SMS Class

Properties   Methods   Events   Config Settings   Errors  

The SMS class provides an easy way to manage short message service (SMS) messages from a variety of service providers.

Syntax

SMS

Remarks

This class provides a single interface that can be used to work with a variety of services. By supporting multiple providers with a single API code may be written once and used to support multiple services. The following providers are currently supported by this class:

  • Twilio
  • Sinch
  • SMSGlobal
  • SMS.to
  • Vonage
  • Clickatell

The class supports sending, scheduling, deleting, updating, listing, fetching, and more. Note that not all services support all operations. See the Service Provider Specific Notes page for more information.

Selecting a Provider

To specify a service provider simply set the ServiceProvider property. To begin, first create an account and register with the desired service provider(s).

Authentication

Once the account is created, the service provider will provide some form of credentials. Assign the provider account credentials to the corresponding AccountKey and AccountSecret properties. As a note, in some cases, the service provider does not provide or require an account secret.

Sending a Message

The Send method is used to send SMS messages without any delay.

The message details are specified by the MessageFrom, MessageRecipients, and MessageBody properties.

sms.MessageFrom = "+11234567890"; sms.MessageRecipients = "+10987654321"; sms.MessageBody = "This is an SMS message."; string messageId = sms.Send();

Scheduling a Message

Some service providers allow for messages to be scheduled to send at a particular time. The ScheduleMessage method can be used to delay SMS messages from being sent until the specified time.

The message details are specified by the MessageFrom, MessageRecipients, and MessageBody properties. The scheduled time to send is specified by the MessageDate property.

sms.MessageFrom = "+11234567890"; sms.MessageRecipients = "+10987654321"; sms.MessageBody = "This is an SMS message."; sms.MessageDate = "2023-04-10T20:02:39Z"; string messageId = sms.ScheduleMessage();

Deleting a Message

Some service providers also support "deleting" messages from the account. The DeleteSentMessage and DeleteReceivedMessage methods delete an SMS message that was sent or received, respectively. The particular manner in which the message is deleted depends on the service provider. See the service provider documentation for more details.

In order to delete a message, the corresponding message ID must be provided to the method.

sms.MessageFrom = "+11234567890"; sms.MessageRecipients = "+10987654321"; sms.MessageBody = "This is an SMS message."; string id = sms.Send(); // Wait for the message to send before deleting. sms.DeleteSentMessage(id);

Updating a Message

Certain service providers support updating sent messages. The specifics of what values can be updated and when the message is still available to be updated depends on the service provider. The UpdateSentMessage method will update a sent SMS message with the values found in its corresponding Messages properties entry.

sms.MessageFrom = "+11234567890"; sms.MessageRecipients = "+10987654321"; sms.MessageBody = "This is an SMS message."; string id = sms.Send(); // Wait for the message to send before updating with cleared body text. sms.Messages[0].Body = ""; sms.UpdateSentMessage(id);

Listing Messages

If supported by the service provider, the ListSentMessages and ListReceivedMessages methods list sent and received SMS messages, respectively, present on the authenticated account.

In order to refine which messages are listed, service-specific filters may be supplied. See the service documentation for more information about the parameters that can be added as the filter.

string startTime = DateTime.UtcNow.ToString("yyyy-MM-ddTHH:mm:ssZ"); sms.MessageFrom = "+11234567890"; sms.MessageRecipients = "+10987654321"; sms.MessageBody = "This is an SMS message."; sms.Send(); // Wait for the message to send before listing only the above message by supplying multiple filters. sms.ListSentMessages("To=" + sms.MessageRecipients + "&DateSent>=" + startTime); foreach (SMSMessage message in sms.Messages) { if (message.From.Equals("+11234567890")) { // . . . } }

Fetching a Message

In certain cases, it is useful to fetch a specific message. If supported, the RetrieveSentMessage and RetrieveReceivedMessage methods can be used to fetch a specific SMS message that was sent or received, respectively, in the authenticated account.

In order to fetch a message, the corresponding message ID must be supplied.

sms.MessageFrom = "+11234567890"; sms.MessageRecipients = "+10987654321"; sms.MessageBody = "This is an SMS message."; string id = sms.Send(); // Wait for the message to send before fetching. sms.FetchSentMessage(id); if (sms.Messages[0].MessageStatus.Equals("Delivered")) { // . . . }

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

AccountKeyThe account key associated with the service provider account.
AccountSecretThe account secret associated with the service provider account.
FirewallA set of properties related to firewall access.
IdleThis property specifies the current status of the class.
MessageBodyThe body of the SMS message that will be sent.
MessageDateThe date and time when the SMS message will be sent.
MessageFromThe sender of the SMS message.
MessageRecipientsThe recipient(s) of the SMS message.
MessagesA collection of scheduled, sent, or received SMS messages.
ProxyA set of properties related to proxy access.
QueryParamsAdditional query parameters to be included in the request.
ServiceProviderThe service provider to use.
SSLAcceptServerCertThis property instructs the class to unconditionally accept the server certificate that matches the supplied certificate.
SSLCertThis property includes the certificate to be used during Secure Sockets Layer (SSL) negotiation.
SSLProviderThis property specifies the Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
SSLServerCertThis property includes the server certificate for the last established connection.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

AddQueryParamAdds a query parameter to the QueryParams properties.
ConfigSets or retrieves a configuration setting.
DeleteReceivedMessageDeletes a received message from the account.
DeleteSentMessageDeletes a sent message from the account.
DoEventsThis method processes events from the internal message queue.
HandleWebhookParses requests made to a web-hook.
InterruptThis method interrupts the current method.
ListReceivedMessagesLists received messages from the account.
ListSentMessagesLists messages sent from the account.
ResetThis method will reset the class.
RetrieveReceivedMessageFetches a received message from the account.
RetrieveSentMessageFetches a message sent from the account.
ScheduleMessageSchedules a message to be sent.
SendSends an SMS message.
UpdateSentMessageUpdates a scheduled or sent message.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

DeliveryReportFired once for each delivery report.
ErrorFired when information is available about errors during data delivery.
IncomingMessageFired once for each incoming message.
LogThis event fires once for each log message.
MessageListFired once for each listed message.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

DateFormatThe format to use for date and time.
MaxMessageResultsThe maximum number of results to return when listing messages.
RawRequestReturns the data that was sent to the server.
RawResponseReturns the data that was received from the server.
SMStoMessageTypeThe type of message that is sent.
SMStoTimezoneThe timezone used by SMS.to when sending or scheduling.
TwilioMessagingServiceSidThe messaging service for Twilio.
VonageConcatIf the current message is a concat-ted message from Vonage.
VonageConcatPartThe number of this part in the message.
VonageConcatRefThe transaction reference. All parts of this message share this concat-ref.
VonageConcatTotalThe number of parts in this concatenated message.
VonageMessageBodyTypeThe message body type to use when sending a message with Vonage.
WebhookURLThe web-hook URL that is set when sending a message.
AcceptEncodingUsed to tell the server which types of content encodings the client supports.
AllowHTTPCompressionThis property enables HTTP compression for receiving data.
AllowHTTPFallbackWhether HTTP/2 connections are permitted to fallback to HTTP/1.1.
AppendWhether to append data to LocalFile.
AuthorizationThe Authorization string to be sent to the server.
BytesTransferredContains the number of bytes transferred in the response data.
ChunkSizeSpecifies the chunk size in bytes when using chunked encoding.
CompressHTTPRequestSet to true to compress the body of a PUT or POST request.
EncodeURLIf set to True the URL will be encoded by the class.
FollowRedirectsDetermines what happens when the server issues a redirect.
GetOn302RedirectIf set to True the class will perform a GET on the new location.
HTTP2HeadersWithoutIndexingHTTP2 headers that should not update the dynamic header table with incremental indexing.
HTTPVersionThe version of HTTP used by the class.
IfModifiedSinceA date determining the maximum age of the desired document.
KeepAliveDetermines whether the HTTP connection is closed after completion of the request.
KerberosSPNThe Service Principal Name for the Kerberos Domain Controller.
LogLevelThe level of detail that is logged.
MaxRedirectAttemptsLimits the number of redirects that are followed in a request.
NegotiatedHTTPVersionThe negotiated HTTP version.
OtherHeadersOther headers as determined by the user (optional).
ProxyAuthorizationThe authorization string to be sent to the proxy server.
ProxyAuthSchemeThe authorization scheme to be used for the proxy.
ProxyPasswordA password if authentication is to be used for the proxy.
ProxyPortPort for the proxy server (default 80).
ProxyServerName or IP address of a proxy server (optional).
ProxyUserA user name if authentication is to be used for the proxy.
SentHeadersThe full set of headers as sent by the client.
StatusCodeThe status code of the last response from the server.
StatusLineThe first line of the last response from the server.
TransferredDataThe contents of the last response from the server.
TransferredDataLimitThe maximum number of incoming bytes to be stored by the class.
TransferredHeadersThe full set of headers as received from the server.
TransferredRequestThe full request as sent by the client.
UseChunkedEncodingEnables or Disables HTTP chunked encoding for transfers.
UseIDNsWhether to encode hostnames to internationalized domain names.
UsePlatformHTTPClientWhether or not to use the platform HTTP client.
UseProxyAutoConfigURLWhether to use a Proxy auto-config file when attempting a connection.
UserAgentInformation about the user agent (browser).
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveRetryCountThe number of keep-alive packets to be sent before the remotehost is considered disconnected.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertFilePathsThe paths to CA certificate files on Unix/Linux.
SSLCACertsA newline separated list of CA certificate to be included when performing an SSL handshake.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
CodePageThe system code page used for Unicode to Multibyte translations.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
ProcessIdleEventsWhether the class uses its internal event loop to process events when the main thread is idle.
SelectWaitMillisThe length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

AccountKey Property (SMS Class)

The account key associated with the service provider account.

Syntax

ANSI (Cross Platform)
char* GetAccountKey();
int SetAccountKey(const char* lpszAccountKey); Unicode (Windows) LPWSTR GetAccountKey();
INT SetAccountKey(LPCWSTR lpszAccountKey);
char* cloudsms_sms_getaccountkey(void* lpObj);
int cloudsms_sms_setaccountkey(void* lpObj, const char* lpszAccountKey);
QString GetAccountKey();
int SetAccountKey(QString qsAccountKey);

Default Value

""

Remarks

This property takes a string that will be used as the account key to connect to the service provider. Service providers have various names for this value in their specific console. Consult the following table to find the typical name for the account key:

Service Provider Name
Twilio Account SID
Sinch Service Plan ID
SMSGlobal API Key
SMS.to API Key
Vonage API Key
Clickatell API Key

Data Type

String

AccountSecret Property (SMS Class)

The account secret associated with the service provider account.

Syntax

ANSI (Cross Platform)
char* GetAccountSecret();
int SetAccountSecret(const char* lpszAccountSecret); Unicode (Windows) LPWSTR GetAccountSecret();
INT SetAccountSecret(LPCWSTR lpszAccountSecret);
char* cloudsms_sms_getaccountsecret(void* lpObj);
int cloudsms_sms_setaccountsecret(void* lpObj, const char* lpszAccountSecret);
QString GetAccountSecret();
int SetAccountSecret(QString qsAccountSecret);

Default Value

""

Remarks

This property takes a string that will be used as the account secret to connect to the service provider. Service providers have various names for this value in their specific console. Consult the following table to find the typical name for the account secret:

Service Provider Name
Twilio Auth Token
Sinch API Token
SMSGlobal API Secret
SMS.to N/A
Vonage Account Secret
Clickatell N/A

Data Type

String

Firewall Property (SMS Class)

A set of properties related to firewall access.

Syntax

CloudSMSFirewall* GetFirewall();
int SetFirewall(CloudSMSFirewall* val);
int cloudsms_sms_getfirewallautodetect(void* lpObj);
int cloudsms_sms_setfirewallautodetect(void* lpObj, int bFirewallAutoDetect);
int cloudsms_sms_getfirewalltype(void* lpObj);
int cloudsms_sms_setfirewalltype(void* lpObj, int iFirewallType);
char* cloudsms_sms_getfirewallhost(void* lpObj);
int cloudsms_sms_setfirewallhost(void* lpObj, const char* lpszFirewallHost);
char* cloudsms_sms_getfirewallpassword(void* lpObj);
int cloudsms_sms_setfirewallpassword(void* lpObj, const char* lpszFirewallPassword);
int cloudsms_sms_getfirewallport(void* lpObj);
int cloudsms_sms_setfirewallport(void* lpObj, int iFirewallPort);
char* cloudsms_sms_getfirewalluser(void* lpObj);
int cloudsms_sms_setfirewalluser(void* lpObj, const char* lpszFirewallUser);
bool GetFirewallAutoDetect();
int SetFirewallAutoDetect(bool bFirewallAutoDetect); int GetFirewallType();
int SetFirewallType(int iFirewallType); QString GetFirewallHost();
int SetFirewallHost(QString qsFirewallHost); QString GetFirewallPassword();
int SetFirewallPassword(QString qsFirewallPassword); int GetFirewallPort();
int SetFirewallPort(int iFirewallPort); QString GetFirewallUser();
int SetFirewallUser(QString qsFirewallUser);

Remarks

This is a Firewall-type property, which contains fields describing the firewall through which the class will attempt to connect.

Data Type

CloudSMSFirewall

Idle Property (SMS Class)

This property specifies the current status of the class.

Syntax

ANSI (Cross Platform)
int GetIdle();

Unicode (Windows)
BOOL GetIdle();
int cloudsms_sms_getidle(void* lpObj);
bool GetIdle();

Default Value

TRUE

Remarks

Idle will be False if the component is currently busy (communicating or waiting for an answer), and True at all other times.

This property is read-only.

Data Type

Boolean

MessageBody Property (SMS Class)

The body of the SMS message that will be sent.

Syntax

ANSI (Cross Platform)
char* GetMessageBody();
int SetMessageBody(const char* lpszMessageBody); Unicode (Windows) LPWSTR GetMessageBody();
INT SetMessageBody(LPCWSTR lpszMessageBody);
char* cloudsms_sms_getmessagebody(void* lpObj);
int cloudsms_sms_setmessagebody(void* lpObj, const char* lpszMessageBody);
QString GetMessageBody();
int SetMessageBody(QString qsMessageBody);

Default Value

""

Remarks

This property takes a string that will be used as the body of the SMS message when the Send or ScheduleMessage methods are called. The string passed into this property must obey certain encoding and length requirements depending on the service provider. See the service documentation for more information.

Note: If the message length exceeds the standard 160 characters for 7-bit encoding or 70 characters for Unicode encoding, some service providers will segment the message into multiple SMS messages that will be concatenated for the recipient. Consult the documentation of the individual service provider for how longer SMS messages are processed.

Data Type

String

MessageDate Property (SMS Class)

The date and time when the SMS message will be sent.

Syntax

ANSI (Cross Platform)
char* GetMessageDate();
int SetMessageDate(const char* lpszMessageDate); Unicode (Windows) LPWSTR GetMessageDate();
INT SetMessageDate(LPCWSTR lpszMessageDate);
char* cloudsms_sms_getmessagedate(void* lpObj);
int cloudsms_sms_setmessagedate(void* lpObj, const char* lpszMessageDate);
QString GetMessageDate();
int SetMessageDate(QString qsMessageDate);

Default Value

""

Remarks

This property takes a string that will be used as the date and time when the SMS message will be sent. This property should only be set when the ScheduleMessage method is called.

Depending on the service provider, scheduled SMS messages are subject to certain time restraints:

Service Provider Time Restraint
Twilio A message must be scheduled between 15 minutes and 7 days in advance of the request.
Sinch If set in the future, the message will be delayed until the time occurs. If set in the past, messages will be sent immediately.
SMSGlobal N/A
SMS.to N/A
Vonage Scheduling is not supported.
Clickatell Messages can be scheduled up to 7 days in advance. The actual delivery of messages may be up to 5 minutes prior to the scheduled time.

Example

sms.MessageDate = "1970-01-01T00:00:00Z"; // yyyy-MM-ddTHH:mm:ssZ format

Note: Custom date and time formats can be specified via the DateFormat configuration setting.

Data Type

String

MessageFrom Property (SMS Class)

The sender of the SMS message.

Syntax

ANSI (Cross Platform)
char* GetMessageFrom();
int SetMessageFrom(const char* lpszMessageFrom); Unicode (Windows) LPWSTR GetMessageFrom();
INT SetMessageFrom(LPCWSTR lpszMessageFrom);
char* cloudsms_sms_getmessagefrom(void* lpObj);
int cloudsms_sms_setmessagefrom(void* lpObj, const char* lpszMessageFrom);
QString GetMessageFrom();
int SetMessageFrom(QString qsMessageFrom);

Default Value

""

Remarks

This property takes a string that will be used as the sender when the Send or ScheduleMessage methods are called. This is typically a phone number.

Service Provider Specific Notes

General
  • Twilio, Sinch, SMS.to, and Vonage all recommend using E.164 formatting for phone numbers, i.e. [+][country code][subscriber number including area code].
    • For example, the U.S. number (415) 555-2671 should be formatted as +14155552671.
  • SMSGlobal and Clickatell require a leading '0' or '+' to be removed and replaced with the country code.
    • For example, the Australia number 0447973739 should be formatted as 61447973739.

Twilio

Data Type

String

MessageRecipients Property (SMS Class)

The recipient(s) of the SMS message.

Syntax

ANSI (Cross Platform)
char* GetMessageRecipients();
int SetMessageRecipients(const char* lpszMessageRecipients); Unicode (Windows) LPWSTR GetMessageRecipients();
INT SetMessageRecipients(LPCWSTR lpszMessageRecipients);
char* cloudsms_sms_getmessagerecipients(void* lpObj);
int cloudsms_sms_setmessagerecipients(void* lpObj, const char* lpszMessageRecipients);
QString GetMessageRecipients();
int SetMessageRecipients(QString qsMessageRecipients);

Default Value

""

Remarks

This property takes a string that will be used as the recipient(s) when the Send or ScheduleMessage methods are called. This is typically a phone number. To specify multiple recipients, separate each recipient with a ',' character.

Service Provider Specific Notes

General
  • Twilio, Sinch, SMS.to, and Vonage all recommend using E.164 formatting for phone numbers, i.e. [+][country code][subscriber number including area code].
    • For example, the U.S. number (415) 555-2671 should be formatted as +14155552671.
  • SMSGlobal and Clickatell require a leading '0' or '+' to be removed and replaced with the country code.
    • For example, the Australia number 0447973739 should be formatted as 61447973739.

Data Type

String

Messages Property (SMS Class)

A collection of scheduled, sent, or received SMS messages.

Syntax

CloudSMSList<CloudSMSSMSMessage>* GetMessages();

int cloudsms_sms_getmessagescount(void* lpObj);
char* cloudsms_sms_getmessagesbody(void* lpObj, int messagesindex);
int cloudsms_sms_setmessagesbody(void* lpObj, int messagesindex, const char* lpszMessagesBody);
int cloudsms_sms_getmessagesdirection(void* lpObj, int messagesindex);
char* cloudsms_sms_getmessagesfrom(void* lpObj, int messagesindex);
int cloudsms_sms_setmessagesfrom(void* lpObj, int messagesindex, const char* lpszMessagesFrom);
char* cloudsms_sms_getmessagesmessageid(void* lpObj, int messagesindex);
char* cloudsms_sms_getmessagesmessagestatus(void* lpObj, int messagesindex);
int cloudsms_sms_setmessagesmessagestatus(void* lpObj, int messagesindex, const char* lpszMessagesMessageStatus);
char* cloudsms_sms_getmessagesto(void* lpObj, int messagesindex);
int cloudsms_sms_setmessagesto(void* lpObj, int messagesindex, const char* lpszMessagesTo);
int GetMessagesCount();

QString GetMessagesBody(int iMessagesIndex);
int SetMessagesBody(int iMessagesIndex, QString qsMessagesBody); int GetMessagesDirection(int iMessagesIndex); QString GetMessagesFrom(int iMessagesIndex);
int SetMessagesFrom(int iMessagesIndex, QString qsMessagesFrom); QString GetMessagesMessageId(int iMessagesIndex); QString GetMessagesMessageStatus(int iMessagesIndex);
int SetMessagesMessageStatus(int iMessagesIndex, QString qsMessagesMessageStatus); QString GetMessagesTo(int iMessagesIndex);
int SetMessagesTo(int iMessagesIndex, QString qsMessagesTo);

Remarks

This collection contains a list of SMS messages that have been scheduled, sent, or received. Calling Send, ScheduleMessage, RetrieveReceivedMessage, RetrieveSentMessage, UpdateSentMessage, ListReceivedMessages or ListSentMessages will populate this collection.

This property is read-only and not available at design time.

Data Type

CloudSMSSMSMessage

Proxy Property (SMS Class)

A set of properties related to proxy access.

Syntax

CloudSMSProxy* GetProxy();
int SetProxy(CloudSMSProxy* val);
int cloudsms_sms_getproxyauthscheme(void* lpObj);
int cloudsms_sms_setproxyauthscheme(void* lpObj, int iProxyAuthScheme);
int cloudsms_sms_getproxyautodetect(void* lpObj);
int cloudsms_sms_setproxyautodetect(void* lpObj, int bProxyAutoDetect);
char* cloudsms_sms_getproxypassword(void* lpObj);
int cloudsms_sms_setproxypassword(void* lpObj, const char* lpszProxyPassword);
int cloudsms_sms_getproxyport(void* lpObj);
int cloudsms_sms_setproxyport(void* lpObj, int iProxyPort);
char* cloudsms_sms_getproxyserver(void* lpObj);
int cloudsms_sms_setproxyserver(void* lpObj, const char* lpszProxyServer);
int cloudsms_sms_getproxyssl(void* lpObj);
int cloudsms_sms_setproxyssl(void* lpObj, int iProxySSL);
char* cloudsms_sms_getproxyuser(void* lpObj);
int cloudsms_sms_setproxyuser(void* lpObj, const char* lpszProxyUser);
int GetProxyAuthScheme();
int SetProxyAuthScheme(int iProxyAuthScheme); bool GetProxyAutoDetect();
int SetProxyAutoDetect(bool bProxyAutoDetect); QString GetProxyPassword();
int SetProxyPassword(QString qsProxyPassword); int GetProxyPort();
int SetProxyPort(int iProxyPort); QString GetProxyServer();
int SetProxyServer(QString qsProxyServer); int GetProxySSL();
int SetProxySSL(int iProxySSL); QString GetProxyUser();
int SetProxyUser(QString qsProxyUser);

Remarks

This property contains fields describing the proxy through which the class will attempt to connect.

Data Type

CloudSMSProxy

QueryParams Property (SMS Class)

Additional query parameters to be included in the request.

Syntax

CloudSMSList<CloudSMSQueryParam>* GetQueryParams();
int SetQueryParams(CloudSMSList<CloudSMSQueryParam>* val);
int cloudsms_sms_getqueryparamcount(void* lpObj);
int cloudsms_sms_setqueryparamcount(void* lpObj, int iQueryParamCount);
char* cloudsms_sms_getqueryparamname(void* lpObj, int queryparamindex);
int cloudsms_sms_setqueryparamname(void* lpObj, int queryparamindex, const char* lpszQueryParamName);
char* cloudsms_sms_getqueryparamvalue(void* lpObj, int queryparamindex);
int cloudsms_sms_setqueryparamvalue(void* lpObj, int queryparamindex, const char* lpszQueryParamValue);
int GetQueryParamCount();
int SetQueryParamCount(int iQueryParamCount); QString GetQueryParamName(int iQueryParamIndex);
int SetQueryParamName(int iQueryParamIndex, QString qsQueryParamName); QString GetQueryParamValue(int iQueryParamIndex);
int SetQueryParamValue(int iQueryParamIndex, QString qsQueryParamValue);

Remarks

This is a collection of query parameters that will be added to the request. Parameters can be added via the AddQueryParam method.

Data Type

CloudSMSQueryParam

ServiceProvider Property (SMS Class)

The service provider to use.

Syntax

ANSI (Cross Platform)
int GetServiceProvider();
int SetServiceProvider(int iServiceProvider); Unicode (Windows) INT GetServiceProvider();
INT SetServiceProvider(INT iServiceProvider);

Possible Values

SP_TWILIO(0), 
SP_SINCH(1),
SP_SMSGLOBAL(2),
SP_SMSTO(3),
SP_VONAGE(4),
SP_CLICKATELL(5)
int cloudsms_sms_getserviceprovider(void* lpObj);
int cloudsms_sms_setserviceprovider(void* lpObj, int iServiceProvider);
int GetServiceProvider();
int SetServiceProvider(int iServiceProvider);

Default Value

0

Remarks

This property specifies the service provider to use. The currently supported service providers are Twilio, Sinch, SMSGlobal, SMS.to, Vonage, and Clickatell.

This property is not available at design time.

Data Type

Integer

SSLAcceptServerCert Property (SMS Class)

This property instructs the class to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

CloudSMSCertificate* GetSSLAcceptServerCert();
int SetSSLAcceptServerCert(CloudSMSCertificate* val);
char* cloudsms_sms_getsslacceptservercerteffectivedate(void* lpObj);
char* cloudsms_sms_getsslacceptservercertexpirationdate(void* lpObj);
char* cloudsms_sms_getsslacceptservercertextendedkeyusage(void* lpObj);
char* cloudsms_sms_getsslacceptservercertfingerprint(void* lpObj);
char* cloudsms_sms_getsslacceptservercertfingerprintsha1(void* lpObj);
char* cloudsms_sms_getsslacceptservercertfingerprintsha256(void* lpObj);
char* cloudsms_sms_getsslacceptservercertissuer(void* lpObj);
char* cloudsms_sms_getsslacceptservercertprivatekey(void* lpObj);
int cloudsms_sms_getsslacceptservercertprivatekeyavailable(void* lpObj);
char* cloudsms_sms_getsslacceptservercertprivatekeycontainer(void* lpObj);
char* cloudsms_sms_getsslacceptservercertpublickey(void* lpObj);
char* cloudsms_sms_getsslacceptservercertpublickeyalgorithm(void* lpObj);
int cloudsms_sms_getsslacceptservercertpublickeylength(void* lpObj);
char* cloudsms_sms_getsslacceptservercertserialnumber(void* lpObj);
char* cloudsms_sms_getsslacceptservercertsignaturealgorithm(void* lpObj);
int cloudsms_sms_getsslacceptservercertstore(void* lpObj, char** lpSSLAcceptServerCertStore, int* lenSSLAcceptServerCertStore);
int cloudsms_sms_setsslacceptservercertstore(void* lpObj, const char* lpSSLAcceptServerCertStore, int lenSSLAcceptServerCertStore);
char* cloudsms_sms_getsslacceptservercertstorepassword(void* lpObj);
int cloudsms_sms_setsslacceptservercertstorepassword(void* lpObj, const char* lpszSSLAcceptServerCertStorePassword);
int cloudsms_sms_getsslacceptservercertstoretype(void* lpObj);
int cloudsms_sms_setsslacceptservercertstoretype(void* lpObj, int iSSLAcceptServerCertStoreType);
char* cloudsms_sms_getsslacceptservercertsubjectaltnames(void* lpObj);
char* cloudsms_sms_getsslacceptservercertthumbprintmd5(void* lpObj);
char* cloudsms_sms_getsslacceptservercertthumbprintsha1(void* lpObj);
char* cloudsms_sms_getsslacceptservercertthumbprintsha256(void* lpObj);
char* cloudsms_sms_getsslacceptservercertusage(void* lpObj);
int cloudsms_sms_getsslacceptservercertusageflags(void* lpObj);
char* cloudsms_sms_getsslacceptservercertversion(void* lpObj);
char* cloudsms_sms_getsslacceptservercertsubject(void* lpObj);
int cloudsms_sms_setsslacceptservercertsubject(void* lpObj, const char* lpszSSLAcceptServerCertSubject);
int cloudsms_sms_getsslacceptservercertencoded(void* lpObj, char** lpSSLAcceptServerCertEncoded, int* lenSSLAcceptServerCertEncoded);
int cloudsms_sms_setsslacceptservercertencoded(void* lpObj, const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded);
QString GetSSLAcceptServerCertEffectiveDate();

QString GetSSLAcceptServerCertExpirationDate();

QString GetSSLAcceptServerCertExtendedKeyUsage();

QString GetSSLAcceptServerCertFingerprint();

QString GetSSLAcceptServerCertFingerprintSHA1();

QString GetSSLAcceptServerCertFingerprintSHA256();

QString GetSSLAcceptServerCertIssuer();

QString GetSSLAcceptServerCertPrivateKey();

bool GetSSLAcceptServerCertPrivateKeyAvailable();

QString GetSSLAcceptServerCertPrivateKeyContainer();

QString GetSSLAcceptServerCertPublicKey();

QString GetSSLAcceptServerCertPublicKeyAlgorithm();

int GetSSLAcceptServerCertPublicKeyLength();

QString GetSSLAcceptServerCertSerialNumber();

QString GetSSLAcceptServerCertSignatureAlgorithm();

QByteArray GetSSLAcceptServerCertStore();
int SetSSLAcceptServerCertStore(QByteArray qbaSSLAcceptServerCertStore); QString GetSSLAcceptServerCertStorePassword();
int SetSSLAcceptServerCertStorePassword(QString qsSSLAcceptServerCertStorePassword); int GetSSLAcceptServerCertStoreType();
int SetSSLAcceptServerCertStoreType(int iSSLAcceptServerCertStoreType); QString GetSSLAcceptServerCertSubjectAltNames(); QString GetSSLAcceptServerCertThumbprintMD5(); QString GetSSLAcceptServerCertThumbprintSHA1(); QString GetSSLAcceptServerCertThumbprintSHA256(); QString GetSSLAcceptServerCertUsage(); int GetSSLAcceptServerCertUsageFlags(); QString GetSSLAcceptServerCertVersion(); QString GetSSLAcceptServerCertSubject();
int SetSSLAcceptServerCertSubject(QString qsSSLAcceptServerCertSubject); QByteArray GetSSLAcceptServerCertEncoded();
int SetSSLAcceptServerCertEncoded(QByteArray qbaSSLAcceptServerCertEncoded);

Remarks

If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Note: This functionality is provided only for cases in which you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

Data Type

CloudSMSCertificate

SSLCert Property (SMS Class)

This property includes the certificate to be used during Secure Sockets Layer (SSL) negotiation.

Syntax

CloudSMSCertificate* GetSSLCert();
int SetSSLCert(CloudSMSCertificate* val);
char* cloudsms_sms_getsslcerteffectivedate(void* lpObj);
char* cloudsms_sms_getsslcertexpirationdate(void* lpObj);
char* cloudsms_sms_getsslcertextendedkeyusage(void* lpObj);
char* cloudsms_sms_getsslcertfingerprint(void* lpObj);
char* cloudsms_sms_getsslcertfingerprintsha1(void* lpObj);
char* cloudsms_sms_getsslcertfingerprintsha256(void* lpObj);
char* cloudsms_sms_getsslcertissuer(void* lpObj);
char* cloudsms_sms_getsslcertprivatekey(void* lpObj);
int cloudsms_sms_getsslcertprivatekeyavailable(void* lpObj);
char* cloudsms_sms_getsslcertprivatekeycontainer(void* lpObj);
char* cloudsms_sms_getsslcertpublickey(void* lpObj);
char* cloudsms_sms_getsslcertpublickeyalgorithm(void* lpObj);
int cloudsms_sms_getsslcertpublickeylength(void* lpObj);
char* cloudsms_sms_getsslcertserialnumber(void* lpObj);
char* cloudsms_sms_getsslcertsignaturealgorithm(void* lpObj);
int cloudsms_sms_getsslcertstore(void* lpObj, char** lpSSLCertStore, int* lenSSLCertStore);
int cloudsms_sms_setsslcertstore(void* lpObj, const char* lpSSLCertStore, int lenSSLCertStore);
char* cloudsms_sms_getsslcertstorepassword(void* lpObj);
int cloudsms_sms_setsslcertstorepassword(void* lpObj, const char* lpszSSLCertStorePassword);
int cloudsms_sms_getsslcertstoretype(void* lpObj);
int cloudsms_sms_setsslcertstoretype(void* lpObj, int iSSLCertStoreType);
char* cloudsms_sms_getsslcertsubjectaltnames(void* lpObj);
char* cloudsms_sms_getsslcertthumbprintmd5(void* lpObj);
char* cloudsms_sms_getsslcertthumbprintsha1(void* lpObj);
char* cloudsms_sms_getsslcertthumbprintsha256(void* lpObj);
char* cloudsms_sms_getsslcertusage(void* lpObj);
int cloudsms_sms_getsslcertusageflags(void* lpObj);
char* cloudsms_sms_getsslcertversion(void* lpObj);
char* cloudsms_sms_getsslcertsubject(void* lpObj);
int cloudsms_sms_setsslcertsubject(void* lpObj, const char* lpszSSLCertSubject);
int cloudsms_sms_getsslcertencoded(void* lpObj, char** lpSSLCertEncoded, int* lenSSLCertEncoded);
int cloudsms_sms_setsslcertencoded(void* lpObj, const char* lpSSLCertEncoded, int lenSSLCertEncoded);
QString GetSSLCertEffectiveDate();

QString GetSSLCertExpirationDate();

QString GetSSLCertExtendedKeyUsage();

QString GetSSLCertFingerprint();

QString GetSSLCertFingerprintSHA1();

QString GetSSLCertFingerprintSHA256();

QString GetSSLCertIssuer();

QString GetSSLCertPrivateKey();

bool GetSSLCertPrivateKeyAvailable();

QString GetSSLCertPrivateKeyContainer();

QString GetSSLCertPublicKey();

QString GetSSLCertPublicKeyAlgorithm();

int GetSSLCertPublicKeyLength();

QString GetSSLCertSerialNumber();

QString GetSSLCertSignatureAlgorithm();

QByteArray GetSSLCertStore();
int SetSSLCertStore(QByteArray qbaSSLCertStore); QString GetSSLCertStorePassword();
int SetSSLCertStorePassword(QString qsSSLCertStorePassword); int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType); QString GetSSLCertSubjectAltNames(); QString GetSSLCertThumbprintMD5(); QString GetSSLCertThumbprintSHA1(); QString GetSSLCertThumbprintSHA256(); QString GetSSLCertUsage(); int GetSSLCertUsageFlags(); QString GetSSLCertVersion(); QString GetSSLCertSubject();
int SetSSLCertSubject(QString qsSSLCertSubject); QByteArray GetSSLCertEncoded();
int SetSSLCertEncoded(QByteArray qbaSSLCertEncoded);

Remarks

This property includes the digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

Data Type

CloudSMSCertificate

SSLProvider Property (SMS Class)

This property specifies the Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.

Syntax

ANSI (Cross Platform)
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider); Unicode (Windows) INT GetSSLProvider();
INT SetSSLProvider(INT iSSLProvider);

Possible Values

SSLP_AUTOMATIC(0), 
SSLP_PLATFORM(1),
SSLP_INTERNAL(2)
int cloudsms_sms_getsslprovider(void* lpObj);
int cloudsms_sms_setsslprovider(void* lpObj, int iSSLProvider);
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider);

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are as follows:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, on Windows, the class will use the platform implementation. On Linux/macOS, the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used on all platforms.

Data Type

Integer

SSLServerCert Property (SMS Class)

This property includes the server certificate for the last established connection.

Syntax

CloudSMSCertificate* GetSSLServerCert();

char* cloudsms_sms_getsslservercerteffectivedate(void* lpObj);
char* cloudsms_sms_getsslservercertexpirationdate(void* lpObj);
char* cloudsms_sms_getsslservercertextendedkeyusage(void* lpObj);
char* cloudsms_sms_getsslservercertfingerprint(void* lpObj);
char* cloudsms_sms_getsslservercertfingerprintsha1(void* lpObj);
char* cloudsms_sms_getsslservercertfingerprintsha256(void* lpObj);
char* cloudsms_sms_getsslservercertissuer(void* lpObj);
char* cloudsms_sms_getsslservercertprivatekey(void* lpObj);
int cloudsms_sms_getsslservercertprivatekeyavailable(void* lpObj);
char* cloudsms_sms_getsslservercertprivatekeycontainer(void* lpObj);
char* cloudsms_sms_getsslservercertpublickey(void* lpObj);
char* cloudsms_sms_getsslservercertpublickeyalgorithm(void* lpObj);
int cloudsms_sms_getsslservercertpublickeylength(void* lpObj);
char* cloudsms_sms_getsslservercertserialnumber(void* lpObj);
char* cloudsms_sms_getsslservercertsignaturealgorithm(void* lpObj);
int cloudsms_sms_getsslservercertstore(void* lpObj, char** lpSSLServerCertStore, int* lenSSLServerCertStore);
char* cloudsms_sms_getsslservercertstorepassword(void* lpObj);
int cloudsms_sms_getsslservercertstoretype(void* lpObj);
char* cloudsms_sms_getsslservercertsubjectaltnames(void* lpObj);
char* cloudsms_sms_getsslservercertthumbprintmd5(void* lpObj);
char* cloudsms_sms_getsslservercertthumbprintsha1(void* lpObj);
char* cloudsms_sms_getsslservercertthumbprintsha256(void* lpObj);
char* cloudsms_sms_getsslservercertusage(void* lpObj);
int cloudsms_sms_getsslservercertusageflags(void* lpObj);
char* cloudsms_sms_getsslservercertversion(void* lpObj);
char* cloudsms_sms_getsslservercertsubject(void* lpObj);
int cloudsms_sms_getsslservercertencoded(void* lpObj, char** lpSSLServerCertEncoded, int* lenSSLServerCertEncoded);
QString GetSSLServerCertEffectiveDate();

QString GetSSLServerCertExpirationDate();

QString GetSSLServerCertExtendedKeyUsage();

QString GetSSLServerCertFingerprint();

QString GetSSLServerCertFingerprintSHA1();

QString GetSSLServerCertFingerprintSHA256();

QString GetSSLServerCertIssuer();

QString GetSSLServerCertPrivateKey();

bool GetSSLServerCertPrivateKeyAvailable();

QString GetSSLServerCertPrivateKeyContainer();

QString GetSSLServerCertPublicKey();

QString GetSSLServerCertPublicKeyAlgorithm();

int GetSSLServerCertPublicKeyLength();

QString GetSSLServerCertSerialNumber();

QString GetSSLServerCertSignatureAlgorithm();

QByteArray GetSSLServerCertStore();

QString GetSSLServerCertStorePassword();

int GetSSLServerCertStoreType();

QString GetSSLServerCertSubjectAltNames();

QString GetSSLServerCertThumbprintMD5();

QString GetSSLServerCertThumbprintSHA1();

QString GetSSLServerCertThumbprintSHA256();

QString GetSSLServerCertUsage();

int GetSSLServerCertUsageFlags();

QString GetSSLServerCertVersion();

QString GetSSLServerCertSubject();

QByteArray GetSSLServerCertEncoded();

Remarks

SSLServerCert contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

Data Type

CloudSMSCertificate

AddQueryParam Method (SMS Class)

Adds a query parameter to the QueryParams properties.

Syntax

ANSI (Cross Platform)
int AddQueryParam(const char* lpszName, const char* lpszValue);

Unicode (Windows)
INT AddQueryParam(LPCWSTR lpszName, LPCWSTR lpszValue);
int cloudsms_sms_addqueryparam(void* lpObj, const char* lpszName, const char* lpszValue);
int AddQueryParam(const QString& qsName, const QString& qsValue);

Remarks

This method is used to add a query parameter to the QueryParams properties. Name specifies the name of the parameter, and Value specifies the value of the parameter.

All specified Values will be URL encoded by the class automatically. Consult the service documentation for details on the available parameters.

For example, this method can be used to limit how many messages are returned when listing: // The PageSize parameter shown here is a Twilio parameter. sms.AddQueryParam("PageSize", "20"); sms.ListSentMessages(""); // The service now returns 20 messages rather than the default.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Config Method (SMS Class)

Sets or retrieves a configuration setting.

Syntax

ANSI (Cross Platform)
char* Config(const char* lpszConfigurationString);

Unicode (Windows)
LPWSTR Config(LPCWSTR lpszConfigurationString);
char* cloudsms_sms_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

DeleteReceivedMessage Method (SMS Class)

Deletes a received message from the account.

Syntax

ANSI (Cross Platform)
int DeleteReceivedMessage(const char* lpszMessageId);

Unicode (Windows)
INT DeleteReceivedMessage(LPCWSTR lpszMessageId);
int cloudsms_sms_deletereceivedmessage(void* lpObj, const char* lpszMessageId);
int DeleteReceivedMessage(const QString& qsMessageId);

Remarks

Note: This method is not supported by spSinch and spClickatell.

This method is used to remove a received message from the account. MessageId identifies the particular message to delete.

Service Provider Specific Notes

Twilio

  • There is no distinction between calling send and receive variants of operations due to the fact that this service does not have separate endpoints for the two.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

DeleteSentMessage Method (SMS Class)

Deletes a sent message from the account.

Syntax

ANSI (Cross Platform)
int DeleteSentMessage(const char* lpszMessageId);

Unicode (Windows)
INT DeleteSentMessage(LPCWSTR lpszMessageId);
int cloudsms_sms_deletesentmessage(void* lpObj, const char* lpszMessageId);
int DeleteSentMessage(const QString& qsMessageId);

Remarks

Note: This method is not supported by spClickatell.

This method is used to remove a sent message from the account. MessageId identifies the particular message to delete.

Service Provider Specific Notes

Twilio

  • There is no distinction between calling send and receive variants of operations due to the fact that this service does not have separate endpoints for the two.

Sinch

  • This method cancels rather than deletes and can also be used on a scheduled message.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

DoEvents Method (SMS Class)

This method processes events from the internal message queue.

Syntax

ANSI (Cross Platform)
int DoEvents();

Unicode (Windows)
INT DoEvents();
int cloudsms_sms_doevents(void* lpObj);
int DoEvents();

Remarks

When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

HandleWebhook Method (SMS Class)

Parses requests made to a web-hook.

Syntax

ANSI (Cross Platform)
char* HandleWebhook(const char* lpszHeaderString, const char* lpszQueryString, const char* lpPostData, int lenPostData);

Unicode (Windows)
LPWSTR HandleWebhook(LPCWSTR lpszHeaderString, LPCWSTR lpszQueryString, LPCSTR lpPostData, INT lenPostData);
char* cloudsms_sms_handlewebhook(void* lpObj, const char* lpszHeaderString, const char* lpszQueryString, const char* lpPostData, int lenPostData);
QString HandleWebhook(const QString& qsHeaderString, const QString& qsQueryString, QByteArray qbaPostData);

Remarks

This method takes the HeaderString, QueryString, and PostData to parse the callback request that was made to a web server. Service providers typically support two types of callback endpoints.

The first callback endpoint, delivery reports, give status updates on sent messages. When the method handles these requests, the class will fire the DeliveryReport event.

The second callback endpoint, incoming messages, will fire a request to the web-hook when a new incoming message arrives. When the method handles these requests, the class will fire the IncomingMessage event.

It is important to note that the class will not handle creating the web server to host the web-hook that is specified. The method is intended to be used as a helper method for interpreting the request made to the web-hook.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

Interrupt Method (SMS Class)

This method interrupts the current method.

Syntax

ANSI (Cross Platform)
int Interrupt();

Unicode (Windows)
INT Interrupt();
int cloudsms_sms_interrupt(void* lpObj);
int Interrupt();

Remarks

If there is no method in progress, Interrupt simply returns, doing nothing.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ListReceivedMessages Method (SMS Class)

Lists received messages from the account.

Syntax

ANSI (Cross Platform)
int ListReceivedMessages(const char* lpszFilter);

Unicode (Windows)
INT ListReceivedMessages(LPCWSTR lpszFilter);
int cloudsms_sms_listreceivedmessages(void* lpObj, const char* lpszFilter);
int ListReceivedMessages(const QString& qsFilter);

Remarks

Note: This method is not supported by spVonage and spClickatell.

This method is used to list messages received by the account, populating the Messages properties and firing the MessageList event. Filter allows for further control when listing.

For example, this method can be used to list only messages received during a specific timeframe: // The DateSent filter shown here is an available Twilio filter. sms.ListReceivedMessages("DateSent>=2023-04-14T16:48:39Z&DateSent<=2023-04-14T16:58:39Z"); // The service now returns only messages that were received within the 10 minute window. foreach (SMSMessage message in sms.Messages) { string sender = message.From; string to = message.To; string body = message.Body; string id = message.MessageId; }

Service Provider Specific Notes

Twilio

  • There is no distinction between calling send and receive variants of operations due to the fact that this service does not have separate endpoints for the two.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ListSentMessages Method (SMS Class)

Lists messages sent from the account.

Syntax

ANSI (Cross Platform)
int ListSentMessages(const char* lpszFilter);

Unicode (Windows)
INT ListSentMessages(LPCWSTR lpszFilter);
int cloudsms_sms_listsentmessages(void* lpObj, const char* lpszFilter);
int ListSentMessages(const QString& qsFilter);

Remarks

Note: This method is not supported by spVonage and spClickatell.

This method is used to list messages sent from the account, populating the Messages properties and firing the MessageList event. Filter allows for further control when listing.

For example, this method can be used to list only messages sent during a specific timeframe: // The DateSent filter shown here is an available Twilio filter. sms.ListSentMessages("DateSent>=2023-04-14T16:48:39Z&DateSent<=2023-04-14T16:58:39Z"); // The service now returns only messages that were sent within the 10 minute window. foreach (SMSMessage message in sms.Messages) { string sender = message.From; string to = message.To; string body = message.Body; string id = message.MessageId; }

Service Provider Specific Notes

Twilio

  • There is no distinction between calling send and receive variants of operations due to the fact that this service does not have separate endpoints for the two.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Reset Method (SMS Class)

This method will reset the class.

Syntax

ANSI (Cross Platform)
int Reset();

Unicode (Windows)
INT Reset();
int cloudsms_sms_reset(void* lpObj);
int Reset();

Remarks

This method will reset the class's properties to their default values.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

RetrieveReceivedMessage Method (SMS Class)

Fetches a received message from the account.

Syntax

ANSI (Cross Platform)
int RetrieveReceivedMessage(const char* lpszMessageId);

Unicode (Windows)
INT RetrieveReceivedMessage(LPCWSTR lpszMessageId);
int cloudsms_sms_retrievereceivedmessage(void* lpObj, const char* lpszMessageId);
int RetrieveReceivedMessage(const QString& qsMessageId);

Remarks

Note: This method is not supported by spSMSto, spVonage, and spClickatell.

This method is used to retrieve a specific message received by the account, populating the Messages properties. MessageId identifies the particular message to fetch.

For example, this method can be used to access various pieces of information pertaining to the message: // Fetch a particular message with its ID. sms.RetrieveReceivedMessage(messageId); // Access message details. if (sms.Messages[0].From == "+11234567890" && sms.Messages[0].MessageStatus == "received") { // . . . }

Service Provider Specific Notes

Twilio

  • There is no distinction between calling send and receive variants of operations due to the fact that this service does not have separate endpoints for the two.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

RetrieveSentMessage Method (SMS Class)

Fetches a message sent from the account.

Syntax

ANSI (Cross Platform)
int RetrieveSentMessage(const char* lpszMessageId);

Unicode (Windows)
INT RetrieveSentMessage(LPCWSTR lpszMessageId);
int cloudsms_sms_retrievesentmessage(void* lpObj, const char* lpszMessageId);
int RetrieveSentMessage(const QString& qsMessageId);

Remarks

Note: This method is not supported by spVonage and spClickatell.

This method is used to retrieve a specific message sent from the account, populating the Messages properties. MessageId identifies the particular message to fetch.

For example, this method can be used to access various pieces of information pertaining to the message: // Fetch a particular message with its ID. sms.RetrieveSentMessage(messageId); // Access message details. if (sms.Messages[0].To == "+10987654321" && sms.Messages[0].MessageStatus == "delivered") { // . . . }

Service Provider Specific Notes

Twilio

  • There is no distinction between calling send and receive variants of operations due to the fact that this service does not have separate endpoints for the two.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ScheduleMessage Method (SMS Class)

Schedules a message to be sent.

Syntax

ANSI (Cross Platform)
char* ScheduleMessage();

Unicode (Windows)
LPWSTR ScheduleMessage();
char* cloudsms_sms_schedulemessage(void* lpObj);
QString ScheduleMessage();

Remarks

Note: This method is not supported by spVonage.

This method uses the values from MessageBody, MessageFrom, MessageRecipients, and MessageDate. For more information about the restrictions of these specific values, see their specific documentation.

sms.MessageFrom = "+11234567890"; sms.MessageRecipients = "+10987654321"; sms.MessageBody = "This is an SMS message."; sms.MessageDate = "2023-04-10T20:02:39Z"; string messageId = sms.ScheduleMessage();

Service Provider Specific Notes

Twilio

  • Twilio requires the use of messaging services for scheduling messages.
  • Twilio also requires a message must be scheduled at least 15 minutes in advance of the message send time and cannot be scheduled more than 7 days in advance of the request.

Sinch

  • When WebhookURL is set to a valid URL, the delivery_report parameter will be set to "summary".
  • If MessageDate is set to a value representing a time in the future, the message will be delayed until the time occurs.
  • If MessageDate is set to a value representing a time in the past, messages will be sent immediately.

SMS Global

  • Uses a different ID for the message when it is scheduled versus when it is sent.
    • The scheduled ID can be used with the RetrieveSentMessage method to get the real ID once the message is sent.

SMS.to

  • SMS.to allows for different types of modes when sending messages such as campaigns and flash SMS messages.
  • SMS.to also allows for a specific timezone to be used.

Clickatell

  • Does not support the use of WebhookURL for setting a specific callback URL for the message.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

Send Method (SMS Class)

Sends an SMS message.

Syntax

ANSI (Cross Platform)
char* Send();

Unicode (Windows)
LPWSTR Send();
char* cloudsms_sms_send(void* lpObj);
QString Send();

Remarks

This method uses the values from MessageBody, MessageFrom, and MessageRecipients. For restrictions on the values, see their documentation for more information.

sms.MessageFrom = "+11234567890"; sms.MessageRecipients = "+10987654321"; sms.MessageBody = "This is an SMS message."; string messageId = sms.Send();

Service Provider Specific Notes

Twilio

  • Twilio allows for the use of messaging services instead of setting the From to a specific number.

Sinch

  • When WebhookURL is set to a valid URL, the delivery_report parameter will be set to "summary".

SMS.to

  • SMS.to allows for different types of modes when sending messages such as campaigns and flash SMS messages.
  • SMS.to also allows for a specific timezone to be used.

Vonage

  • Vonage allows for both ASCII and Unicode messages to be sent.
  • Does not support the use of WebhookURL for setting a specific callback URL for the message.

Clickatell

  • Does not support the use of WebhookURL for setting a specific callback URL for the message.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

UpdateSentMessage Method (SMS Class)

Updates a scheduled or sent message.

Syntax

ANSI (Cross Platform)
int UpdateSentMessage(const char* lpszMessageId);

Unicode (Windows)
INT UpdateSentMessage(LPCWSTR lpszMessageId);
int cloudsms_sms_updatesentmessage(void* lpObj, const char* lpszMessageId);
int UpdateSentMessage(const QString& qsMessageId);

Remarks

Note: Only spTwilio and spSinch support updating sent or schedule messages.

This method takes the MessageId of the message that is being updated. To update a message, a message must be present in the Messages properties with a matching MessageId. There are a number of ways to populate messages into the properties. The Send and ScheduleMessage methods will populate the Messages properties using the response from the service provider. The RetrieveSentMessage and ListSentMessages methods can be used to populate already sent messages from the service provider directly. Another option is to create a new entry in the Messages properties and set the MessageId field to the specific MessageId. Once the message is populated in the Messages properties, you can change the fields depending on the value of the ServiceProvider.

sms.MessageFrom = "+11234567890"; sms.MessageRecipients = "+10987654321"; sms.MessageBody = "This is an SMS message."; string id = sms.Send(); // Wait for the message to send before updating with cleared body text. sms.Messages[0].Body = ""; sms.UpdateSentMessage(id);

Service Provider Specific Notes

Twilio

  • This method can only be used to redact the message by setting the Body to an empty string or cancel a message by updating the MessageStatus.

Sinch

  • This method can be used to update the Body, From, and To values of the message.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

DeliveryReport Event (SMS Class)

Fired once for each delivery report.

Syntax

ANSI (Cross Platform)
virtual int FireDeliveryReport(SMSDeliveryReportEventParams *e);
typedef struct {
const char *MessageId;
const char *Status; int reserved; } SMSDeliveryReportEventParams;
Unicode (Windows) virtual INT FireDeliveryReport(SMSDeliveryReportEventParams *e);
typedef struct {
LPCWSTR MessageId;
LPCWSTR Status; INT reserved; } SMSDeliveryReportEventParams;
#define EID_SMS_DELIVERYREPORT 1

virtual INT CLOUDSMS_CALL FireDeliveryReport(LPSTR &lpszMessageId, LPSTR &lpszStatus);
class SMSDeliveryReportEventParams {
public:
  const QString &MessageId();

  const QString &Status();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void DeliveryReport(SMSDeliveryReportEventParams *e);
// Or, subclass SMS and override this emitter function. virtual int FireDeliveryReport(SMSDeliveryReportEventParams *e) {...}

Remarks

This event fires once for each delivery report parsed by the HandleWebhook method. The MessageId corresponds to the message ID of the message that was sent. Typically, the MessageId will correlate to the MessageId that is provided from the ScheduleMessage and Send methods. The Status parameter is the parsed status from the delivery report.

Service Provider Specific Notes

SMS Global

  • Uses a different ID for the message when it is scheduled versus when it is sent.
    • The scheduled ID can be used with the RetrieveSentMessage method to get the real ID once the message is sent.

Error Event (SMS Class)

Fired when information is available about errors during data delivery.

Syntax

ANSI (Cross Platform)
virtual int FireError(SMSErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } SMSErrorEventParams;
Unicode (Windows) virtual INT FireError(SMSErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } SMSErrorEventParams;
#define EID_SMS_ERROR 2

virtual INT CLOUDSMS_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class SMSErrorEventParams {
public:
  int ErrorCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Error(SMSErrorEventParams *e);
// Or, subclass SMS and override this emitter function. virtual int FireError(SMSErrorEventParams *e) {...}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

IncomingMessage Event (SMS Class)

Fired once for each incoming message.

Syntax

ANSI (Cross Platform)
virtual int FireIncomingMessage(SMSIncomingMessageEventParams *e);
typedef struct {
const char *MessageId;
const char *SentTo;
const char *From;
const char *Body; int reserved; } SMSIncomingMessageEventParams;
Unicode (Windows) virtual INT FireIncomingMessage(SMSIncomingMessageEventParams *e);
typedef struct {
LPCWSTR MessageId;
LPCWSTR SentTo;
LPCWSTR From;
LPCWSTR Body; INT reserved; } SMSIncomingMessageEventParams;
#define EID_SMS_INCOMINGMESSAGE 3

virtual INT CLOUDSMS_CALL FireIncomingMessage(LPSTR &lpszMessageId, LPSTR &lpszSentTo, LPSTR &lpszFrom, LPSTR &lpszBody);
class SMSIncomingMessageEventParams {
public:
  const QString &MessageId();

  const QString &SentTo();

  const QString &From();

  const QString &Body();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void IncomingMessage(SMSIncomingMessageEventParams *e);
// Or, subclass SMS and override this emitter function. virtual int FireIncomingMessage(SMSIncomingMessageEventParams *e) {...}

Remarks

This event fires once for each incoming message parsed by the HandleWebhook method. The MessageId corresponds to the message ID of the message that was received. If supported, the MessageId can be used with the DeleteReceivedMessage, RetrieveReceivedMessage, and ListReceivedMessages methods. See the specific method documentation for more information.

The SentTo parameter is the ID (typically a number) that the message was sent to. The From parameter is the sender ID (typically a number) that the message was sent from. The Body parameter is the text content of the message that was sent.

Log Event (SMS Class)

This event fires once for each log message.

Syntax

ANSI (Cross Platform)
virtual int FireLog(SMSLogEventParams *e);
typedef struct {
int LogLevel;
const char *Message;
const char *LogType; int reserved; } SMSLogEventParams;
Unicode (Windows) virtual INT FireLog(SMSLogEventParams *e);
typedef struct {
INT LogLevel;
LPCWSTR Message;
LPCWSTR LogType; INT reserved; } SMSLogEventParams;
#define EID_SMS_LOG 4

virtual INT CLOUDSMS_CALL FireLog(INT &iLogLevel, LPSTR &lpszMessage, LPSTR &lpszLogType);
class SMSLogEventParams {
public:
  int LogLevel();

  const QString &Message();

  const QString &LogType();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Log(SMSLogEventParams *e);
// Or, subclass SMS and override this emitter function. virtual int FireLog(SMSLogEventParams *e) {...}

Remarks

This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.

LogLevel indicates the level of message. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

Message is the log entry.

LogType identifies the type of log entry. Possible values are as follows:

  • "Info"
  • "RequestHeaders"
  • "ResponseHeaders"
  • "RequestBody"
  • "ResponseBody"
  • "ProxyRequest"
  • "ProxyResponse"
  • "FirewallRequest"
  • "FirewallResponse"

MessageList Event (SMS Class)

Fired once for each listed message.

Syntax

ANSI (Cross Platform)
virtual int FireMessageList(SMSMessageListEventParams *e);
typedef struct {
const char *MessageId;
int Direction;
const char *SentTo;
const char *From;
const char *MessageStatus;
const char *Body; int reserved; } SMSMessageListEventParams;
Unicode (Windows) virtual INT FireMessageList(SMSMessageListEventParams *e);
typedef struct {
LPCWSTR MessageId;
INT Direction;
LPCWSTR SentTo;
LPCWSTR From;
LPCWSTR MessageStatus;
LPCWSTR Body; INT reserved; } SMSMessageListEventParams;
#define EID_SMS_MESSAGELIST 5

virtual INT CLOUDSMS_CALL FireMessageList(LPSTR &lpszMessageId, INT &iDirection, LPSTR &lpszSentTo, LPSTR &lpszFrom, LPSTR &lpszMessageStatus, LPSTR &lpszBody);
class SMSMessageListEventParams {
public:
  const QString &MessageId();

  int Direction();

  const QString &SentTo();

  const QString &From();

  const QString &MessageStatus();

  const QString &Body();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void MessageList(SMSMessageListEventParams *e);
// Or, subclass SMS and override this emitter function. virtual int FireMessageList(SMSMessageListEventParams *e) {...}

Remarks

This event fires once for each listed message after calling the ListSentMessages and ListReceivedMessages methods, providing access to more information about each message listed by the class.

The MessageId corresponds to the message ID of the listed message, which can be used to perform other operations that are supported by the service.

Direction identifies the originator of the listed message:

0 The message is an outgoing message sent by the account.
1 The message is an incoming message received by the account.

SentTo is the ID (typically a number) that the message was sent to.

From is the sender ID (typically a number) that the message was sent from.

MessageStatus shows the current status of the listed message. Possible values vary between service providers.

Body is the text content of the listed message.

SSLServerAuthentication Event (SMS Class)

Fired after the server presents its certificate to the client.

Syntax

ANSI (Cross Platform)
virtual int FireSSLServerAuthentication(SMSSSLServerAuthenticationEventParams *e);
typedef struct {
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *Status;
int Accept; int reserved; } SMSSSLServerAuthenticationEventParams;
Unicode (Windows) virtual INT FireSSLServerAuthentication(SMSSSLServerAuthenticationEventParams *e);
typedef struct {
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR Status;
BOOL Accept; INT reserved; } SMSSSLServerAuthenticationEventParams;
#define EID_SMS_SSLSERVERAUTHENTICATION 6

virtual INT CLOUDSMS_CALL FireSSLServerAuthentication(LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszStatus, BOOL &bAccept);
class SMSSSLServerAuthenticationEventParams {
public:
  const QByteArray &CertEncoded();

  const QString &CertSubject();

  const QString &CertIssuer();

  const QString &Status();

  bool Accept();
  void SetAccept(bool bAccept);

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SSLServerAuthentication(SMSSSLServerAuthenticationEventParams *e);
// Or, subclass SMS and override this emitter function. virtual int FireSSLServerAuthentication(SMSSSLServerAuthenticationEventParams *e) {...}

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (SMS Class)

Fired when secure connection progress messages are available.

Syntax

ANSI (Cross Platform)
virtual int FireSSLStatus(SMSSSLStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } SMSSSLStatusEventParams;
Unicode (Windows) virtual INT FireSSLStatus(SMSSSLStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } SMSSSLStatusEventParams;
#define EID_SMS_SSLSTATUS 7

virtual INT CLOUDSMS_CALL FireSSLStatus(LPSTR &lpszMessage);
class SMSSSLStatusEventParams {
public:
  const QString &Message();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void SSLStatus(SMSSSLStatusEventParams *e);
// Or, subclass SMS and override this emitter function. virtual int FireSSLStatus(SMSSSLStatusEventParams *e) {...}

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

Certificate Type

This is the digital certificate being used.

Syntax

CloudSMSCertificate (declared in cloudsms.h)

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

Fields

EffectiveDate
char* (read-only)

Default Value: ""

This is the date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

ExpirationDate
char* (read-only)

Default Value: ""

This is the date the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
char* (read-only)

Default Value: ""

This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
char* (read-only)

Default Value: ""

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
char* (read-only)

Default Value: ""

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
char* (read-only)

Default Value: ""

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
char* (read-only)

Default Value: ""

This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

PrivateKey
char* (read-only)

Default Value: ""

This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
int (read-only)

Default Value: FALSE

This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
char* (read-only)

Default Value: ""

This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
char* (read-only)

Default Value: ""

This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
char* (read-only)

Default Value: ""

This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default Value: 0

This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
char* (read-only)

Default Value: ""

This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
char* (read-only)

Default Value: ""

The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
char*

Default Value: "MY"

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
char*

Default Value: ""

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

StoreType
int

Default Value: 0

This is the type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: this store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

SubjectAltNames
char* (read-only)

Default Value: ""

This field contains comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
char* (read-only)

Default Value: ""

This field contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
char* (read-only)

Default Value: ""

This field contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
char* (read-only)

Default Value: ""

This field contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
char* (read-only)

Default Value: ""

This field contains the text description of UsageFlags.

This value will be of one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int (read-only)

Default Value: 0

This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
char* (read-only)

Default Value: ""

This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Subject
char*

Default Value: ""

This is the subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the field is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Encoded
char*

Default Value: ""

This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

Constructors

Certificate()

Creates a Certificate instance whose properties can be set. This is useful for use with CERTMGR when generating new certificates.

Certificate(const char* lpEncoded, int lenEncoded)

Parses Encoded as an X.509 public key.

Certificate(int iStoreType, const char* lpStore, int lenStore, const char* lpszStorePassword, const char* lpszSubject)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

Firewall Type

The firewall the component will connect through.

Syntax

CloudSMSFirewall (declared in cloudsms.h)

Remarks

When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.

Fields

AutoDetect
int

Default Value: FALSE

This field tells the class whether or not to automatically detect and use firewall system settings, if available.

FirewallType
int

Default Value: 0

This field determines the type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. Port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. Port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. Port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. Port is set to 1080.

Host
char*

Default Value: ""

This field contains the name or IP address of the firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the class fails with an error.

Password
char*

Default Value: ""

This field contains a password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Port
int

Default Value: 0

This field contains the Transmission Control Protocol (TCP) port for the firewall Host. See the description of the Host field for details.

Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.

User
char*

Default Value: ""

This field contains a username if authentication is to be used when connecting through a firewall. If Host is specified, this field and the Password field are used to connect and authenticate to the given Firewall. If the authentication fails, the class fails with an error.

Constructors

Firewall()

Proxy Type

The proxy the component will connect to.

Syntax

CloudSMSProxy (declared in cloudsms.h)

Remarks

When connecting through a proxy, this type is used to specify different properties of the proxy, such as the Server and the AuthScheme.

Fields

AuthScheme
int

Default Value: 0

This field is used to tell the class which type of authorization to perform when connecting to the proxy. This is used only when the User and Password fields are set.

AuthScheme should be set to authNone (3) when no authentication is expected.

By default, AuthScheme is authBasic (0), and if the User and Password fields are set, the component will attempt basic authentication.

If AuthScheme is set to authDigest (1), digest authentication will be attempted instead.

If AuthScheme is set to authProprietary (2), then the authorization token will not be generated by the class. Look at the configuration file for the class being used to find more information about manually setting this token.

If AuthScheme is set to authNtlm (4), NTLM authentication will be used.

For security reasons, setting this field will clear the values of User and Password.

AutoDetect
int

Default Value: FALSE

This field tells the class whether or not to automatically detect and use proxy system settings, if available. The default value is false.

Password
char*

Default Value: ""

This field contains a password if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password fields are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password fields are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password fields are used to authenticate through NTLM negotiation.

Port
int

Default Value: 80

This field contains the Transmission Control Protocol (TCP) port for the proxy Server (default 80). See the description of the Server field for details.

Server
char*

Default Value: ""

If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.

If the Server field is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the Server field is set to the corresponding address. If the search is not successful, an error is returned.

SSL
int

Default Value: 0

This field determines when to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:

psAutomatic (0)Default setting. If the URL is an https URL, the class will use the psTunnel option. If the URL is an http URL, the class will use the psNever option.
psAlways (1)The connection is always SSL-enabled.
psNever (2)The connection is not SSL-enabled.
psTunnel (3)The connection is made through a tunneling (HTTP) proxy.

User
char*

Default Value: ""

This field contains a username if authentication is to be used for the proxy.

If AuthScheme is set to Basic Authentication, the User and Password fields are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].

If AuthScheme is set to Digest Authentication, the User and Password fields are used to respond to the Digest Authentication challenge from the server.

If AuthScheme is set to NTLM Authentication, the User and Password fields are used to authenticate through NTLM negotiation.

Constructors

Proxy()
Proxy(const char* lpszServer, int iPort)
Proxy(const char* lpszServer, int iPort, const char* lpszUser, const char* lpszPassword)

QueryParam Type

A query parameter to send in the request.

Syntax

CloudSMSQueryParam (declared in cloudsms.h)

Remarks

This type represents a query parameter to send in the request.

Fields

Name
char*

Default Value: ""

The name of the query parameter.

This field specifies the name of the query parameter.

Value
char*

Default Value: ""

The value of the query parameter.

This field specifies the value of the query parameter. The class will automatically URL-encode this value when sending the request.

Constructors

QueryParam()
QueryParam(const char* lpszName, const char* lpszValue)

SMSMessage Type

Holds information about a message.

Syntax

CloudSMSSMSMessage (declared in cloudsms.h)

Remarks

Holds information about a message.

Fields

Body
char*

Default Value: ""

The body content of the message.

Direction
int (read-only)

Default Value: 0

The direction of the message based on the perspective of the account:

0 The message is an outgoing message sent by the account.
1 The message is an incoming message received by the account.

From
char*

Default Value: ""

The sender of the message (typically a number).

MessageId
char* (read-only)

Default Value: ""

The unique identifier of the message.

MessageStatus
char*

Default Value: ""

The current status of the message. Possible values vary between service providers.

To
char*

Default Value: ""

The recipient(s) of the message (typically numbers).

Constructors

SMSMessage()

CloudSMSList Type

Syntax

CloudSMSList<T> (declared in cloudsms.h)

Remarks

CloudSMSList is a generic class that is used to hold a collection of objects of type T, where T is one of the custom types supported by the SMS class.

Methods

GetCount This method returns the current size of the collection.

int GetCount() {}

SetCount This method sets the size of the collection. This method returns 0 if setting the size was successful; or -1 if the collection is ReadOnly. When adding additional objects to a collection call this method to specify the new size. Increasing the size of the collection preserves existing objects in the collection.

int SetCount() {}

Get This method gets the item at the specified position. The index parameter specifies the index of the item in the collection. This method returns NULL if an invalid index is specified.

T* Get(int index) {}

Set This method sets the item at the specified position. The index parameter specifies the index of the item in the collection that is being set. This method returns -1 if an invalid index is specified. Note: Objects created using the new operator must be freed using the delete operator; they will not be automatically freed by the class.

T* Set(int index, T* value) {}

Config Settings (SMS Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

SMS Config Settings

DateFormat:   The format to use for date and time.

This setting specifies the date format for the date/time fields (e.g MessageDate). Below are the custom date and time format specifiers that can be used:

yyyyyear
MMmonth
ddday
HHhours (24 hours)
hhhours (12 hours)
mmminutes
ssseconds
fffmilliseconds

These format specifiers can be written in any combination. For example: SMS.Config("DateFormat=yyyy-MM-ddThh:mm:ss");

SMS.Config("DateFormat=dd/MM/yyyy hh:mm:ss");

If this setting is not specified, the default date/time format will be yyyy-MM-ddTHH:mm:ssZ. This is from ISO 8601.

MaxMessageResults:   The maximum number of results to return when listing messages.

This setting specifies the maximum number of results that should be returned by calling ListReceivedMessages or ListSentMessages. Uses the service provider's default when this setting is set to 0.

Service Provider Default
Twilio 50
Sinch 30
SMSGlobal 20
SMS.to 15
Vonage N/A
Clickatell N/A

RawRequest:   Returns the data that was sent to the server.

This setting may be queried after calling any method that sends data to the server to obtain the request data that was transmitted. Such data may be useful for troubleshooting purposes.

RawResponse:   Returns the data that was received from the server.

This setting may be queried after calling any method that sends data to the server to obtain the response data that was received. Such data may be useful for troubleshooting purposes.

SMStoMessageType:   The type of message that is sent.

This setting changes the type of message that is used when making the request with the Send and ScheduleMessage. When set to 0 (SMS - Default), the component will send SMS messages like normal. If more than one recipient is specified in the MessageRecipients property, then a new object will be created for each message. If set to 1 (Campaign) then in the case where more than one recipient is specified in the MessageRecipients property, the component will use a single object to represent all the messages. This object will instead contain a list of recipients. If set to 2 (Flash), then the class will instead change the endpoint that is being used to make the request to the flash SMS message endpoint.

Note: In some cases, when the mode is set to 0 (SMS) the SMS.to console may still display the messages as a campaign.

SMStoTimezone:   The timezone used by SMS.to when sending or scheduling.

The timezone that will be used by SMS.to when sending or scheduling. The value needs to be the TZ database name for the timezone. The TZ database name must be specified. For example, for the EST/EDT timezone, the TZ database name would be "America/New_York". If you do not provide the timezone parameter, then SMS.to uses the timezone from the account settings. By default, SMS.to is set to use UTC if it has not been changed in the account.

TwilioMessagingServiceSid:   The messaging service for Twilio.

This configuration setting should be used when ServiceProvider is set to spTwilio. The setting is used to set the messaging service SID that should be used when sending or scheduling message. This setting must be set before calling ScheduleMessage. This setting may be set before calling Send without setting MessageFrom and then Twilio determines the optimal phone number to send from.

VonageConcat:   If the current message is a concat-ted message from Vonage.

To be used inside the IncomingMessage event. If true, the current message is a concat-ted message. Concat-ted messages are messages that are too long to be displayed in a single message. Mapped to the concat parameter. See VonageConcatRef, VonageConcatTotal, and VonageConcatPart for more information.

VonageConcatPart:   The number of this part in the message.

The number of the current part. The first part will be 1 and is sequential. Mapped to the concat-part parameter.

VonageConcatRef:   The transaction reference. All parts of this message share this concat-ref.

The transaction reference; all parts of this message share the same concat reference. Mapped to the concat-ref parameter.

VonageConcatTotal:   The number of parts in this concatenated message.

The number of parts in the concat-ted message. Mapped to the concat-ref parameter.

VonageMessageBodyType:   The message body type to use when sending a message with Vonage.

The encoding of the message body that is used when sending a message with the Send method. By default, the class is set to use text (0). The setting can also be changed to use unicode (1).

WebhookURL:   The web-hook URL that is set when sending a message.

This setting can be set before calling Send or ScheduleMessage to specify the web-hook URL. Depending on the service provider, this web-hook will be used to inform the service provider where to send delivery reports or replies to send messages.

Service Provider Delivery Report Replies
Twilio Yes No
Sinch Yes Yes
SMSGlobal Yes No
SMS.to Yes No
Vonage N/A N/A
Clickatell N/A N/A

Service Provider Specific Notes

Sinch: If WebhookURL is set, delivery_report parameter will be "summary".

Vonage: This is not supported by Vonage.

ClickATell: This is not supported by Clickatell.

HTTP Config Settings

AcceptEncoding:   Used to tell the server which types of content encodings the client supports.

When AllowHTTPCompression is True, the class adds an Accept-Encoding header to the request being sent to the server. By default, this header's value is "gzip, deflate". This configuration setting allows you to change the value of the Accept-Encoding header. Note: The class only supports gzip and deflate decompression algorithms.

AllowHTTPCompression:   This property enables HTTP compression for receiving data.

This configuration setting enables HTTP compression for receiving data. When set to True (default), the class will accept compressed data. It then will uncompress the data it has received. The class will handle data compressed by both gzip and deflate compression algorithms.

When True, the class adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".

The default value is True.

AllowHTTPFallback:   Whether HTTP/2 connections are permitted to fallback to HTTP/1.1.

This configuration setting controls whether HTTP/2 connections are permitted to fall back to HTTP/1.1 when the server does not support HTTP/2. This setting is applicable only when HTTPVersion is set to "2.0".

If set to True (default), the class will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the class fails with an error if the server does not support HTTP/2.

The default value is True.

Append:   Whether to append data to LocalFile.

This configuration setting determines whether data will be appended when writing to LocalFile. When set to True, downloaded data will be appended to LocalFile. This may be used in conjunction with Range to resume a failed download. This is applicable only when LocalFile is set. The default value is False.

Authorization:   The Authorization string to be sent to the server.

If the Authorization property contains a nonempty string, an Authorization HTTP request header is added to the request. This header conveys Authorization information to the server.

This property is provided so that the HTTP class can be extended with other security schemes in addition to the authorization schemes already implemented by the class.

The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".

BytesTransferred:   Contains the number of bytes transferred in the response data.

This configuration setting returns the raw number of bytes from the HTTP response data, before the component processes the data, whether it is chunked or compressed. This returns the same value as the Transfer event, by BytesTransferred.

ChunkSize:   Specifies the chunk size in bytes when using chunked encoding.

This is applicable only when UseChunkedEncoding is True. This setting specifies the chunk size in bytes to be used when posting data. The default value is 16384.

CompressHTTPRequest:   Set to true to compress the body of a PUT or POST request.

If set to True, the body of a PUT or POST request will be compressed into gzip format before sending the request. The "Content-Encoding" header is also added to the outgoing request.

The default value is False.

EncodeURL:   If set to True the URL will be encoded by the class.

If set to True, the URL passed to the class will be URL encoded. The default value is False.

FollowRedirects:   Determines what happens when the server issues a redirect.

This option determines what happens when the server issues a redirect. Normally, the class returns an error if the server responds with an "Object Moved" message. If this property is set to 1 (always), the new URL for the object is retrieved automatically every time.

If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the class fails with an error.

Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.

Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.

A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).

The default value is 0 (Never). In this case, redirects are never followed, and the class fails with an error instead.

Following are the valid options:

  • 0 - Never
  • 1 - Always
  • 2 - Same Scheme

GetOn302Redirect:   If set to True the class will perform a GET on the new location.

The default value is False. If set to True, the class will perform a GET on the new location. Otherwise, it will use the same HTTP method again.

HTTP2HeadersWithoutIndexing:   HTTP2 headers that should not update the dynamic header table with incremental indexing.

HTTP/2 servers maintain a dynamic table of headers and values seen over the course of a connection. Typically, these headers are inserted into the table through incremental indexing (also known as HPACK, defined in RFC 7541). To tell the component not to use incremental indexing for certain headers, and thus not update the dynamic table, set this configuration option to a comma-delimited list of the header names.

HTTPVersion:   The version of HTTP used by the class.

This property specifies the HTTP version used by the class. Possible values are as follows:

  • "1.0"
  • "1.1" (default)
  • "2.0"
  • "3.0"

When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.

HTTP/2 Notes

When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.

If the server does not support HTTP/2, the class will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.

HTTP/3 Notes

HTTP/3 is supported only in .NET and Java.

When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.

IfModifiedSince:   A date determining the maximum age of the desired document.

If this setting contains a nonempty string, an If-Modified-Since HTTP header is added to the request. The value of this header is used to make the HTTP request conditional: if the requested documented has not been modified since the time specified in the field, a copy of the document will not be returned from the server; instead, a 304 (not modified) response will be returned by the server and the component throws an exception

The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example: Sat, 29 Oct 2017 19:43:31 GMT.

KeepAlive:   Determines whether the HTTP connection is closed after completion of the request.

If true, the component will not send the Connection: Close header. The absence of the Connection header indicates to the server that HTTP persistent connections should be used if supported. Note: Not all servers support persistent connections. If false, the connection will be closed immediately after the server response is received.

The default value for KeepAlive is false.

KerberosSPN:   The Service Principal Name for the Kerberos Domain Controller.

If the Service Principal Name on the Kerberos Domain Controller is not the same as the URL that you are authenticating to, the Service Principal Name should be set here.

LogLevel:   The level of detail that is logged.

This configuration setting controls the level of detail that is logged through the Log event. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.

The value 2 (Verbose) logs additional information about the request and response.

The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).

MaxRedirectAttempts:   Limits the number of redirects that are followed in a request.

When FollowRedirects is set to any value other than frNever, the class will follow redirects until this maximum number of redirect attempts are made. The default value is 20.

NegotiatedHTTPVersion:   The negotiated HTTP version.

This configuration setting may be queried after the request is complete to indicate the HTTP version used. When HTTPVersion is set to "2.0" (if the server does not support "2.0"), then the class will fall back to using "1.1" automatically. This setting will indicate which version was used.

OtherHeaders:   Other headers as determined by the user (optional).

This configuration setting can be set to a string of headers to be appended to the HTTP request headers.

The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .

Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.

This configuration setting is useful for extending the functionality of the class beyond what is provided.

ProxyAuthorization:   The authorization string to be sent to the proxy server.

This is similar to the Authorization configuration setting, but is used for proxy authorization. If this configuration setting contains a nonempty string, a Proxy-Authorization HTTP request header is added to the request. This header conveys proxy Authorization information to the server. If User and Password are specified, this value is calculated using the algorithm specified by AuthScheme.

ProxyAuthScheme:   The authorization scheme to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPassword:   A password if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyPort:   Port for the proxy server (default 80).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyServer:   Name or IP address of a proxy server (optional).

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

ProxyUser:   A user name if authentication is to be used for the proxy.

This configuration setting is provided for use by classs that do not directly expose Proxy properties.

SentHeaders:   The full set of headers as sent by the client.

This configuration setting returns the complete set of raw headers as sent by the client.

StatusCode:   The status code of the last response from the server.

This configuration setting contains the result code of the last response from the server.

StatusLine:   The first line of the last response from the server.

This setting contains the first line of the last response from the server. The format of the line will be [HTTP version] [Result Code] [Description].

TransferredData:   The contents of the last response from the server.

This configuration setting contains the contents of the last response from the server.

TransferredDataLimit:   The maximum number of incoming bytes to be stored by the class.

If TransferredDataLimit is set to 0 (default), no limits are imposed. Otherwise, this reflects the maximum number of incoming bytes that can be stored by the class.

TransferredHeaders:   The full set of headers as received from the server.

This configuration setting returns the complete set of raw headers as received from the server.

TransferredRequest:   The full request as sent by the client.

This configuration setting returns the full request as sent by the client. For performance reasons, the request is not normally saved. Set this configuration setting to ON before making a request to enable it. Following are examples of this request:

.NET Http http = new Http(); http.Config("TransferredRequest=on"); http.PostData = "body"; http.Post("http://someserver.com"); Console.WriteLine(http.Config("TransferredRequest")); C++ HTTP http; http.Config("TransferredRequest=on"); http.SetPostData("body", 5); http.Post("http://someserver.com"); printf("%s\r\n", http.Config("TransferredRequest"));

UseChunkedEncoding:   Enables or Disables HTTP chunked encoding for transfers.

If UseChunkedEncoding is set to True, the class will use HTTP-chunked encoding when posting, if possible. HTTP-chunked encoding allows large files to be sent in chunks instead of all at once. If set to False, the class will not use HTTP-chunked encoding. The default value is False.

Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.

UseIDNs:   Whether to encode hostnames to internationalized domain names.

This configuration setting specifies whether hostnames containing non-ASCII characters are encoded to internationalized domain names. When set to True, if a hostname contains non-ASCII characters, it is encoded using Punycode to an IDN (internationalized domain name).

The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001. In the C++ Edition for Windows, the *W version of the class must be used. For instance, DNSW or HTTPW.

UsePlatformHTTPClient:   Whether or not to use the platform HTTP client.

When using this configuration setting, if True, the component will use the default HTTP client for the platform (URLConnection in Java, WebRequest in .NET, or CFHTTPMessage in Mac/iOS) instead of the internal HTTP implementation. This is important for environments in which direct access to sockets is limited or not allowed (e.g., in the Google AppEngine).

Note: This setting is applicable only to Mac/iOS editions.

UseProxyAutoConfigURL:   Whether to use a Proxy auto-config file when attempting a connection.

This configuration specifies whether the class will attempt to use the Proxy auto-config URL when establishing a connection and AutoDetect is set to True.

When True (default), the class will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.

UserAgent:   Information about the user agent (browser).

This is the value supplied in the HTTP User-Agent header. The default setting is "IPWorks HTTP Component - www.nsoftware.com".

Override the default with the name and version of your software.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

The appropriate values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveRetryCount:   The number of keep-alive packets to be sent before the remotehost is considered disconnected.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the number of times that the keep-alive packets will be sent before the remote host is considered disconnected. The system default if this value is not specified here is 9.

Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This configuration setting must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if SSLProvider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACertFilePaths:   The paths to CA certificate files on Unix/Linux.

This configuration setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is as follows:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

SSLCACerts:   A newline separated list of CA certificate to be included when performing an SSL handshake.

When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermedaite Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when SSLProvider is set to Platform include the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when SSLProvider is set to Platform include the following:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when SSLProvider is set to Internalinclude the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"); Possible values when SSLProvider is set to Internal include the following:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is false by default, but it can be set to true to enable the extension.

This configuration setting is applicable only when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown certificate authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown certificate authority revocation status.
0x00000800Ignore unknown root revocation status.
0x00008000Allow test root certificate.
0x00004000Trust test root certificate.
0x80000000Ignore non-matching CN (certificate CN non-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is Unicode UTF-8 (65001).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multilingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8
The following is a list of valid code page identifiers for Mac OS only:
IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

ProcessIdleEvents:   Whether the class uses its internal event loop to process events when the main thread is idle.

If set to False, the class will not fire internal idle events. Set this to False to use the class in a background thread on Mac OS. By default, this setting is True.

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when DoEvents is called, the class will wait for the amount of time specified here before returning. The default value is 20.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.

To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.

Trappable Errors (SMS Class)

Error Handling (C++)

Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

SMS Errors

801   An unsupported operation or action was attempted.
802   The RawRequest or RawResponse configuration setting was queried without first setting the TransferredRequest configuration setting to ON.

The class may also return one of the following error codes, which are inherited from other classes.

HTTP Errors

118   Firewall Error. Error description contains detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in URL
153   Specified URLScheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Can't open AttachedFile.

The class may also return one of the following error codes, which are inherited from other classes.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on nonsocket.
10039   [10039] Destination address required.
10040   [10040] Message is too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol is not supported.
10044   [10044] Socket type is not supported.
10045   [10045] Operation is not supported on socket.
10046   [10046] Protocol family is not supported.
10047   [10047] Address family is not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Cannot assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Cannot send after socket shutdown.
10059   [10059] Too many references, cannot splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name is too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory is not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock is not loaded yet.
11001   [11001] Host not found.
11002   [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).