RSA Component
Properties Methods Events Config Settings Errors
Implements RSA public-key cryptography to encrypt/decrypt and sign/verify messages.
Syntax
TipcRSA
Remarks
The RSA component implements RSA public-key cryptography to encrypt/decrypt messages and sign/verify hash signatures.
To begin you must either specify an existing key or create a new key. Existing private keys may be specified by setting the Key* properties. To create a new key call CreateKey. Alternatively an existing certificate may be specified by setting the Certificate* properties
Signing
To sign data first set Key or Certificate. Specify the input data using InputFile or InputMessage. Next call Sign. The component will populate HashValue and HashSignature. After calling Sign the public key must be sent to the recipient along with HashSignature.
Encrypting
To encrypt data set RecipientKey or RecipientCert. Specify the input data using InputFile or InputMessage. Next call Encrypt. The component will populate OutputMessage, or write to the file specified by OutputFile.
Signature Verification
To verify a signature specify the input data using InputFile or InputMessage. Set SignerKey or SignerCert. Next set HashSignature and call VerifySignature. The VerifySignature method will return True if the signature was successfully verified.
Decrypting
To decrypt data first set Key or Certificate. Specify the input data using InputFile or InputMessage. Next call Decrypt. The component will populate OutputMessage, or write to the file specified by OutputFile.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
RSA Keys
A RSA key is made up of a number of individual parameters.
The public key consists of the following parameters:
The component also includes the KeyPublicKey property which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both sides of the encryption/signing and decryption/signature verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in KeyPublicKey in which case the individual parameters must be sent.
The private key may be represented in one of two ways. Both are mathematically equivalent. Private key format 1:
Private key format 2 is simpler but has decreased performance when decrypting and signing. This format is: The component also include the KeyPrivateKey property which holds the PEM formatted private key for ease of use. This is helpful for storing the private key more easily.Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
CertEncoded | This is the certificate (PEM/Base64 encoded). |
CertStore | This is the name of the certificate store for the client certificate. |
CertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
CertStoreType | This is the type of certificate store for this certificate. |
CertSubject | This is the subject of the certificate used for client authentication. |
HashAlgorithm | The hash algorithm used for signing and signature verification. |
HashSignature | The hash signature. |
HashValue | The hash value of the data. |
InputFile | The file to process. |
InputMessage | The message to process. |
KeyD | Represents the D parameter for the RSA algorithm. |
KeyDP | Represents the DP parameter for the RSA algorithm. |
KeyDQ | Represents the DQ parameter for the RSA algorithm. |
KeyExponent | Represents the Exponent parameter for the RSA algorithm. |
KeyInverseQ | Represents the InverseQ parameter for the RSA algorithm. |
KeyModulus | Represents the Modulus parameter for the RSA algorithm. |
KeyP | Represents the P parameter for the RSA algorithm. |
KeyPrivateKey | This property is a PEM formatted private key. |
KeyPublicKey | This property is a PEM formatted public key. |
KeyQ | Represents the Q parameter for the RSA algorithm. |
OutputFile | The output file when encrypting or decrypting. |
OutputMessage | The output message after processing. |
Overwrite | Indicates whether or not the component should overwrite files. |
RecipientCertEncoded | This is the certificate (PEM/Base64 encoded). |
RecipientCertStore | This is the name of the certificate store for the client certificate. |
RecipientCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
RecipientCertStoreType | This is the type of certificate store for this certificate. |
RecipientCertSubject | This is the subject of the certificate used for client authentication. |
RecipientKeyExponent | Represents the Exponent parameter for the RSA algorithm. |
RecipientKeyModulus | Represents the Modulus parameter for the RSA algorithm. |
RecipientKeyPublicKey | This property is a PEM formatted public key. |
SignerCertEncoded | This is the certificate (PEM/Base64 encoded). |
SignerCertStore | This is the name of the certificate store for the client certificate. |
SignerCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SignerCertStoreType | This is the type of certificate store for this certificate. |
SignerCertSubject | This is the subject of the certificate used for client authentication. |
SignerKeyExponent | Represents the Exponent parameter for the RSA algorithm. |
SignerKeyModulus | Represents the Modulus parameter for the RSA algorithm. |
SignerKeyPublicKey | This property is a PEM formatted public key. |
UseHex | Whether input or output is hex encoded. |
UseOAEP | Whether to use Optimal Asymmetric Encryption Padding (OAEP). |
UsePSS | Whether to use RSA-PSS during signing and verification. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
CreateKey | Creates a new key. |
Decrypt | Decrypts the input data using the specified private key. |
Encrypt | Encrypts the input data using the recipient's public key. |
Reset | Resets the component. |
Sign | Creates a hash signature. |
VerifySignature | Verifies the signature for the specified data. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Error | Fired when information is available about errors during data delivery. |
Progress | Fired as progress is made. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
KeyFormat | How the public and private key are formatted. |
KeySize | The size, in bits, of the secret key. |
OAEPMGF1HashAlgorithm | The MGF1 hash algorithm used with OAEP. |
OAEPParams | The hex encoded OAEP parameters. |
OAEPRSAHashAlgorithm | The RSA hash algorithm used with OAEP. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
CertEncoded Property (RSA Component)
This is the certificate (PEM/Base64 encoded).
Syntax
__property String CertEncoded = { read=FCertEncoded, write=FSetCertEncoded }; __property DynamicArray<Byte> CertEncodedB = { read=FCertEncodedB, write=FSetCertEncodedB };
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The CertStore and CertSubject properties also may be used to specify a certificate.
When CertEncoded is set, a search is initiated in the current CertStore for the private key of the certificate. If the key is found, CertSubject is updated to reflect the full subject of the selected certificate; otherwise, CertSubject is set to an empty string.
This property is not available at design time.
Data Type
Byte Array
CertStore Property (RSA Component)
This is the name of the certificate store for the client certificate.
Syntax
__property String CertStore = { read=FCertStore, write=FSetCertStore }; __property DynamicArray<Byte> CertStoreB = { read=FCertStoreB, write=FSetCertStoreB };
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The CertStoreType property denotes the type of the certificate store specified by CertStore. If the store is password protected, specify the password in CertStorePassword.
CertStore is used in conjunction with the CertSubject property to specify client certificates. If CertStore has a value, and CertSubject or CertEncoded is set, a search for a certificate is initiated. Please see the CertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Byte Array
CertStorePassword Property (RSA Component)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
__property String CertStorePassword = { read=FCertStorePassword, write=FSetCertStorePassword };
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
CertStoreType Property (RSA Component)
This is the type of certificate store for this certificate.
Syntax
__property TipcRSACertStoreTypes CertStoreType = { read=FCertStoreType, write=FSetCertStoreType };
enum TipcRSACertStoreTypes { cstUser=0, cstMachine=1, cstPFXFile=2, cstPFXBlob=3, cstJKSFile=4, cstJKSBlob=5, cstPEMKeyFile=6, cstPEMKeyBlob=7, cstPublicKeyFile=8, cstPublicKeyBlob=9, cstSSHPublicKeyBlob=10, cstP7BFile=11, cstP7BBlob=12, cstSSHPublicKeyFile=13, cstPPKFile=14, cstPPKBlob=15, cstXMLFile=16, cstXMLBlob=17, cstJWKFile=18, cstJWKBlob=19, cstSecurityKey=20, cstBCFKSFile=21, cstBCFKSBlob=22, cstPKCS11=23, cstAuto=99 };
Default Value
cstUser
Remarks
This is the type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the CertStore and set CertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
CertSubject Property (RSA Component)
This is the subject of the certificate used for client authentication.
Syntax
__property String CertSubject = { read=FCertSubject, write=FSetCertSubject };
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
HashAlgorithm Property (RSA Component)
The hash algorithm used for signing and signature verification.
Syntax
__property TipcRSAHashAlgorithms HashAlgorithm = { read=FHashAlgorithm, write=FSetHashAlgorithm };
enum TipcRSAHashAlgorithms { rhaSHA1=0, rhaSHA224=1, rhaSHA256=2, rhaSHA384=3, rhaSHA512=4, rhaRIPEMD160=5, rhaMD2=6, rhaMD5=7, rhaMD5SHA1=8 };
Default Value
rhaSHA256
Remarks
This property specifies the hash algorithm used for signing and signature verification. Possible values are:
0 (rhaSHA1) | SHA-1 |
1 (rhaSHA224) | SHA-224 |
2 (rhaSHA256 - default) | SHA-256 |
3 (rhaSHA384) | SHA-384 |
4 (rhaSHA512) | SHA-512 |
5 (rhaRIPEMD160) | RIPEMD-160 |
6 (rhaMD2) | MD2 |
7 (rhaMD5) | MD5 |
8 (rhaMD5SHA1) | MD5SHA1 |
Data Type
Integer
HashSignature Property (RSA Component)
The hash signature.
Syntax
__property String HashSignature = { read=FHashSignature, write=FSetHashSignature }; __property DynamicArray<Byte> HashSignatureB = { read=FHashSignatureB, write=FSetHashSignatureB };
Default Value
""
Remarks
This property holds the computed hash signature. This is populated after calling Sign. This must be set before calling VerifySignature.
Data Type
Byte Array
HashValue Property (RSA Component)
The hash value of the data.
Syntax
__property String HashValue = { read=FHashValue, write=FSetHashValue }; __property DynamicArray<Byte> HashValueB = { read=FHashValueB, write=FSetHashValueB };
Default Value
""
Remarks
This property holds the computed hash value for the specified data. This is populated when calling Sign or VerifySignature when an input file is specified by setting InputFile or InputMessage.
If you know the hash value prior to using the component you may specify the pre-computed hash value here.
Hash Notes
The component will determine whether or not to recompute the hash based on the properties that are set. If a file is specified by InputFile or InputMessage the hash will be recomputed when calling Sign or VerifySignature. If the HashValue property is set the component will only sign the hash or verify the hash signature. Setting InputFile or InputMessage clears the HashValue property. Setting the HashValue property clears the input file selection.
Data Type
Byte Array
InputFile Property (RSA Component)
The file to process.
Syntax
__property String InputFile = { read=FInputFile, write=FSetInputFile };
Default Value
""
Remarks
This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- InputFile
- InputMessage
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Data Type
String
InputMessage Property (RSA Component)
The message to process.
Syntax
__property String InputMessage = { read=FInputMessage, write=FSetInputMessage }; __property DynamicArray<Byte> InputMessageB = { read=FInputMessageB, write=FSetInputMessageB };
Default Value
""
Remarks
This property specifies the message to be processed.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- InputFile
- InputMessage
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Data Type
Byte Array
KeyD Property (RSA Component)
Represents the D parameter for the RSA algorithm.
Syntax
__property String KeyD = { read=FKeyD, write=FSetKeyD }; __property DynamicArray<Byte> KeyDB = { read=FKeyDB, write=FSetKeyDB };
Default Value
""
Remarks
Represents the D parameter for the RSA algorithm.
Data Type
Byte Array
KeyDP Property (RSA Component)
Represents the DP parameter for the RSA algorithm.
Syntax
__property String KeyDP = { read=FKeyDP, write=FSetKeyDP }; __property DynamicArray<Byte> KeyDPB = { read=FKeyDPB, write=FSetKeyDPB };
Default Value
""
Remarks
Represents the DP parameter for the RSA algorithm.
Data Type
Byte Array
KeyDQ Property (RSA Component)
Represents the DQ parameter for the RSA algorithm.
Syntax
__property String KeyDQ = { read=FKeyDQ, write=FSetKeyDQ }; __property DynamicArray<Byte> KeyDQB = { read=FKeyDQB, write=FSetKeyDQB };
Default Value
""
Remarks
Represents the DQ parameter for the RSA algorithm.
Data Type
Byte Array
KeyExponent Property (RSA Component)
Represents the Exponent parameter for the RSA algorithm.
Syntax
__property String KeyExponent = { read=FKeyExponent, write=FSetKeyExponent }; __property DynamicArray<Byte> KeyExponentB = { read=FKeyExponentB, write=FSetKeyExponentB };
Default Value
""
Remarks
Represents the Exponent parameter for the RSA algorithm.
Data Type
Byte Array
KeyInverseQ Property (RSA Component)
Represents the InverseQ parameter for the RSA algorithm.
Syntax
__property String KeyInverseQ = { read=FKeyInverseQ, write=FSetKeyInverseQ }; __property DynamicArray<Byte> KeyInverseQB = { read=FKeyInverseQB, write=FSetKeyInverseQB };
Default Value
""
Remarks
Represents the InverseQ parameter for the RSA algorithm. This parameter is optional and is automatically calculated as necessary.
Data Type
Byte Array
KeyModulus Property (RSA Component)
Represents the Modulus parameter for the RSA algorithm.
Syntax
__property String KeyModulus = { read=FKeyModulus, write=FSetKeyModulus }; __property DynamicArray<Byte> KeyModulusB = { read=FKeyModulusB, write=FSetKeyModulusB };
Default Value
""
Remarks
Represents the Modulus parameter for the RSA algorithm.
Data Type
Byte Array
KeyP Property (RSA Component)
Represents the P parameter for the RSA algorithm.
Syntax
__property String KeyP = { read=FKeyP, write=FSetKeyP }; __property DynamicArray<Byte> KeyPB = { read=FKeyPB, write=FSetKeyPB };
Default Value
""
Remarks
Represents the P parameter for the RSA algorithm.
Data Type
Byte Array
KeyPrivateKey Property (RSA Component)
This property is a PEM formatted private key.
Syntax
__property String KeyPrivateKey = { read=FKeyPrivateKey, write=FSetKeyPrivateKey };
Default Value
""
Remarks
This property is a PEM formatted private key. The purpose of this property is to allow easier management of the private key parameters by using only a single value.
Data Type
String
KeyPublicKey Property (RSA Component)
This property is a PEM formatted public key.
Syntax
__property String KeyPublicKey = { read=FKeyPublicKey, write=FSetKeyPublicKey };
Default Value
""
Remarks
This property is a PEM formatted public key. The purpose of this property is to allow easier management of the public key parameters by using only a single value.
Data Type
String
KeyQ Property (RSA Component)
Represents the Q parameter for the RSA algorithm.
Syntax
__property String KeyQ = { read=FKeyQ, write=FSetKeyQ }; __property DynamicArray<Byte> KeyQB = { read=FKeyQB, write=FSetKeyQB };
Default Value
""
Remarks
Represents the Q parameter for the RSA algorithm.
Data Type
Byte Array
OutputFile Property (RSA Component)
The output file when encrypting or decrypting.
Syntax
__property String OutputFile = { read=FOutputFile, write=FSetOutputFile };
Default Value
""
Remarks
This property specifies the file to which the output will be written when Encrypt or Decrypt is called. This may be set to an absolute or relative path.
This property is only applicable to Encrypt and Decrypt.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Data Type
String
OutputMessage Property (RSA Component)
The output message after processing.
Syntax
__property String OutputMessage = { read=FOutputMessage }; __property DynamicArray<Byte> OutputMessageB = { read=FOutputMessageB };
Default Value
""
Remarks
This property will be populated with the output from the operation if OutputFile is not set.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
This property is read-only and not available at design time.
Data Type
Byte Array
Overwrite Property (RSA Component)
Indicates whether or not the component should overwrite files.
Syntax
__property bool Overwrite = { read=FOverwrite, write=FSetOverwrite };
Default Value
false
Remarks
This property indicates whether or not the component will overwrite OutputFile. If Overwrite is False, an error will be thrown whenever OutputFile exists before an operation. The default value is False.
Data Type
Boolean
RecipientCertEncoded Property (RSA Component)
This is the certificate (PEM/Base64 encoded).
Syntax
__property String RecipientCertEncoded = { read=FRecipientCertEncoded, write=FSetRecipientCertEncoded }; __property DynamicArray<Byte> RecipientCertEncodedB = { read=FRecipientCertEncodedB, write=FSetRecipientCertEncodedB };
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The RecipientCertStore and RecipientCertSubject properties also may be used to specify a certificate.
When RecipientCertEncoded is set, a search is initiated in the current RecipientCertStore for the private key of the certificate. If the key is found, RecipientCertSubject is updated to reflect the full subject of the selected certificate; otherwise, RecipientCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Byte Array
RecipientCertStore Property (RSA Component)
This is the name of the certificate store for the client certificate.
Syntax
__property String RecipientCertStore = { read=FRecipientCertStore, write=FSetRecipientCertStore }; __property DynamicArray<Byte> RecipientCertStoreB = { read=FRecipientCertStoreB, write=FSetRecipientCertStoreB };
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The RecipientCertStoreType property denotes the type of the certificate store specified by RecipientCertStore. If the store is password protected, specify the password in RecipientCertStorePassword.
RecipientCertStore is used in conjunction with the RecipientCertSubject property to specify client certificates. If RecipientCertStore has a value, and RecipientCertSubject or RecipientCertEncoded is set, a search for a certificate is initiated. Please see the RecipientCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Byte Array
RecipientCertStorePassword Property (RSA Component)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
__property String RecipientCertStorePassword = { read=FRecipientCertStorePassword, write=FSetRecipientCertStorePassword };
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
RecipientCertStoreType Property (RSA Component)
This is the type of certificate store for this certificate.
Syntax
__property TipcRSARecipientCertStoreTypes RecipientCertStoreType = { read=FRecipientCertStoreType, write=FSetRecipientCertStoreType };
enum TipcRSARecipientCertStoreTypes { cstUser=0, cstMachine=1, cstPFXFile=2, cstPFXBlob=3, cstJKSFile=4, cstJKSBlob=5, cstPEMKeyFile=6, cstPEMKeyBlob=7, cstPublicKeyFile=8, cstPublicKeyBlob=9, cstSSHPublicKeyBlob=10, cstP7BFile=11, cstP7BBlob=12, cstSSHPublicKeyFile=13, cstPPKFile=14, cstPPKBlob=15, cstXMLFile=16, cstXMLBlob=17, cstJWKFile=18, cstJWKBlob=19, cstSecurityKey=20, cstBCFKSFile=21, cstBCFKSBlob=22, cstPKCS11=23, cstAuto=99 };
Default Value
cstUser
Remarks
This is the type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the RecipientCertStore and set RecipientCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
RecipientCertSubject Property (RSA Component)
This is the subject of the certificate used for client authentication.
Syntax
__property String RecipientCertSubject = { read=FRecipientCertSubject, write=FSetRecipientCertSubject };
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
RecipientKeyExponent Property (RSA Component)
Represents the Exponent parameter for the RSA algorithm.
Syntax
__property String RecipientKeyExponent = { read=FRecipientKeyExponent, write=FSetRecipientKeyExponent }; __property DynamicArray<Byte> RecipientKeyExponentB = { read=FRecipientKeyExponentB, write=FSetRecipientKeyExponentB };
Default Value
""
Remarks
Represents the Exponent parameter for the RSA algorithm.
Data Type
Byte Array
RecipientKeyModulus Property (RSA Component)
Represents the Modulus parameter for the RSA algorithm.
Syntax
__property String RecipientKeyModulus = { read=FRecipientKeyModulus, write=FSetRecipientKeyModulus }; __property DynamicArray<Byte> RecipientKeyModulusB = { read=FRecipientKeyModulusB, write=FSetRecipientKeyModulusB };
Default Value
""
Remarks
Represents the Modulus parameter for the RSA algorithm.
Data Type
Byte Array
RecipientKeyPublicKey Property (RSA Component)
This property is a PEM formatted public key.
Syntax
__property String RecipientKeyPublicKey = { read=FRecipientKeyPublicKey, write=FSetRecipientKeyPublicKey };
Default Value
""
Remarks
This property is a PEM formatted public key. The purpose of this property is to allow easier management of the public key parameters by using only a single value.
Data Type
String
SignerCertEncoded Property (RSA Component)
This is the certificate (PEM/Base64 encoded).
Syntax
__property String SignerCertEncoded = { read=FSignerCertEncoded, write=FSetSignerCertEncoded }; __property DynamicArray<Byte> SignerCertEncodedB = { read=FSignerCertEncodedB, write=FSetSignerCertEncodedB };
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SignerCertStore and SignerCertSubject properties also may be used to specify a certificate.
When SignerCertEncoded is set, a search is initiated in the current SignerCertStore for the private key of the certificate. If the key is found, SignerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SignerCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Byte Array
SignerCertStore Property (RSA Component)
This is the name of the certificate store for the client certificate.
Syntax
__property String SignerCertStore = { read=FSignerCertStore, write=FSetSignerCertStore }; __property DynamicArray<Byte> SignerCertStoreB = { read=FSignerCertStoreB, write=FSetSignerCertStoreB };
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The SignerCertStoreType property denotes the type of the certificate store specified by SignerCertStore. If the store is password protected, specify the password in SignerCertStorePassword.
SignerCertStore is used in conjunction with the SignerCertSubject property to specify client certificates. If SignerCertStore has a value, and SignerCertSubject or SignerCertEncoded is set, a search for a certificate is initiated. Please see the SignerCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Byte Array
SignerCertStorePassword Property (RSA Component)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
__property String SignerCertStorePassword = { read=FSignerCertStorePassword, write=FSetSignerCertStorePassword };
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
SignerCertStoreType Property (RSA Component)
This is the type of certificate store for this certificate.
Syntax
__property TipcRSASignerCertStoreTypes SignerCertStoreType = { read=FSignerCertStoreType, write=FSetSignerCertStoreType };
enum TipcRSASignerCertStoreTypes { cstUser=0, cstMachine=1, cstPFXFile=2, cstPFXBlob=3, cstJKSFile=4, cstJKSBlob=5, cstPEMKeyFile=6, cstPEMKeyBlob=7, cstPublicKeyFile=8, cstPublicKeyBlob=9, cstSSHPublicKeyBlob=10, cstP7BFile=11, cstP7BBlob=12, cstSSHPublicKeyFile=13, cstPPKFile=14, cstPPKBlob=15, cstXMLFile=16, cstXMLBlob=17, cstJWKFile=18, cstJWKBlob=19, cstSecurityKey=20, cstBCFKSFile=21, cstBCFKSBlob=22, cstPKCS11=23, cstAuto=99 };
Default Value
cstUser
Remarks
This is the type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SignerCertStore and set SignerCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
SignerCertSubject Property (RSA Component)
This is the subject of the certificate used for client authentication.
Syntax
__property String SignerCertSubject = { read=FSignerCertSubject, write=FSetSignerCertSubject };
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
SignerKeyExponent Property (RSA Component)
Represents the Exponent parameter for the RSA algorithm.
Syntax
__property String SignerKeyExponent = { read=FSignerKeyExponent, write=FSetSignerKeyExponent }; __property DynamicArray<Byte> SignerKeyExponentB = { read=FSignerKeyExponentB, write=FSetSignerKeyExponentB };
Default Value
""
Remarks
Represents the Exponent parameter for the RSA algorithm.
Data Type
Byte Array
SignerKeyModulus Property (RSA Component)
Represents the Modulus parameter for the RSA algorithm.
Syntax
__property String SignerKeyModulus = { read=FSignerKeyModulus, write=FSetSignerKeyModulus }; __property DynamicArray<Byte> SignerKeyModulusB = { read=FSignerKeyModulusB, write=FSetSignerKeyModulusB };
Default Value
""
Remarks
Represents the Modulus parameter for the RSA algorithm.
Data Type
Byte Array
SignerKeyPublicKey Property (RSA Component)
This property is a PEM formatted public key.
Syntax
__property String SignerKeyPublicKey = { read=FSignerKeyPublicKey, write=FSetSignerKeyPublicKey };
Default Value
""
Remarks
This property is a PEM formatted public key. The purpose of this property is to allow easier management of the public key parameters by using only a single value.
Data Type
String
UseHex Property (RSA Component)
Whether input or output is hex encoded.
Syntax
__property bool UseHex = { read=FUseHex, write=FSetUseHex };
Default Value
false
Remarks
This property specifies whether the encrypted data, HashValue, and HashSignature are hex encoded.
If set to True, when Encrypt is called the component will perform the encryption as normal and then hex encode the output. OutputMessage or OutputFile will hold hex encoded data.
If set to True, when Decrypt is called the component will expect InputMessage or InputFile to hold hex encoded data. The component will then hex decode the data and perform decryption as normal.
If set to True, when Sign is called the component will compute the hash for the specified file and populate HashValue with the hex encoded hash value. It will then create the hash signature and populate HashSignature with the hex encoded hash signature value. If HashValue is specified directly it must be a hex encoded value.
If set to True, when VerifySignature is called the component will compute the hash value for the specified file and populate HashValue with the hex encoded hash value. It will then hex decode HashSignature and verify the signature. HashSignature must hold a hex encoded value. If HashValue is specified directly it must be a hex encoded value.
Data Type
Boolean
UseOAEP Property (RSA Component)
Whether to use Optimal Asymmetric Encryption Padding (OAEP).
Syntax
__property bool UseOAEP = { read=FUseOAEP, write=FSetUseOAEP };
Default Value
false
Remarks
Whether to use Optimal Asymmetric Encryption Padding (OAEP). By default this value is False and the component will use PKCS1.
Note: When set to True the HashAlgorithm is also applicable when calling Encrypt and Decrypt.
Data Type
Boolean
UsePSS Property (RSA Component)
Whether to use RSA-PSS during signing and verification.
Syntax
__property bool UsePSS = { read=FUsePSS, write=FSetUsePSS };
Default Value
false
Remarks
This property specifies whether RSA-PSS will be used when signing and verifying messages. The default value is False.
Data Type
Boolean
Config Method (RSA Component)
Sets or retrieves a configuration setting.
Syntax
String __fastcall Config(String ConfigurationString);
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
CreateKey Method (RSA Component)
Creates a new key.
Syntax
void __fastcall CreateKey();
Remarks
This method creates a new public and private key.
When calling CreateKey the Key* properties are populated with a new private and public key.
RSA Keys
A RSA key is made up of a number of individual parameters.
The public key consists of the following parameters:
The component also includes the KeyPublicKey property which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both sides of the encryption/signing and decryption/signature verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in KeyPublicKey in which case the individual parameters must be sent.
The private key may be represented in one of two ways. Both are mathematically equivalent. Private key format 1:
Private key format 2 is simpler but has decreased performance when decrypting and signing. This format is: The component also include the KeyPrivateKey property which holds the PEM formatted private key for ease of use. This is helpful for storing the private key more easily.Decrypt Method (RSA Component)
Decrypts the input data using the specified private key.
Syntax
void __fastcall Decrypt();
Remarks
This method decrypts the input data using the private key specified in the Key* properties. Alternatively, a certificate may be specified by setting Certificate
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Key Size and the Maximum Length of Data
RSA has an upper limit to the amount of data that can be encrypted or decrypted, also known as message length. This can typically be calculated as the size of the key minus the size of the RSA header and padding.
When not using OAEP, the following formula and table can be referenced. (RSA Key Bytes) - (Header Bytes) = Length of data, where Header Bytes is always 11.
RSA Key Length (bits) | Length (bits) | Length (bytes) |
1024 | 936 | 117 |
2048 | 1960 | 245 |
3072 | 2984 | 373 |
4096 | 4008 | 501 |
When using OAEP, the following formula and table can be referenced. (RSA Key Bytes) - (2 * Hash Length Bytes) - 2 = Length of data. The table below assumes SHA-256 for the hash, so Hash Length Bytes is 32.
RSA Key Length (bits) | Length (bits) | Length (bytes) |
1024 | 496 | 62 |
2048 | 1520 | 190 |
3072 | 2544 | 318 |
4096 | 3568 | 446 |
Encrypt Method (RSA Component)
Encrypts the input data using the recipient's public key.
Syntax
void __fastcall Encrypt();
Remarks
This method encrypts the input data using the public key specified in the RecipientKey* properties. Alternatively, a certificate may be specified by setting RecipientCert
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
Key Size and the Maximum Length of Data
RSA has an upper limit to the amount of data that can be encrypted or decrypted, also known as message length. This can typically be calculated as the size of the key minus the size of the RSA header and padding.
When not using OAEP, the following formula and table can be referenced. (RSA Key Bytes) - (Header Bytes) = Length of data, where Header Bytes is always 11.
RSA Key Length (bits) | Length (bits) | Length (bytes) |
1024 | 936 | 117 |
2048 | 1960 | 245 |
3072 | 2984 | 373 |
4096 | 4008 | 501 |
When using OAEP, the following formula and table can be referenced. (RSA Key Bytes) - (2 * Hash Length Bytes) - 2 = Length of data. The table below assumes SHA-256 for the hash, so Hash Length Bytes is 32.
RSA Key Length (bits) | Length (bits) | Length (bytes) |
1024 | 496 | 62 |
2048 | 1520 | 190 |
3072 | 2544 | 318 |
4096 | 3568 | 446 |
Reset Method (RSA Component)
Resets the component.
Syntax
void __fastcall Reset();
Remarks
When called, the component will reset all of its properties to their default values.
Sign Method (RSA Component)
Creates a hash signature.
Syntax
void __fastcall Sign();
Remarks
This method will create a hash signature.
Before calling this method specify the input file by setting InputFile or InputMessage.
A key is required to create the hash signature. You may create a new key by calling CreateKey, or specify an existing key pair in Key. Alternatively, a certificate may be specified by setting Certificate. When this method is called the component will compute the hash for the specified file and populate HashValue. It will then create the hash signature using the specified Key and populate HashSignature.
To create the hash signature without first computing the hash simply specify HashValue before calling this method.
The Progress event will fire with updates for the hash computation progress only. The hash signature creation process is quick and does not require progress updates.
VerifySignature Method (RSA Component)
Verifies the signature for the specified data.
Syntax
bool __fastcall VerifySignature();
Remarks
This method will verify a hash signature.
Before calling this method specify the input file by setting InputFile or InputMessage.
A public key and the hash signature are required to perform the signature verification. Specify the public key in SignerKey. Alternatively, a certificate may be specified by setting SignerCert. Specify the hash signature in HashSignature.
When this method is called the component will compute the hash for the specified file and populate HashValue. It will verify the signature using the specified SignerKey and HashSignature.
To verify the hash signature without first computing the hash simply specify HashValue before calling this method.
The Progress event will fire with updates for the hash computation progress only. The hash signature verification process is quick and does not require progress updates.
Error Event (RSA Component)
Fired when information is available about errors during data delivery.
Syntax
typedef struct { int ErrorCode; String Description; } TipcRSAErrorEventParams; typedef void __fastcall (__closure *TipcRSAErrorEvent)(System::TObject* Sender, TipcRSAErrorEventParams *e); __property TipcRSAErrorEvent OnError = { read=FOnError, write=FOnError };
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the component raises an exception.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Progress Event (RSA Component)
Fired as progress is made.
Syntax
typedef struct { __int64 BytesProcessed; int PercentProcessed; } TipcRSAProgressEventParams; typedef void __fastcall (__closure *TipcRSAProgressEvent)(System::TObject* Sender, TipcRSAProgressEventParams *e); __property TipcRSAProgressEvent OnProgress = { read=FOnProgress, write=FOnProgress };
Remarks
This event is fired automatically as data is processed by the component.
The PercentProcessed parameter indicates the current status of the operation.
The BytesProcessed parameter holds the total number of bytes processed so far.
Config Settings (RSA Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.RSA Config Settings
This setting controls the format of KeyPublicKey and KeyPrivateKey. By default these properties hold PEM formatted public and private key data. When set to 1 (XML) the keys are stored in a XML format. This only affects the values returned by the component; the actual keys remain the same regardless of this setting. Possible values are:
- 0 (PEM - PKCS#1)
- 1 (XML)
- 2 (PEM - PKCS#8 - default)
This specifies the size, in bits, of the secret key. The minimum key size for RSA is 384. The maximum key size is 4096. Note that large values such as 4096 will impact performance. The default value is 1024.
This configuration setting specifies the MGF1 hash algorithm used when UseOAEP is set to True. The default value is SHA256. Possible values are as follows:
- "SHA1"
- "SHA224"
- "SHA256" (default)
- "SHA384"
- "SHA512"
- "RIPEMD160"
- "MD2"
- "MD5"
- "MD5SHA1"
Note: This setting is not applicable when UseFIPSCompliantAPI is set to true or when the private key of the signing certificate is not exportable since the underlying system implementation does not support separate OAEPRSAHashAlgorithm and OAEPMGF1HashAlgorithm values. In this case the OAEPRSAHashAlgorithm is also used for MGF1.
This configuration setting optionally specifies Optimal Asymmetric Encryption Padding (OAEP) parameters to be used when UseOAEP is set to True. The specified value should be hex encoded.
This configuration setting specifies that RSA hash algorithm used when UseOAEP is set to True. The default value is SHA256. Possible values are as follows:
- "SHA1"
- "SHA224"
- "SHA256" (default)
- "SHA384"
- "SHA512"
- "RIPEMD160"
- "MD2"
- "MD5"
- "MD5SHA1"
Base Config Settings
When queried, this setting will return a string containing information about the product's build.
The default code page is Unicode UTF-8 (65001).
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
When queried, this setting will return a string containing information about the license this instance of a component is using. It will return the following information:
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.
This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
When set to false, the component will use the system security libraries by default to perform cryptographic functions where applicable.
Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.
This setting is set to false by default on all platforms.
Trappable Errors (RSA Component)
RSA Errors
102 No Key specified. | |
104 Cannot read or write file. | |
105 key parameters incorrect. | |
106 Cannot create hash. | |
111 OutputFile already exists and Overwrite is False. | |
113 Input data or HashValue must be specified. | |
121 Invalid certificate. | |
124 HashSignature must be specified. | |
304 Cannot write file. | |
305 Cannot read file. | |
306 Cannot create file. | |
1101 Missing RSA parameter: Modulus | |
1102 Invalid RSA parameter: Modulus cannot be zero. | |
1103 Missing RSA parameters: Public or Private exponent must be present. | |
1104 Invalid RSA parameter: Exponent cannot be zero. | |
1105 Invalid RSA parameter: D cannot be zero. | |
1106 Invalid hash algorithm. | |
1107 Missing hash value. | |
1108 HashSignature must be specified. | |
1109 Invalid hash size. | |
1110 Public key must be specified. | |
1111 Key must be specified. | |
1112 RSA key too short to sign message. | |
1113 Missing the data to encrypt/decrypt. | |
1114 Invalid cipher length. The data may not have been encrypted with the public key corresponding to the specified private key data. | |
1115 Invalid cipher text. The data may not have been encrypted with the public key corresponding to the specified private key data. | |
1116 Inadequate padding. The data may not have been encrypted with the public key corresponding to the specified private key data. | |
1117 Missing delimiter. The data may not have been encrypted with the public key corresponding to the specified private key data. | |
1118 Message too long. |