AzureBlob Component

Properties   Methods   Events   Config Settings   Errors  

The AzureBlob component provides an easy to use interface to Microsoft's Azure Blob Storage service.

Syntax

TcsAzureBlob

Remarks

The AzureBlob component offers an easy-to-use API for the Microsoft Azure Blob Storage service. Capabilities include uploading and downloading blobs of all types, strong encryption support, container management, and more.

Authentication

Authentication is simple, set the Account property to the name of the Azure Storage account to operate against, and set the AccessKey property to an Azure access key associated with that account.

Alternatively, this component supports authentication via OAuth 2.0. First, perform OAuth authentication using the OAuth property to set the appropriate fields for the chosen OAuthClientProfile and OAuthGrantType. Typically, the following fields should be set to the below values:

Authorization Server URL "https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"
Token Server URL "https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"
Scopes "offline_access https://{ACCOUNT}.blob.core.windows.net/user_impersonation"

Below is a brief description of the different OAuthClientProfile and OAuthGrantType values that are supported by this component. For a more in-depth description of what needs to be set, refer to the service documentation.

Application Profile

This profile encompasses the most basic grant types that OAuth supports. When this profile is set, all the requests and response handling is done by the component. Depending on the grant type, this may involve launching a browser so a user can login to authenticate with a authorization server. It may also involve starting an embedded web server to receive a response from a redirect.

To start the authentication and authorization process, the Authorize method should be called. If the authorization and authentication was successful, then the OAuthAccessToken property will be populated. Additionally, if a refresh token was provided the OAuthRefreshToken property will be populated as well. These values of the fields are for informational purposes. The component will also cache these tokens along with when the OAuthAccessToken will be expired. When a method that makes requests to the service provider is called or the Authorize method is called the component will automatically check to see if the access token is expired. If it is, it will then automatically try to get a new OAuthAccessToken. If the Authorize method was not used and user interaction would be required, the component will throw an error which can be caught. When user interaction is needed depends on what grant type is set in the OAuthGrantType property. To force the component to only check the access token when the Authorize method is called, the OAuthAutomaticRefresh configuration setting can be set to false.

A brief description of the supported values for the OAuthGrantType property are below. For more information, see the service documentation.

Authorization Code

When using the Authorization Code grant type, the component will use an authorization code to get an access token. For this OAuthGrantType the component expects a OAuthClientId, OAuthClientSecret, OAuthServerAuthURL, and OAuthServerTokenURL to be set. When the Authorize method is called, the component will start the embedded web server and launch the browser so the user can authorize the application. Once the user authorizes, the service provider will redirect them to the embedded web server and the component will parse the authorization code, setting the OAuthAuthorizationCode property, from the redirect. Immediately, the component will make a request to the token server to exchange the authorization code for an access token. The token server will return an access token and possibly a refresh token. If the OAuthRefreshToken property is set, or a refresh token is cached, then the component will not launch the browser and use the refresh token in its request to the token server instead of an authorization code.

blob.OAuth.ClientProfile = OAuthClientProfiles.cocpApplication; blob.OAuth.GrantType = OAuthGrantTypes.cogtAuthorizationCode; blob.OAuth.ClientId = CLIENT_ID; blob.OAuth.ClientSecret = CLIENT_SECRET; blob.OAuth.AuthorizationScope = "https://{ACCOUNT}.blob.core.windows.net/user_impersonation"; blob.OAuth.ServerAuthURL = "https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize"; blob.OAuth.ServerTokenURL = "https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token"; blob.Authorize();

Implicit

Note: This grant type is considered insecure and should only be used when necessary.

When using the Implicit grant type, the component will request the authorization server to get an access token. For this OAuthGrantType the component expects a OAuthClientId, OAuthClientSecret, and OAuthServerAuthURL to be set. When the Authorize method is called, the component will start the embedded web server and launch the browser so the user can authorize the application. Once the user authorizes, the service provider will redirect them to the embedded web server and the component will parse the access token from the redirect.

A disadvantage of the grant type is that can not use a refresh token to silently get a new access token. Most service providers offer a way to silently get a new access token. See the service documentation for specifics. This means the component will not be able to automatically get a fresh token once it expires.

Password

Note: This grant type is considered insecure and should only be used when necessary.

When using the Resource Owner Password Credentials grant type, the component will authenticate as the resource owner. This allows for the component to avoid user interaction. This grant type often has specific limitations put on it by the service provider. See the service documentation for more details.

For this OAuthGrantType the component requires OAuthPasswordGrantUsername, OAuthClientSecret, and OAuthServerTokenURL to be set. The OAuthClientSecret should be set to the password of the account instead of a typical secret. In some cases, the OAuthClientId also needs to be set. When the Authorize method is called, the component will make a request to the token server for an access token using the username and password. The token server will return an access token if the authentication was successful. When this access token is expired, the component will automatically (see above for detailed description) make a new request to get a fresh one.

Web Profile

This profile is similar to setting the component to the Application profile and Authorization Code grant type except the component will not launch the browser. It is typically used in situations where there is a back-end that is supporting some front end. This profile expects that OAuthClientId, OAuthClientSecret, OAuthServerAuthURL, OAuthServerTokenURL, and the OAuthReturnURL properties to be set. Before calling the Authorize method, the OAuthWebAuthURL property should be queried to get a URL. This URL should be used to redirect the user to the authorization page for the service provider. The redirect_uri parameter of this URL is mapped to the OAuthReturnURL property. The OAuthReturnURL property should be set to some web server that will parse the authorization code out of the query parameter from the redirect. Once the authorization code is parsed, it should be passed back to the server where it is then set to the OAuthAuthorizationCode property. Once that is set, the Authorize method can be called to exchange the authorization code for an access token and refresh token if provided. The component will then cache these values like normal and use them to make requests. If the OAuthRefreshToken field is set, or a refresh token is cached, then the Authorize method can immediately be called to make a request to the token server to get a new access token.

External OAuth Support

For complex profiles or grant types, or for more control of the flow, it is possible to perform OAuth authentication using the OAuth component or a separate process. Once complete you should have an authorization string which looks like:
Bearer ACCESS_TOKEN_VALUE

Assign this value to the Authorization property before attempting any operations. Setting the Authorization property will cause the component to ignore the values set in the OAuth property.

Consult the Azure Blob Storage service's documentation for more information about using OAuth authentication.

Usage

Once authenticated, you can start interacting with the Azure Blob Storage service. The following list shows some of the methods used to accomplish common tasks:

The component support much more than just the functionality described above; refer to the complete API, below, for more information.

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

AccessKeyThe Azure access key to use for authentication.
AccessPolicyCountThe number of records in the AccessPolicy arrays.
AccessPolicyExpiryTimeThe expiry time of the access policy.
AccessPolicyIdThe unique Id of the access policy.
AccessPolicyPermissionsThe permissions that the access policy grants.
AccessPolicyStartTimeThe start time of the access policy.
AccountThe Azure storage account name.
AuthorizationOAuth 2.0 Authorization Token.
BlobDataThe data that was downloaded, or that should be uploaded.
BlobDelimiterThe delimiter string to use when listing blobs.
BlobMarkerA marker indicating what page of blobs to return next.
BlobCountThe number of records in the Blob arrays.
BlobContainerThe container that the blob resides in.
BlobContentDispositionThe blob's content disposition.
BlobContentEncodingThe blob's content encoding.
BlobContentLengthThe size of the blob.
BlobContentMD5An MD5 hash of the blob's content.
BlobContentTypeThe blob's content type.
BlobCreatedTimeThe creation time of the blob.
BlobETagThe ETag of the blob.
BlobIsLeasedWhether the blob is current leased.
BlobIsLeaseInfiniteWhether the blob's lease duration is infinite.
BlobLeaseStateThe lease state of the blob.
BlobModifiedTimeThe last modified time of the blob.
BlobNameThe name of the blob.
BlobSequenceNumThe sequence number of the page blob.
BlobSnapshotThe blob snapshot identifier.
BlobSoftDeletedWhether the blob has been soft-deleted.
BlobTypeThe blob's type.
BlockCountThe number of records in the Block arrays.
BlockIdThe Id of the block.
BlockSizeThe size of the block.
BlockTypeThe type of block.
ContainerSelects a container.
ContainerMarkerA marker indicating what page of containers to return next.
ContainerCountThe number of records in the Container arrays.
ContainerETagThe ETag of the container.
ContainerHasImmutabilityPolicyWhether an immutability policy is set on the container.
ContainerHasLegalHoldWhether there are any legal holds on the container.
ContainerIsLeasedWhether the container is currently leased.
ContainerIsLeaseInfiniteWhether the container's lease duration is infinite.
ContainerLeaseStateThe lease state of the container.
ContainerModifiedTimeThe last modified time of the container.
ContainerNameThe name of the container.
ContainerPublicAccessThe container's public access level.
EncryptionAlgorithmThe encryption algorithm.
EncryptionPasswordThe encryption password.
FirewallAutoDetectThis property tells the component whether or not to automatically detect and use firewall system settings, if available.
FirewallTypeThis property determines the type of firewall to connect through.
FirewallHostThis property contains the name or IP address of firewall (optional).
FirewallPasswordThis property contains a password if authentication is to be used when connecting through the firewall.
FirewallPortThis property contains the transmission control protocol (TCP) port for the firewall Host .
FirewallUserThis property contains a user name if authentication is to be used connecting through a firewall.
IdleThe current status of the component.
LeaseIdThe lease Id to include when making requests.
LocalFileThe location of the local file.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
MetadataCountThe number of records in the Metadata arrays.
MetadataNameThe name of the metadata item.
MetadataValueThe value of the metadata item.
OAuthAccessTokenThe access token returned by the authorization server.
OAuthAuthorizationCodeThe authorization code that is exchanged for an access token.
OAuthAuthorizationScopeThe scope request or response parameter used during authorization.
OAuthClientIdThe id of the client assigned when registering the application.
OAuthClientProfileThe type of client that is requesting authorization.
OAuthClientSecretThe secret value for the client assigned when registering the application.
OAuthGrantTypeThe OAuth grant type used to acquire an OAuth access token.
OAuthRefreshTokenSpecifies the refresh token received from or sent to the authorization server.
OAuthReturnURLThe URL where the user (browser) returns after authenticating.
OAuthServerAuthURLThe URL of the authorization server.
OAuthServerTokenURLThe URL of the token server used to obtain the access token.
OAuthWebAuthURLThe URL to which the user should be re-directed for authorization.
OtherHeadersThis property includes other headers as determined by the user (optional).
OverwriteWhether to overwrite the local file, or remote blob.
PageRangeCountThe number of records in the PageRange arrays.
PageRangeFirstThe first byte of the range.
PageRangeLastThe last byte of the range.
ParsedHeaderCountThe number of records in the ParsedHeader arrays.
ParsedHeaderFieldThis property contains the name of the HTTP header (this is the same case as it is delivered).
ParsedHeaderValueThis property contains the header contents.
PrefixA prefix used to restrict the results returned when listing blobs or containers.
ProxyAuthSchemeThis property is used to tell the component which type of authorization to perform when connecting to the proxy.
ProxyAutoDetectThis property tells the component whether or not to automatically detect and use proxy system settings, if available.
ProxyPasswordThis property contains a password if authentication is to be used for the proxy.
ProxyPortThis property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).
ProxyServerIf a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
ProxySSLThis property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.
ProxyUserThis property contains a username if authentication is to be used for the proxy.
QueryParamCountThe number of records in the QueryParam arrays.
QueryParamNameThe name of the query parameter.
QueryParamValueThe value of the query parameter.
RangeThe range of bytes to request.
SnapshotThe blob snapshot to make requests against.
SSLAcceptServerCertEncodedThis is the certificate (PEM/Base64 encoded).
SSLCertEncodedThis is the certificate (PEM/Base64 encoded).
SSLCertStoreThis is the name of the certificate store for the client certificate.
SSLCertStorePasswordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
SSLCertStoreTypeThis is the type of certificate store for this certificate.
SSLCertSubjectThis is the subject of the certificate used for client authentication.
SSLProviderThis specifies the SSL/TLS implementation to use.
SSLServerCertEncodedThis is the certificate (PEM/Base64 encoded).
StartByteThe byte offset from which to resume the upload or download.
TimeoutA timeout for the component.
UseSSLWhether to use SSL/TLS when connecting.

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

AbortCopyAborts a copy operation.
AddBlockAdds a block to the Blocks properties.
AddMetadataAdds a metadata item to the Metadata properties.
AddQueryParamAdds a query parameter to the QueryParams properties.
AppendBlockAppends a block of data to an append blob.
AuthorizeGet the authorization string required to access the protected resource.
CalcAuthorizationCalculates the Authorization header based on provided credentials.
ClearPagesClears a range of pages in a page blob.
ConfigSets or retrieves a configuration setting.
CopyBlobCopies a blob.
CreateBlobCreates a new blob of the specified type.
CreateContainerCreates a new container.
CreateSnapshotCreates a new snapshot of a blob.
DeleteBlobDeletes a blob.
DeleteContainerDeletes a container.
GetBlobDownloads a blob.
GetBlobInfoGets a blob's information and metadata.
GetContainerACLGets the stored access policies and public access level for a container.
GetContainerInfoGets a container's information and metadata.
GetLinkCreates a link that provides access to a container, blob, or snapshot.
GetUserDelegationKeyRequests a new user delegation key.
InterruptInterrupt the current method.
LeaseCreates or manages a lease on a blob or container.
ListBlobsLists the blobs in a container.
ListBlocksLists the blocks associated with a block blob.
ListContainersLists the containers in the blob storage account.
ListPageRangesLists the page ranges of a page blob.
PutBlockUploads a new block of data to a block blob.
PutBlockListCommits a list of data blocks to a block blob.
PutPagesUploads a range of pages to a page blob.
ResetResets the component to its initial state.
SendCustomRequestSends a custom request to the Azure Blob Storage service.
SetContainerACLSets the stored access policies and public access level for a container.
UndeleteBlobUndeletes a soft-deleted blob.
UpdateBlobInfoUpdates a blob's information.
UpdateMetadataSets the metadata for a blob or container.
UpdatePageBlobUpdates a page blob's size and/or sequence number.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

BlobListFires once for each blob returned when listing blobs.
BlockListFires once for each block returned when listing blocks.
ContainerListFires once for each container returned when listing containers.
EndTransferThis event fires when a document finishes transferring.
ErrorFired when information is available about errors during data delivery.
FragmentCompleteFires after each block in an automatic block-based upload is complete.
HeaderThis event is fired every time a header line comes in.
LogThis event fires once for each log message.
MetadataListFires once for each metadata item returned when listing metadata.
PrefixListFires once for each common prefix returned when listing blobs.
ProgressFires during an upload or download to indicate transfer progress.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.
StartTransferThis event fires when a document starts transferring (after the headers).
TransferThis event is fired while a document transfers (delivers document).

Config Settings


The following is a list of config settings for the component with short descriptions. Click on the links for further details.

AccumulatePagesWhether the component should accumulate subsequent pages of results when listing them.
APIVersionThe Azure Storage REST API version being used by the component.
AppendedBlockCountThe number of blocks that have been appended to the append blob.
AutoAddBlocksWhether to automatically add an item to the Blocks collection after a block is uploaded.
BlobAccessTier[i]The access tier of the specified blob.
BlobAccessTierChanged[i]The time at which the specified blob's access tier was last changed.
BlobAccessTierInferred[i]Whether the specified blob's access tier is inferred.
BlobArchiveStatus[i]The rehydration status of the specified blob.
BlobCacheControl[i]The Cache-Control value of the specified blob.
BlobContentLanguage[i]The content language of the specified blob.
BlobRetentionDaysLeft[i]The number of days left before the specified soft-deleted blob is permanently deleted.
BlobSoftDeleteTime[i]The time at which the specified blob was soft-deleted.
BlockListStringSeparatorThe separator string to use when parsing a block list string.
CopyIdThe Id of a copy operation.
CopyProgressThe progress of a copy operation.
CopySourceURLThe Azure storage URL to use as the copy source.
CopyStatusThe status of a copy operation.
CopyStatusDescThe status description for a copy operation.
DateFormatThe format to use for date and time.
DownloadTempFileThe temporary file used when downloading encrypted data.
EncodeBlockIdsWhether the component should automatically Base64-encode and -decode block Ids.
EncryptionIVThe initialization vector to be used for encryption/decryption.
EncryptionKeyThe key to use during encryption/decryption.
EncryptionPasswordKDFThe KDF algorithm to use during password based encryption and decryption.
EndpointThe Azure Storage endpoint suffix that the component should use.
FragmentSizeThe block size to use when uploading a new block blob.
IfMatchThe ETag which the blob must currently have in order for a request to succeed.
IncludeSnapshotsWhether blob snapshots should be included when listing blobs.
IncludeSoftDeletedWhether soft-deleted blobs should be included when listing blobs.
IncludeUncommittedBlobsWhether uncommitted block blobs should be included when listing blobs.
LeaseBreakPeriodThe approximate number of seconds the lease will remain in the 'breaking' state.
ListWithMetadataWhether to include metadata items when listing blobs or containers.
MaxResultsThe maximum number of results to return when listing blobs or containers.
OAuthAccessTokenExpirationThe lifetime of the access token.
OAuthAuthorizationTokenTypeThe type of access token returned.
OAuthAutomaticRefreshWhether or not to refresh an expired access token automatically.
OAuthBrowserResponseTimeoutSpecifies the amount of time to wait for a response from the browser.
OAuthIncludeEmptyRedirectURIWhether an empty redirect_uri parameter is included in requests.
OAuthJWTPayloadThe payload of the JWT access token if present.
OAuthJWTXChildCountThe number of child elements of the current element.
OauthJWTXChildName[i]The name of the child element.
OAuthJWTXChildXText[i]The inner text of the child element.
OAuthJWTXElementThe name of the current element.
OauthJWTXParentThe parent of the current element.
OAuthJWTXPathProvides a way to point to a specific element in the returned payload of a JWT based access token.
OAuthJWTXSubTreeA snapshot of the current element in the document.
OAuthJWTXTextThe text of the current element.
OAuthParamCountSpecifies the number of additional parameters variables to include in the request.
OAuthParamName[i]Specifies the parameter name at the specified index.
OAuthParamValue[i]Specifies the parameter value at the specified index.
OAuthPasswordGrantUsernameUsed in the Resource Owner Password grant type.
OAuthPKCEChallengeEncodingThe PKCE code challenge method to use.
OAuthPKCEVerifierThe PKCE verifier used to generate the challenge.
OAuthReUseWebServerDetermines if the same server instance is used between requests.
OAuthUsePKCESpecifies if PKCE should be used.
OAuthWebServerActiveSpecifies and controls whether the embedded web server is active.
OAuthWebServerCertStoreThe certificate with private key to use when SSL is enabled.
OAuthWebServerCertStorePasswordThe certificate with private key to use when SSL is enabled.
OAuthWebServerCertStoreTypeThe certificate with private key to use when SSL is enabled.
OAuthWebServerCertSubjectThe certificate with private key to use when SSL is enabled.
OAuthWebServerFailedResponseThe custom response that will be displayed to the user if authentication failed.
OAuthWebServerHostThe hostname used by the embedded web server displayed in the ReturnURL.
OAuthWebServerPortThe local port on which the embedded web server listens.
OAuthWebServerResponseThe custom response that will be displayed to the user.
OAuthWebServerSSLEnabledWhether the web server requires SSL connections.
PageRangeCleared[i]Whether the specified page range has been cleared.
Prefix[i]The i'th common prefix returned.
PrefixCountThe number of common prefixed returned.
PreviousSnapshotAn opaque DateTime value that identifies the snapshot to list page range changes since.
ProgressAbsoluteWhether the component should track transfer progress absolutely.
ProgressStepHow often the progress event should be fired, in terms of percentage.
RawRequestReturns the data that was sent to the server.
RawResponseReturns the data that was received from the server.
SendMetadataWhether to send metadata items when creating blobs and containers.
SendMetadataOnCopyWhether to send metadata items when copying blobs.
SendMetadataOnPutBlockListWhether to send metadata items when committing a new block list.
SendMetadataOnSnapshotWhether to send metadata items when creating a blob snapshot.
SharedAccessSignatureSpecifies a SAS token to use for authentication.
SimpleUploadLimitThe maximum data size the component should attempt to upload directly when creating a block blob.
StorePrefixListWhether to store the common prefixes returned when listing blobs.
TempPathThe path to the directory where temporary files are created.
UserDelegationKeyA user delegation key to use for constructing SAS tokens.
XChildCountThe number of child elements of the current element.
XChildName[i]The name of the child element.
XChildXText[i]The inner text of the child element.
XElementThe name of the current element.
XParentThe parent of the current element.
XPathProvides a way to point to a specific element in the returned XML or JSON response.
XSubTreeA snapshot of the current element in the document.
XTextThe text of the current element.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the component.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the component will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the component.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the component.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the component whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the component binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificate to use during SSL client authentication.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificate to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
UseFIPSCompliantAPITells the component whether or not to use FIPS certified APIs.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

AccessKey Property (AzureBlob Component)

The Azure access key to use for authentication.

Syntax

__property String AccessKey = { read=FAccessKey, write=FSetAccessKey };

Default Value

""

Remarks

This property specifies the Azure access key that should be used for authentication. It must be set before attempting any operations which connect to the server.

Both primary and secondary access keys are valid.

Note: this property's value is ignored if the Authorization property is populated.

This property is not available at design time.

Data Type

String

AccessPolicyCount Property (AzureBlob Component)

The number of records in the AccessPolicy arrays.

Syntax

__property int AccessPolicyCount = { read=FAccessPolicyCount, write=FSetAccessPolicyCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at AccessPolicyCount - 1.

This property is not available at design time.

Data Type

Integer

AccessPolicyExpiryTime Property (AzureBlob Component)

The expiry time of the access policy.

Syntax

__property String AccessPolicyExpiryTime[int AccessPolicyIndex] = { read=FAccessPolicyExpiryTime, write=FSetAccessPolicyExpiryTime };

Default Value

""

Remarks

The expiry time of the access policy.

This property specifies the UTC expiry time of the access policy, formatted according to this page in Azure's documentation.

This property can be empty if the access policy doesn't include an expiry time.

The AccessPolicyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the AccessPolicyCount property.

This property is not available at design time.

Data Type

String

AccessPolicyId Property (AzureBlob Component)

The unique Id of the access policy.

Syntax

__property String AccessPolicyId[int AccessPolicyIndex] = { read=FAccessPolicyId, write=FSetAccessPolicyId };

Default Value

""

Remarks

The unique Id of the access policy.

This property specifies the unique Id of the access policy, which may be up to 64 characters in length.

The AccessPolicyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the AccessPolicyCount property.

This property is not available at design time.

Data Type

String

AccessPolicyPermissions Property (AzureBlob Component)

The permissions that the access policy grants.

Syntax

__property String AccessPolicyPermissions[int AccessPolicyIndex] = { read=FAccessPolicyPermissions, write=FSetAccessPolicyPermissions };

Default Value

""

Remarks

The permissions that the access policy grants.

This property specifies the permissions that the access policy grants, in the form of an abbreviated permissions list formatted according to this page in Azure's documentation.

This property can be empty if the access policy doesn't include any permissions.

The AccessPolicyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the AccessPolicyCount property.

This property is not available at design time.

Data Type

String

AccessPolicyStartTime Property (AzureBlob Component)

The start time of the access policy.

Syntax

__property String AccessPolicyStartTime[int AccessPolicyIndex] = { read=FAccessPolicyStartTime, write=FSetAccessPolicyStartTime };

Default Value

""

Remarks

The start time of the access policy.

This property specifies the UTC start time of the access policy, formatted according to this page in Azure's documentation.

This property can be empty if the access policy doesn't include a start time.

The AccessPolicyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the AccessPolicyCount property.

This property is not available at design time.

Data Type

String

Account Property (AzureBlob Component)

The Azure storage account name.

Syntax

__property String Account = { read=FAccount, write=FSetAccount };

Default Value

""

Remarks

This property specifies the name of the Azure storage account to operate against. It must be set before attempting any operations which connect to the server.

This property is not available at design time.

Data Type

String

Authorization Property (AzureBlob Component)

OAuth 2.0 Authorization Token.

Syntax

__property String Authorization = { read=FAuthorization, write=FSetAuthorization };

Default Value

""

Remarks

This component supports authentication via OAuth 2.0. First, perform OAuth authentication using the OAuth* properties, using the OAuth component or a separate process. If using the OAuth* properties, then the Authorization property will not be used.

Bearer ACCESS_TOKEN
Assign this value to the Authorization property before attempting any operations. Consult the documentation for the service for more information about supported scope values and more details on OAuth authentication.

Note: if both this property and AccessKey are populated, this property takes precedence, and the component will use OAuth authentication instead of shared key authentication. The Account property must be set in either case.

Data Type

String

BlobData Property (AzureBlob Component)

The data that was downloaded, or that should be uploaded.

Syntax

__property String BlobData = { read=FBlobData, write=FSetBlobData };
__property DynamicArray<Byte> BlobDataB = { read=FBlobDataB, write=FSetBlobDataB };

Default Value

""

Remarks

This property is populated with blob data after calling GetBlob if LocalFile is not set.

This property can also be set before calling AppendBlock, CreateBlob (for block blobs), PutBlock, or PutPages; its data will be uploaded if LocalFile is not set.

This property is not available at design time.

Data Type

Byte Array

BlobDelimiter Property (AzureBlob Component)

The delimiter string to use when listing blobs.

Syntax

__property String BlobDelimiter = { read=FBlobDelimiter, write=FSetBlobDelimiter };

Default Value

""

Remarks

If this property is non-empty when ListBlobs is called, any blobs whose names contain the same string between the specified Prefix and the first occurrence of the specified delimiter that follow will be rolled up into a "common prefix" element, which is returned in place of the individual blobs themselves.

The PrefixList event will fire once for each common prefix returned. If the StorePrefixList configuration setting is enabled, the component will also populate the PrefixCount and Prefix[i] configuration settings

Blob Namespace Traversal

By using the BlobDelimiter and Prefix properties in tandem, applications can effectively "traverse" a virtual hierarchy of blobs as if it were a filesystem. For example, assume that blobs with the following names exist within a container:

  • MyCompany
  • MyCompany/Department1
  • MyCompany/Department2
  • MyCompany/Department2/EmployeeA
  • MyCompany/Department2/EmployeeB

With BlobDelimiter set to /, we can set Prefix to successively "deeper" values before calling ListBlobs for the following effect:

Prefix Value Blobs Returned Prefixes Returned
(empty) MyCompany MyCompany/
MyCompany/ MyCompany/Department1

MyCompany/Department2

MyCompany/Department2/
MyCompany/Department2/ MyCompany/Department2/EmployeeA

MyCompany/Department2/EmployeeB

(none)

This property is not available at design time.

Data Type

String

BlobMarker Property (AzureBlob Component)

A marker indicating what page of blobs to return next.

Syntax

__property String BlobMarker = { read=FBlobMarker, write=FSetBlobMarker };

Default Value

""

Remarks

This property will be populated when ListBlobs is called if the results are paged and there are more pages. To list all blobs, continue to call ListBlobs until this property returns empty string.

Refer to ListBlobs for more information.

This property is not available at design time.

Data Type

String

BlobCount Property (AzureBlob Component)

The number of records in the Blob arrays.

Syntax

__property int BlobCount = { read=FBlobCount, write=FSetBlobCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at BlobCount - 1.

This property is not available at design time.

Data Type

Integer

BlobContainer Property (AzureBlob Component)

The container that the blob resides in.

Syntax

__property String BlobContainer[int BlobIndex] = { read=FBlobContainer };

Default Value

""

Remarks

The container that the blob resides in.

This property reflects the name of the container that the blob resides in.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is read-only and not available at design time.

Data Type

String

BlobContentDisposition Property (AzureBlob Component)

The blob's content disposition.

Syntax

__property String BlobContentDisposition[int BlobIndex] = { read=FBlobContentDisposition, write=FSetBlobContentDisposition };

Default Value

""

Remarks

The blob's content disposition.

This property specifies the blob's content disposition.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is not available at design time.

Data Type

String

BlobContentEncoding Property (AzureBlob Component)

The blob's content encoding.

Syntax

__property String BlobContentEncoding[int BlobIndex] = { read=FBlobContentEncoding, write=FSetBlobContentEncoding };

Default Value

""

Remarks

The blob's content encoding.

This property specifies the blob's content encoding. Always empty for uncommitted block blobs.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is not available at design time.

Data Type

String

BlobContentLength Property (AzureBlob Component)

The size of the blob.

Syntax

__property __int64 BlobContentLength[int BlobIndex] = { read=FBlobContentLength };

Default Value

0

Remarks

The size of the blob.

For block blobs and append blobs, this property reflects the size of the blob's (committed) data, in bytes. For page blobs, this property reflects the blob's capacity in bytes.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is read-only and not available at design time.

Data Type

Long64

BlobContentMD5 Property (AzureBlob Component)

An MD5 hash of the blob's content.

Syntax

__property String BlobContentMD5[int BlobIndex] = { read=FBlobContentMD5, write=FSetBlobContentMD5 };

Default Value

""

Remarks

An MD5 hash of the blob's content.

This property specifies an MD5 hash of the blob's content. Always empty for uncommitted block blobs.

Note that the server generally won't calculate this value automatically.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is not available at design time.

Data Type

String

BlobContentType Property (AzureBlob Component)

The blob's content type.

Syntax

__property String BlobContentType[int BlobIndex] = { read=FBlobContentType, write=FSetBlobContentType };

Default Value

""

Remarks

The blob's content type.

This property specifies the blob's content type. Always empty for uncommitted block blobs.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is not available at design time.

Data Type

String

BlobCreatedTime Property (AzureBlob Component)

The creation time of the blob.

Syntax

__property String BlobCreatedTime[int BlobIndex] = { read=FBlobCreatedTime };

Default Value

""

Remarks

The creation time of the blob.

This property reflects the creation time of the blob, formatted according to RFC 1123.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is read-only and not available at design time.

Data Type

String

BlobETag Property (AzureBlob Component)

The ETag of the blob.

Syntax

__property String BlobETag[int BlobIndex] = { read=FBlobETag };

Default Value

""

Remarks

The ETag of the blob.

This property reflects the ETag of the blob. Always empty for uncommitted block blobs.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is read-only and not available at design time.

Data Type

String

BlobIsLeased Property (AzureBlob Component)

Whether the blob is current leased.

Syntax

__property bool BlobIsLeased[int BlobIndex] = { read=FBlobIsLeased };

Default Value

false

Remarks

Whether the blob is current leased.

This property indicates whether the blob is currently leased.

This property is always false if BlobSoftDeleted is true and/or BlobSnapshot is non-empty.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is read-only and not available at design time.

Data Type

Boolean

BlobIsLeaseInfinite Property (AzureBlob Component)

Whether the blob's lease duration is infinite.

Syntax

__property bool BlobIsLeaseInfinite[int BlobIndex] = { read=FBlobIsLeaseInfinite };

Default Value

false

Remarks

Whether the blob's lease duration is infinite.

This property indicates whether the blob's lease duration is fixed (false) or infinite (true).

This property is always false when BlobIsLeased is false.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is read-only and not available at design time.

Data Type

Boolean

BlobLeaseState Property (AzureBlob Component)

The lease state of the blob.

Syntax

__property TcsAzureBlobBlobLeaseStates BlobLeaseState[int BlobIndex] = { read=FBlobLeaseState };
enum TcsAzureBlobBlobLeaseStates { ablsAvailable=0, ablsLeased=1, ablsExpired=2, ablsBreaking=3, ablsBroken=4 };

Default Value

ablsAvailable

Remarks

The lease state of the blob.

This property reflects the lease state of the blob. Possible values are:

ablsAvailable (0) The blob's lease is unlocked and can be acquired.
ablsLeased (1) The blob's lease is locked.
ablsExpired (2) The lease duration has expired.
ablsBreaking (3) The lease has been broken, but will continue to be locked until the break period expires.
ablsBroken (4) The lease has been broken, and the break period has expired.

This property is always ablsAvailable (0) when BlobIsLeased is false.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is read-only and not available at design time.

Data Type

Integer

BlobModifiedTime Property (AzureBlob Component)

The last modified time of the blob.

Syntax

__property String BlobModifiedTime[int BlobIndex] = { read=FBlobModifiedTime };

Default Value

""

Remarks

The last modified time of the blob.

This property reflects the last modified time of the blob, formatted according to RFC 1123. Always empty for uncommitted block blobs.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is read-only and not available at design time.

Data Type

String

BlobName Property (AzureBlob Component)

The name of the blob.

Syntax

__property String BlobName[int BlobIndex] = { read=FBlobName, write=FSetBlobName };

Default Value

""

Remarks

The name of the blob.

This property specifies the name of the blob.

Note: Blobs cannot be renamed; this property is only writable so that applications can add new items to the Blob* properties for use with UpdateBlobInfo (which looks up items in said properties by blob name).

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is not available at design time.

Data Type

String

BlobSequenceNum Property (AzureBlob Component)

The sequence number of the page blob.

Syntax

__property __int64 BlobSequenceNum[int BlobIndex] = { read=FBlobSequenceNum };

Default Value

0

Remarks

The sequence number of the page blob.

This property reflects the sequence number of the page blob; it is always -1 for block blobs and append blobs.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is read-only and not available at design time.

Data Type

Long64

BlobSnapshot Property (AzureBlob Component)

The blob snapshot identifier.

Syntax

__property String BlobSnapshot[int BlobIndex] = { read=FBlobSnapshot };

Default Value

""

Remarks

The blob snapshot identifier.

If the current item represents a blob snapshot, this property will be populated with the opaque DateTime value that identifies the snapshot. If the current items represents a base blob, this property will be empty.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is read-only and not available at design time.

Data Type

String

BlobSoftDeleted Property (AzureBlob Component)

Whether the blob has been soft-deleted.

Syntax

__property bool BlobSoftDeleted[int BlobIndex] = { read=FBlobSoftDeleted };

Default Value

false

Remarks

Whether the blob has been soft-deleted.

This property indicates whether the blob (or snapshot, if BlobSnapshot is non-empty) has been soft-deleted.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is read-only and not available at design time.

Data Type

Boolean

BlobType Property (AzureBlob Component)

The blob's type.

Syntax

__property TcsAzureBlobBlobTypes BlobType[int BlobIndex] = { read=FBlobType };
enum TcsAzureBlobBlobTypes { abtBlockBlob=0, abtPageBlob=1, abtAppendBlob=2 };

Default Value

abtBlockBlob

Remarks

The blob's type.

This property reflects the blob's type. Possible values are:

abtBlockBlob (0) Block blob
abtPageBlob (1) Page blob
abtAppendBlob (2) Append blob

Refer to Azure's Understanding block blobs, append blobs, and page blobs article for more information about blob types.

The BlobIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlobCount property.

This property is read-only and not available at design time.

Data Type

Integer

BlockCount Property (AzureBlob Component)

The number of records in the Block arrays.

Syntax

__property int BlockCount = { read=FBlockCount, write=FSetBlockCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at BlockCount - 1.

This property is not available at design time.

Data Type

Integer

BlockId Property (AzureBlob Component)

The Id of the block.

Syntax

__property String BlockId[int BlockIndex] = { read=FBlockId, write=FSetBlockId };

Default Value

""

Remarks

The Id of the block.

This property specifies the Id of the block.

Block Ids must be Base64-encoded when sent to the server. By default, the component will automatically Base64-encode block Ids as they are sent, and Base64-decode them as they are received. This behavior can be configured using the EncodeBlockIds configuration setting.

All block Ids must be less than or equal to 64 bytes in length before being Base64-encoded. Additionally, all blocks Ids within a single block blob must be unique, and of the exact same length after Base64-encoding.

The BlockIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlockCount property.

This property is not available at design time.

Data Type

String

BlockSize Property (AzureBlob Component)

The size of the block.

Syntax

__property int BlockSize[int BlockIndex] = { read=FBlockSize };

Default Value

-1

Remarks

The size of the block.

This property reflects the size of the block, in bytes.

This property is only populated by calls to ListBlocks, and will be -1 in all other cases.

The BlockIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlockCount property.

This property is read-only and not available at design time.

Data Type

Integer

BlockType Property (AzureBlob Component)

The type of block.

Syntax

__property TcsAzureBlobBlockTypes BlockType[int BlockIndex] = { read=FBlockType, write=FSetBlockType };
enum TcsAzureBlobBlockTypes { abktCommitted=0, abktUncommitted=1, abktLatest=2 };

Default Value

abktCommitted

Remarks

The type of block.

When populated by ListBlocks, this property reflects the block's type (one of the first two values listed below). When used during a PutBlockList operation, this property specifies which block list the server should search for the block Id specified by BlockId.

Possible values are:

Value Meaning During PutBlockList Operations
abktCommitted (0) Search for a committed block with the specified Id.
abktUncommitted (1) Search for an uncommitted block with the specified Id.
abktLatest (2) Search for an uncommitted block with the specified Id; and then, if one isn't found, search for a committed block.

The BlockIndex parameter specifies the index of the item in the array. The size of the array is controlled by the BlockCount property.

This property is not available at design time.

Data Type

Integer

Container Property (AzureBlob Component)

Selects a container.

Syntax

__property String Container = { read=FContainer, write=FSetContainer };

Default Value

""

Remarks

This property selects a container, by name, for the component to operate against. It must be set before attempting most operations.

Container Name Rules

Container names must adhere to the following rules:

  • Must be 3 to 63 characters long.
  • Must start with a letter or number; and may only contain letters, numbers, and hyphens.
  • All letters much be lowercase. (For convenience, the component will automatically lowercase all letters in any value assigned to Container.)
  • All hyphens must be immediately preceded and followed by a letter or number (consecutive hyphens are not allowed).

This property is not available at design time.

Data Type

String

ContainerMarker Property (AzureBlob Component)

A marker indicating what page of containers to return next.

Syntax

__property String ContainerMarker = { read=FContainerMarker, write=FSetContainerMarker };

Default Value

""

Remarks

This property will be populated when ListContainers is called if the results are paged and there are more pages. To list all containers, continue to call ListContainers until this property returns empty string.

Refer to ListContainers for more information.

This property is not available at design time.

Data Type

String

ContainerCount Property (AzureBlob Component)

The number of records in the Container arrays.

Syntax

__property int ContainerCount = { read=FContainerCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at ContainerCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

ContainerETag Property (AzureBlob Component)

The ETag of the container.

Syntax

__property String ContainerETag[int ContainerIndex] = { read=FContainerETag };

Default Value

""

Remarks

The ETag of the container.

This property reflects the container's ETag.

The ContainerIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ContainerCount property.

This property is read-only and not available at design time.

Data Type

String

ContainerHasImmutabilityPolicy Property (AzureBlob Component)

Whether an immutability policy is set on the container.

Syntax

__property bool ContainerHasImmutabilityPolicy[int ContainerIndex] = { read=FContainerHasImmutabilityPolicy };

Default Value

false

Remarks

Whether an immutability policy is set on the container.

This property indicates whether there is an immutability policy set on the container.

The ContainerIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ContainerCount property.

This property is read-only and not available at design time.

Data Type

Boolean

ContainerHasLegalHold Property (AzureBlob Component)

Whether there are any legal holds on the container.

Syntax

__property bool ContainerHasLegalHold[int ContainerIndex] = { read=FContainerHasLegalHold };

Default Value

false

Remarks

Whether there are any legal holds on the container.

This property indicates whether there are any legal holds on the container.

The ContainerIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ContainerCount property.

This property is read-only and not available at design time.

Data Type

Boolean

ContainerIsLeased Property (AzureBlob Component)

Whether the container is currently leased.

Syntax

__property bool ContainerIsLeased[int ContainerIndex] = { read=FContainerIsLeased };

Default Value

false

Remarks

Whether the container is currently leased.

This property indicates whether the container is currently leased.

The ContainerIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ContainerCount property.

This property is read-only and not available at design time.

Data Type

Boolean

ContainerIsLeaseInfinite Property (AzureBlob Component)

Whether the container's lease duration is infinite.

Syntax

__property bool ContainerIsLeaseInfinite[int ContainerIndex] = { read=FContainerIsLeaseInfinite };

Default Value

false

Remarks

Whether the container's lease duration is infinite.

This property indicates whether the container's lease duration is fixed (false) or infinite (true).

This property is always false when ContainerIsLeased is false.

The ContainerIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ContainerCount property.

This property is read-only and not available at design time.

Data Type

Boolean

ContainerLeaseState Property (AzureBlob Component)

The lease state of the container.

Syntax

__property TcsAzureBlobContainerLeaseStates ContainerLeaseState[int ContainerIndex] = { read=FContainerLeaseState };
enum TcsAzureBlobContainerLeaseStates { aclsAvailable=0, aclsLeased=1, aclsExpired=2, aclsBreaking=3, aclsBroken=4 };

Default Value

aclsAvailable

Remarks

The lease state of the container.

This property reflects the lease state of the container. Possible values are:

aclsAvailable (0) The container's lease is unlocked and can be acquired.
aclsLeased (1) The container's lease is locked.
aclsExpired (2) The lease duration has expired.
aclsBreaking (3) The lease has been broken, but will continue to be locked until the break period expires.
aclsBroken (4) The lease has been broken, and the break period has expired.

This property is always aclsAvailable (0) when ContainerIsLeased is false.

The ContainerIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ContainerCount property.

This property is read-only and not available at design time.

Data Type

Integer

ContainerModifiedTime Property (AzureBlob Component)

The last modified time of the container.

Syntax

__property String ContainerModifiedTime[int ContainerIndex] = { read=FContainerModifiedTime };

Default Value

""

Remarks

The last modified time of the container.

This property reflects the last modified time of the container, formatted according to RFC 1123.

The ContainerIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ContainerCount property.

This property is read-only and not available at design time.

Data Type

String

ContainerName Property (AzureBlob Component)

The name of the container.

Syntax

__property String ContainerName[int ContainerIndex] = { read=FContainerName };

Default Value

""

Remarks

The name of the container.

This property reflects the name of the container.

The ContainerIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ContainerCount property.

This property is read-only and not available at design time.

Data Type

String

ContainerPublicAccess Property (AzureBlob Component)

The container's public access level.

Syntax

__property TcsAzureBlobContainerPublicAccess ContainerPublicAccess[int ContainerIndex] = { read=FContainerPublicAccess };
enum TcsAzureBlobContainerPublicAccess { acpaNone=0, acpaBlobs=1, acpaContainer=2 };

Default Value

acpaNone

Remarks

The container's public access level.

This property reflects the container's public access level. Possible values are:

acpaNone (0) The container is private.
acpaBlobs (1) Blob data within the container is publicly readable, but blobs cannot be listed.
acpaContainer (2) Container information and blob data within the container is publicly readable, and blobs can be listed.

The ContainerIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ContainerCount property.

This property is read-only and not available at design time.

Data Type

Integer

EncryptionAlgorithm Property (AzureBlob Component)

The encryption algorithm.

Syntax

__property TcsAzureBlobEncryptionAlgorithms EncryptionAlgorithm = { read=FEncryptionAlgorithm, write=FSetEncryptionAlgorithm };
enum TcsAzureBlobEncryptionAlgorithms { eaAES=0, eaBlowfish=1, eaCAST=2, eaDES=3, eaIDEA=4, eaRC2=5, eaRC4=6, eaTEA=7, eaTripleDES=8, eaTwofish=9, eaRijndael=10, eaChaCha=11, eaXSalsa20=12 };

Default Value

eaAES

Remarks

This property specifies the encryption algorithm to be used. The maximum allowable key size is automatically used for the selected algorithm. Possible values are:

Algorithm Key Size
0 (eaAES - default) 256
1 (eaBlowfish) 448
2 (eaCAST) 128
3 (eaDES) 64
4 (eaIDEA) 128
5 (eaRC2) 128
6 (eaRC4) 2048
7 (eaTEA) 128
8 (eaTripleDES) 192
9 (eaTwofish) 256
10 (eaRijndael) 256
11 (eaChaCha) 256
12 (eaXSalsa20) 256

Data Type

Integer

EncryptionPassword Property (AzureBlob Component)

The encryption password.

Syntax

__property String EncryptionPassword = { read=FEncryptionPassword, write=FSetEncryptionPassword };

Default Value

""

Remarks

If this property is populated when UploadFile or DownloadFile is called, the component will attempt to encrypt or decrypt the data before uploading or after downloading it.

The component uses the value specified here to generate the necessary encryption Key and IV values using the PKCS5 password digest algorithm. This provides a simpler alternative to creating and managing Key and IV values directly.

However, it is also possible to explicitly specify the Key and IV values to use by setting the EncryptionKey and EncryptionIV configuration settings. This may be necessary if, e.g., the data needs to be encrypted/decrypted by another utility which generates Key and IV values differently.

This property is not available at design time.

Data Type

String

FirewallAutoDetect Property (AzureBlob Component)

This property tells the component whether or not to automatically detect and use firewall system settings, if available.

Syntax

__property bool FirewallAutoDetect = { read=FFirewallAutoDetect, write=FSetFirewallAutoDetect };

Default Value

False

Remarks

This property tells the component whether or not to automatically detect and use firewall system settings, if available.

Data Type

Boolean

FirewallType Property (AzureBlob Component)

This property determines the type of firewall to connect through.

Syntax

__property TcsAzureBlobFirewallTypes FirewallType = { read=FFirewallType, write=FSetFirewallType };
enum TcsAzureBlobFirewallTypes { fwNone=0, fwTunnel=1, fwSOCKS4=2, fwSOCKS5=3, fwSOCKS4A=10 };

Default Value

fwNone

Remarks

This property determines the type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. FirewallPort is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Data Type

Integer

FirewallHost Property (AzureBlob Component)

This property contains the name or IP address of firewall (optional).

Syntax

__property String FirewallHost = { read=FFirewallHost, write=FSetFirewallHost };

Default Value

""

Remarks

This property contains the name or IP address of firewall (optional). If a FirewallHost is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the component raises an exception.

Data Type

String

FirewallPassword Property (AzureBlob Component)

This property contains a password if authentication is to be used when connecting through the firewall.

Syntax

__property String FirewallPassword = { read=FFirewallPassword, write=FSetFirewallPassword };

Default Value

""

Remarks

This property contains a password if authentication is to be used when connecting through the firewall. If FirewallHost is specified, the FirewallUser and FirewallPassword properties are used to connect and authenticate to the given firewall. If the authentication fails, the component raises an exception.

Data Type

String

FirewallPort Property (AzureBlob Component)

This property contains the transmission control protocol (TCP) port for the firewall Host .

Syntax

__property int FirewallPort = { read=FFirewallPort, write=FSetFirewallPort };

Default Value

0

Remarks

This property contains the transmission control protocol (TCP) port for the firewall FirewallHost. See the description of the FirewallHost property for details.

Note: This property is set automatically when FirewallType is set to a valid value. See the description of the FirewallType property for details.

Data Type

Integer

FirewallUser Property (AzureBlob Component)

This property contains a user name if authentication is to be used connecting through a firewall.

Syntax

__property String FirewallUser = { read=FFirewallUser, write=FSetFirewallUser };

Default Value

""

Remarks

This property contains a user name if authentication is to be used connecting through a firewall. If the FirewallHost is specified, this property and FirewallPassword properties are used to connect and authenticate to the given Firewall. If the authentication fails, the component raises an exception.

Data Type

String

Idle Property (AzureBlob Component)

The current status of the component.

Syntax

__property bool Idle = { read=FIdle };

Default Value

True

Remarks

Idle will be False if the component is currently busy (communicating and/or waiting for an answer), and True at all other times.

This property is read-only.

Data Type

Boolean

LeaseId Property (AzureBlob Component)

The lease Id to include when making requests.

Syntax

__property String LeaseId = { read=FLeaseId, write=FSetLeaseId };

Default Value

""

Remarks

This property specifies the lease Id to include when making requests. If non-empty, this property's value must be a GUID string formatted in one of the styles described by Microsoft's .NET Guid(string) constructor documentation. For example: dddddddd-dddd-dddd-dddd-dddddddddddd, where each d is a single case-insensitive hex digit.

The following table indicates whether this property should be populated when calling a method on a container or blob that has an active lease.

For methods in one of the "MUST" categories: if this property is empty, requests will fail if the container or blob has an active lease. For CreateBlob and CopyBlob, note that this property must be empty if the target blob does not yet exist.

For all methods listed above: if this property is populated, requests will fail if the container or blob doesn't have an active lease; or if it does, but the lease Id specified by this property does not match.

Finally, note that this property is used in a specific manner by the Lease method; refer to its documentation for more information.

This property is not available at design time.

Data Type

String

LocalFile Property (AzureBlob Component)

The location of the local file.

Syntax

__property String LocalFile = { read=FLocalFile, write=FSetLocalFile };

Default Value

""

Remarks

This property specifies the location of a file on disk. This is used as the source file when calling AppendBlock, CreateBlob (for block blobs), PutBlock, or PutPages; and as the destination file when calling GetBlob.

Data Type

String

LocalHost Property (AzureBlob Component)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

__property String LocalHost = { read=FLocalHost, write=FSetLocalHost };

Default Value

""

Remarks

The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.

Data Type

String

MetadataCount Property (AzureBlob Component)

The number of records in the Metadata arrays.

Syntax

__property int MetadataCount = { read=FMetadataCount, write=FSetMetadataCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at MetadataCount - 1.

This property is not available at design time.

Data Type

Integer

MetadataName Property (AzureBlob Component)

The name of the metadata item.

Syntax

__property String MetadataName[int MetadataIndex] = { read=FMetadataName, write=FSetMetadataName };

Default Value

""

Remarks

The name of the metadata item.

This property specifies the name of the metadata item. Note that metadata item names are case-preserving, but not case-sensitive.

Note that the component will automatically prepend x-ms-meta- to this value when submitting metadata items to the server; and will automatically strip that prefix from this value when retrieving them from the server.

The MetadataIndex parameter specifies the index of the item in the array. The size of the array is controlled by the MetadataCount property.

This property is not available at design time.

Data Type

String

MetadataValue Property (AzureBlob Component)

The value of the metadata item.

Syntax

__property String MetadataValue[int MetadataIndex] = { read=FMetadataValue, write=FSetMetadataValue };

Default Value

""

Remarks

The value of the metadata item.

This property specifies the value of the metadata item.

The MetadataIndex parameter specifies the index of the item in the array. The size of the array is controlled by the MetadataCount property.

This property is not available at design time.

Data Type

String

OAuthAccessToken Property (AzureBlob Component)

The access token returned by the authorization server.

Syntax

__property String OAuthAccessToken = { read=FOAuthAccessToken, write=FSetOAuthAccessToken };

Default Value

""

Remarks

The access token returned by the authorization server. This is set when the component makes a request to the token server.

This property is not available at design time.

Data Type

String

OAuthAuthorizationCode Property (AzureBlob Component)

The authorization code that is exchanged for an access token.

Syntax

__property String OAuthAuthorizationCode = { read=FOAuthAuthorizationCode, write=FSetOAuthAuthorizationCode };

Default Value

""

Remarks

The authorization code that is exchanged for an access token. This is required to be set when the OAuthClientProfile property is set to the Web profile. Otherwise, this field is for information purposes only.

This property is not available at design time.

Data Type

String

OAuthAuthorizationScope Property (AzureBlob Component)

The scope request or response parameter used during authorization.

Syntax

__property String OAuthAuthorizationScope = { read=FOAuthAuthorizationScope, write=FSetOAuthAuthorizationScope };

Default Value

""

Remarks

The scope request or response parameter used during authorization.

This property is not available at design time.

Data Type

String

OAuthClientId Property (AzureBlob Component)

The id of the client assigned when registering the application.

Syntax

__property String OAuthClientId = { read=FOAuthClientId, write=FSetOAuthClientId };

Default Value

""

Remarks

The id of the client assigned when registering the application.

This property is not available at design time.

Data Type

String

OAuthClientProfile Property (AzureBlob Component)

The type of client that is requesting authorization.

Syntax

__property TcsAzureBlobOAuthClientProfiles OAuthClientProfile = { read=FOAuthClientProfile, write=FSetOAuthClientProfile };
enum TcsAzureBlobOAuthClientProfiles { cocpApplication=0, cocpWeb=1 };

Default Value

cocpApplication

Remarks

The type of client that is requesting authorization. See the introduction section for more information. Possible values are:

0 (cocpApplication - Default)The application profile is applicable to applications that are run by the user directly. For instance a windows form application would use the application profile. To authorize your application (client) using the application profile see the introduction section.
1 (cocpWeb)The Web profile is applicable to applications that are run on the server side where the user uses the application from a web browser. To authorize your application (client) using this profile follow see the introduction section.

This property is not available at design time.

Data Type

Integer

OAuthClientSecret Property (AzureBlob Component)

The secret value for the client assigned when registering the application.

Syntax

__property String OAuthClientSecret = { read=FOAuthClientSecret, write=FSetOAuthClientSecret };

Default Value

""

Remarks

The secret value for the client assigned when registering the application.

This property is not available at design time.

Data Type

String

OAuthGrantType Property (AzureBlob Component)

The OAuth grant type used to acquire an OAuth access token.

Syntax

__property TcsAzureBlobOAuthGrantTypes OAuthGrantType = { read=FOAuthGrantType, write=FSetOAuthGrantType };
enum TcsAzureBlobOAuthGrantTypes { cogtAuthorizationCode=0, cogtImplicit=1, cogtPassword=2, cogtClientCredentials=3 };

Default Value

cogtAuthorizationCode

Remarks

The OAuth grant type used to acquire an OAuth access token. See the introduction section for more information. Possible values are:

0 (cogtAuthorizationCode - Default) Authorization Code grant type
1 (cogtImplicit) Implicit grant type
2 (cogtPassword) Resource Owner Password Credentials grant type
3 (cogtClientCredentials) Client Credentials grant type

This property is not available at design time.

Data Type

Integer

OAuthRefreshToken Property (AzureBlob Component)

Specifies the refresh token received from or sent to the authorization server.

Syntax

__property String OAuthRefreshToken = { read=FOAuthRefreshToken, write=FSetOAuthRefreshToken };

Default Value

""

Remarks

Specifies the refresh token received from or sent to the authorization server. This property is set automatically if a refresh token is retrieved from the token server. If the OAuthAutomaticRefresh configuration setting is set to true, and the OAuthGrantType property is set to a grant that can use refresh tokens.

This property is not available at design time.

Data Type

String

OAuthReturnURL Property (AzureBlob Component)

The URL where the user (browser) returns after authenticating.

Syntax

__property String OAuthReturnURL = { read=FOAuthReturnURL, write=FSetOAuthReturnURL };

Default Value

""

Remarks

The URL where the user (browser) returns after authenticating. This property is mapped to the redirect_uri parameter when making a request to the authorization server. Typically, this is automatically set by the component when using the embedded web server. If the OAuthWebServerPort or OAuthWebServerHost configuration settings is set, then this property should be set to match. If using the Web client profile, this should be set to the place where the authorization code will be parsed out of the response after the user finishes authorizing.

This property is not available at design time.

Data Type

String

OAuthServerAuthURL Property (AzureBlob Component)

The URL of the authorization server.

Syntax

__property String OAuthServerAuthURL = { read=FOAuthServerAuthURL, write=FSetOAuthServerAuthURL };

Default Value

""

Remarks

The URL of the authorization server.

This property is not available at design time.

Data Type

String

OAuthServerTokenURL Property (AzureBlob Component)

The URL of the token server used to obtain the access token.

Syntax

__property String OAuthServerTokenURL = { read=FOAuthServerTokenURL, write=FSetOAuthServerTokenURL };

Default Value

""

Remarks

The URL of the token server used to obtain the access token.

This property is not available at design time.

Data Type

String

OAuthWebAuthURL Property (AzureBlob Component)

The URL to which the user should be re-directed for authorization.

Syntax

__property String OAuthWebAuthURL = { read=FOAuthWebAuthURL };

Default Value

""

Remarks

The URL to which the user should be re-directed for authorization. This field is used to get the URL that the user should be redirected to when using the Web client profile. See introduction section for more information.

This property is read-only and not available at design time.

Data Type

String

OtherHeaders Property (AzureBlob Component)

This property includes other headers as determined by the user (optional).

Syntax

__property String OtherHeaders = { read=FOtherHeaders, write=FSetOtherHeaders };

Default Value

""

Remarks

This property can be set to a string of headers to be appended to the HTTP request headers created from other properties like ContentType and From.

The headers must follow the format Header: Value as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this property with caution. If this property contains invalid headers, HTTP requests may fail.

This property is useful for extending the functionality of the component beyond what is provided.

This property is not available at design time.

Data Type

String

Overwrite Property (AzureBlob Component)

Whether to overwrite the local file, or remote blob.

Syntax

__property bool Overwrite = { read=FOverwrite, write=FSetOverwrite };

Default Value

false

Remarks

When calling DownloadFile, this property determines if LocalFile should be overwritten if it already exists.

When calling CreateBlob or CopyBlob, this property determines if the remote blob should be overwritten if it already exists.

Data Type

Boolean

PageRangeCount Property (AzureBlob Component)

The number of records in the PageRange arrays.

Syntax

__property int PageRangeCount = { read=FPageRangeCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at PageRangeCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

PageRangeFirst Property (AzureBlob Component)

The first byte of the range.

Syntax

__property __int64 PageRangeFirst[int PageRangeIndex] = { read=FPageRangeFirst };

Default Value

0

Remarks

The first byte of the range.

This property specifies the first byte (inclusive) of the byte range.

The PageRangeIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PageRangeCount property.

This property is read-only and not available at design time.

Data Type

Long64

PageRangeLast Property (AzureBlob Component)

The last byte of the range.

Syntax

__property __int64 PageRangeLast[int PageRangeIndex] = { read=FPageRangeLast };

Default Value

0

Remarks

The last byte of the range.

This property specifies the last byte (inclusive) of the byte range.

The PageRangeIndex parameter specifies the index of the item in the array. The size of the array is controlled by the PageRangeCount property.

This property is read-only and not available at design time.

Data Type

Long64

ParsedHeaderCount Property (AzureBlob Component)

The number of records in the ParsedHeader arrays.

Syntax

__property int ParsedHeaderCount = { read=FParsedHeaderCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at ParsedHeaderCount - 1.

This property is read-only and not available at design time.

Data Type

Integer

ParsedHeaderField Property (AzureBlob Component)

This property contains the name of the HTTP header (this is the same case as it is delivered).

Syntax

__property String ParsedHeaderField[int ParsedHeaderIndex] = { read=FParsedHeaderField };

Default Value

""

Remarks

This property contains the name of the HTTP Header (this is the same case as it is delivered).

The ParsedHeaderIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ParsedHeaderCount property.

This property is read-only and not available at design time.

Data Type

String

ParsedHeaderValue Property (AzureBlob Component)

This property contains the header contents.

Syntax

__property String ParsedHeaderValue[int ParsedHeaderIndex] = { read=FParsedHeaderValue };

Default Value

""

Remarks

This property contains the Header contents.

The ParsedHeaderIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ParsedHeaderCount property.

This property is read-only and not available at design time.

Data Type

String

Prefix Property (AzureBlob Component)

A prefix used to restrict the results returned when listing blobs or containers.

Syntax

__property String Prefix = { read=FPrefix, write=FSetPrefix };

Default Value

""

Remarks

This property, if non-empty, is used to restrict the results returned by ListBlobs or ListContainers to only the items whose names begin with the given value.

Blob Namespace Traversal

By using the BlobDelimiter and Prefix properties in tandem, applications can effectively "traverse" a virtual hierarchy of blobs as if it were a filesystem. For example, assume that blobs with the following names exist within a container:

  • MyCompany
  • MyCompany/Department1
  • MyCompany/Department2
  • MyCompany/Department2/EmployeeA
  • MyCompany/Department2/EmployeeB

With BlobDelimiter set to /, we can set Prefix to successively "deeper" values before calling ListBlobs for the following effect:

Prefix Value Blobs Returned Prefixes Returned
(empty) MyCompany MyCompany/
MyCompany/ MyCompany/Department1

MyCompany/Department2

MyCompany/Department2/
MyCompany/Department2/ MyCompany/Department2/EmployeeA

MyCompany/Department2/EmployeeB

(none)

This property is not available at design time.

Data Type

String

ProxyAuthScheme Property (AzureBlob Component)

This property is used to tell the component which type of authorization to perform when connecting to the proxy.

Syntax

__property TcsAzureBlobProxyAuthSchemes ProxyAuthScheme = { read=FProxyAuthScheme, write=FSetProxyAuthScheme };
enum TcsAzureBlobProxyAuthSchemes { authBasic=0, authDigest=1, authProprietary=2, authNone=3, authNtlm=4, authNegotiate=5 };

Default Value

authBasic

Remarks

This property is used to tell the component which type of authorization to perform when connecting to the proxy. This is used only when the ProxyUser and ProxyPassword properties are set.

ProxyAuthScheme should be set to authNone (3) when no authentication is expected.

By default, ProxyAuthScheme is authBasic (0), and if the ProxyUser and ProxyPassword properties are set, the component will attempt basic authentication.

If ProxyAuthScheme is set to authDigest (1), digest authentication will be attempted instead.

If ProxyAuthScheme is set to authProprietary (2), then the authorization token will not be generated by the component. Look at the configuration file for the component being used to find more information about manually setting this token.

If ProxyAuthScheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this property will clear the values of ProxyUser and ProxyPassword.

Data Type

Integer

ProxyAutoDetect Property (AzureBlob Component)

This property tells the component whether or not to automatically detect and use proxy system settings, if available.

Syntax

__property bool ProxyAutoDetect = { read=FProxyAutoDetect, write=FSetProxyAutoDetect };

Default Value

False

Remarks

This property tells the component whether or not to automatically detect and use proxy system settings, if available. The default value is false.

Data Type

Boolean

ProxyPassword Property (AzureBlob Component)

This property contains a password if authentication is to be used for the proxy.

Syntax

__property String ProxyPassword = { read=FProxyPassword, write=FSetProxyPassword };

Default Value

""

Remarks

This property contains a password if authentication is to be used for the proxy.

If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.

If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.

Data Type

String

ProxyPort Property (AzureBlob Component)

This property contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80).

Syntax

__property int ProxyPort = { read=FProxyPort, write=FSetProxyPort };

Default Value

80

Remarks

This property contains the Transmission Control Protocol (TCP) port for the proxy ProxyServer (default 80). See the description of the ProxyServer property for details.

Data Type

Integer

ProxyServer Property (AzureBlob Component)

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

Syntax

__property String ProxyServer = { read=FProxyServer, write=FSetProxyServer };

Default Value

""

Remarks

If a proxy ProxyServer is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the ProxyServer property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the ProxyServer property is set to the corresponding address. If the search is not successful, an error is returned.

Data Type

String

ProxySSL Property (AzureBlob Component)

This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy.

Syntax

__property TcsAzureBlobProxySSLs ProxySSL = { read=FProxySSL, write=FSetProxySSL };
enum TcsAzureBlobProxySSLs { psAutomatic=0, psAlways=1, psNever=2, psTunnel=3 };

Default Value

psAutomatic

Remarks

This property determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the component will use the psTunnel option. If the URL is an http URL, the component will use the psNever option.
psAlways (1)The connection is always SSL enabled.
psNever (2)The connection is not SSL enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

Data Type

Integer

ProxyUser Property (AzureBlob Component)

This property contains a username if authentication is to be used for the proxy.

Syntax

__property String ProxyUser = { read=FProxyUser, write=FSetProxyUser };

Default Value

""

Remarks

This property contains a username if authentication is to be used for the proxy.

If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.

If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.

Data Type

String

QueryParamCount Property (AzureBlob Component)

The number of records in the QueryParam arrays.

Syntax

__property int QueryParamCount = { read=FQueryParamCount, write=FSetQueryParamCount };

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at QueryParamCount - 1.

This property is not available at design time.

Data Type

Integer

QueryParamName Property (AzureBlob Component)

The name of the query parameter.

Syntax

__property String QueryParamName[int QueryParamIndex] = { read=FQueryParamName, write=FSetQueryParamName };

Default Value

""

Remarks

The name of the query parameter.

This property specifies the name of the query parameter.

The QueryParamIndex parameter specifies the index of the item in the array. The size of the array is controlled by the QueryParamCount property.

This property is not available at design time.

Data Type

String

QueryParamValue Property (AzureBlob Component)

The value of the query parameter.

Syntax

__property String QueryParamValue[int QueryParamIndex] = { read=FQueryParamValue, write=FSetQueryParamValue };

Default Value

""

Remarks

The value of the query parameter.

This property specifies the value of the query parameter. The component will automatically URL-encode this value when sending the request.

The QueryParamIndex parameter specifies the index of the item in the array. The size of the array is controlled by the QueryParamCount property.

This property is not available at design time.

Data Type

String

Range Property (AzureBlob Component)

The range of bytes to request.

Syntax

__property String Range = { read=FRange, write=FSetRange };

Default Value

""

Remarks

This property specifies the range of bytes to request from the server. If this property is non-empty when a GetBlob or ListPageRanges request is being constructed, a header like x-ms-range: bytes=Range will be added to the request, with Range substituted with the specified value.

There are two valid formats for this property's value:

  • StartByte-
  • StartByte-EndByte

Note: If the StartByte property is greater than zero when GetBlob is called (i.e., when a download is being resumed), and this property is non-empty, the component will automatically advance the StartByte value in the specified range by StartByte bytes when sending the x-ms-range header to the server. This ensures that the previously-downloaded data at the start of the specified range is not downloaded again when the download is resumed.

This property is not available at design time.

Data Type

String

Snapshot Property (AzureBlob Component)

The blob snapshot to make requests against.

Syntax

__property String Snapshot = { read=FSnapshot, write=FSetSnapshot };

Default Value

""

Remarks

This property can be set to the opaque DateTime value used to identify a particular blob snapshot before calling the following methods in order to make requests against the specified blob snapshot instead of the base blob:

Refer to the documentation of the methods listed above for more information.

This property is not available at design time.

Data Type

String

SSLAcceptServerCertEncoded Property (AzureBlob Component)

This is the certificate (PEM/Base64 encoded).

Syntax

__property String SSLAcceptServerCertEncoded = { read=FSSLAcceptServerCertEncoded, write=FSetSSLAcceptServerCertEncoded };
__property DynamicArray<Byte> SSLAcceptServerCertEncodedB = { read=FSSLAcceptServerCertEncodedB, write=FSetSSLAcceptServerCertEncodedB };

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.

When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.

This property is not available at design time.

Data Type

Byte Array

SSLCertEncoded Property (AzureBlob Component)

This is the certificate (PEM/Base64 encoded).

Syntax

__property String SSLCertEncoded = { read=FSSLCertEncoded, write=FSetSSLCertEncoded };
__property DynamicArray<Byte> SSLCertEncodedB = { read=FSSLCertEncodedB, write=FSetSSLCertEncodedB };

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.

When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.

This property is not available at design time.

Data Type

Byte Array

SSLCertStore Property (AzureBlob Component)

This is the name of the certificate store for the client certificate.

Syntax

__property String SSLCertStore = { read=FSSLCertStore, write=FSetSSLCertStore };
__property DynamicArray<Byte> SSLCertStoreB = { read=FSSLCertStoreB, write=FSetSSLCertStoreB };

Default Value

"MY"

Remarks

This is the name of the certificate store for the client certificate.

The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password protected, specify the password in SSLCertStorePassword.

SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

Data Type

Byte Array

SSLCertStorePassword Property (AzureBlob Component)

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

__property String SSLCertStorePassword = { read=FSSLCertStorePassword, write=FSetSSLCertStorePassword };

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Data Type

String

SSLCertStoreType Property (AzureBlob Component)

This is the type of certificate store for this certificate.

Syntax

__property TcsAzureBlobSSLCertStoreTypes SSLCertStoreType = { read=FSSLCertStoreType, write=FSetSSLCertStoreType };
enum TcsAzureBlobSSLCertStoreTypes { cstUser=0, cstMachine=1, cstPFXFile=2, cstPFXBlob=3, cstJKSFile=4, cstJKSBlob=5, cstPEMKeyFile=6, cstPEMKeyBlob=7, cstPublicKeyFile=8, cstPublicKeyBlob=9, cstSSHPublicKeyBlob=10, cstP7BFile=11, cstP7BBlob=12, cstSSHPublicKeyFile=13, cstPPKFile=14, cstPPKBlob=15, cstXMLFile=16, cstXMLBlob=17, cstJWKFile=18, cstJWKBlob=19, cstSecurityKey=20, cstBCFKSFile=21, cstBCFKSBlob=22, cstPKCS11=23, cstAuto=99 };

Default Value

cstUser

Remarks

This is the type of certificate store for this certificate.

The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Data Type

Integer

SSLCertSubject Property (AzureBlob Component)

This is the subject of the certificate used for client authentication.

Syntax

__property String SSLCertSubject = { read=FSSLCertSubject, write=FSetSSLCertSubject };

Default Value

""

Remarks

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Data Type

String

SSLProvider Property (AzureBlob Component)

This specifies the SSL/TLS implementation to use.

Syntax

__property TcsAzureBlobSSLProviders SSLProvider = { read=FSSLProvider, write=FSetSSLProvider };
enum TcsAzureBlobSSLProviders { sslpAutomatic=0, sslpPlatform=1, sslpInternal=2 };

Default Value

sslpAutomatic

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the component will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The component will select a provider depending on the current platform.

When Automatic is selected the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used.

Data Type

Integer

SSLServerCertEncoded Property (AzureBlob Component)

This is the certificate (PEM/Base64 encoded).

Syntax

__property String SSLServerCertEncoded = { read=FSSLServerCertEncoded };
__property DynamicArray<Byte> SSLServerCertEncodedB = { read=FSSLServerCertEncodedB };

Default Value

""

Remarks

This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLServerCertStore and SSLServerCertSubject properties also may be used to specify a certificate.

When SSLServerCertEncoded is set, a search is initiated in the current SSLServerCertStore for the private key of the certificate. If the key is found, SSLServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLServerCertSubject is set to an empty string.

This property is read-only and not available at design time.

Data Type

Byte Array

StartByte Property (AzureBlob Component)

The byte offset from which to resume the upload or download.

Syntax

__property __int64 StartByte = { read=FStartByte, write=FSetStartByte };

Default Value

0

Remarks

This property specifies the byte offset from which to resume a block blob upload using CreateBlob, or a download of any blob type using GetBlob. Refer to those methods' documentation for more information about resuming uploads and downloads.

This property is not available at design time.

Data Type

Long64

Timeout Property (AzureBlob Component)

A timeout for the component.

Syntax

__property int Timeout = { read=FTimeout, write=FSetTimeout };

Default Value

60

Remarks

If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If Timeout is set to a positive value, the component will wait for the operation to complete before returning control.

The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.

If Timeout expires, and the operation is not yet complete, the component raises an exception.

Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

Data Type

Integer

UseSSL Property (AzureBlob Component)

Whether to use SSL/TLS when connecting.

Syntax

__property bool UseSSL = { read=FUseSSL, write=FSetUseSSL };

Default Value

true

Remarks

This property specifies whether the component should use SSL/TLS when connecting.

This property is not available at design time.

Data Type

Boolean

AbortCopy Method (AzureBlob Component)

Aborts a copy operation.

Syntax

void __fastcall AbortCopy(String DestBlob, String CopyId);

Remarks

This method aborts the copy operation identified by the given CopyId for the destination blob DestBlob in the container currently selected by Container.

Note that the destination blob will still exist after aborting a copy operation, but it will be empty.

AddBlock Method (AzureBlob Component)

Adds a block to the Blocks properties.

Syntax

void __fastcall AddBlock(String Id, int BlockListType);

Remarks

This method adds a block to the Block* properties. Id specifies the block's Id, and BlockListType specifies where the server should search for this block.

Block Ids must be Base64-encoded when sent to the server. By default, the component will automatically Base64-encode block Ids as they are sent, and Base64-decode them as they are received. This behavior can be configured using the EncodeBlockIds configuration setting.

All block Ids must be less than or equal to 64 bytes in length before being Base64-encoded. Additionally, all blocks Ids within a single block blob must be unique, and of the exact same length after Base64-encoding.

Valid values for BlockListType are:

Value Meaning During PutBlockList Operations
abktCommitted (0) Search for a committed block with the specified Id.
abktUncommitted (1) Search for an uncommitted block with the specified Id.
abktLatest (2) Search for an uncommitted block with the specified Id; and then, if one isn't found, search for a committed block.

AddMetadata Method (AzureBlob Component)

Adds a metadata item to the Metadata properties.

Syntax

void __fastcall AddMetadata(String Name, String Value);

Remarks

This method adds a metadata item to the Metadata properties. Name specifies the name of the item, and Value specifies the value of the item.

Note that the component will automatically prepend x-ms-meta- to metadata item names (as necessary) when they are submitted to the server. Also note that while metadata item names are case-preserving, they are not case-sensitive.

AddQueryParam Method (AzureBlob Component)

Adds a query parameter to the QueryParams properties.

Syntax

void __fastcall AddQueryParam(String Name, String Value);

Remarks

This method is used to add a query parameter to the QueryaParam* properties. Name specifies the name of the parameter, and Value specifies the value of the parameter.

All specified Values will be URL encoded by the component automatically. Consult the service documentation for details on the available parameters.

AppendBlock Method (AzureBlob Component)

Appends a block of data to an append blob.

Syntax

void __fastcall AppendBlock(String AppendBlob);

Remarks

This method appends a block of data to the specified AppendBlob in the container currently selected by Container. The block of data is immediately available as part of the append blob, which must already exist.

Up to 4MB (4194304 bytes) of data may be appended in a single block, and up to 50000 blocks may be appended to a single append blob.

If the specified blob has an active lease, its lease Id must be specified using LeaseId, or the request will fail.

Authorize Method (AzureBlob Component)

Get the authorization string required to access the protected resource.

Syntax

void __fastcall Authorize();

Remarks

This method is used to get an access token that is required to access the protected resource. The method will act differently based on what is set in the OAuthClientProfile property and the OAuthGrantType property. This method is not to be used in conjunction with the Authorization property. It should instead be used when setting the OAuth* properties.

For more information, see the introduction section.

CalcAuthorization Method (AzureBlob Component)

Calculates the Authorization header based on provided credentials.

Syntax

void __fastcall CalcAuthorization();

Remarks

This method calculates the Authorization value using the values provided in AuthScheme, User and Password.

In most cases this method does not need to be called. The component will automatically calculate any required authorization values when a method is called such as Get or Post.

This method may be useful in cases where the Authorization value needs to be calculated prior to sending a request.

ClearPages Method (AzureBlob Component)

Clears a range of pages in a page blob.

Syntax

void __fastcall ClearPages(String PageBlob, __int64 ByteOffset, __int64 PageCount);

Remarks

This method clears PageCount pages, from ByteOffset onwards, for the specified PageBlob in the container currently selected by Container.

ByteOffset must be a multiple of 512; i.e. ByteOffset % 512 == 0. PageCount must be a number between 1 and the number of pages in the page blob following ByteOffset (inclusive).

If the specified blob has an active lease, its lease Id must be specified using LeaseId, or the request will fail.

Config Method (AzureBlob Component)

Sets or retrieves a configuration setting.

Syntax

String __fastcall Config(String ConfigurationString);

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

CopyBlob Method (AzureBlob Component)

Copies a blob.

Syntax

String __fastcall CopyBlob(String SrcBlob, String DestBlob, String DestContainer);

Remarks

This method copies the specified SrcBlob (in the container currently selected by Container) to the specified DestBlob in DestContainer. If this method finishes successfully, it will either return an asynchronous copy Id, or an empty string (if the copy has finished already).

If Snapshot is non-empty, the specified snapshot of SrcBlob will be used as the copy source. In this case, DestBlob may be the same blob as SrcBlob to "promote" the snapshot, copying its contents back to the base blob.

If DestContainer is empty, the current value of Container is used instead. If DestContainer in non-empty, the value will automatically be lowercased when preparing the request.

If DestBlob already exists, and is the same type of blob as SrcBlob, then it will be overwritten if Overwrite is enabled. However, any snapshots associated with the existing blob are retained.

If DestBlob already exists and has an active infinite-duration lease, its lease Id must be specified using LeaseId, or the request will fail. (If it exists and has an active fixed-duration lease, the request will always fail.)

If the SendMetadataOnCopy configuration setting is enabled when this method is called, all items in the Metadata* properties will be sent in the copy request and applied to DestBlob. Otherwise, the server will copy the metadata items from SrcBlob to DestBlob.

If the request succeeds, this method will always populate the CopyId and CopyStatus configuration settings (and clear CopyProgress and CopyStatusDesc).

Asynchronous Copy Notes

As mentioned, this method will return a copy operation Id if the copy operation was started asynchronously. In this case, use the GetBlobInfo method to poll the DestBlob blob's information, which will cause the CopyStatus, CopyStatusDesc, and CopyProgress configuration settings to be refreshed.

A copy operation whose CopyStatus is still pending may also be aborted by passing the copy operation Id returned by this method (or later retrieved from CopyId) to the AbortCopy method. // Copy a blob to another location within the same container. string copyResult = azureblob.CopyBlob("important.zip", "secrets.zip", ""); // If the returned value *isn't* empty string, then we'll monitor the status of the // asynchronous copy operation by polling once every 2 seconds using GetBlobInfo(). if (!string.IsNullOrEmpty(copyResult)) { do { azureblob.GetBlobInfo("secrets.zip"); Console.WriteLine("Copy progress: " + azureblob.Config("CopyProgress")); } while (azureblob.Config("CopyStatus") == "pending"); }

CreateBlob Method (AzureBlob Component)

Creates a new blob of the specified type.

Syntax

void __fastcall CreateBlob(String Blob, int BlobType, __int64 PageBlobSize);

Remarks

This method creates a new blob named Blob in the container currently selected by Container. BlobType specifies what type of blob should be created; valid values are: Possible values are:

abtBlockBlob (0) Block blob
abtPageBlob (1) Page blob
abtAppendBlob (2) Append blob

Refer to Azure's Understanding block blobs, append blobs, and page blobs article for more information about blob types.

PageBlobSize is only used when BlobType is abtPageBlob (1); it is ignored otherwise.

If the specified blob already exists, and is the same type of blob as BlobType specifies, then it will be overwritten if Overwrite is enabled. However, any snapshots associated with the existing blob are retained.

If the specified blob already exists and has an active lease, its lease Id must be specified using LeaseId, or the request will fail.

If the SendMetadata configuration setting is enabled when this method is called, all items in the Metadata* properties will be sent along with the creation request.

Creating Block Blobs

Block blobs can be created either with or without data initially. In either case, after the block blob is created, its contents can be managed by uploading blocks with PutBlock and then committing a new block list using PutBlockList.

If upload data is present when this method is called to create a block blob, it will be uploaded in one of two ways. If the amount of data provided is less than or equal to the limit specified by the SimpleUploadLimit configuration setting (268435456 bytes (256MB), by default), it will be uploaded directly in the create blob request.

If more than SimpleUploadLimit bytes of data are provided, the component will first create the new block blob, and then upload the data by splitting it up into blocks (sized according to the FragmentSize configuration setting), uploading them individually, and then committing a new block list. To accomplish this, the component automatically makes calls to PutBlock and PutBlockList internally, tracks the blocks as they are uploaded using the Block* properties, and tracks how much data has been uploaded using the StartByte property. The FragmentComplete event will fire after each block is uploaded.

If, during a block-based upload, any individual PutBlock request (or the PutBlockList request) fails, the upload can be resumed be calling this method again with the same parameters, so long as the Block* and StartByte properties still hold the same information as they did when the upload was interrupted.

When a block-based upload completes successfully, StartByte is reset to 0, but the Block* properties remains populated. This allows applications to easily inspect the Ids of the uploaded blocks, which the component generates automatically in the following GUID format: dddddddd-dddd-dddd-dddd-dddddddddddd (where each d is a single hex digit).

Creating Page Blobs

Unlike block blobs, no data can be uploaded when creating a page blob. However, the page blob's size (i.e., capacity) must be specified using PageBlobSize. A page blob's size must be a 512-byte-aligned; i.e. PageBlobSize % 512 == 0.

Once a page blob has been created, its contents can be manipulated using the PutPages and ClearPages methods.

Creating Append Blobs

Append blobs must also be created without uploading any data initially. After a page blob has been created, data can be appended to it using the AppendBlock method.

CreateContainer Method (AzureBlob Component)

Creates a new container.

Syntax

void __fastcall CreateContainer();

Remarks

This method creates a new container using the name specified by the Container property;

If the SendMetadata configuration setting is enabled when this method is called, all items in the Metadata* properties will be sent along with the creation request.

Container Name Rules

Container names must adhere to the following rules:

  • Must be 3 to 63 characters long.
  • Must start with a letter or number; and may only contain letters, numbers, and hyphens.
  • All letters much be lowercase. (For convenience, the component will automatically lowercase all letters in any value assigned to Container.)
  • All hyphens must be immediately preceded and followed by a letter or number (consecutive hyphens are not allowed).

CreateSnapshot Method (AzureBlob Component)

Creates a new snapshot of a blob.

Syntax

String __fastcall CreateSnapshot(String Blob);

Remarks

This method creates a new snapshot of the specified Blob in the container currently selected by Container, and returns the opaque DateTime value used to identify the newly-created snapshot.

If the SendMetadataOnSnapshot configuration setting is enabled when this method is called, all items in the Metadata* properties will be sent in the request and applied to newly-created snapshot. Otherwise, the server will copy the metadata items from Blob to the snapshot.

If the specified blob has an active lease, a lease Id may optionally be specified using LeaseId; the request will only succeed if the correct lease Id is specified.

DeleteBlob Method (AzureBlob Component)

Deletes a blob.

Syntax

void __fastcall DeleteBlob(String Blob, int DeleteAction);

Remarks

This method deletes the specified Blob in the container currently selected by Container. DeleteAction specifies how the delete operation should be handled; possible values are:

Single (0) Only delete the specified blob. The request will fail if any snapshots of the blob exist.
Snapshots Only (1) Delete all of the specified blob's snapshots, but not the blob itself.
Everything (2) Delete the specified blob and all of its snapshots.

Alternatively, if Snapshot is non-empty, the specified snapshot of Blob is deleted, and DeleteAction is ignored.

If the current Azure Storage account, specified by Account, has a delete retention policy enabled for the Blob service, then this method will only soft-delete blobs (and snapshots). Soft-deleted blobs and snapshots can be listed by enabling the IncludeSoftDeleted configuration setting before calling ListBlobs, and can be undeleted at any point before their retention period expires by calling UndeleteBlob.

If the specified blob has an active lease, its lease Id must be specified using LeaseId, or the request will fail.

DeleteContainer Method (AzureBlob Component)

Deletes a container.

Syntax

void __fastcall DeleteContainer();

Remarks

This method deletes the container currently selected by Container. Note that, according to the Azure documentation, when a container is deleted its name cannot be reused for at least 30 seconds.

If the specified container has an active lease, its lease Id must be specified using LeaseId, or the request will fail.

GetBlob Method (AzureBlob Component)

Downloads a blob.

Syntax

void __fastcall GetBlob(String Blob);

Remarks

This methods downloads the specified Blob in the container currently selected by Container. If Snapshot is non-empty, the specified snapshot of Blob is downloaded instead. The Range property can be used to download a specific range of bytes from the blob.

If the specified blob has an active lease, a lease Id may optionally be specified using LeaseId; the request will only succeed if the correct lease Id is specified.

If LocalFile is set, the blob data will be saved to the specified location; otherwise, the blob data will be held by ResourceData.

To download and decrypt an encrypted blob, set EncryptionAlgorithm and EncryptionPassword before calling this method.

Download Notes

In the simplest use-case, downloading a blob looks like this: azureblob.LocalFile = "../MyData.zip"; azureblob.GetBlob(azureblob.Blobs[0].Name);

Resuming Downloads

The component also supports resuming failed downloads by using the StartByte property. If a download is interrupted, set StartByte to the appropriate offset before calling this method to resume the download. string downloadFile = "../MyData.zip"; azureblob.LocalFile = downloadFile; azureblob.GetBlob(azureblob.Blobs[0].Name); //The transfer is interrupted and GetBlob() above fails. Later, resume the download: //Get the size of the partially downloaded file azureblob.StartByte = new FileInfo(downloadFile).Length; azureblob.GetBlob(azureblob.Blobs[0].Name);

Resuming Encrypted File Downloads

Resuming encrypted file downloads is only supported when LocalFile was set in the initial download attempt.

If LocalFile is set when beginning an encrypted download, the component creates a temporary file in TempPath to hold the encrypted data until the download is complete. If the download is interrupted, DownloadTempFile will be populated with the path of the temporary file that holds the partial data.

To resume, DownloadTempFile must be populated, along with StartByte, to allow the remainder of the encrypted data to be downloaded. Once the encrypted data is downloaded it will be decrypted and written to LocalFile. azureblob.LocalFile = "../MyData.zip"; azureblob.EncryptionPassword = "password"; azureblob.GetBlob(azureblob.Blobs[0].Name); //The transfer is interrupted and GetBlob() above fails. Later, resume the download: //Get the size of the partially downloaded temp file azureblob.StartByte = new FileInfo(azureblob.Config("DownloadTempFile")).Length; azureblob.GetBlob(azureblob.Blobs[0].Name);

GetBlobInfo Method (AzureBlob Component)

Gets a blob's information and metadata.

Syntax

void __fastcall GetBlobInfo(String Blob);

Remarks

This method gets information and metadata for the specified Blob in the container currently selected by Container. If Snapshot is non-empty, information and metadata for the specified snapshot of Blob is retrieved instead.

Calling this method will fire the BlobList and MetadataList events, and will re-populate the Blob* and Metadata* properties.

If the specified blob has an active lease, a lease Id may optionally be specified using LeaseId; the request will only succeed if the correct lease Id is specified.

GetContainerACL Method (AzureBlob Component)

Gets the stored access policies and public access level for a container.

Syntax

int __fastcall GetContainerACL();

Remarks

This method retrieves the stored access policies and the public access level for the container currently selected by Container. The stored access policies are used to populate the AccessPolicy* properties, and the public access level is returned directly. Possible values are:

acpaNone (0) The container is private.
acpaBlobs (1) Blob data within the container is publicly readable, but blobs cannot be listed.
acpaContainer (2) Container information and blob data within the container is publicly readable, and blobs can be listed.

If the specified container has an active lease, a lease Id may optionally be specified using LeaseId; the request will only succeed if the correct lease Id is specified.

GetContainerInfo Method (AzureBlob Component)

Gets a container's information and metadata.

Syntax

void __fastcall GetContainerInfo();

Remarks

This method gets information and metadata for the container currently selected by Container.

Calling this method will fire the ContainerList and MetadataList events, and will re-populate the Container* and Metadata* properties.

If the specified container has an active lease, a lease Id may optionally be specified using LeaseId; the request will only succeed if the correct lease Id is specified.

GetLink Method (AzureBlob Component)

Creates a link that provides access to a container, blob, or snapshot.

Syntax

String __fastcall GetLink(String Blob, String Permissions, String StartTime, String ExpiryTime);

Remarks

This method creates and returns a shared access signature (SAS), which is a link that provides access to a specific container, blob, or snapshot. The following table indicates which inputs must be provided to produce a link of the desired type:

Link TypeRequired Inputs
Container Non-empty Container, empty Blob, any Snapshot (ignored)
Blob Non-empty Container and Blob, empty Snapshot
Snapshot Non-empty Container, Blob, and Snapshot

Permissions specifies what permissions the SAS grants, in the form of an abbreviated permissions list. Refer to this section of Azure's "Create a Service SAS" article for more information about how to format this value.

StartTime and ExpiryTime specify the UTC start and end times of the SAS's validity interval. Refer to this section of Azure's "Create a Service SAS" article for more information about how to format these values.

StartTime may be empty, in which case the server will assume that the link is valid immediately. Permissions and ExpiryTime must both be non-empty, unless an si query parameter that references a stored access policy (which has corresponding non-empty values) is present in the QueryParam* properties.

If any of the query parameters listed below are present in the QueryParam* properties when this method is called, they will be included when creating the SAS. All other application-specified query parameters are ignored.

  • Response headers: rscc, rscd, rsce, rscl, rsct
  • IP address (single or range): sip
  • Allowed HTTP protocol(s): spr
  • Stored access policy ("signed identifier"): si

For more information about SAS links, refer to Azure's Create a Service SAS article.

GetUserDelegationKey Method (AzureBlob Component)

Requests a new user delegation key.

Syntax

void __fastcall GetUserDelegationKey(String StartTime, String ExpiryTime);

Remarks

This method requests a new user delegation key and populates UserDelegationKey with the returned information.

NOTE: This method is not currently implemented; it is reserved for future use.

Interrupt Method (AzureBlob Component)

Interrupt the current method.

Syntax

void __fastcall Interrupt();

Remarks

If there is no method in progress, Interrupt simply returns, doing nothing.

Lease Method (AzureBlob Component)

Creates or manages a lease on a blob or container.

Syntax

void __fastcall Lease(String Blob, int LeaseAction, String NewLeaseId, int Duration);

Remarks

This method creates or manages a lease on the container currently selected by Container (if Blob is empty), or on the specified Blob in that container.

LeaseAction specifies what action should occur. Possible values, and their effects, are:

  • Acquire (0): Requests a new lease.
    • If no active lease currently exists, a new one is created and LeaseId is populated with the new lease's Id. If a non-empty value is passed for NewLeaseId, it is used; otherwise the server generates an Id.
    • If an active lease currently exists, its Id must be passed for NewLeaseId.
    • In either case, Duration is used to specify the length of time that the lease is valid for (see below).
  • Renew (1): Renews the lease specified by LeaseId.
    • Leases can only be renewed while active or expired (and in the latter case, only if a different lease has not been acquired in the meantime).
    • Renewing an active lease will reset its expiration clock.
  • Change (2): Changes the Id of the active lease specified by LeaseId to the one specified by NewLeaseId.
    • If this action is successful, the component will automatically set LeaseId to the value passed for NewLeaseId.
  • Release (3): Releases the lease specified by LeaseId.
    • If this action is successful, the component will automatically clear LeaseId.
  • Break (4): Breaks the current lease, either immediately or after a certain period of time (the "break period") according to the value passed for Duration.
    • The lease's Id is not required to break the lease.
    • If Duration is -1, fixed-length leases are broken after their remaining time elapses, and infinite-length leases are broken immediately.
    • Otherwise, Duration specified how many seconds (see below) the lease should continue before being broken. (For fixed-length leases, the lesser of this value and the lease's remaining time is used.)
    • If this action is successful, the LeaseBreakPeriod configuration setting is populated to indicate how long the lease's break period is.

If NewLeaseId is non-empty, if must be a GUID string formatted in one of the styles described by Microsoft's .NET Guid(string) constructor documentation. For example: dddddddd-dddd-dddd-dddd-dddddddddddd, where each d is a single case-insensitive hex digit.

The value passed for Duration is only used in the cases listed below; it is ignored otherwise.

  • When LeaseAction is Acquire (0): Valid values for Duration are -1 (infinite), or a number of seconds between 15 and 60 (inclusive).
  • When LeaseAction is Break (4): Valid values for Duration are -1 (unspecified), or a number of seconds between 0 and 60 (inclusive). 0 indicates the lease should be broken immediately, regardless of whether it is fixed- or infinite-length.

For more information about how leases work, refer to Azure's Lease Blob and Lease Container API documentation.

ListBlobs Method (AzureBlob Component)

Lists the blobs in a container.

Syntax

void __fastcall ListBlobs();

Remarks

This method lists the blobs in the container currently selected by Container.

Before calling this method, the Prefix property may be set in order to restrict the results to only the items whose names begin with a given string. The MaxResults configuration setting may also be used to limit the number of results returned. The following properties and configuration settings can also be used to further tune the results returned; refer to their documentation for more information:

Calling this method will fire the BlobList event once for each blob, and will also populate the Blob* properties. It may also fire the PrefixList and MetadataList events, and populate the PrefixCount and Prefix[i] configuration settings, depending on how the properties and configuration settings discussed above are set.

If there are still more blobs available to list when this method returns, the BlobMarker property will be populated. Continue to call this method until BlobMarker is empty to accumulate all pages of results in the Blob* properties.

Blob Namespace Traversal

By using the BlobDelimiter and Prefix properties in tandem, applications can effectively "traverse" a virtual hierarchy of blobs as if it were a filesystem. For example, assume that blobs with the following names exist within a container:

  • MyCompany
  • MyCompany/Department1
  • MyCompany/Department2
  • MyCompany/Department2/EmployeeA
  • MyCompany/Department2/EmployeeB

With BlobDelimiter set to /, we can set Prefix to successively "deeper" values before calling ListBlobs for the following effect:

Prefix Value Blobs Returned Prefixes Returned
(empty) MyCompany MyCompany/
MyCompany/ MyCompany/Department1

MyCompany/Department2

MyCompany/Department2/
MyCompany/Department2/ MyCompany/Department2/EmployeeA

MyCompany/Department2/EmployeeB

(none)

ListBlocks Method (AzureBlob Component)

Lists the blocks associated with a block blob.

Syntax

void __fastcall ListBlocks(String BlockBlob, int BlockListType);

Remarks

This method lists the blocks associated with the specified BlockBlob in the container currently selected by Container. BlockListType indicates which block list(s) the server should return results from; possible values are:

Committed (0) Only committed blocks are listed. The blocks are returned in the same order that they were committed in by the most recent PutBlockList operation.
Uncommitted (1) Only uncommitted blocks are listed. The blocks are returned in alphabetical order by Id.
All (2) Both committed and uncommitted blocks are listed. The committed blocks are returned before the uncommitted blocks.

Alternatively, if Snapshot is non-empty, the committed blocks for the specified snapshot of BlockBlob are listed instead (and BlockListType is ignored).

Calling this method will fire the BlockList event once for each block, and will also repopulate the Block* properties.

ListContainers Method (AzureBlob Component)

Lists the containers in the blob storage account.

Syntax

void __fastcall ListContainers();

Remarks

This method lists the containers in the Azure blob storage account specified by the Account property.

Before calling this method, the Prefix property may be set in order to restrict the results to only the items whose names begin with a given string. The MaxResults configuration setting may also be used to limit the number of results returned. The ListWithMetadata configuration setting can also be used to further tune the results returned.

Calling this method will fire the ContainerList event once for each container, and will also populate the Container* properties. It may also fire the MetadataList event, depending on how the ListWithMetadata setting is configured.

If there are still more containers available to list when this method returns, the ContainerMarker property will be populated. Continue to call this method until ContainerMarker is empty to accumulate all pages of results in the Container* properties.

ListPageRanges Method (AzureBlob Component)

Lists the page ranges of a page blob.

Syntax

void __fastcall ListPageRanges(String PageBlob);

Remarks

This method lists the allocated page ranges of the specified PageBlob in the container currently selected by Container. If Snapshot is non-empty, the allocated page ranges for the specified snapshot of PageBlob are listed instead.

The Range property can be used to restrict the results to only the page ranges within the specified range.

Calling this method will repopulate the PageRange* properties. Every page in a page blob is exactly 512 bytes in length; thus, the size of every range returned by this method will always be a multiple of 512.

Normally, ranges of pages that are not currently allocated (either because no data has been written to them, or because they've been cleared with ClearPages) will not be returned by this method. However, setting the PreviousSnapshot configuration setting to a non-empty value will cause the server to return a list of all pages that differ between that snapshot and the base PageBlob (or the later snapshot of PageBlob specified by Snapshot); refer to PreviousSnapshot for more information.

If the specified blob has an active lease, a lease Id may optionally be specified using LeaseId; the request will only succeed if the correct lease Id is specified.

PutBlock Method (AzureBlob Component)

Uploads a new block of data to a block blob.

Syntax

String __fastcall PutBlock(String BlockBlob, String BlockId);

Remarks

This method uploads a new block of data with the given BlockId to the specified BlockBlob in the container currently selected by Container. The block of data is uploaded in an uncommitted state; it will not be available as part of the block blob until it is committed in a PutBlockList operation.

The Base64-encoded Id of the block is returned (if the EncodeBlockIds configuration setting is disabled, the same value as passed for BlockId is returned; see below for more information).

If the specified BlockBlob does not yet exist, it is created in an uncommitted state. If an uncommitted block with the specified BlockId is already associated with the specified BlockBlob, it is replaced.

Block Ids must be Base64-encoded when sent to the server. By default, the component will automatically Base64-encode block Ids as they are sent, and Base64-decode them as they are received. This behavior can be configured using the EncodeBlockIds configuration setting.

All block Ids must be less than or equal to 64 bytes in length before being Base64-encoded. Additionally, all blocks Ids within a single block blob must be unique, and of the exact same length after Base64-encoding.

Up to 100MB (104857600 bytes) of data may be uploaded in a single block, and up to 100000 uncommitted blocks may be associated with a block blob at any time.

If the block is successfully uploaded, the component will automatically call AddBlock to add an item to the Block* properties. This behavior can be changed using the AutoAddBlocks configuration setting.

If BlockBlob already exists and has an active lease, its lease Id must be specified using LeaseId, or the request will fail.

PutBlockList Method (AzureBlob Component)

Commits a list of data blocks to a block blob.

Syntax

void __fastcall PutBlockList(String BlockBlob, String BlockList);

Remarks

This method commits the blocks of data specified by the Block* properties to the specified BlockBlob in the container currently selected by Container. Up to 50000 blocks may be committed to a single block blob at any time.

The BlockList parameter can optionally be passed a non-empty list of blocks to commit in order to repopulate the Block* properties before building the request. This allows applications to build an entire block list and then commit it in a single call, rather than manipulating the Block* properties directly, or calling AddBlock.

The value supplied should contain a comma-separated list of strings like {BlockListType}:{BlockId}, where {BlockListType} is either C, U, or L to specify whether the server should search for a block with the associated Id in BlockBlob's committed block list, uncommitted block list, or both (uncommitted; then committed, if necessary). If necessary, the BlockListStringSeparator configuration setting can be used to change the separator string used when parsing the value.

If BlockList is empty, the current items in the Block* properties will remain unchanged.

If the specified blob has an active lease, its lease Id must be specified using LeaseId, or the request will fail.

Note: By default, the component will automatically retrieve and re-submit the BlockBlob's current properties and metadata (if it exists) when this method is called, since Azure would clear them otherwise.

However, if one or more x-ms-blob-* headers are present in OtherHeaders when this method is called, the component will send them rather than re-submitting any of the retrieved blob properties. Similarly, if the SendMetadataOnPutBlockList configuration setting is enabled, the component will send the metadata items currently present in the Metadata* properties instead of those retrieved from the server.

PutPages Method (AzureBlob Component)

Uploads a range of pages to a page blob.

Syntax

void __fastcall PutPages(String PageBlob, __int64 WriteOffset);

Remarks

This method uploads a range of pages to the specified PageBlob in the container currently selected by Container, starting at the byte offset specified by WriteOffset. The uploaded data is immediately available as part of the page blob, which must already exist.

The upload data's size, in bytes, must be a multiple of 512 no larger than 4MB (4194304 bytes). The value passed for WriteOffset must also be a multiple of 512; WriteOffset % == 0.

Note that writing a page full of zeros will not actually clear said page, so it will still incur data storage charges. It is recommended that applications avoid writing pages that only contain zeros, or clear such pages using the ClearPages method.

If the specified blob has an active lease, its lease Id must be specified using LeaseId, or the request will fail.

Reset Method (AzureBlob Component)

Resets the component to its initial state.

Syntax

void __fastcall Reset();

Remarks

This method resets the component to its initial state.

SendCustomRequest Method (AzureBlob Component)

Sends a custom request to the Azure Blob Storage service.

Syntax

void __fastcall SendCustomRequest(String HttpMethod, String Blob, String RequestBody);

Remarks

This method can be used to send arbitrary requests to the Azure Blob Storage service.

Valid values for HttpMethod are:

  • GET (default if empty)
  • HEAD
  • POST
  • PUT
  • DELETE

The Blob and RequestBody parameters may be empty if not needed.

Usage

When this method is called, the component does the following:

  1. Builds a request URL, including query parameters, using the following:
  2. Adds request headers from:
  3. Authenticates the request using Authorization (if non-empty), or AccessKey (in which case the request is signed).
  4. Sends the request, including RequestBody if non-empty.
  5. Stores the response headers in the ParsedHeader* properties; and the response body in the specified LocalFile, or BlobData (using the same logic as GetBlob).

If the response body is XML data, the XPath, XText, and other X* configuration settings can then be used to navigate and extract information from it.

SetContainerACL Method (AzureBlob Component)

Sets the stored access policies and public access level for a container.

Syntax

void __fastcall SetContainerACL(int PublicAccess);

Remarks

This method sets the stored access policies and the public access level for the container currently specified by Container. The items in the AccessPolicy* properties determine the new set of stored access policies, and PublicAccess determines the new public access level. Possible values are:

acpaNone (0) The container is private.
acpaBlobs (1) Blob data within the container is publicly readable, but blobs cannot be listed.
acpaContainer (2) Container information and blob data within the container is publicly readable, and blobs can be listed.

Note that it is not possible to do a partial update of stored access policies. That is, all stored access policies currently associated with the container will be replaced with the stored access policies sent in the request. To prevent data loss, applications should call GetContainerACL to retrieve the container's current stored access polices, and then add/modify/remove them as desired, before using this method.

If the specified container has an active lease, a lease Id may optionally be specified using LeaseId; the request will only succeed if the correct lease Id is specified.

UndeleteBlob Method (AzureBlob Component)

Undeletes a soft-deleted blob.

Syntax

void __fastcall UndeleteBlob(String Blob);

Remarks

This method undeletes the specified soft-deleted Blob in the container currently selected by Container. If any soft-deleted snapshots are associated with the specified blob, they are also undeleted (note that this also works if the blob itself is has not been soft-deleted).

Refer to DeleteBlob for more information about soft-deleting blobs.

UpdateBlobInfo Method (AzureBlob Component)

Updates a blob's information.

Syntax

void __fastcall UpdateBlobInfo(String Blob);

Remarks

This method updates the information of the specified Blob in the container currently selected by Container.

There must be an item in the Blob* properties whose BlobName property matches the specified Blob name (and whose BlobSnapshot property is empty) before this method is called.

When this method is called, the values of the following propertys on the aforementioned item are sent to the server (note that the last two are indexed configuration settings):

Note that it is not possible to do a partial update of a blob's information. That is, all of the blob's current values for the aforementioned propertys will be replaced with the values sent in the request. To prevent data loss, applications should call GetBlobInfo to retrieve the blob's current information, and then modify it as desired, before using this method.

If the specified blob has an active lease, its lease Id must be specified using LeaseId, or the request will fail.

UpdateMetadata Method (AzureBlob Component)

Sets the metadata for a blob or container.

Syntax

void __fastcall UpdateMetadata(String Blob);

Remarks

This method sets the metadata for the container currently selected by Container (if Blob is empty), or for the specified Blob in that container, to the items currently held by the Metadata* properties.

Note that it is not possible to do a partial metadata update. That is, all metadata currently associated with the blob or container will be replaced with the metadata sent in the request. To prevent data loss, applications should call GetBlobInfo or GetContainerInfo to retrieve the blob or container's current metadata, and then modify it as desired, before using this method.

When setting the metadata of a container that has an active lease, a lease Id may optionally be specified using LeaseId; the request will only succeed if the correct lease Id is specified. When setting the metadata of a blob that has an active lease, its lease Id must be specified using LeaseId, or the request will fail.

UpdatePageBlob Method (AzureBlob Component)

Updates a page blob's size and/or sequence number.

Syntax

void __fastcall UpdatePageBlob(String PageBlob, __int64 NewSize, int SequenceNumAction, __int64 NewSequenceNum);

Remarks

This method updates the size and/or sequence number of the specified PageBlob in the container currently selected by Container.

NewSize must either be -1 (to keep the page blob's current size), or a multiple of 512; i.e. NewSize % 512 == 0. If NewSize is less than the page blob's current size, all pages above the specified value are cleared.

SequenceNumAction determines how the page blob's sequence number should be changed; possible values are:

None (0) The page blob's sequence number remains unchanged. NewSequenceNum is ignored.
Increment (1) The page blob's sequence number is incremented by 1. NewSequenceNum is ignored.
Update (2) The page blob's sequence number is set to NewSequenceNum.
Use Greater (3) The page blob's sequence number is set to the greater of NewSequenceNum and the current sequence number.

In cases where NewSequenceNum is used, it must be a value in the range 0 to 2^63 - 1, inclusive.

If the specified blob has an active lease, its lease Id must be specified using LeaseId, or the request will fail.

BlobList Event (AzureBlob Component)

Fires once for each blob returned when listing blobs.

Syntax

typedef struct {
  String Name;
  String Container;
  int BlobType;
  String Snapshot;
  __int64 ContentLength;
  String ContentType;
  String CreatedTime;
  String ModifiedTime;
  String ETag;
  bool SoftDeleted;
  bool IsLeased;
  int LeaseState;
} TcsAzureBlobBlobListEventParams;
typedef void __fastcall (__closure *TcsAzureBlobBlobListEvent)(System::TObject* Sender, TcsAzureBlobBlobListEventParams *e);
__property TcsAzureBlobBlobListEvent OnBlobList = { read=FOnBlobList, write=FOnBlobList };

Remarks

This event fires once for each blob returned when ListBlobs or GetBlobInfo is called.

Name is the name of the blob.

Container is the name of the blob's container.

BlobType is the blob's type. Possible values are:

abtBlockBlob (0) Block blob
abtPageBlob (1) Page blob
abtAppendBlob (2) Append blob

Refer to Azure's Understanding block blobs, append blobs, and page blobs article for more information about blob types.

Snapshot is the snapshot identifier, if the current item represents a blob snapshot; empty otherwise.

ContentLength is the size of the blob's committed data in bytes, for block blobs and append blobs. For page blobs, its the capacity in bytes.

ContentType is the blob's content type. Always empty for uncommitted block blobs.

CreatedTime and ModifiedTime reflect the creation and last modified times of the blob, formatted according to RFC 1123. The latter is always empty for uncommitted block blobs.

ETag is the blob's ETag. Always empty for uncommitted block blobs.

SoftDeleted indicates whether the blob (or snapshot, if Snapshot is non-empty) has been soft-deleted.

IsLeased indicates whether the blob is currently leased. Always false if SoftDeleted is true and/or Snapshot is non-empty.

LeaseState reflects the lease state of the blob. Possible values are:

ablsAvailable (0) The blob's lease is unlocked and can be acquired.
ablsLeased (1) The blob's lease is locked.
ablsExpired (2) The lease duration has expired.
ablsBreaking (3) The lease has been broken, but will continue to be locked until the break period expires.
ablsBroken (4) The lease has been broken, and the break period has expired.

BlockList Event (AzureBlob Component)

Fires once for each block returned when listing blocks.

Syntax

typedef struct {
  String Id;
  int BlockType;
  int Size;
} TcsAzureBlobBlockListEventParams;
typedef void __fastcall (__closure *TcsAzureBlobBlockListEvent)(System::TObject* Sender, TcsAzureBlobBlockListEventParams *e);
__property TcsAzureBlobBlockListEvent OnBlockList = { read=FOnBlockList, write=FOnBlockList };

Remarks

This event fires once for each block returned when ListBlocks is called.

Id is the Id of the block.

BlockType reflects the block's type; possible values are:

  • abktCommitted (0)
  • abktUncommitted (1)

Size reflects the size of the block, in bytes.

ContainerList Event (AzureBlob Component)

Fires once for each container returned when listing containers.

Syntax

typedef struct {
  String Name;
  String ModifiedTime;
  String ETag;
  bool IsLeased;
  int LeaseState;
} TcsAzureBlobContainerListEventParams;
typedef void __fastcall (__closure *TcsAzureBlobContainerListEvent)(System::TObject* Sender, TcsAzureBlobContainerListEventParams *e);
__property TcsAzureBlobContainerListEvent OnContainerList = { read=FOnContainerList, write=FOnContainerList };

Remarks

This event fires once for each container returned when ListContainers or GetContainerInfo is called.

Name is the name of the container.

ModifiedTime reflects the last modified time of the container, formatted according to RFC 1123.

ETag is the container's ETag.

IsLeased indicates whether the container is currently leased.

LeaseState reflects the lease state of the container. Possible values are:

aclsAvailable (0) The container's lease is unlocked and can be acquired.
aclsLeased (1) The container's lease is locked.
aclsExpired (2) The lease duration has expired.
aclsBreaking (3) The lease has been broken, but will continue to be locked until the break period expires.
aclsBroken (4) The lease has been broken, and the break period has expired.

EndTransfer Event (AzureBlob Component)

This event fires when a document finishes transferring.

Syntax

typedef struct {
  int Direction;
} TcsAzureBlobEndTransferEventParams;
typedef void __fastcall (__closure *TcsAzureBlobEndTransferEvent)(System::TObject* Sender, TcsAzureBlobEndTransferEventParams *e);
__property TcsAzureBlobEndTransferEvent OnEndTransfer = { read=FOnEndTransfer, write=FOnEndTransfer };

Remarks

The EndTransfer event is fired when the document text finishes transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Error Event (AzureBlob Component)

Fired when information is available about errors during data delivery.

Syntax

typedef struct {
  int ErrorCode;
  String Description;
} TcsAzureBlobErrorEventParams;
typedef void __fastcall (__closure *TcsAzureBlobErrorEvent)(System::TObject* Sender, TcsAzureBlobErrorEventParams *e);
__property TcsAzureBlobErrorEvent OnError = { read=FOnError, write=FOnError };

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the component raises an exception.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

FragmentComplete Event (AzureBlob Component)

Fires after each block in an automatic block-based upload is complete.

Syntax

typedef struct {
  int FragmentNumber;
  int FragmentCount;
  bool Interrupt;
} TcsAzureBlobFragmentCompleteEventParams;
typedef void __fastcall (__closure *TcsAzureBlobFragmentCompleteEvent)(System::TObject* Sender, TcsAzureBlobFragmentCompleteEventParams *e);
__property TcsAzureBlobFragmentCompleteEvent OnFragmentComplete = { read=FOnFragmentComplete, write=FOnFragmentComplete };

Remarks

When CreateBlob is used to create a new block blob, and more than SimpleUploadLimit bytes of upload data is provided, the component will automatically split the upload data up into blocks to perform the upload. During the overall upload process, this event will fire after each block is uploaded, providing an indication of overall upload progress.

FragmentNumber is the number of the current block that has completed. This value starts at 1.

FragmentCount is the total number of blocks that will be uploaded.

Interrupt can be set to true to interrupt the upload. The upload may be resumed later.

Refer to CreateBlob for more information.

Header Event (AzureBlob Component)

This event is fired every time a header line comes in.

Syntax

typedef struct {
  String Field;
  String Value;
} TcsAzureBlobHeaderEventParams;
typedef void __fastcall (__closure *TcsAzureBlobHeaderEvent)(System::TObject* Sender, TcsAzureBlobHeaderEventParams *e);
__property TcsAzureBlobHeaderEvent OnHeader = { read=FOnHeader, write=FOnHeader };

Remarks

The Field parameter contains the name of the HTTP header (which is the same as it is delivered). The Value parameter contains the header contents.

If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).

Log Event (AzureBlob Component)

This event fires once for each log message.

Syntax

typedef struct {
  int LogLevel;
  String Message;
  String LogType;
} TcsAzureBlobLogEventParams;
typedef void __fastcall (__closure *TcsAzureBlobLogEvent)(System::TObject* Sender, TcsAzureBlobLogEventParams *e);
__property TcsAzureBlobLogEvent OnLog = { read=FOnLog, write=FOnLog };

Remarks

This event fires once for each log message generated by the component. The verbosity is controlled by the LogLevel setting.

LogLevel indicates the level of message. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

Message is the log entry.

LogType identifies the type of log entry. Possible values are as follows:

  • "Info"
  • "RequestHeaders"
  • "ResponseHeaders"
  • "RequestBody"
  • "ResponseBody"
  • "ProxyRequest"
  • "ProxyResponse"
  • "FirewallRequest"
  • "FirewallResponse"

MetadataList Event (AzureBlob Component)

Fires once for each metadata item returned when listing metadata.

Syntax

typedef struct {
  String Container;
  String Blob;
  String Snapshot;
  String Name;
  String Value;
} TcsAzureBlobMetadataListEventParams;
typedef void __fastcall (__closure *TcsAzureBlobMetadataListEvent)(System::TObject* Sender, TcsAzureBlobMetadataListEventParams *e);
__property TcsAzureBlobMetadataListEvent OnMetadataList = { read=FOnMetadataList, write=FOnMetadataList };

Remarks

This event fires once for each metadata item returned when GetBlobInfo or GetContainerInfo is called. If the ListWithMetadata configuration setting is enabled, it also fires as metadata for each individual blob or container is returned when ListBlobs or ListContainers is called.

Container is the name of the container that the blob is in (if Blob is non-empty), or that the metadata item is associated with (if Blob is empty).

Blob, if non-empty, is the name of the blob that the metadata item is associated with.

Snapshot, if non-empty, is the opaque DateTime value that identifiers the blob snapshot that the metadata item is associated with.

Name is the name of the metadata item, without the x-ms-meta- prefix.

Value the metadata item's value.

PrefixList Event (AzureBlob Component)

Fires once for each common prefix returned when listing blobs.

Syntax

typedef struct {
  String Prefix;
} TcsAzureBlobPrefixListEventParams;
typedef void __fastcall (__closure *TcsAzureBlobPrefixListEvent)(System::TObject* Sender, TcsAzureBlobPrefixListEventParams *e);
__property TcsAzureBlobPrefixListEvent OnPrefixList = { read=FOnPrefixList, write=FOnPrefixList };

Remarks

This event fires once for each common prefix returned when ListBlobs is called when BlobDelimiter is non-empty. Refer to BlobDelimiter for more information.

Prefix is the common prefix.

Progress Event (AzureBlob Component)

Fires during an upload or download to indicate transfer progress.

Syntax

typedef struct {
  int Direction;
  __int64 BytesTransferred;
  __int64 TotalBytes;
  int PercentDone;
} TcsAzureBlobProgressEventParams;
typedef void __fastcall (__closure *TcsAzureBlobProgressEvent)(System::TObject* Sender, TcsAzureBlobProgressEventParams *e);
__property TcsAzureBlobProgressEvent OnProgress = { read=FOnProgress, write=FOnProgress };

Remarks

This event fires during an upload or download to indicate the progress of the transfer of the entire request. By default, this event will fire each time PercentDone increases by one percent; the ProgressStep configuration setting can be used to alter this behavior.

Direction indicates whether the transfer is an upload (0) or a download (1).

BytesTransferred reflects the number of bytes that have been transferred so far, or 0 if the transfer is starting (however, see note below).

TotalBytes reflects the total number of bytes that are to be transferred, or -1 if the total is unknown. This amount includes the size of everything in the request like HTTP headers.

PercentDone reflects the overall progress of the transfer, or -1 if the progress cannot be calculated.

Note: By default, the component tracks transfer progress absolutely. If a transfer is interrupted and later resumed, the values reported by this event upon and after resumption will account for the data that was transferred before the interruption.

For example, if 10MB of data was successfully transferred before the interruption, then this event will fire with a BytesTransferred value of 10485760 (10MB) when the transfer is first resumed, and then continue to fire with successively greater values as usual.

This behavior can be changed by disabling the ProgressAbsolute configuration setting, in which case the component will treat resumed transfers as "new" transfers. In this case, the BytesTransferred parameter will always be 0 the first time this event fires, regardless of whether the transfer is new or being resumed.

SSLServerAuthentication Event (AzureBlob Component)

Fired after the server presents its certificate to the client.

Syntax

typedef struct {
  String CertEncoded;
  DynamicArray<Byte> CertEncodedB;
  String CertSubject;
  String CertIssuer;
  String Status;
  bool Accept;
} TcsAzureBlobSSLServerAuthenticationEventParams;
typedef void __fastcall (__closure *TcsAzureBlobSSLServerAuthenticationEvent)(System::TObject* Sender, TcsAzureBlobSSLServerAuthenticationEventParams *e);
__property TcsAzureBlobSSLServerAuthenticationEvent OnSSLServerAuthentication = { read=FOnSSLServerAuthentication, write=FOnSSLServerAuthentication };

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (AzureBlob Component)

Fired when secure connection progress messages are available.

Syntax

typedef struct {
  String Message;
} TcsAzureBlobSSLStatusEventParams;
typedef void __fastcall (__closure *TcsAzureBlobSSLStatusEvent)(System::TObject* Sender, TcsAzureBlobSSLStatusEventParams *e);
__property TcsAzureBlobSSLStatusEvent OnSSLStatus = { read=FOnSSLStatus, write=FOnSSLStatus };

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

StartTransfer Event (AzureBlob Component)

This event fires when a document starts transferring (after the headers).

Syntax

typedef struct {
  int Direction;
} TcsAzureBlobStartTransferEventParams;
typedef void __fastcall (__closure *TcsAzureBlobStartTransferEvent)(System::TObject* Sender, TcsAzureBlobStartTransferEventParams *e);
__property TcsAzureBlobStartTransferEvent OnStartTransfer = { read=FOnStartTransfer, write=FOnStartTransfer };

Remarks

The StartTransfer event is fired when the document text starts transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Transfer Event (AzureBlob Component)

This event is fired while a document transfers (delivers document).

Syntax

typedef struct {
  int Direction;
  __int64 BytesTransferred;
  int PercentDone;
  String Text;
  DynamicArray<Byte> TextB;
} TcsAzureBlobTransferEventParams;
typedef void __fastcall (__closure *TcsAzureBlobTransferEvent)(System::TObject* Sender, TcsAzureBlobTransferEventParams *e);
__property TcsAzureBlobTransferEvent OnTransfer = { read=FOnTransfer, write=FOnTransfer };

Remarks

The Text parameter contains the portion of the document text being received. It is empty if data are being posted to the server.

The BytesTransferred parameter contains the number of bytes transferred in this Direction since the beginning of the document text (excluding HTTP response headers).

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.

Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.

Config Settings (AzureBlob Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

AzureBlob Config Settings

AccumulatePages:   Whether the component should accumulate subsequent pages of results when listing them.

This setting controls how the component behaves when listing multiple pages of results. If this setting is enabled, each successive page of results will be appended to the appropriate collection properties until the last page of results has been listed (at which point the next list call will cause said collection to be cleared first). If this setting is disabled, the collection will be cleared every time a page of results is returned.

By default, this setting is enabled, allowing all pages of results to be accumulated in the appropriate collection properties.

APIVersion:   The Azure Storage REST API version being used by the component.

This setting can be queried to obtain the version of the Azure Storage REST APIs being used by the component.

Note that this setting cannot be changed.

AppendedBlockCount:   The number of blocks that have been appended to the append blob.

After calling GetBlobInfo on an append blob, this setting can be queried to determine the number of blocks that have been appended to it.

If GetBlobInfo is called on a block blob or a page blob, this setting will be -1.

AutoAddBlocks:   Whether to automatically add an item to the Blocks collection after a block is uploaded.

This property specifies whether the component should automatically call AddBlock to add an item to the Block* properties after a block is successfully uploaded with PutBlock.

By default, this setting is enabled.

BlobAccessTier[i]:   The access tier of the specified blob.

This setting can be queried to obtain the access tier of the blob at index i. Refer to Azure's Blob Storage Access Tiers article for more information.

Valid values for i are from 0 to (BlobCount - 1).

BlobAccessTierChanged[i]:   The time at which the specified blob's access tier was last changed.

This setting can be queried to obtain the time at which the access tier of the blob at index i was last changed, formatted according to RFC 1123. May be empty.

Valid values for i are from 0 to (BlobCount - 1).

BlobAccessTierInferred[i]:   Whether the specified blob's access tier is inferred.

This setting can be queried to determine whether the access tier of the blob at index i is inferred. If a blob access tier has not been explicitly set, it is inferred based on the account's settings.

Valid values for i are from 0 to (BlobCount - 1).

BlobArchiveStatus[i]:   The rehydration status of the specified blob.

If the blob at index i is being rehydrated, this setting can be queried to obtain its rehydration status.

Valid values for i are from 0 to (BlobCount - 1).

BlobCacheControl[i]:   The Cache-Control value of the specified blob.

This setting specifies the "Cache-Control" value of the blob at index i. (Always empty for uncommitted block blobs.)

Valid values for i are from 0 to (BlobCount - 1).

BlobContentLanguage[i]:   The content language of the specified blob.

This setting specifies the content language of the blob at index i. (Always empty for uncommitted block blobs.)

Valid values for i are from 0 to (BlobCount - 1).

BlobRetentionDaysLeft[i]:   The number of days left before the specified soft-deleted blob is permanently deleted.

If the blob at index i is soft-deleted, this setting can be queried to determine how many days are left before it is permanently deleted.

Valid values for i are from 0 to (BlobCount - 1).

BlobSoftDeleteTime[i]:   The time at which the specified blob was soft-deleted.

If the blob at index i is soft-deleted, this setting can be queried to obtain the soft-deletion time, formatted according to RFC 1123.

Valid values for i are from 0 to (BlobCount - 1).

BlockListStringSeparator:   The separator string to use when parsing a block list string.

This setting specifies what separator string the component should use when parsing values passed for the PutBlockList method's BlockList parameter.

By default, a comma (,) is used as the separator string.

CopyId:   The Id of a copy operation.

This setting can be queried to obtain the Id of a copy operation.

This setting is populated after calling CopyBlob, or after calling GetBlobInfo for the destination blob in a copy operation.

CopyProgress:   The progress of a copy operation.

This setting can be queried to obtain the progress of a copy operation, which is representing as the number of bytes copied out of the total number of bytes (e.g., 273/3620).

Calling CopyBlob will clear this setting; call GetBlobInfo for the destination blob in a copy operation to populate it.

CopySourceURL:   The Azure storage URL to use as the copy source.

This setting can be used to explicitly specify the copy source used by a CopyBlob operation. This is typically only needed in advanced copying scenarios, such as copying across Azure blob storage accounts, or from an Azure file storage resource.

This setting, if non-empty, must be an Azure storage URL appropriate for use as the source in a copy blob operation; the CopyBlob method will then use this URL directly when building the request, ignoring its SrcBlob parameter.

Refer to Azure's Copy Blob API documentation (and particularly, the description of the x-ms-copy-source header) for more information.

CopyStatus:   The status of a copy operation.

This setting can be queried to obtain the status of a copy operation. Possible values are:

  • pending
  • success
  • aborted
  • failed

This setting is populated after calling CopyBlob, or after calling GetBlobInfo for the destination blob in a copy operation.

CopyStatusDesc:   The status description for a copy operation.

This setting can be queried to obtain a description of a copy operation's status. The description will vary based on the operation's current CopyStatus:

  • If the operation is pending, the description may reflect any non-fatal errors which have occurred thus far.
  • If the operation is failed, the description will detail the fatal error which caused the failure.
  • Otherwise, the description will always be empty.

Calling CopyBlob will clear this setting; call GetBlobInfo for the destination blob in a copy operation to populate it.

DateFormat:   The format to use for date and time.

This setting specifies the date format for the date/time fields(e.g ModifiedTime). Below are the custom date and time format specifiers that can be used:

yyyyyear
MMmonth
ddday
hhhours
mmminutes
ssseconds

These format specifiers can be written in any combination. For example: AzureBlob.Config("DateFormat=yyyy-MM-ddThh:mm:ss");

AzureBlob.Config("DateFormat=dd/MM/yyyy hh:mm:ss");

If this setting is not specified, the default date/time format will be Day, dd MM yyyy hh:mm:ss. This is from RFC 1123.

DownloadTempFile:   The temporary file used when downloading encrypted data.

This setting specifies the temporary file used when downloading encrypted data.

When downloading encrypted data with LocalFile set, the component will automatically create a temporary file at TempPath to hold the encrypted file contents. When the download is complete, the data is decrypted to LocalFile.

If the download is interrupted, the specified file will hold the partially downloaded encrypted file contents. Before resuming the download, this setting must be set to a valid file containing the partially encrypted file contents. See DownloadFile for details.

EncodeBlockIds:   Whether the component should automatically Base64-encode and -decode block Ids.

This setting controls whether the component will automatically Base64-encode block Ids as they are sent to the server, and Base64-decode them as they are received. Refer to the BlockId property for more information.

By default, this setting is enabled.

EncryptionIV:   The initialization vector to be used for encryption/decryption.

When encrypting or decrypting a file, this setting may be set to specify the initialization vector. Normally the component will derive this value automatically from EncryptionPassword.

This setting accepts a hex encoded value.

EncryptionKey:   The key to use during encryption/decryption.

When encrypting or decrypting a file, this setting may be set to specify the key to use. Normally the component will derive this value automatically from EncryptionPassword.

This setting accepts a hex encoded value.

EncryptionPasswordKDF:   The KDF algorithm to use during password based encryption and decryption.

This setting specified the Key Derivation Function (KDF) used to derive a key from the specified EncryptionPassword. Possible values are:

  • 0 (default) - PBKDF1
  • 1 - PBKDF2
Note: PBKDF1 is not FIPS compliant. When operating in FIPS mode PBKDF2 should be used.

Endpoint:   The Azure Storage endpoint suffix that the component should use.

This setting specifies the base Azure Storage endpoint suffix that the component should use. By default, the component uses the global Azure Storage endpoint, https://[ACCOUNT].[blob|file].core.windows.net (this setting controls the bolded suffix only).

In most cases, the default endpoint suffix is the correct choice. This setting should only be changed if the component needs to use an endpoint suffix associated with a specific National Cloud Deployment, in which case it should be set to one of the values shown in this table:

National Cloud Endpoint Suffix
Azure global service .core.windows.net (default)
Azure Government (US) .core.usgovcloudapi.net
Azure Germany .core.cloudapi.de
Azure China .core.chinacloudapi.cn

Please note that each National Cloud Deployment also has its own corresponding application registration portal and OAuth endpoints, both of which are completely separate from those used for/by the global Azure Storage services. Applications that wish to work with a specific National Cloud Deployment must use that National Cloud Deployment's app registration portal and OAuth endpoints to register and authenticate in order for the component to successfully communicate using the National Cloud Deployment-specific endpoint. Refer to Microsoft's National Cloud Authentication article for more information.

FragmentSize:   The block size to use when uploading a new block blob.

When CreateBlob is used to create a new block blob, and more than SimpleUploadLimit bytes of upload data is provided, the component will automatically split the upload data up into blocks to perform the upload. This setting specifies the block size to use.

Valid values are 1 to 2147483647 (2GB). The default is 104857600 (100MB).

Note: If the amount of upload data provided when creating a block blob is less than SimpleUploadLimit bytes, it can be uploaded directly, and this setting will not apply. Data cannot be uploaded when creating a page blob or an append blob, so this setting does not apply in those cases either.

IfMatch:   The ETag which the blob must currently have in order for a request to succeed.

If this setting is non-empty, the component will If-Match header with the specified ETag value in the request.

Note that Azure supports many other conditional headers in addition to If-Match, from common ones (like If-None-Match, If-Modified-Since, and If-Unmodified-Since), to request-specific ones. The OtherHeaders property can be used to include additional conditional headers as needed; refer to the Azure Blob REST API documentation for more information.

IncludeSnapshots:   Whether blob snapshots should be included when listing blobs.

This setting specifies whether blob snapshots should be included when ListBlobs is called.

By default, this setting is disabled.

IncludeSoftDeleted:   Whether soft-deleted blobs should be included when listing blobs.

This setting specifies whether soft-deleted blobs (and blob snapshots, if IncludeSnapshots is enabled) should be included when ListBlobs is called.

By default, this setting is disabled.

IncludeUncommittedBlobs:   Whether uncommitted block blobs should be included when listing blobs.

This setting specifies whether uncommitted block blobs should be included when ListBlobs is called. Uncommitted block blobs are those for which one or more blocks have been uploaded, but none have been committed.

By default, this setting is disabled.

LeaseBreakPeriod:   The approximate number of seconds the lease will remain in the 'breaking' state.

After a successful call to Lease where Break (4) was passed for the LeaseAction parameter, this setting will reflect the approximate number of seconds that the lease will remain in the "breaking" state (a value of 0 indicates that the lease was broken immediately).

A successful call to Lease where LeaseAction was not Break (4) will set this setting back to -1.

ListWithMetadata:   Whether to include metadata items when listing blobs or containers.

This setting indicates whether the server should include metadata items in the results returned by ListBlobs or ListContainers. If this setting is enabled, the MetadataList event will fire once for each metadata item returned.

By default, this setting is disabled, and results are returned without metadata items.

Note that calls to ListBlobs and ListContainers will never repopulate the Metadata* properties, regardless of this setting's value.

MaxResults:   The maximum number of results to return when listing blobs or containers.

This setting specifies the maximum number of results that should be returned by a call to ListBlobs or ListContainers.

If this setting is -1 (default), the server's default (5000) is used. Acceptable values are 1 to 5000 (inclusive).

OAuthAccessTokenExpiration:   The lifetime of the access token.

This setting holds the lifetime of the access token in seconds. For instance the value 3600 indicates that the token will expire in one hour from the time it was generated.

OAuthAuthorizationTokenType:   The type of access token returned.

The applicable values include the following:

Bearer (default)When the access token returned by the server is a Bearer type, the authorization string returned by Authorize will be in the format "Bearer access_token". This can be supplied as the value of the HTTP Authorization header.
OAuthAutomaticRefresh:   Whether or not to refresh an expired access token automatically.

When this setting is set to true and the Authorization property is not set, the component will automatically get a new access token if it has the necessary properties to do so without user interaction.

For example, when using the Authorization Code grant type, the OAuthRefreshToken property should be set to a valid refresh token. When using the Client Credential grant type however, the component does not need any additional properties set as it can already get a new access token without user interaction.

OAuthBrowserResponseTimeout:   Specifies the amount of time to wait for a response from the browser.

This setting specifies the amount of time (in seconds) the component will wait for a response from the browser when requesting user authentication. The default value is 0, meaning that the component will wait indefinitely.

OAuthIncludeEmptyRedirectURI:   Whether an empty redirect_uri parameter is included in requests.

This setting specifies whether redirect_uri is included in the request made by Authorize if it is empty.

If set to true (default) the redirect_uri will be sent in all cases. If set to false the redirect_uri will only be sent if it has a value.

OAuthJWTPayload:   The payload of the JWT access token if present.

This configuration setting provides the payload section of a JWT access token if the access token is a JWT and the component is able to parse out the payload section. This setting only applies to access tokens that are returned from a service provider after successfully authorizing and authenticating with the service.

To parse the payload for specific claims, see OAuthJWTXPath.

OAuthJWTXChildCount:   The number of child elements of the current element.

The number of child attributes of the current element. The OAuthJWTXChildCount configuration settings will be indexed from 0 to (OAuthJWTXChildCount - 1).

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OauthJWTXChildName[i]:   The name of the child element.

Provides the name of the i'th child element of the current element.

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OAuthJWTXChildXText[i]:   The inner text of the child element.

Provides the inner text of the i'th child element of the current element.

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OAuthJWTXElement:   The name of the current element.

Provides the name of the current element.

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OauthJWTXParent:   The parent of the current element.

Provides the parent of the current element.

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OAuthJWTXPath:   Provides a way to point to a specific element in the returned payload of a JWT based access token.

The JWTXPath setting allows you to point to specific claims within the payload of a JWT based access token.

XPath Syntax

XPath syntax is available for the payload of JWT based access tokens if available. An XPath is a series of one or more element accessors separated by the / character, for example: /A/B/C/D.

The following are possible values for an element accessor, which operates relative to the current location specified by the XPath accessors which proceed it in the overall XPath string:

Accessor Description
name The first element with a particular name. Can be *.
[i] The i-th element.
name[i] The i-th element with a particular name.
[last()] The last element.
[last()-i] The element i before the last element.
Here are some examples of valid XPaths and some common claims:
DescriptionJSON XPath
Document root /json
Specific element /json/element_one
Username Claim (Microsoft Specific) /json/preferred_username
Registered Application Name Claim (Microsoft Specific) /json/app_displayname

This is not an exhaustive list by any means, but should provide a general idea of the possibilities. To get the text of the specified element, see JWTXText.

OAuthJWTXSubTree:   A snapshot of the current element in the document.

Provides the entirety of the current element (including its sub-elements).

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OAuthJWTXText:   The text of the current element.

Provides the inner text of the current element.

The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.

OAuthParamCount:   Specifies the number of additional parameters variables to include in the request.

This setting can be used to add query string parameters to the outgoing request. One common use for this method would be to add the "state" parameter to the request, which can be used when the OAuthClientProfile is ocpWeb to add user defined data. The authorization server will include the "state" parameter in the response and will be available in the post back to your server which will allow you to maintain state in your application. This is used in conjunction with OAuthParamName[i] and OAuthParamValue[i]. For instance:

component.Config("OAuthParamCount=2"); component.Config("OAuthParamName[0]=myvar"); component.Config("OAuthParamValue[0]=myvalue"); component.Config("OAuthParamName[1]=testname"); component.Config("OAuthParamValue[1]=testvalue");

Addtionally, this will also be updated to hold the parameters returned in the response.

for (int i = 0; i < int.Parse(component.Config("OAuthParamCount")); i++) { string name = component.Config("OAuthParamName["+i+"]"); string value = component.Config("OAuthParamValue[" + i + "]"); }

OAuthParamName[i]:   Specifies the parameter name at the specified index.

This setting can be used to retrieve or specify the parameter variable name at the index specified. See OAuthParamCount for details.

OAuthParamValue[i]:   Specifies the parameter value at the specified index.

This setting can be used to retrieve or specify the parameter variable value at the index specified. See OAuthParamCount for details.

OAuthPasswordGrantUsername:   Used in the Resource Owner Password grant type.

Used to set the username property when the OAuthGrantType is set to the password grant type and Authorize is called.

OAuthPKCEChallengeEncoding:   The PKCE code challenge method to use.

This setting controls the PKCE code challenge method used when OAuthUsePKCE is set to true. Possible values are:

  • 1 (Plain)
  • 2 (S256/SHA256 - default)
OAuthPKCEVerifier:   The PKCE verifier used to generate the challenge.

This configuration setting when queried provides the PKCE verifier that is used to generate the PKCE challenge for the Authorize method and the OAuthWebAuthURL field when OAuthUsePKCE is set to true. When using the cocpWeb OAuthClientProfile, the configuration setting can be set instead to allow the authorization request to be made from a different instance than the authentication (token) request.

OAuthReUseWebServer:   Determines if the same server instance is used between requests.

If set to true (default), the same embedded web server instance will be used for multiple requests. If set to false the embedded web server will be created and destroyed on each call to Authorize

OAuthUsePKCE:   Specifies if PKCE should be used.

If set to true (default), Proof Key for Code Exchange (PKCE) defined by RFC 7636 will be used when performing authorization. This setting applies when using the Authorization Code OAuthGrantType. The OAuthPKCEChallengeEncoding configuration setting can be used to control the code challenge method that will be used.

OAuthWebServerActive:   Specifies and controls whether the embedded web server is active.

The setting when queried will return the current state of the web server. If the webserver is active, it will return "true" and if it is inactive it will return "false".

This setting can also be set to activate or deactivate the web server. Under normal circumstances, this would not be required as the component will automatically start and stop the web server when Authorize is called. In certain cases, it is required to start the webserver before calling Authorize. For example, if the OAuthReturnURL needs to be set to a relay server, then you will need to start the web server manually. Another example would be when the OAuthReUseWebServer is set to true, the server will not be automatically stopped, and this configuration setting must be set to "false" to stop the embedded web server.

OAuthWebServerCertStore:   The certificate with private key to use when SSL is enabled.

The name of the certificate store used for the embedded web server's SSL.

The OAuthWebServerCertStoreType property specifies the type of the certificate store specified by OAuthWebServerCertStore. If the store is password protected, specify the password in OAuthWebServerCertStorePassword.

OAuthWebServerCertStore is used in conjunction with the OAuthWebServerCertSubject property in order to specify the certificate to be used during SSL.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

Note: This is required when OAuthWebServerSSLEnabled is set to true.

OAuthWebServerCertStorePassword:   The certificate with private key to use when SSL is enabled.

If the certificate store is of a type that requires a password, this property is used to specify that password in order to open the certificate store.

Note: This is only applicable when OAuthWebServerSSLEnabled is set to true.

OAuthWebServerCertStoreType:   The certificate with private key to use when SSL is enabled.

This specifies the type of certificate store. Possible values are:

0 User - This is the default for Windows. This specifies that the certificate store is a certificate store owned by the current user. Note: This store type is not available in Java.
1 Machine - For Windows, this specifies that the certificate store is a machine store. Note: This store type is not available in Java.
2 PFXFile - The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 PFXBlob - The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 JKSFile - The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: This store type is available only in Java.
5 JKSBlob - The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: This store type is available only in Java.
6 PEMKeyFile - The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 PEMKeyBlob - The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
14 PPKFile - The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 PPKBlob - The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 XMLFile - The certificate store is the name of a file that contains a certificate in XML format.
17 XMLBlob - The certificate store is a string that contains a certificate in XML format.
Note: This is required when OAuthWebServerSSLEnabled is set to true.
OAuthWebServerCertSubject:   The certificate with private key to use when SSL is enabled.

The subject of the SSL certificate.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Note: This is required when OAuthWebServerSSLEnabled is set to true.

OAuthWebServerFailedResponse:   The custom response that will be displayed to the user if authentication failed.

When Authorize is called the user will be redirected to the embedded web server upon completing authentication with the authorization server. If authentication failed, the HTML specified here will be sent to the user's browser.

OAuthWebServerHost:   The hostname used by the embedded web server displayed in the ReturnURL.

This setting specifies the hostname used by the embedded web server when OAuthClientProfile is set to cocpApplication. This specifies the interface on which the embedded web server listens, and also the value displayed in the OAuthReturnURL. This should be set to the hostname only, not the full URL.

The default value is localhost.

OAuthWebServerPort:   The local port on which the embedded web server listens.

This property specifies the port on which the embedded web server listens. Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be returned when this setting is queried after the server has started listening.This is only applicable when using the embedded web server.

OAuthWebServerResponse:   The custom response that will be displayed to the user.

When Authorize is called the user will be redirected to the embedded web server upon completing authentication with the authorization server. This setting allows you to specify the HTML that will be sent to the user's browser.

OAuthWebServerSSLEnabled:   Whether the web server requires SSL connections.

This setting specifies whether the embedded web server will use SSL. If set to True OAuthWebServerCert* configs are required and the server will only accept SSL connections. If set to False only plaintext connects are supported.

PageRangeCleared[i]:   Whether the specified page range has been cleared.

After calling ListPageRanges with PreviousSnapshot set to a non-empty value, this setting can be queried to determine if the page range at index i has been completely cleared since the snapshot specified by PreviousSnapshot.

This setting returns true if the specified page range has been completely cleared, or false it it's been changed in some other manner. If PreviousSnapshot was empty when ListPageRanges was last called, this setting will always return false.

Valid values for i are from 0 to (PageRangeCount - 1).

Prefix[i]:   The i'th common prefix returned.

When StorePrefixList is enabled, this setting can be used to retrieve the common prefixes returned by the most recent ListBlobs request. Refer to that method, as well as the BlobDelimiter property, for more information.

Valid values for i are from 0 to (PrefixCount - 1).

PrefixCount:   The number of common prefixed returned.

When StorePrefixList is enabled, this setting reflects the number of common prefixes returned by the most recent ListBlobs request.

This setting is always -1 when StorePrefixList is disabled.

PreviousSnapshot:   An opaque DateTime value that identifies the snapshot to list page range changes since.

If this setting is non-empty when ListPageRanges is called, the server will return a list of page ranges that differ between the snapshot that this setting specifies, and the base page blob specified by the ListPageRanges method's PageBlob parameter. Any page ranges that have been completely cleared are explicitly marked as such; use the PageRangeCleared[i] after calling ListPageRanges to determine whether a page range was changed or cleared.

If the Snapshot property is also non-empty when ListPageRanges is called, this server will return a list of page ranges that differ between the snapshot that this setting specifies, and the one that Snapshot specifies. (Snapshot must specify a later snapshot than this setting, otherwise the request will fail.)

Note that there are other restrictions that apply when requesting page range change lists; refer to the Azure Blob REST API documentation for more information.

ProgressAbsolute:   Whether the component should track transfer progress absolutely.

This setting controls whether the component tracks upload and download progress absolutely or relatively, with regards to the values reported via the Progress event when an interrupted transfer is resumed.

If this setting is enabled (default), then when a transfer is interrupted and later resumed, the values reported by the Progress event will account for the data that was successfully transferred before the interruption.

If this setting is disabled, then the component will treat resumed transfers as "new" transfers, and the values reported by the Progress event will start at 0 rather than from the number of bytes already transferred.

Refer to the Progress event for more information.

ProgressStep:   How often the progress event should be fired, in terms of percentage.

This setting controls how often the component will fire the Progress event during an upload or download, in terms of percentage. Valid values are 0 to 99, inclusive.

The default value, 1, will cause the Progress event to fire each time the event's PercentDone parameter value increases by one percent. Setting this setting to 0 will cause the Progress event to fire every time data is transferred.

Note that the Progress event will always fire once at the beginning and end of a transfer, regardless of this setting's value. Also, if PercentDone cannot be calculated for a particular transfer (e.g., for downloads that use chunked transfer encoding), then the component will behave as if this setting were 0 for the duration of the transfer.

RawRequest:   Returns the data that was sent to the server.

This setting may be queried after calling any method that sends data to the server to obtain the request data that was transmitted. Such data may be useful for troubleshooting purposes.

RawResponse:   Returns the data that was received from the server.

This setting may be queried after calling any method that sends data to the server to obtain the response data that was received. Such data may be useful for troubleshooting purposes.

SendMetadata:   Whether to send metadata items when creating blobs and containers.

This setting specifies whether the component should include Metadata* items when creating blobs or containers with CreateBlob or CreateContainer.

By default, this setting is disabled, and blobs and containers are created without metadata.

SendMetadataOnCopy:   Whether to send metadata items when copying blobs.

This setting specifies whether the component should include Metadata* items, to apply to the destination blob, when CopyBlob is called.

If this setting is disabled (default), or if this setting is enabled but there are no Metadata* items, then the server will copy the source blob's current metadata to the destination blob.

SendMetadataOnPutBlockList:   Whether to send metadata items when committing a new block list.

This setting specifies whether the component should include Metadata* items when a new block list is committed to a block blob using PutBlockList.

If this setting is disabled (default), the component will ensure that the block blob's current metadata, if any, is preserved (as described in PutBlockList's documentation).

SendMetadataOnSnapshot:   Whether to send metadata items when creating a blob snapshot.

This setting specifies whether the component should include Metadata* items when creating a blob snapshot with CreateSnapshot.

If this setting is disabled (default), or if this setting is enabled but there are no Metadata* items, the server will copy the base blob's current metadata to the snapshot.

SharedAccessSignature:   Specifies a SAS token to use for authentication.

This setting can be used to specify a URL-encoded Shared Access Signature (SAS) token that will be included in the request. To generate a Shared Access Signature for specific resources, you can use the GetLink method.

SimpleUploadLimit:   The maximum data size the component should attempt to upload directly when creating a block blob.

When CreateBlob is used to create a new block blob, the component will automatically split the upload data into blocks to perform the upload if its size is greater than the amount specified by this setting. If the upload data size is less than or equal to the amount specified by this setting, it will be uploaded directly in the blob creation request.

Valid values are 0 to 5368709120 (5GB), inclusive. The default is 268435456 (256MB). If this setting is set to 0, the component will always perform a block-based upload (if necessary) when creating a block blob.

Note: Data cannot be uploaded when creating a page blob or an append blob, so this setting does not apply in those cases.

StorePrefixList:   Whether to store the common prefixes returned when listing blobs.

If this setting is enabled, the component will populate the PrefixCount and Prefix[i] settings anytime ListBlobs is called.

By default, this setting is disabled.

TempPath:   The path to the directory where temporary files are created.

This setting specifies the path where temporary files are created when downloading encrypted files. If not specified, the system's temporary directory is used. Refer to DownloadTempFile and DownloadFile for more information.

UserDelegationKey:   A user delegation key to use for constructing SAS tokens.

NOTE: This setting is not currently implemented; it is reserved for future use.

XChildCount:   The number of child elements of the current element.

The number of child attributes of the current element. The XChild configuration settings will be indexed from 0 to (XChildCount - 1).

The current element is specified via the XPath configuration setting. This configuration setting is read-only.

XChildName[i]:   The name of the child element.

Provides the name of the i'th child element of the current element.

The current element is specified via the XPath configuration setting. This configuration setting is read-only.

XChildXText[i]:   The inner text of the child element.

Provides the inner text of the i'th child element of the current element.

The current element is specified via the XPath configuration setting. This configuration setting is read-only.

XElement:   The name of the current element.

Provides the name of the current element.

The current element is specified via the XPath configuration setting. This configuration setting is read-only.

XParent:   The parent of the current element.

Provides the parent of the current element.

The current element is specified via the XPath configuration setting. This configuration setting is read-only.

XPath:   Provides a way to point to a specific element in the returned XML or JSON response.

The XPath setting allows you to point to specific elements in the XML or JSON response.

When XPath is set to a valid path, XElement points to the name of the element, with XText, XParent, XSubTree, XChildCount, XChildName[i], and XChildXText[i] providing other properties of the element.

XPath Syntax

XPath syntax is available for both XML and JSON documents. An XPath is a series of one or more element accessors separated by the / character, for example: /A/B/C/D. An XPath can be absolute (i.e., it starts with /), or it can be relative to the current XPath location.

The following are possible values for an element accessor, which operates relative to the current location specified by the XPath accessors which proceed it in the overall XPath string:

Accessor Description
name The first element with a particular name. Can be *.
[i] The i-th element.
name[i] The i-th element with a particular name.
[last()] The last element.
[last()-i] The element i before the last element.
name[@attrname="attrvalue"]The first element with a particular name that contains the specified attribute-value pair.

Supports single and double quotes. (XML Only)

. The current element.
.. The parent element.
Note: XPath indices are 1-based.

XPath Examples

Assuming the following XML response:

<firstlevel>
  <one>value</one>
  <two>
    <item>first</item>
    <item>second</item>
  </two>
  <three>value three</three>
</firstlevel>

Or, alternatively, the following JSON response:

{
  "firstlevel": {
    "one": "value",
    "two": ["first", "second"],
    "three": "value three"
  }
}

Here are some examples of valid XPaths:

DescriptionXML XPath JSON XPath
Document root / /json
Specific element /firstlevel/one /json/firstlevel/one
i-th child /firstlevel/two/item[2]/json/firstlevel/two/[2]

This is not an exhaustive list by any means, but should provide a general idea of the possibilities.

XSubTree:   A snapshot of the current element in the document.

Provides the entirety of the current element (including its sub-elements).

The current element is specified via the XPath configuration setting. This configuration setting is read-only.

XText:   The text of the current element.

Provides the inner text of the current element.

The current element is specified in the XPath configuration setting. This configuration setting is read-only.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the component adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The component only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the component will accept compressed data. It then will uncompress the data it has received. The component will handle data compressed by both gzip and deflate compression algorithms.

When True, the component adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when HTTPVersion is set to "2.0".

If set to True (default), the component will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the component raises an exception if the server does not support HTTP/2.

The default value is True.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to LocalFile. When set to True, downloaded data will be appended to LocalFile. This may be used in conjunction with Range to resume a failed download. This is applicable only when LocalFile is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP component can be extended with other security schemes in addition to the authorization schemes already implemented by the component.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the Transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the component.

If set to True, the URL passed to the component will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the component returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new URL for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the component raises an exception.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the component raises an exception instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the component will perform a GET on the new location.

The default value is False. If set to True, the component will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the component.

This property specifies the HTTP version used by the component. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the component will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If true, the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If false, the connection will be closed immediately after the server response is received.

The default value for KeepAlive is false.

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the Log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When FollowRedirects is set to any value other than frNever, the component will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When HTTPVersion is set to "2.0" (if the server does not support "2.0"), then the component will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the component beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If ProxyUser and ProxyPassword are specified, this value is calculated using the algorithm specified by ProxyAuthScheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by components that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by components that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by components that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by components that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by components that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the component.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the component.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the component will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the component will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001.

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the component will attempt to use the Proxy auto-config URL when establishing a connection and ProxyAutoDetect is set to True.

When True (default), the component will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the component will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the component whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by components that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the component raises an exception.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by components that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the component raises an exception.

Note: This setting is provided for use by components that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.

If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the component binds.

This must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When true, the socket will send all data that is ready to send at once. When false, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this config is set to false.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the component will use IPv4 exclusively. When set to 1, the component will use IPv6 exclusively. To instruct the component to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are:

0 IPv4 Only
1 IPv6 Only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this setting controls whether SSL packets should be logged. By default, this setting is False, as it is only useful for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to true, the component will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the component is the same.

SSLCACerts:   A newline separated list of CA certificate to use during SSL client authentication.

This setting specifies one or more CA certificates to be included in the request when performing SSL client authentication. Some servers require the entire chain, including CA certificates, to be presented when performing SSL client authentication. The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This setting specifies whether the component will check the Certificate Revocation List specified by the server certificate. If set to 1 or 2, the component will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The component will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component raises an exception.

When set to 0 (default) the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This setting specifies whether the component will use OCSP to check the validity of the server certificate. If set to 1 or 2, the component will first obtain the OCSP URL from the server certificate's OCSP extension. The component will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the component raises an exception.

When set to 0 (default) the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

The enabled cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internal: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
  • TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

Used to enable/disable the supported security protocols.

Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default)
TLS1.1768 (Hex 300) (Default)
TLS1 192 (Hex C0) (Default)
SSL3 48 (Hex 30) [Platform Only]
SSL2 12 (Hex 0C) [Platform Only]

SSLEnabledProtocols - TLS 1.3 Notes

By default when TLS 1.3 is enabled the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider) please be aware of the following notes:

  • The platform provider is only available on Windows 11 / Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This setting is true by default, but can be set to false to disable the extension.

This setting is only applicable when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the component will only append, it will not overwrite previous values.

Note: This setting is only applicable when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

Returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

Returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

Returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

Returns the strenghth of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

Returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be or-ed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown Certificate Authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown Certificate Authority revocation status.
0x00000800Ignore unknown Root revocation status.
0x00008000Allow test Root certificate.
0x00004000Trust test Root certificate.
0x80000000Ignore non-matching CN (certificate CN not-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificate to use during SSL server certificate validation.

This setting optionally specifies one or more CA certificates to be used when verifying the server certificate. When verifying the server's certificate the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This setting should only be set if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this setting is a newline (CrLf) separated list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
..
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the component will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the component raises an exception.

The format of this value is a comma separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This setting specifies a comma separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional round trip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.

In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This setting holds a comma separated list of allowed signature algorithms. Possible values are:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This setting is only applicable when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This setting specifies a comma separated list of named groups used in TLS 1.3 for key exchange. This setting should only be modified if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method which does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for UDP ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g. headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. Increasing the value of the InBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. Increasing the value of the OutBufferSize setting can provide significant improvements in performance in some cases.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a component is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseFIPSCompliantAPI:   Tells the component whether or not to use FIPS certified APIs.

When set to true, the component will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle FIPS, while all the other Windows editions make use of Microsoft security libraries.

FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting which applies to all instances of all components of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.

For more details please see the FIPS 140-2 Compliance article.

Note: This setting is only applicable on Windows.

Note: Enabling FIPS-compliance requires a special license; please contact sales@nsoftware.com for details.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the component will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.

This setting is set to false by default on all platforms.

Trappable Errors (AzureBlob Component)

Common Errors

600   A server error occurred, and/or the component was unable to process the server's response. Please refer to the error message for more information.
601   An unsupported operation or action was attempted.
602   The RawRequest or RawResponse configuration setting was queried without first setting the TransferredRequest configuration setting to ON.
603   The login credentials specified were invalid. Please refer to the error message for more information.
604   An invalid remote resource identifier (i.e., a name, path, Id, etc.) was specified.
605   An invalid index was specified.
606   An upload was aborted by the user before it could finish.
607   The specified resource is a folder and cannot be downloaded.
608   A download failed because the specified LocalFile already exists and Overwrite is false.
609   The component could not resume a download or upload. Please refer to the error message for more information.
610   An encrypted download could not be resumed because the DownloadTempFile configuration setting is not set.
611   An exception occurred while working with the specified LocalFile (or the current value of LocalFile is invalid). Please refer to the error message for more information.
612   An exception occurred while working with the specified upload or download stream. Please refer to the error message for more information.

The component may also return one of the following error codes, which are inherited from other components.

HTTP Errors

118   Firewall Error. Error description contains detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in URL
153   Specified URLScheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Can't open AttachedFile.

The component may also return one of the following error codes, which are inherited from other components.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the component is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on non-socket.
10039   [10039] Destination address required.
10040   [10040] Message too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol not supported.
10044   [10044] Socket type not supported.
10045   [10045] Operation not supported on socket.
10046   [10046] Protocol family not supported.
10047   [10047] Address family not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Can't assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Can't send after socket shutdown.
10059   [10059] Too many references, can't splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock not loaded yet.
11001   [11001] Host not found.
11002   [11002] Non-authoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).