authenticate to the given firewall. If the authentication fails, the component raises an exception.

Port
Integer
Default Value: 0

This property contains the transmission control protocol (TCP) port for the firewall Host. See the description of the Host property for details.

Note: This property is set automatically when FirewallType is set to a valid value. See the description of the FirewallType property for details.

User
String
Default Value: ""

This property contains a user name if authentication is to be used connecting through a firewall. If the Host is specified, this property and Password properties are used to connect and authenticate to the given Firewall. If the authentication fails, the component raises an exception.

Constructors

constructor Create();

STOMPHeader Type

A STOMP header.

Remarks

This type represents a STOMP header.

Fields

Key
String
Default Value: ""

This header's key.

This property holds this header's key (or name).

Value
String
Default Value: ""

This header's value.

This property holds this header's value.

Constructors

constructor Create();
constructor Create(valKey: String; valValue: String);

STOMPSubscription Type

A STOMP subscription.

Remarks

This type represents a STOMP subscription.

Fields

Destination
String (read-only)
Default Value: ""

The destination on the server that this subscription is associated with.

This property reflects the destination on the server that this subscription is associated with.

Id
String (read-only)
Default Value: ""

This subscription's unique Id.

This property reflects the unique Id of this subscription.

Config Settings (STOMP Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

STOMP Config Settings

AckTransactionId:   The transaction Id to include when sending a message acknowledgment.

This configuration setting can be set during the MessageIn event handler to have the component use its value to add a transaction header to the outgoing message acknowledgment.

Note that the component won't send a message acknowledgment for messages which don't require one, and in such cases any value set to this configuration setting will be ignored.

This configuration setting can only be set while inside the MessageIn event handler, and is reset when the event handler ends.

CollapseHeaders:   Whether the component should collapse headers on incoming messages.

The configuration setting controls whether the component will collapse headers on incoming messages, keeping only the first instance of any headers with duplicate keys. The default is True.

Keep in mind that, even if this setting is disabled, STOMP servers are not required to pass through duplicate headers when delivering messages (i.e., some server may choose to discard duplicate headers before delivering a message).

Note that changing this setting will only affect messages received in the future.

ErrorHeaders:   Raw headers from a STOMP 'ERROR' frame.

If the Error event fires due to a STOMP protocol error (e.g., the ErrorCode event argument is 600), this configuration setting will contain a plain-text list of headers from the ERROR frame, with one header per line, separated by CRLF ('#13#10') .

LogLevel:   The level of detail that is logged.

This setting controls the level of detail that is logged through the Log event. Possible values are:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data is logged.
3 (Debug) Debug data is logged.

OpenTransactions:   A comma-separated list of currently open transactions.

This configuration setting can be queried to obtain a comma-separated list of Ids for all currently open transactions.

ProtocolVersion:   The agreed-upon STOMP protocol version that the component is using.

After connecting to a STOMP server, this configuration setting can be queried to determine which STOMP protocol version the component and server agreed to use. Return value will be a string like, e.g., "1.2".

Note that this setting is read-only; to control which STOMP protocol versions the component advertises support for, set the SupportedVersions configuration setting before connecting.

RequestAckReceipts:   Whether the component should request receipts for any message acknowledgments that are sent.

This configuration setting controls whether the component will request receipts from the server for any message acknowledgments that are sent. The default is False.

Refer to RequestReceipts for general information about receipts, and refer to Subscribe and MessageIn for more information about message acknowledgments.

RequestSubscriptionReceipts:   Whether the component should request receipts when sending subscribe and unsubscribe requests.

This configuration setting controls whether the component will request receipts from the server when subscription requests are sent using the Subscribe and Unsubscribe methods. The default is False.

Refer to RequestReceipts for general information about receipts.

RequestTransactionReceipts:   Whether the component should request receipts when sending begin, commit, and abort transaction requests.

This configuration setting controls whether the component will request receipts from the server when transaction requests are sent using the BeginTransaction, CommitTransaction, and AbortTransaction methods. The default is False.

Refer to RequestReceipts for general information about receipts.

SendCustomFrame:   Sends a frame constructed using the supplied hex byte string.

Setting this setting to a string with hex bytes will cause the component to construct and send a custom frame. This should not be necessary except for debugging purposes.

ServerInfo:   Information about the currently connected server.

This configuration setting can be queried after connecting to a STOMP server to obtain information about the server itself (similar to an HTTP user-agent).

Note that some STOMP servers may choose not to communicate server information, in which case this setting will not be populated.

SessionId:   The server-assigned session Id.

This configuration setting can be queried after connecting to a STOMP server to obtain the session Id value which the server assigned to this connection.

Note that some STOMP servers may choose not to assign a session Id, in which case this setting will not be populated.

SupportedVersions:   Which STOMP protocol versions the component should advertise support for when connecting.

This configuration setting is used to specify which versions of the STOMP protocol the component should advertise support for when connecting to the server. Valid values for this setting are:

  • "1.1,1.2" (default)
  • "1.1"
  • "1.2"

The highest STOMP protocol version supported by both the component and server will be the one chosen. After connecting, the ProtocolVersion configuration setting can be queried to determine which protocol version was chosen.

Note: This setting can only be changed before connecting.

VirtualHost:   The virtual host to connect to.

This configuration setting can be set before connecting in order to explicitly specify a value to use for the host header in the CONNECT frame.

Note that, in most cases, this setting can be left empty, in which case the component will automatically set the host header in the CONNECT frame to match the value set to RemoteHost.

TCPClient Config Settings

CloseStreamAfterTransfer:   If true, the component will close the upload or download stream after the transfer.

This setting determines whether the input or output stream is closed after the transfer completes. When set to True (default), all streams will be closed after a transfer is completed. In order to keep streams open after the transfer of data, set this to False. the default value is True.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the component will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the component whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by components that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the component raises an exception.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by components that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the component raises an exception.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the component binds.

This must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the component will use IPv4 exclusively. When set to 1, the component will use IPv6 exclusively. To instruct the component to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the component will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the component is the same.

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the component will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the component will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The component will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component raises an exception.

When set to 0 (default) the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the component will use OCSP to check the validity of the server certificate. If set to 1 or 2, the component will first obtain the OCSP URL from the server certificate's OCSP extension. The component will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component raises an exception.

When set to 0 (default) the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform:

Copy
obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal:
Copy
obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30) [Platform Only]
SSL2 12 (Hex 0C) [Platform Only]

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is True by default, but can be set to False to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the component will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:

Copy
server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:

Copy
server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:

Copy
server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:

Copy
server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:

Copy
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:

Copy
server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the component will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the component raises an exception.

The format of this value is a comma separated list of hash-signature combinations. For instance:

Copy
component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Trappable Errors (STOMP Component)

STOMP Errors

600   STOMP protocol error. Refer to the error message for more information.
601   Malformed STOMP frame received. Refer to error message for more information.
602   Invalid value provided for the SupportedVersions configuration setting.
603   Invalid subscription Id provided. Refer to error message for more information.
604   Invalid transaction Id provided. Refer to error message for more information.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the component is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).