SSHAuth Component
Properties Methods Events Config Settings Errors
The SSHAuth component provides a simple way to authenticate a user against an SSH server.
Syntax
nsoftware.IPWorksAuth.SSHAuth
Remarks
The SSHAuth component offers a simply way to authenticate a user against an SSH server.
To begin specify the SSHHost, User, and Password. Next call Authenticate to authenticate the user.
The component supports multiple authentication methods including public key authentication, keyboard interactive authentication, password authentication, and more. Set AuthMode to the desired authentication mechanism before calling Authenticate.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
AuthMode | The authentication method to be used with the component when calling Authenticate . |
Firewall | A set of properties related to firewall access. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
LocalPort | The TCP port in the local host where the component binds. |
Password | The password for SSH password-based authentication. |
SSHAcceptServerHostKey | Instructs the component to accept the server host key that matches the supplied key. |
SSHCert | A certificate to be used for authenticating the SSHUser . |
SSHEncryptionAlgorithms | The comma-separated list containing all allowable encryption algorithms. |
SSHHost | The address of the Secure Shell (SSH) host. |
SSHPort | The port on the Secure Shell (SSH) server where the SSH service is running; by default, 22. |
Timeout | This property includes the timeout for the component. |
User | The username for SSH authentication. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Authenticate | Authenticates the user. |
Config | Sets or retrieves a configuration setting. |
DoEvents | This method processes events from the internal message queue. |
Interrupt | This method interrupts the current method. |
Reset | Resets the component |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Connected | Fired immediately after a connection completes (or fails). |
ConnectionStatus | Fired to indicate changes in the connection state. |
Disconnected | Fired when a connection is closed. |
Error | Fired when information is available about errors during data delivery. |
Log | Fired once for each log message. |
SSHCustomAuth | Fired when the component is doing a custom authentication. |
SSHKeyboardInteractive | Fired when the component receives a request for user input from the server. |
SSHServerAuthentication | Fired after the server presents its public key to the client. |
SSHStatus | Fired to track the progress of the secure connection. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
SSHCompressionAlgorithms | A comma-separated list containing all allowable compression algorithms. |
ChannelDataEOL[ChannelId] | Used to break the incoming data stream into chunks. |
ChannelDataEOLFound[ChannelId] | Determines if ChannelDataEOL was found. |
ClientSSHVersionString | The SSH version string used by the component. |
DoNotRepeatAuthMethods | Whether the component will repeat authentication methods during multifactor authentication. |
EnablePageantAuth | Whether to use a key stored in Pageant to perform client authentication. |
KerberosDelegation | If true, asks for credentials with delegation enabled during authentication. |
KerberosRealm | The fully qualified domain name of the Kerberos Realm to use for GSSAPI authentication. |
KerberosSPN | The Kerberos Service Principal Name of the SSH host. |
KeyRenegotiationThreshold | Sets the threshold for the SSH Key Renegotiation. |
LogLevel | Specifies the level of detail that is logged. |
MaxChannelDataLength[ChannelId] | The maximum amount of data to accumulate when no ChannelDataEOL is found. |
MaxPacketSize | The maximum packet size of the channel, in bytes. |
MaxWindowSize | The maximum window size allowed for the channel, in bytes. |
NegotiatedStrictKex | Returns whether strict key exchange was negotiated to be used. |
PasswordPrompt | The text of the password prompt used in keyboard-interactive authentication. |
PreferredDHGroupBits | The size (in bits) of the preferred modulus (p) to request from the server. |
RecordLength | The length of received data records. |
ServerSSHVersionString | The remote host's SSH version string. |
SignedSSHCert | The CA signed client public key used when authenticating. |
SSHAcceptAnyServerHostKey | If set the component will accept any key presented by the server. |
SSHAcceptServerCAKey | The CA public key that signed the server's host key. |
SSHAcceptServerHostKeyFingerPrint | The fingerprint of the server key to accept. |
SSHFingerprintHashAlgorithm | The algorithm used to calculate the fingerprint. |
SSHFingerprintMD5 | The server hostkey's MD5 fingerprint. |
SSHFingerprintSHA1 | The server hostkey's SHA1 fingerprint. |
SSHFingerprintSHA256 | The server hostkey's SHA256 fingerprint. |
SSHKeepAliveCountMax | The maximum number of keep alive packets to send without a response. |
SSHKeepAliveInterval | The interval between keep alive packets. |
SSHKeyExchangeAlgorithms | Specifies the supported key exchange algorithms. |
SSHKeyRenegotiate | Causes the component to renegotiate the SSH keys. |
SSHMacAlgorithms | Specifies the supported Mac algorithms. |
SSHPubKeyAuthSigAlgorithms | Specifies the enabled signature algorithms that may be used when attempting public key authentication. |
SSHPublicKeyAlgorithms | Specifies the supported public key algorithms for the server's public key. |
SSHVersionPattern | The pattern used to match the remote host's version string. |
TryAllAvailableAuthMethods | If set to true, the component will try all available authentication methods. |
UseStrictKeyExchange | Specifies how strict key exchange is supported. |
WaitForChannelClose | Whether to wait for channels to be closed before disconnected. |
WaitForServerDisconnect | Whether to wait for the server to close the connection. |
CloseStreamAfterTransfer | If true, the component will close the upload or download stream after the transfer. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the component whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallListener | If true, the component binds to a SOCKS firewall as a server (TCPClient only). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the component binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
UseNTLMv2 | Whether to use NTLM V2. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
GUIAvailable | Whether or not a message loop is available for processing events. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
UseFIPSCompliantAPI | Tells the component whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
AuthMode Property (SSHAuth Component)
The authentication method to be used with the component when calling Authenticate .
Syntax
public SSHAuthAuthModes AuthMode { get; set; }
enum SSHAuthAuthModes { amNone, amMultiFactor, amPassword, amPublicKey, amKeyboardInteractive, amGSSAPIWithMic, amCustom }
Public Property AuthMode As SshauthAuthModes
Enum SSHAuthAuthModes amNone amMultiFactor amPassword amPublicKey amKeyboardInteractive amGSSAPIWithMic amCustom End Enum
Default Value
2
Remarks
The Secure Shell (SSH) Authentication specification (RFC 4252) specifies multiple methods by which a user can be authenticated by an SSH server. When a call is made to Authenticate, the component will connect to the SSH server and establish the security layer. After the connection has been secured, the client will send an authentication request to the SSHHost containing the User. The server will respond containing a list of methods by which that user may be authenticated.
The component will attempt to authenticate the user by one of those methods based on the value of AuthMode and other property values supplied by the user. Currently, the component supports the following authentication methods:
amNone (0) | No authentication will be performed. The current User value is ignored, and the connection will be logged as anonymous. |
amMultiFactor (1) | This allows the component to attempt a multistep authentication process. The component will send authentication data to the server based on the list of methods allowed for the current user and the authentication property values supplied. The component will continue to send authentication data until the server acknowledges authentication success. If the server rejects an authentication step, the component throws an exception. |
amPassword (2) | The component will use the values of User and Password to authenticate the user. |
amPublicKey (3) | The component will use the values of User and SSHCert to authenticate the user. SSHCert must have a private key available for this authentication method to succeed. |
amKeyboardInteractive (4) | At the time of authentication, the component will fire the SSHKeyboardInteractive event containing instructions on how to complete the authentication step.
Note: amKeyboardInteractive is not supported in SSHTunnel. |
amGSSAPIWithMic (5) | This allows the component to attempt Kerberos authentication using the GSSAPI-WITH-MIC scheme. The client will try Kerberos authentication using the value of User (single sign-on), or if Password is specified as well, it will try Kerberos authentication with alternate credentials. This is currently supported only on Windows, unless using the Java edition, which also provides support for Linux and macOS. |
amGSSAPIKeyex (6) | This allows the component to attempt Kerberos authentication using the GSSAPIKeyex scheme. The client will try Kerberos authentication using the value of User (single sign-on), or if Password is specified as well, it will try Kerberos authentication with alternate credentials. This is currently supported only on Windows, unless using the Java edition, which also provides support for Linux and macOS. |
amCustom (99) | This allows the component caller to take over the authentication process completely. When amCustom is set, the component will fire the SSHCustomAuth event as necessary to complete the authentication process. |
Example 1. User/Password Authentication:
Control.SSHAuthMode = SshauthSSHAuthModes.amPassword
Control.SSHUser = "username"
Control.SSHPassword = "password"
Control.SSHLogon("server", 22)
Example 2. Public Key Authentication:
Control.SSHAuthMode = SshauthSSHAuthModes.amPublicKey
Control.SSHUser = "username"
Control.SSHCert = New Certificate(CertStoreTypes.cstPFXFile, "cert.pfx", "certpassword", "*")
Control.SSHLogon("server", 22)
Firewall Property (SSHAuth Component)
A set of properties related to firewall access.
Syntax
Remarks
This is a Firewall-type property, which contains fields describing the firewall through which the component will attempt to connect.
Please refer to the Firewall type for a complete list of fields.LocalHost Property (SSHAuth Component)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
Default Value
""
Remarks
This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the component initiate connections (or accept in the case of server components) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.
If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Note: LocalHost is not persistent. You must always set it in code, and never in the property window.
LocalPort Property (SSHAuth Component)
The TCP port in the local host where the component binds.
Syntax
Default Value
0
Remarks
This property must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.
Setting this property to 0 (default) enables the system to choose an open port at random. The chosen port will be returned by the LocalPort property after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this property when a connection is active will generate an error.
This property is useful when trying to connect to services that require a trusted port on the client side.
Password Property (SSHAuth Component)
The password for SSH password-based authentication.
Syntax
Default Value
""
Remarks
Password specifies the password which is used to authenticate the client to the SSH server.
SSHAcceptServerHostKey Property (SSHAuth Component)
Instructs the component to accept the server host key that matches the supplied key.
Syntax
public Certificate SSHAcceptServerHostKey { get; set; }
Public Property SSHAcceptServerHostKey As Certificate
Remarks
If the host key that will be used by the server is known in advance, this property may be set to accept the expected key. Otherwise, the SSHServerAuthentication event should be trapped, and the key should be accepted or refused in the event.
If this property is not set and the SSHServerAuthentication event is not trapped, the server will not be authenticated and the connection will be terminated by the client.
Please refer to the Certificate type for a complete list of fields.SSHCert Property (SSHAuth Component)
A certificate to be used for authenticating the SSHUser .
Syntax
public Certificate SSHCert { get; set; }
Public Property SSHCert As Certificate
Remarks
To use public key authentication, SSHCert must contain a Certificate with a valid private key. The certificate's public key value is sent to the server along with a signature produced using the private key. The server will first check to see if the public key values match what is known for the user, and then it will attempt to use those values to verify the signature.
Example 1. User/Password Authentication:
Control.SSHAuthMode = SshauthSSHAuthModes.amPassword
Control.SSHUser = "username"
Control.SSHPassword = "password"
Control.SSHLogon("server", 22)
Example 2. Public Key Authentication:
Control.SSHAuthMode = SshauthSSHAuthModes.amPublicKey
Control.SSHUser = "username"
Control.SSHCert = New Certificate(CertStoreTypes.cstPFXFile, "cert.pfx", "certpassword", "*")
Control.SSHLogon("server", 22)
SSHEncryptionAlgorithms Property (SSHAuth Component)
The comma-separated list containing all allowable encryption algorithms.
Syntax
public string SSHEncryptionAlgorithms { get; set; }
Public Property SSHEncryptionAlgorithms As String
Default Value
"aes256-ctr,aes192-ctr,aes128-ctr,3des-ctr,arcfour256,arcfour128,arcfour,aes256-gcm@openssh.com,aes128-gcm@openssh.com,chacha20-poly1305@openssh.com"
Remarks
During the Secure Shell (SSH) handshake, this list will be used to negotiate the encryption algorithm to be used between the client and server. This list is used for both directions: client to server and server to client. When negotiating algorithms, each side sends a list of all algorithms it supports or allows. The algorithm chosen for each direction is the first algorithm to appear in the sender's list that the receiver supports. Therefore, it is important to list multiple algorithms in preferential order. If no algorithm can be agreed on, the component will raise an error and the connection will be aborted.
At least one supported algorithm must appear in this list. The following encryption algorithms are supported by the component:
aes256-ctr | 256-bit AES encryption in CTR mode. |
aes256-cbc | 256-bit AES encryption in CBC mode. |
aes192-ctr | 192-bit AES encryption in CTR mode. |
aes192-cbc | 192-bit AES encryption in CBC mode. |
aes128-ctr | 128-bit AES encryption in CTR mode. |
aes128-cbc | 128-bit AES encryption in CBC mode. |
3des-ctr | 192-bit (3-key) triple DES encryption in CTR mode. |
3des-cbc | 192-bit (3-key) triple DES encryption in CBC mode. |
cast128-cbc | CAST-128 encryption. |
blowfish-cbc | Blowfish encryption. |
arcfour | ARC4 encryption. |
arcfour128 | 128-bit ARC4 encryption. |
arcfour256 | 256-bit ARC4 encryption. |
aes256-gcm@openssh.com | 256-bit AES encryption in GCM mode. |
aes128-gcm@openssh.com | 128-bit AES encryption in GCM mode. |
chacha20-poly1305@openssh.com | ChaCha20 with Poly1305-AES encryption. |
SSHHost Property (SSHAuth Component)
The address of the Secure Shell (SSH) host.
Syntax
Default Value
""
Remarks
The SSHHost property specifies the IP address (IP number in dotted internet format) or domain name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.
If the SSHHost property is set to a domain name, a DNS request is initiated, and upon successful termination of the request, the SSHHost property is set to the corresponding address. If the search is not successful, an error is returned.
The SSHHost must be the same host that will be assumed for SSH as for the remote service being connected to.
SSHPort Property (SSHAuth Component)
The port on the Secure Shell (SSH) server where the SSH service is running; by default, 22.
Syntax
Default Value
22
Remarks
The SSHPort specifies a service port on the SSH host to connect to.
A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.
Timeout Property (SSHAuth Component)
This property includes the timeout for the component.
Syntax
Default Value
60
Remarks
If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.
If Timeout is set to a positive value, the component will wait for the operation to complete before returning control.
The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.
If Timeout expires, and the operation is not yet complete, the component throws an exception.
Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 60 seconds.
User Property (SSHAuth Component)
The username for SSH authentication.
Syntax
Default Value
""
Remarks
User specifies the username which is used to authenticate the client to the SSH server. This property is required.
Example 1. User/Password Authentication:
Control.SSHAuthMode = SshauthSSHAuthModes.amPassword
Control.SSHUser = "username"
Control.SSHPassword = "password"
Control.SSHLogon("server", 22)
Example 2. Public Key Authentication:
Control.SSHAuthMode = SshauthSSHAuthModes.amPublicKey
Control.SSHUser = "username"
Control.SSHCert = New Certificate(CertStoreTypes.cstPFXFile, "cert.pfx", "certpassword", "*")
Control.SSHLogon("server", 22)
Authenticate Method (SSHAuth Component)
Authenticates the user.
Syntax
public void Authenticate(); Async Version public async Task Authenticate(); public async Task Authenticate(CancellationToken cancellationToken);
Public Sub Authenticate() Async Version Public Sub Authenticate() As Task Public Sub Authenticate(cancellationToken As CancellationToken) As Task
Remarks
This method authenticates the user against the SSHHost. If authentication succeeds this method returns without error. If authentication fails, or an error is encountered, the component throws an exception.
The following common properties are applicable when calling this method:
- User (required)
- Password (required for password authentication)
- SSHCert (required for public key authentication)
- SSHHost (required)
- SSHPort
- AuthMode
- SSHEncryptionAlgorithms
Keyboard interactive authentication is handled through the SSHKeyboardInteractive event.
Config Method (SSHAuth Component)
Sets or retrieves a configuration setting.
Syntax
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
DoEvents Method (SSHAuth Component)
This method processes events from the internal message queue.
Syntax
public void DoEvents(); Async Version public async Task DoEvents(); public async Task DoEvents(CancellationToken cancellationToken);
Public Sub DoEvents() Async Version Public Sub DoEvents() As Task Public Sub DoEvents(cancellationToken As CancellationToken) As Task
Remarks
When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Interrupt Method (SSHAuth Component)
This method interrupts the current method.
Syntax
public void Interrupt(); Async Version public async Task Interrupt(); public async Task Interrupt(CancellationToken cancellationToken);
Public Sub Interrupt() Async Version Public Sub Interrupt() As Task Public Sub Interrupt(cancellationToken As CancellationToken) As Task
Remarks
If there is no method in progress, Interrupt simply returns, doing nothing.
Reset Method (SSHAuth Component)
Resets the component
Syntax
public void Reset(); Async Version public async Task Reset(); public async Task Reset(CancellationToken cancellationToken);
Public Sub Reset() Async Version Public Sub Reset() As Task Public Sub Reset(cancellationToken As CancellationToken) As Task
Remarks
When called, the component will reset all of its properties to their default values.
Connected Event (SSHAuth Component)
Fired immediately after a connection completes (or fails).
Syntax
public event OnConnectedHandler OnConnected; public delegate void OnConnectedHandler(object sender, SSHAuthConnectedEventArgs e); public class SSHAuthConnectedEventArgs : EventArgs { public int StatusCode { get; } public string Description { get; } }
Public Event OnConnected As OnConnectedHandler Public Delegate Sub OnConnectedHandler(sender As Object, e As SSHAuthConnectedEventArgs) Public Class SSHAuthConnectedEventArgs Inherits EventArgs Public ReadOnly Property StatusCode As Integer Public ReadOnly Property Description As String End Class
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.
Please refer to the Error Codes section for more information.
ConnectionStatus Event (SSHAuth Component)
Fired to indicate changes in the connection state.
Syntax
public event OnConnectionStatusHandler OnConnectionStatus; public delegate void OnConnectionStatusHandler(object sender, SSHAuthConnectionStatusEventArgs e); public class SSHAuthConnectionStatusEventArgs : EventArgs { public string ConnectionEvent { get; } public int StatusCode { get; } public string Description { get; } }
Public Event OnConnectionStatus As OnConnectionStatusHandler Public Delegate Sub OnConnectionStatusHandler(sender As Object, e As SSHAuthConnectionStatusEventArgs) Public Class SSHAuthConnectionStatusEventArgs Inherits EventArgs Public ReadOnly Property ConnectionEvent As String Public ReadOnly Property StatusCode As Integer Public ReadOnly Property Description As String End Class
Remarks
This event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.
The ConnectionEvent parameter indicates the type of connection event. Values may include the following:
Firewall connection complete. | |
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable). | |
Remote host connection complete. | |
Remote host disconnected. | |
SSL or S/Shell connection broken. | |
Firewall host disconnected. |
Disconnected Event (SSHAuth Component)
Fired when a connection is closed.
Syntax
public event OnDisconnectedHandler OnDisconnected; public delegate void OnDisconnectedHandler(object sender, SSHAuthDisconnectedEventArgs e); public class SSHAuthDisconnectedEventArgs : EventArgs { public int StatusCode { get; } public string Description { get; } }
Public Event OnDisconnected As OnDisconnectedHandler Public Delegate Sub OnDisconnectedHandler(sender As Object, e As SSHAuthDisconnectedEventArgs) Public Class SSHAuthDisconnectedEventArgs Inherits EventArgs Public ReadOnly Property StatusCode As Integer Public ReadOnly Property Description As String End Class
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.
Please refer to the Error Codes section for more information.
Error Event (SSHAuth Component)
Fired when information is available about errors during data delivery.
Syntax
public event OnErrorHandler OnError; public delegate void OnErrorHandler(object sender, SSHAuthErrorEventArgs e); public class SSHAuthErrorEventArgs : EventArgs { public int ErrorCode { get; } public string Description { get; } }
Public Event OnError As OnErrorHandler Public Delegate Sub OnErrorHandler(sender As Object, e As SSHAuthErrorEventArgs) Public Class SSHAuthErrorEventArgs Inherits EventArgs Public ReadOnly Property ErrorCode As Integer Public ReadOnly Property Description As String End Class
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the component throws an exception.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Log Event (SSHAuth Component)
Fired once for each log message.
Syntax
public event OnLogHandler OnLog; public delegate void OnLogHandler(object sender, SSHAuthLogEventArgs e); public class SSHAuthLogEventArgs : EventArgs { public int LogLevel { get; } public string Message { get; } public string LogType { get; } }
Public Event OnLog As OnLogHandler Public Delegate Sub OnLogHandler(sender As Object, e As SSHAuthLogEventArgs) Public Class SSHAuthLogEventArgs Inherits EventArgs Public ReadOnly Property LogLevel As Integer Public ReadOnly Property Message As String Public ReadOnly Property LogType As String End Class
Remarks
Fired once for each log message generated by the component. The verbosity is controlled by the LogLevel setting.
LogLevel indicates the detail level of the message. Possible values are as follows:
0 (None) | No messages are logged. |
1 (Info - Default) | Informational events such as Secure Shell (SSH) handshake messages are logged. |
2 (Verbose) | Detailed data such as individual packet information are logged. |
3 (Debug) | Debug data including all relevant sent and received bytes are logged. |
Message is the log message.
LogType is reserved for future use.
SSHCustomAuth Event (SSHAuth Component)
Fired when the component is doing a custom authentication.
Syntax
public event OnSSHCustomAuthHandler OnSSHCustomAuth; public delegate void OnSSHCustomAuthHandler(object sender, SSHAuthSSHCustomAuthEventArgs e); public class SSHAuthSSHCustomAuthEventArgs : EventArgs { public string Packet { get; set; } }
Public Event OnSSHCustomAuth As OnSSHCustomAuthHandler Public Delegate Sub OnSSHCustomAuthHandler(sender As Object, e As SSHAuthSSHCustomAuthEventArgs) Public Class SSHAuthSSHCustomAuthEventArgs Inherits EventArgs Public Property Packet As String End Class
Remarks
SSHCustomAuth is fired during the user authentication stage of the Secure Shell (SSH) logon process if SSHAuthMode is set to amCustom. Packet contains the last raw SSH packet sent by the server, in HEX-encoded format.
The client should create a new raw SSH packet to send to the server and set Packet to the HEX-encoded representation of the packet to send.
In all cases, Packet will start with the message type field.
To read the incoming packet, call DecodePacket and then use the GetSSHParam and GetSSHParamBytes methods. To create a packet, use the SetSSHParam method and then call EncodePacket to obtain a HEX-encoded value and assign this to the Packet parameter.
SSHKeyboardInteractive Event (SSHAuth Component)
Fired when the component receives a request for user input from the server.
Syntax
public event OnSSHKeyboardInteractiveHandler OnSSHKeyboardInteractive; public delegate void OnSSHKeyboardInteractiveHandler(object sender, SSHAuthSSHKeyboardInteractiveEventArgs e); public class SSHAuthSSHKeyboardInteractiveEventArgs : EventArgs { public string Name { get; } public string Instructions { get; } public string Prompt { get; } public string Response { get; set; } public bool EchoResponse { get; } }
Public Event OnSSHKeyboardInteractive As OnSSHKeyboardInteractiveHandler Public Delegate Sub OnSSHKeyboardInteractiveHandler(sender As Object, e As SSHAuthSSHKeyboardInteractiveEventArgs) Public Class SSHAuthSSHKeyboardInteractiveEventArgs Inherits EventArgs Public ReadOnly Property Name As String Public ReadOnly Property Instructions As String Public ReadOnly Property Prompt As String Public Property Response As String Public ReadOnly Property EchoResponse As Boolean End Class
Remarks
SSHKeyboardInteractive is fired during the user authentication stage of the Secure Shell (SSH) logon process. During authentication, the component will request a list of available authentication methods for the SSHUser. For example, if the SSHHost responds with "keyboard-interactive", the component will fire this event to allow the client application to set the password.
During authentication, the SSH server may respond with a request for the user's authentication information. Name is a server-provided value associated with the authentication method such as "CRYPTOCard Authentication". Instructions will contain specific instructions, also supplied by the server, for how the user should respond.
Along with these values, the server will also send at least one input Prompt to be displayed to and filled out by the user. Response should be set to the user's input, and will be sent back in the user authentication information response. EchoResponse is a server recommendation for whether or not the user's response should be echoed back during input.
Note: The server may send several prompts in a single packet. The component will fire the SSHKeyboardInteractive event once for each prompt.
SSHServerAuthentication Event (SSHAuth Component)
Fired after the server presents its public key to the client.
Syntax
public event OnSSHServerAuthenticationHandler OnSSHServerAuthentication; public delegate void OnSSHServerAuthenticationHandler(object sender, SSHAuthSSHServerAuthenticationEventArgs e); public class SSHAuthSSHServerAuthenticationEventArgs : EventArgs { public string HostKey { get; }
public byte[] HostKeyB { get; } public string Fingerprint { get; } public string KeyAlgorithm { get; } public string CertSubject { get; } public string CertIssuer { get; } public string Status { get; } public bool Accept { get; set; } }
Public Event OnSSHServerAuthentication As OnSSHServerAuthenticationHandler Public Delegate Sub OnSSHServerAuthenticationHandler(sender As Object, e As SSHAuthSSHServerAuthenticationEventArgs) Public Class SSHAuthSSHServerAuthenticationEventArgs Inherits EventArgs Public ReadOnly Property HostKey As String
Public ReadOnly Property HostKeyB As Byte() Public ReadOnly Property Fingerprint As String Public ReadOnly Property KeyAlgorithm As String Public ReadOnly Property CertSubject As String Public ReadOnly Property CertIssuer As String Public ReadOnly Property Status As String Public Property Accept As Boolean End Class
Remarks
This event is fired when the client can decide whether or not to continue with the connection process. If the public key is known to be a valid key for the Secure Shell (SSH) server, Accept should be set to True within the event. Otherwise, the server will not be authenticated and the connection will be broken.
Accept will be True only if either HostKey or Fingerprint is identical to the value of SSHAcceptServerHostKey.
Accept may be set to True manually to accept the server host key.
Note: SSH's security inherently relies on client verification of the host key. Ignoring the host key and always setting Accept to True is strongly discouraged, and could cause potentially serious security vulnerabilities in your application. It is recommended that clients maintain a list of known keys for each server and check HostKey against this list each time a connection is attempted.
Host Key contains the full binary text of the key, in the same format used internally by SSH.
Fingerprint holds the SHA-256 hash of HostKey in the hex-encoded form: 0a:1b:2c:3d. To configure the hash algorithm used to calculate this value, see SSHFingerprintHashAlgorithm.
KeyAlgorithm identifies the host key algorithm. The following values are supported:
- ssh-rsa
- ssh-dss
- rsa-sha2-256
- rsa-sha2-512
- x509v3-sign-rsa
- x509v3-sign-dss
- ecdsa-sha2-nistp256
- ecdsa-sha2-nistp384
- ecdsa-sha2-nistp521
CertSubject is the subject of the certificate. This is applicable only when KeyAlgorithm is "x509v3-sign-rsa" or "x509v3-sign-dss".
CertIssuer is the issuer of the certificate. This is applicable only when KeyAlgorithm is "x509v3-sign-rsa" or "x509v3-sign-dss".
Status is reserved for future use.
SSHStatus Event (SSHAuth Component)
Fired to track the progress of the secure connection.
Syntax
public event OnSSHStatusHandler OnSSHStatus; public delegate void OnSSHStatusHandler(object sender, SSHAuthSSHStatusEventArgs e); public class SSHAuthSSHStatusEventArgs : EventArgs { public string Message { get; } }
Public Event OnSSHStatus As OnSSHStatusHandler Public Delegate Sub OnSSHStatusHandler(sender As Object, e As SSHAuthSSHStatusEventArgs) Public Class SSHAuthSSHStatusEventArgs Inherits EventArgs Public ReadOnly Property Message As String End Class
Remarks
The event is fired for informational and logging purposes only. Used to track the progress of the connection.
Certificate Type
This is the digital certificate being used.
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
EffectiveDate
string (read-only)
Default: ""
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
ExpirationDate
string (read-only)
Default: ""
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
ExtendedKeyUsage
string (read-only)
Default: ""
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
Fingerprint
string (read-only)
Default: ""
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
FingerprintSHA1
string (read-only)
Default: ""
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
FingerprintSHA256
string (read-only)
Default: ""
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
Issuer
string (read-only)
Default: ""
The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.
PrivateKey
string (read-only)
Default: ""
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.
PrivateKeyAvailable
bool (read-only)
Default: False
Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
PrivateKeyContainer
string (read-only)
Default: ""
The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
PublicKey
string (read-only)
Default: ""
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
PublicKeyAlgorithm
string (read-only)
Default: ""
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
PublicKeyLength
int (read-only)
Default: 0
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
SerialNumber
string (read-only)
Default: ""
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
SignatureAlgorithm
string (read-only)
Default: ""
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
Store
string
Default: "MY"
The name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StoreB
byte []
Default: "MY"
The name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StorePassword
string
Default: ""
If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.
StoreType
CertStoreTypes
Default: 0
The type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
SubjectAltNames
string (read-only)
Default: ""
Comma-separated lists of alternative subject names for the certificate.
ThumbprintMD5
string (read-only)
Default: ""
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA1
string (read-only)
Default: ""
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA256
string (read-only)
Default: ""
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
Usage
string (read-only)
Default: ""
The text description of UsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
UsageFlags
int (read-only)
Default: 0
The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the Usage field for a text representation of UsageFlags.
This functionality currently is not available when the provider is OpenSSL.
Version
string (read-only)
Default: ""
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
Subject
string
Default: ""
The subject of the certificate used for client authentication.
This field will be populated with the full subject of the loaded certificate. When loading a certificate, the subject is used to locate the certificate in the store.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Encoded
string
Default: ""
The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
EncodedB
byte []
Default: ""
The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
Constructors
public Certificate();
Public Certificate()
Creates a instance whose properties can be set. This is useful for use with when generating new certificates.
public Certificate(string certificateFile);
Public Certificate(ByVal CertificateFile As String)
Opens CertificateFile and reads out the contents as an X.509 public key.
public Certificate(byte[] encoded);
Public Certificate(ByVal Encoded As Byte())
Parses Encoded as an X.509 public key.
public Certificate(CertStoreTypes storeType, string store, string storePassword, string subject);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public Certificate(CertStoreTypes storeType, string store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.
ConfigurationString is a newline-separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to the cstUser , cstMachine , cstPublicKeyFile , and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public Certificate(CertStoreTypes storeType, string store, string storePassword, byte[] encoded);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Encoded As Byte())
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.
public Certificate(CertStoreTypes storeType, byte[] store, string storePassword, string subject);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As Byte(), ByVal StorePassword As String, ByVal Subject As String)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public Certificate(CertStoreTypes storeType, byte[] store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As Byte(), ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public Certificate(CertStoreTypes storeType, byte[] store, string storePassword, byte[] encoded);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As Byte(), ByVal StorePassword As String, ByVal Encoded As Byte())
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.
Firewall Type
The firewall the component will connect through.
Remarks
When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.
Fields
AutoDetect
bool
Default: False
Whether to automatically detect and use firewall system settings, if available.
FirewallType
FirewallTypes
Default: 0
The type of firewall to connect through. The applicable values are as follows:
fwNone (0) | No firewall (default setting). |
fwTunnel (1) | Connect through a tunneling proxy. Port is set to 80. |
fwSOCKS4 (2) | Connect through a SOCKS4 Proxy. Port is set to 1080. |
fwSOCKS5 (3) | Connect through a SOCKS5 Proxy. Port is set to 1080. |
fwSOCKS4A (10) | Connect through a SOCKS4A Proxy. Port is set to 1080. |
Host
string
Default: ""
The name or IP address of the firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.
If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the component throws an exception.
Password
string
Default: ""
A password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the component throws an exception.
Port
int
Default: 0
The Transmission Control Protocol (TCP) port for the firewall Host. See the description of the Host field for details.
Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.
User
string
Default: ""
A username if authentication is to be used when connecting through a firewall. If Host is specified, this field and the Password field are used to connect and authenticate to the given Firewall. If the authentication fails, the component throws an exception.
Constructors
Config Settings (SSHAuth Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.SSHAuth Config Settings
At least one supported algorithm must appear in this list. The following compression algorithms are supported by the component:
- zlib
- zlib@openssh.com
- none
SSHClient Config Settings
If MaxChannelDataLength is greater than 0 and ChannelDataEOL is a nonempty string, the component will internally buffer data waiting to fire SSHChannelData until either MaxChannelDataLength is reached or ChannelDataEOL is found, whichever comes first. Query ChannelDataEOLFound to know which condition was met. The buffer is reset any time SSHChannelData fires.
ChannelDataEOL and MaxChannelDataLength must be set together or unexpected behavior could occur.
This configuration setting is valid only when queried inside SSHChannelData, MaxChannelDataLength > 0, and ChannelDataEOL is nonempty.
Most SSH servers expect the SSH version string to have the expected format "SSH-protocol version-software version". See above for an example.
Value | Description |
0 (Disabled - default) | No communication with Pageant is attempted. |
1 (Enabled) | Pageant authentication is used if available. If Pageant is not running, or does not contain the expected key, no error is thrown. |
2 (Required) | Only Pageant authentication is used. If Pageant is not running, or does not contain the expected key, an error is thrown. |
Example 1. Enabling Pageant:
component.Config("EnablePageantAuth=1");
component.SSHUser = "sshuser";
component.SSHLogon("localhost", 22);
Note: This functionality is available only on Windows.
Note: Even if the client asks for delegation, the server/KDC might not grant it, and authentication will still succeed.
Example. Setting the Threshold to 500 MB:
SSHComponent.Config("KeyRenegotiationThreshold=524288000")
0 (None) | No messages are logged. |
1 (Info - Default) | Informational events such as Secure Shell (SSH) handshake messages are logged. |
2 (Verbose) | Detailed data such as individual packet information are logged. |
3 (Debug) | Debug data including all relevant sent and received bytes are logged. |
If MaxChannelDataLength is greater than 0 and ChannelDataEOL is a nonempty string, the component will internally buffer data waiting to fire SSHChannelData until either MaxChannelDataLength is reached or ChannelDataEOL is found, whichever comes first. Query ChannelDataEOLFound to know which condition was met. The buffer is reset any time SSHChannelData fires.
ChannelDataEOL and MaxChannelDataLength must be set together or unexpected behavior could occur.
Note: This value may be changed during the connection, but the window size can only be increased, not decreased.
component.Config("NegotiatedStrictKex")
This provides an easy way to automatically reply to prompts with the password if one is presented by the server. The password will be autofilled in the Response parameter of the SSHKeyboardInteractive event in the case of a match.
The following special characters are supported for pattern matching:
? | Any single character. |
* | Any characters or no characters (e.g., C*t matches Cat, Cot, Coast, Ct). |
[,-] | A range of characters (e.g., [a-z], [a], [0-9], [0-9,a-d,f,r-z]). |
\ | The slash is ignored and exact matching is performed on the next character. |
If these characters need to be used as a literal in a pattern, then they must be escaped by surrounding them with brackets []. Note: "]" and "-" do not need to be escaped. See below for the escape sequences:
Character | Escape Sequence |
? | [?] |
* | [*] |
[ | [[] |
\ | [\] |
For example, to match the value [Something].txt, specify the pattern [[]Something].txt.
The default value is 0, meaning this setting is not used.
component.Config("SignedSSHCert=ssh-rsa-cert-v01@openssh.com AAAAB3NzaC1yc2EAAAADAQABAAAB...");
The algorithm such as ssh-rsa-cert-v01@openssh.com in the previous string is used as part of the authentication process. To use a different algorithm, simply change this value. For instance, all of the following are acceptable with the same signed public key:
- ssh-rsa-cert-v01@openssh.com AAAAB3NzaC1yc2EAAAADAQABAAAB...
- rsa-sha2-256-cert-v01@openssh.com AAAAB3NzaC1yc2EAAAADAQABAAAB...
- rsa-sha2-512-cert-v01@openssh.com AAAAB3NzaC1yc2EAAAADAQABAAAB...
component.Config("SSHAcceptServerCAKey=ssh-rsa AAAAB3NzaC1yc2EAAAADAQAB...");
SSHClient.Config("SSHAcceptServerHostKeyFingerprint=0a:1b:2c:3d");
If the server's fingerprint matches one of the values supplied, the component will accept the host key.
- MD5
- SHA1
- SHA256 (default)
The default value is 0, meaning no keep alives will be sent.
Note: The SSHREVERSETUNNEL component uses a default value of 30.
- curve25519-sha256
- curve25519-sha256@libssh.org
- diffie-hellman-group1-sha1
- diffie-hellman-group14-sha1
- diffie-hellman-group14-sha256
- diffie-hellman-group16-sha512
- diffie-hellman-group18-sha512
- diffie-hellman-group-exchange-sha256
- diffie-hellman-group-exchange-sha1
- ecdh-sha2-nistp256
- ecdh-sha2-nistp384
- ecdh-sha2-nistp521
- gss-group14-sha256-toWM5Slw5Ew8Mqkay+al2g==
- gss-group16-sha512-toWM5Slw5Ew8Mqkay+al2g==
- gss-nistp256-sha256-toWM5Slw5Ew8Mqkay+al2g==
- gss-curve25519-sha256-toWM5Slw5Ew8Mqkay+al2g==
- gss-group14-sha1-toWM5Slw5Ew8Mqkay+al2g==
- gss-gex-sha1-toWM5Slw5Ew8Mqkay+al2g==
Example 3. Renegotiating SSH Keys:
SSHClient.Config("SSHKeyRenegotiate")
- hmac-sha1
- hmac-md5
- hmac-sha1-96
- hmac-md5-96
- hmac-sha2-256
- hmac-sha2-256-96
- hmac-sha2-512
- hmac-sha2-512-96
- hmac-ripemd160
- hmac-ripemd160-96
- hmac-sha2-256-etm@openssh.com
- hmac-sha2-512-etm@openssh.com
- hmac-sha2-256-96-etm@openssh.com
- hmac-sha2-512-96-etm@openssh.com
- umac-64@openssh.com
- umac-64-etm@openssh.com
- umac-128@openssh.com
- umac-128-etm@openssh.com
The setting should be a comma-separated list of algorithms. At runtime, the component will evaluate the specified algorithms, and if the algorithm is applicable to the certificate specified in SSHCert, it will be used. If the algorithm is not applicable, the component will evaluate the next algorithm. Possible values are as follows:
- ssh-rsa
- rsa-sha2-256
- rsa-sha2-512
- ssh-dss
- ecdsa-sha2-nistp256
- ecdsa-sha2-nistp384
- ecdsa-sha2-nistp521
- ssh-ed25519
- x509v3-sign-rsa
- x509v3-sign-dss
The default value in Windows is ssh-rsa,rsa-sha2-256,rsa-sha2-512,ssh-dss,ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,ssh-ed25519.
rsa-sha2-256 and rsa-sha2-512 notes
The component will query the server for supported algorithms when connecting. If the server indicates support for rsa-sha2-256 or rsa-sha2-512 and the algorithm is present in the list defined by this setting (as in the default value), that algorithm will be used instead of ssh-rsa even when ssh-rsa appears first in the list.
For the rsa-sha2-256 and rsa-sha2-512 algorithms to be automatically preferred, the server must support the ext-info-c mechanism. In practice, older servers do not support this, and in that case, ssh-rsa will be used because it appears first in the list. Newer servers do support this mechanism, and in that case, rsa-sha2-256 or rsa-sha2-512 will be used even though it appears after ssh-rsa.
This behavior has been carefully designed to provide maximum compatibility while automatically using more secure algorithms when connecting to servers that support them.
*SSH-1.99-*,*SSH-2.0-*,*SSH-2.99-*
Because both client and server must implement strict key exchange to effectively mitigate the Terrapin attack, the component provides options to further control the behavior in different scenarios. Possible values for this setting are as follows:
0 | Disabled. Strict key exchange is not supported in the component. |
1 (default) | Enabled, but not enforced. This setting enables strict key exchange, but if the remote host does not support strict key exchange the connection is still allowed to continue. |
2 | Enabled, but will reject affected algorithms if the remote host does not support strict key exchange. If the remote host supports strict key exchange, all algorithms may be used. If the remote host does not support strict key exchange, the connection will continue only if the selected encryption and message authentication code (MAC) algorithms are not affected by the Terrapin attack. |
3 | Required. If the remote host does not support strict key exchange, the connection will fail. |
When True (default), the component will wait for a response to the channel close message until the responses have been received, the server closes the connection, or Timeout seconds is reached.
When False, the component will still send the channel close messages, but it will not wait for a response and will proceed to close the connection.
When set to True, the component will initiate the disconnection sequence by sending SSH_MSG_DISCONNECT, but it will not close the connection and instead will wait for the server to close the connection. Setting this to True may be beneficial in circumstances in which many connections are being established, to avoid port exhaustion when sockets are in a TIME_WAIT state. Allowing the server to close the connection avoids the TIME_WAIT state of socket on the client machine.
When set to False (default), the client will close the connection. It is recommended to use this value unless there is a specific need to change it.
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
If this entry is set, the component acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.
RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.
The connection to the firewall is made by calling the Connect method.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by components that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.
If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this configuration setting is set to False.
0 | IPv4 only |
1 | IPv6 only |
2 | IPv6 with IPv4 fallback |
Socket Config Settings
Note: This option is not valid for User Datagram Protocol (UDP) ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the component does not attempt to process external events.
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all components of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
If using the .NET Standard Library, this setting will be true on all platforms. The .NET Standard library does not support using the system security libraries.
Note: This setting is static. The value set is applicable to all components used in the application.
When this value is set, the product's system dynamic link library (DLL) is no longer required as a reference, as all unmanaged code is stored in that file.
Trappable Errors (SSHAuth Component)
The component may also return one of the following error codes, which are inherited from other components.
TCPClient Errors
100 | You cannot change the RemotePort at this time. A connection is in progress. |
101 | You cannot change the RemoteHost (Server) at this time. A connection is in progress. |
102 | The RemoteHost address is invalid (0.0.0.0). |
104 | Already connected. If you want to reconnect, close the current connection first. |
106 | You cannot change the LocalPort at this time. A connection is in progress. |
107 | You cannot change the LocalHost at this time. A connection is in progress. |
112 | You cannot change MaxLineLength at this time. A connection is in progress. |
116 | RemotePort cannot be zero. Please specify a valid service port number. |
117 | You cannot change the UseConnection option while the component is active. |
135 | Operation would block. |
201 | Timeout. |
211 | Action impossible in control's present state. |
212 | Action impossible while not connected. |
213 | Action impossible while listening. |
301 | Timeout. |
303 | Could not open file. |
434 | Unable to convert string to selected CodePage. |
1105 | Already connecting. If you want to reconnect, close the current connection first. |
1117 | You need to connect first. |
1119 | You cannot change the LocalHost at this time. A connection is in progress. |
1120 | Connection dropped by remote host. |
TCP/IP Errors
10004 | [10004] Interrupted system call. |
10009 | [10009] Bad file number. |
10013 | [10013] Access denied. |
10014 | [10014] Bad address. |
10022 | [10022] Invalid argument. |
10024 | [10024] Too many open files. |
10035 | [10035] Operation would block. |
10036 | [10036] Operation now in progress. |
10037 | [10037] Operation already in progress. |
10038 | [10038] Socket operation on nonsocket. |
10039 | [10039] Destination address required. |
10040 | [10040] Message is too long. |
10041 | [10041] Protocol wrong type for socket. |
10042 | [10042] Bad protocol option. |
10043 | [10043] Protocol is not supported. |
10044 | [10044] Socket type is not supported. |
10045 | [10045] Operation is not supported on socket. |
10046 | [10046] Protocol family is not supported. |
10047 | [10047] Address family is not supported by protocol family. |
10048 | [10048] Address already in use. |
10049 | [10049] Cannot assign requested address. |
10050 | [10050] Network is down. |
10051 | [10051] Network is unreachable. |
10052 | [10052] Net dropped connection or reset. |
10053 | [10053] Software caused connection abort. |
10054 | [10054] Connection reset by peer. |
10055 | [10055] No buffer space available. |
10056 | [10056] Socket is already connected. |
10057 | [10057] Socket is not connected. |
10058 | [10058] Cannot send after socket shutdown. |
10059 | [10059] Too many references, cannot splice. |
10060 | [10060] Connection timed out. |
10061 | [10061] Connection refused. |
10062 | [10062] Too many levels of symbolic links. |
10063 | [10063] File name is too long. |
10064 | [10064] Host is down. |
10065 | [10065] No route to host. |
10066 | [10066] Directory is not empty |
10067 | [10067] Too many processes. |
10068 | [10068] Too many users. |
10069 | [10069] Disc Quota Exceeded. |
10070 | [10070] Stale NFS file handle. |
10071 | [10071] Too many levels of remote in path. |
10091 | [10091] Network subsystem is unavailable. |
10092 | [10092] WINSOCK DLL Version out of range. |
10093 | [10093] Winsock is not loaded yet. |
11001 | [11001] Host not found. |
11002 | [11002] Nonauthoritative 'Host not found' (try again or check DNS setup). |
11003 | [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP. |
11004 | [11004] Valid name, no data record (check DNS setup). |