CMS Class

Properties   Methods   Events   Config Settings   Errors  

The CMS class is used to digitally sign, encrypt, verify, and decrypt data.

Syntax

ipworksencrypt.CMS

Remarks

The CMS class implements the Cryptographic Message Syntax and allow for various cryptographic operations to be performed on data including:

The class can generate and consume message in a variety of formats including PEM, DER (Binary), and SMIME. The EncryptionAlgorithm and SignatureHashAlgorithm are fully configurable and support a variety of industry standard encryption and hash algorithms.

The class supports additional functionality such as Compression, OAEP, and PSS. The GetRecipientInfo and GetSignerCertInfo methods as well as the RecipientInfo and SignerCertInfo events allow for a dynamic and flexible approach to message processing. Certificate may be loaded ahead of time or as-needed from the events.

Signing Notes

Sign digitally signs the input data with the the specified certificate(s). Certificates are specified by calling AddCertificate or setting the Certificates property.

OutputFormat specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. IncludeCertificates specifies whether the public certificate is included in the signed message. Additional settings allow further configuration. The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

Sign and Verify a message Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - DER Output Format Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Sign(); byte[] signedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - Detached Signature Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.DetachedSignature = true; cms.Sign(); string signature = cms.OutputMessage; cms = new Cms(); cms.InputMessage = "My Data"; cms.DetachedSignatureData = signature; cms.DetachedSignature = true; cms.VerifySignature(); Sign and Verify a message - Multiple Signatures Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test2.pfx", "password2", "*")); cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - No Included Certificate Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.IncludeCertificates = CmsIncludeCertificates.icsNone; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.OnSignerCertInfo += (s, e) => { Console.WriteLine(e.Issuer); Console.WriteLine(e.SerialNumber); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { //Load the correct signer certificate. cms.SignerCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); } }; cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage;

Encryption Notes

Encrypt encrypts the input data with the the specified certificate(s). Certificates are specified by calling AddRecipientCert or setting the RecipientCerts property.

OutputFormat specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. Additional settings allow further configuration. The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

Encrypt and Decrypt a message Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt a message - DER Output Format Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Encrypt(); byte[] encryptedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Multiple Recipients Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test2.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Get Recipient Info Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; //If the recipient certificate is not known ahead of time the GetRecipientInfo method may be called //to find information about the certificate. cms = new Cms(); cms.InputMessage = encryptedMessage; cms.OnRecipientInfo += (s, e) => { Console.WriteLine(e.SerialNumber); Console.WriteLine(e.Issuer); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); } }; cms.GetRecipientInfo(); cms.Decrypt(); string plaintextMessage = cms.OutputMessage;

Signature Verification Notes

VerifySignature verifies the signature of the input message.

In order to perform signature verification the public signer's certificate must be present or explicitly specified. In many cases the certificate itself is included in the input message and a certificate does not need to explicitly be set. If a certificate does need to be set for signature verification the certificate may be specified by calling AddRecipientCert or setting RecipientCerts.

When this method is called the SignerCertInfo event fires once for each signature on the message. This event provides details about the signer certificate, as well as the signer certificate itself (if present). The information provided via SignerCertInfo may be used to load an appropriate certificate for verification from within the event. If the CertEncoded parameter of SignerCertInfo is populated the certificate required for verification is already present in the message.

The following property are applicable when calling this method:

If the input message is a detached signature, the original data that was signed must be specified in DetachedSignatureData. In addition the DetachedSignature property must be set to True to instruct the class to treat the input message as a detached signature.

If the input message is compressed EnableCompression must be set to True before calling this method.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

Sign and Verify a message Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - DER Output Format Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Sign(); byte[] signedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - Detached Signature Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.DetachedSignature = true; cms.Sign(); string signature = cms.OutputMessage; cms = new Cms(); cms.InputMessage = "My Data"; cms.DetachedSignatureData = signature; cms.DetachedSignature = true; cms.VerifySignature(); Sign and Verify a message - Multiple Signatures Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test2.pfx", "password2", "*")); cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - No Included Certificate Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.IncludeCertificates = CmsIncludeCertificates.icsNone; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.OnSignerCertInfo += (s, e) => { Console.WriteLine(e.Issuer); Console.WriteLine(e.SerialNumber); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { //Load the correct signer certificate. cms.SignerCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); } }; cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage;

Decryption Notes

Decrypt decrypts the input data with the specified certificate. Certificates are specified by calling AddCertificate or setting the Certificates property.

If the certificate used to encrypt the message is not known ahead of time GetRecipientInfo may be called prior to calling Decrypt to obtain information about the recipient (the entity the for which the message was encrypted). If GetRecipientInfo is called, the RecipientInfo event is fired with information about the recipient which may be used to load an appropriate decryption certificate.

The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

Encrypt and Decrypt a message Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt a message - DER Output Format Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Encrypt(); byte[] encryptedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Multiple Recipients Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test2.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Get Recipient Info Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; //If the recipient certificate is not known ahead of time the GetRecipientInfo method may be called //to find information about the certificate. cms = new Cms(); cms.InputMessage = encryptedMessage; cms.OnRecipientInfo += (s, e) => { Console.WriteLine(e.SerialNumber); Console.WriteLine(e.Issuer); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); } }; cms.GetRecipientInfo(); cms.Decrypt(); string plaintextMessage = cms.OutputMessage;

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

CertificatesA collection of certificates used for signing and decryption.
DetachedSignatureSpecifies whether to include a detached signature when signing a message.
DetachedSignatureDataThe detached signature.
EnableCompressionSpecifies whether to compress the message.
EncryptionAlgorithmThe algorithm used for encryption.
IncludeCertificatesSpecifies whether to include the signer's certificate with the signed message.
InputFileThe file to process.
InputMessageThe message to process.
OutputFileThe output file.
OutputFormatSpecifies the output format.
OutputMessageThe output message after processing.
RecipientCertsThe collection of recipient certificates.
SignatureHashAlgorithmThe signature hash algorithm used during signing.
SignerCertsThe collection of signer certificates.
UseOAEPThis property specifies whether or not to use Optimal Asymmetric Encryption Padding (OAEP).
UsePSSWhether to use RSA-PSS during signing and verification.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

AddCertificateUsed to add certificates for signing.
AddRecipientCertUsed to add recipient certificates used to encrypt messages.
ConfigSets or retrieves a configuration setting.
DecryptDecrypts the current message.
DecryptAndVerifySignatureDecrypts and verifies the signature of the current message.
EncryptEncrypts the current message.
GetRecipientInfoGets the recipient certificate information for an encrypted message.
GetSignerCertInfoThis method gets the signature information for an signed message.
ResetThis method resets the class properties.
SetInputStreamSets the stream from which the class will read data to encode or decode.
SetOutputStreamSets the stream to which the class will read data to encode or decode.
SignSigns the current message.
SignAndEncryptSigns and encrypts the current message.
VerifySignatureVerifies the signature of the current message.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ErrorFired when information is available about errors during data delivery.
LogFires with log information during processing.
RecipientInfoThis event is fired for each recipient certificate of the encrypted message.
SignerCertInfoFired during verification of the signed message.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

CloseInputStreamAfterProcessDetermines whether or not the input stream is closed after processing.
CloseOutputStreamAfterProcessDetermines whether or not the output stream is closed after processing.
CompressBeforeSignSpecifies whether to compress before signing.
ContentTypeOIDSpecifies the oid for content type.
CSPThe Cryptographic Service Provider.
GenerateSignatureTimestampWhether to generate timestamps in signatures.
IncludeHeadersTells the class whether to include the headers when encoding the message.
IncludeInternalHeadersTells the class whether or not to include the internal headers when encoding the message.
InputContentTransferEncodingSets the Content-Transfer-Encoding for the signed message.
InputContentTypeSets the Content-Type for the signed message.
InputMessageHeadersMessage headers.
LogDirectoryThe directory on disk where debug logs are written.
LogFileNameThe base filename to use with LogDirectory.
LogLevelThe level of detail for log messages.
OAEPMGF1HashAlgorithmThe MGF1 hash algorithm used with OAEP.
OAEPParamsThe hex encoded OAEP parameters.
OAEPRSAHashAlgorithmThe RSA hash algorithm used with OAEP.
OutputMessageHeadersThe SMIME headers of the output message.
RecipientInfoTypeThe type of signer information to include in the signed message.
SignatureTimestampThe signature timestamp in the signed message.
SignerInfoTypeThe type of signer information to include in the signed message.
UseAlgorithmOIDsWhether OIDs are used when providing information about the algorithms.
BuildInfoInformation about the product's build.
GUIAvailableWhether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
UseDaemonThreadsWhether threads created by the class are daemon threads.
UseFIPSCompliantAPITells the class whether or not to use FIPS certified APIs.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

Certificates Property (CMS Class)

A collection of certificates used for signing and decryption.

Syntax

public CertificateList getCertificates();
public void setCertificates(CertificateList certificates);

Remarks

This property hold a collection of certificates used when Sign is called. The input message will be signed with each certificate specified in this property. AddCertificate may also be used to add a certificate to this collection.

The certificate(s) specified here are also used to decrypt the message when Decrypt is called.

Please refer to the Certificate type for a complete list of fields.

DetachedSignature Property (CMS Class)

Specifies whether to include a detached signature when signing a message.

Syntax

public boolean isDetachedSignature();
public void setDetachedSignature(boolean detachedSignature);

Default Value

False

Remarks

This property specifies whether the Sign operation products a message that includes both a signature and the message data, or just a signature.

When set to False default the output message holds the data and signature in one CMS message. This may be passed in its entirety to the receiving party for signature verification.

When set to True the output message holds only a signature in the CMS message. Both the original input data and the signature in the output message produced by the Sign operation must be passed to the receiving party for signature verification.

DetachedSignatureData Property (CMS Class)

The detached signature.

Syntax

public byte[] getDetachedSignatureData();
public void setDetachedSignatureData(byte[] detachedSignatureData);

Default Value

""

Remarks

This setting is used to specify the detached signature before calling VerifySignature. The message data should be specified normally and this property should be set to the detached signature data. This may be set to the PEM, DER, or SMIME encoded signature message.

EnableCompression Property (CMS Class)

Specifies whether to compress the message.

Syntax

public boolean isEnableCompression();
public void setEnableCompression(boolean enableCompression);

Default Value

False

Remarks

This property specifies whether the input data will be compressed during the signing process.

If set to True the data will be compressed. If set to False (default) the data will not be compressed.

When compression is enabled the input will first be signed, and then compressed. To compress the data before signing set CompressBeforeSign.

EncryptionAlgorithm Property (CMS Class)

The algorithm used for encryption.

Syntax

public String getEncryptionAlgorithm();
public void setEncryptionAlgorithm(String encryptionAlgorithm);

Default Value

"3DES"

Remarks

This property specifies the encryption algorithm used when Encrypt is called.

This may be the name of the algorithm, or the corresponding OID of the algorithm. The default value is 3DES. Possible values are:

  • "3DES"
  • "DES"
  • "RC2CBC40"
  • "RC2CBC64"
  • "RC2CBC128" or "RC2"
  • "AESCBC128" or "AES"
  • "AESCBC192"
  • "AESCBC256"
  • "AESGCM128" or "AESGCM"
  • "AESGCM192"
  • "AESGCM256"

IncludeCertificates Property (CMS Class)

Specifies whether to include the signer's certificate with the signed message.

Syntax

public int getIncludeCertificates();
public void setIncludeCertificates(int includeCertificates);

Enumerated values:
  public final static int icsNone = 0;
  public final static int icsSignerCerts = 1;
  public final static int icsSignerCertsAndChain = 2;

Default Value

1

Remarks

This setting specifies which certificates (if any) are included in the signed message. By default the public certificate of the certificate used to sign the message is included. This allows the receiving party to verify the signature without any additional knowledge. If this is set to icsNone the recipient must obtain and specify the public certificate to be used for signature verification. Possible values are:

Value Description
0 (icsNone) No signer certificates are included.
1 (icsSignerCerts - default) The certificates specified in Certificates are included.
2 (icsSignerCertsAndChain) The certificates specified in Certificates and the full chain of each certificate are included.

InputFile Property (CMS Class)

The file to process.

Syntax

public String getInputFile();
public void setInputFile(String inputFile);

Default Value

""

Remarks

This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.

Encrypt and/or Sign

When encrypting or signing this may be set to a file containing content that will be encrypted and/or signed.

Decrypt and/or Verify

When decrypting or verifying a signature this may be set to a file containing the PEM, DER, or SMIME encoded message.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

InputMessage Property (CMS Class)

The message to process.

Syntax

public byte[] getInputMessage();
public void setInputMessage(byte[] inputMessage);

Default Value

""

Remarks

This property specifies the message to be processed.

Encrypt and/or Sign

When encrypting or signing this may be set to the content that will be encrypted and/or signed.

Decrypt and/or Verify

When decrypting or verifying a signature this may be set to the PEM, DER, or SMIME encoded message.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

OutputFile Property (CMS Class)

The output file.

Syntax

public String getOutputFile();
public void setOutputFile(String outputFile);

Default Value

""

Remarks

This property specifies the file to which the output will be written. This may be set to an absolute or relative path.

Encrypt and/or Sign

When encrypting or signing this specifies a file where the message will be written.

Decrypt and/or Verify

When decrypting or verifying a signature this specifies a file where the decrypted/verified content will be written.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

OutputFormat Property (CMS Class)

Specifies the output format.

Syntax

public String getOutputFormat();
public void setOutputFormat(String outputFormat);

Default Value

"PEM"

Remarks

This property specifies the format of the output message created when calling Sign, Encrypt, or SignAndEncrypt.

The various formats allow for easier transport of the signed or encrypted message, as well as interoperability with other utilities.

Possible values are:

Value Description
PEM (default) A PEM formatted message. For instance:
-----BEGIN CMS-----
MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwGggCSABGFD
b250ZW50LVR5cGU6IHRleHQvcGxhaW47IGNoYXJzZXQ9Imlzby04ODU5LTEiDQpDb250ZW50LVRy
...
mlJLPoCw5pf3Cjae56oXs29IZMcDXKersNjFGYSaG0o9k3lAcj9llLFh54Xr1ljx7K0VpVvlrmgu
kNHAf7cUvvilW/KrDa+T2n+sOFAAAAAAAAA=
-----END CMS-----
DER The message is binary (raw bytes).
SMIME The message is S/MIME encoded. For instance:
MIME-Version: 1.0
Content-Type: application/pkcs7-mime; smime-type=signed-data; name="smime.p7m"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="smime.p7m"

MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwGggCSABGFD
b250ZW50LVR5cGU6IHRleHQvcGxhaW47IGNoYXJzZXQ9Imlzby04ODU5LTEiDQpDb250ZW50LVRy
...
Mpc/PtPNeHA3CCFGRFnHju/yb9CsQWpgf8TTWytjP7O1hFUecW0yiuGSDeeNlQ4ZcX0TOm6haRMT
lqYIrHUNMn4tYaREevNBL9CQB8MAAAAAAAA=

OutputMessage Property (CMS Class)

The output message after processing.

Syntax

public byte[] getOutputMessage();

Default Value

""

Remarks

This property will be populated with the output of the operation if OutputFile and SetOutputStream are not set.

Encrypt and/or Sign

When encrypting or signing this will hold the fully encoded message.

Decrypt and/or Verify

When decrypting or verifying a signature this will hold the decrypted/verified content.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

This property is read-only.

RecipientCerts Property (CMS Class)

The collection of recipient certificates.

Syntax

public CertificateList getRecipientCerts();
public void setRecipientCerts(CertificateList recipientCerts);

Remarks

This property is used to specify one or more public certificate used to encrypt the message. The certificates should be the public certificate of the recipient who will decrypt the message. The certificate(s) must be set before calling Encrypt or SignAndEncrypt methods.

This property is not available at design time.

Please refer to the Certificate type for a complete list of fields.

SignatureHashAlgorithm Property (CMS Class)

The signature hash algorithm used during signing.

Syntax

public String getSignatureHashAlgorithm();
public void setSignatureHashAlgorithm(String signatureHashAlgorithm);

Default Value

"SHA256"

Remarks

This property specifies the signature hash algorithm used when Sign is called.

When Sign is called the input data is first hashed with the algorithm specified by this property to produce a message digest. The computed digest is then digitally signed with the certificates specified in Certificates.

The value specified here may be the name of the algorithm or the corresponding OID. Possible values are:

  • "SHA-256" (default)
  • "SHA-384"
  • "SHA-512"
  • "SHA-224"
  • "SHA1"
  • "MD5"

SignerCerts Property (CMS Class)

The collection of signer certificates.

Syntax

public CertificateList getSignerCerts();
public void setSignerCerts(CertificateList signerCerts);

Remarks

This property is used to specify one or more public certificate used to verify the message. The certificates should be the public certificate of the recipient who will verify the message.

This property is only required if a certificate is not included in the signed message. The SignerCertInfo event fires during verification with information about the signer certificate. This property may be populated from within the SignerCertInfo.

This property will also be populated after VerifySignature or DecryptAndVerifySignature is called with the certificate(s) present within the signed message (if any).

This property is not available at design time.

Please refer to the Certificate type for a complete list of fields.

UseOAEP Property (CMS Class)

This property specifies whether or not to use Optimal Asymmetric Encryption Padding (OAEP).

Syntax

public boolean isUseOAEP();
public void setUseOAEP(boolean useOAEP);

Default Value

False

Remarks

This property specifies whether or not to use Optimal Asymmetric Encryption Padding (OAEP). By default, this value is False and the class will use PKCS1.

To specify nondefault OAEP options, please see OAEPRSAHashAlgorithm, OAEPMGF1HashAlgorithm, and OAEPParams

UsePSS Property (CMS Class)

Whether to use RSA-PSS during signing and verification.

Syntax

public boolean isUsePSS();
public void setUsePSS(boolean usePSS);

Default Value

False

Remarks

This property specifies whether RSA-PSS will be used when signing and verifying messages. The default value is False.

AddCertificate Method (CMS Class)

Used to add certificates for signing.

Syntax

public void addCertificate(int certStoreType, String certStore, String certStorePassword, String certSubject);

Remarks

This method adds a signing certificate. Signing certificates may be added using this method or by adding a certificate directly to Certificates.

The added certificate(s) will be used to sign the message when Sign is called.

CertStoreType specifies the type of certificate store. The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

CertStore specifies the path to the certificate file. If the CertStoreType is a blob, this specifies the certificate content. See Certificates for details.

CertStorePassword is the password for the certificate (if any).

CertSubject specified the subject of the certificate to load. The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

AddRecipientCert Method (CMS Class)

Used to add recipient certificates used to encrypt messages.

Syntax

public void addRecipientCert(byte[] certEncoded);

Remarks

This method adds a public certificate used when Encrypt is called. Public certificates of recipients may be added using this method or by adding a certificate directly to the RecipientCerts property.

CertEncoded must contain the PEM or Base64 encoded public certificate.

Config Method (CMS Class)

Sets or retrieves a configuration setting.

Syntax

public String config(String configurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Decrypt Method (CMS Class)

Decrypts the current message.

Syntax

public void decrypt();

Remarks

Decrypt decrypts the input data with the specified certificate. Certificates are specified by calling AddCertificate or setting the Certificates property.

If the certificate used to encrypt the message is not known ahead of time GetRecipientInfo may be called prior to calling Decrypt to obtain information about the recipient (the entity the for which the message was encrypted). If GetRecipientInfo is called, the RecipientInfo event is fired with information about the recipient which may be used to load an appropriate decryption certificate.

The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

Encrypt and Decrypt a message Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt a message - DER Output Format Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Encrypt(); byte[] encryptedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Multiple Recipients Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test2.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Get Recipient Info Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; //If the recipient certificate is not known ahead of time the GetRecipientInfo method may be called //to find information about the certificate. cms = new Cms(); cms.InputMessage = encryptedMessage; cms.OnRecipientInfo += (s, e) => { Console.WriteLine(e.SerialNumber); Console.WriteLine(e.Issuer); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); } }; cms.GetRecipientInfo(); cms.Decrypt(); string plaintextMessage = cms.OutputMessage;

DecryptAndVerifySignature Method (CMS Class)

Decrypts and verifies the signature of the current message.

Syntax

public void decryptAndVerifySignature();

Remarks

This method decrypts the input data and verifies the signature. Decryption certificates are specified by calling AddCertificate or setting the Certificates property. Certificates used to verify the signature will be taken from the message itself if included, or from the SignerCerts property.

If the certificate used to encrypt the message is not known ahead of time GetRecipientInfo may be called prior to calling Decrypt to obtain information about the recipient (the entity the for which the message was encrypted). If GetRecipientInfo is called, the RecipientInfo event is fired with information about the recipient which may be used to load an appropriate decryption certificate.

In order to perform signature verification the public signer's certificate must be present or explicitly specified. In many cases the certificate itself is included in the input message and a certificate does not need to explicitly be set. If a certificate does need to be set for signature verification the certificate may be specified by calling AddRecipientCert or setting RecipientCerts.

When this method is called the SignerCertInfo event fires once for each signature on the message. This event provides details about the signer certificate, as well as the signer certificate itself (if present). The information provided via SignerCertInfo may be used to load an appropriate certificate for verification from within the event. If the CertEncoded parameter of SignerCertInfo is populated the certificate required for verification is already present in the message.

The following properties are applicable when calling this method:

If the input message is a detached signature, the original data that was signed must be specified in DetachedSignatureData. In addition the DetachedSignature property must be set to True to instruct the class to treat the input message as a detached signature.

If the input message is compressed EnableCompression must be set to True before calling this method.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

Encrypt Method (CMS Class)

Encrypts the current message.

Syntax

public void encrypt();

Remarks

Encrypt encrypts the input data with the the specified certificate(s). Certificates are specified by calling AddRecipientCert or setting the RecipientCerts property.

OutputFormat specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. Additional settings allow further configuration. The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

Encrypt and Decrypt a message Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt a message - DER Output Format Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Encrypt(); byte[] encryptedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Multiple Recipients Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test2.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = encryptedMessage; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Decrypt(); string plaintextMessage = cms.OutputMessage; Encrypt and Decrypt - Get Recipient Info Cms cms = new Cms(); cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); cms.InputMessage = "My Data"; cms.Encrypt(); string encryptedMessage = cms.OutputMessage; //If the recipient certificate is not known ahead of time the GetRecipientInfo method may be called //to find information about the certificate. cms = new Cms(); cms.InputMessage = encryptedMessage; cms.OnRecipientInfo += (s, e) => { Console.WriteLine(e.SerialNumber); Console.WriteLine(e.Issuer); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); } }; cms.GetRecipientInfo(); cms.Decrypt(); string plaintextMessage = cms.OutputMessage;

GetRecipientInfo Method (CMS Class)

Gets the recipient certificate information for an encrypted message.

Syntax

public void getRecipientInfo();

Remarks

This method retrieves information about the recipient(s) of the encrypted message. This may be called prior to calling Decrypt to determine which certificate should be loaded for decryption.

When this method is called the RecipientInfo event fires once for each recipient found within the message. Use the parameters of the RecipientInfo to determine which certificate to specify via AddCertificate or Certificates before calling Decrypt.

GetSignerCertInfo Method (CMS Class)

This method gets the signature information for an signed message.

Syntax

public void getSignerCertInfo();

Remarks

This method retrieves information about the certificate used to sign the message. This may be called before calling VerifySignature to determine which certificate should be loaded for verification.

When this method is called, the SignerCertInfo event fires once for each signer of the message. Use the parameters of the SignerCertInfo to determine which certificate to specify before calling VerifySignature.

Note: Use of this method is optional. If no certificate is specified before calling VerifySignature, the class will fire the SignerCertInfo and a certificate may be loaded from within the event at that time (if necessary).

Reset Method (CMS Class)

This method resets the class properties.

Syntax

public void reset();

Remarks

This method resets the values of all message and certificate properties. It is an easy way to reset the class properties before starting to populate with new values.

SetInputStream Method (CMS Class)

Sets the stream from which the class will read data to encode or decode.

Syntax

public void setInputStream(java.io.InputStream inputStream);

Remarks

This method sets the stream from which the class will read data to process.

Encrypt or Sign

When encrypting or signing this may be set to a stream with the content that will be encrypted and/or signed.

Decrypt or Verify

When decrypting or verifying a signature this may be set to a stream with the encrypted or signed message.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

SetOutputStream Method (CMS Class)

Sets the stream to which the class will read data to encode or decode.

Syntax

public void setOutputStream(java.io.OutputStream outputStream);

Remarks

This method sets the stream to which the class will write processed data.

Encrypt or Sign

When encrypting or signing this may be set to a stream where the signed/encrypted data will be written.

Decrypt or Verify

When decrypting or verifying a signature this may be set to a stream where the decrypted/verified data will be written.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

  • SetOutputStream
  • OutputFile
  • OutputMessage: The output data is written to this property if no other destination is specified.

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

Sign Method (CMS Class)

Signs the current message.

Syntax

public void sign();

Remarks

Sign digitally signs the input data with the the specified certificate(s). Certificates are specified by calling AddCertificate or setting the Certificates property.

OutputFormat specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. IncludeCertificates specifies whether the public certificate is included in the signed message. Additional settings allow further configuration. The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

Sign and Verify a message Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - DER Output Format Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Sign(); byte[] signedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - Detached Signature Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.DetachedSignature = true; cms.Sign(); string signature = cms.OutputMessage; cms = new Cms(); cms.InputMessage = "My Data"; cms.DetachedSignatureData = signature; cms.DetachedSignature = true; cms.VerifySignature(); Sign and Verify a message - Multiple Signatures Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test2.pfx", "password2", "*")); cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - No Included Certificate Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.IncludeCertificates = CmsIncludeCertificates.icsNone; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.OnSignerCertInfo += (s, e) => { Console.WriteLine(e.Issuer); Console.WriteLine(e.SerialNumber); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { //Load the correct signer certificate. cms.SignerCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); } }; cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage;

SignAndEncrypt Method (CMS Class)

Signs and encrypts the current message.

Syntax

public void signAndEncrypt();

Remarks

This method signs encrypts the input data with the the specified certificate(s). Encryption certificates are specified by calling AddRecipientCert or setting the RecipientCerts property. Signing certificates are set via the Certificates property.

OutputFormat specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. Additional settings allow further configuration. IncludeCertificates specifies whether the public certificate is included in the signed message. The following properties are applicable when calling this method:

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

VerifySignature Method (CMS Class)

Verifies the signature of the current message.

Syntax

public void verifySignature();

Remarks

VerifySignature verifies the signature of the input message.

In order to perform signature verification the public signer's certificate must be present or explicitly specified. In many cases the certificate itself is included in the input message and a certificate does not need to explicitly be set. If a certificate does need to be set for signature verification the certificate may be specified by calling AddRecipientCert or setting RecipientCerts.

When this method is called the SignerCertInfo event fires once for each signature on the message. This event provides details about the signer certificate, as well as the signer certificate itself (if present). The information provided via SignerCertInfo may be used to load an appropriate certificate for verification from within the event. If the CertEncoded parameter of SignerCertInfo is populated the certificate required for verification is already present in the message.

The following property are applicable when calling this method:

If the input message is a detached signature, the original data that was signed must be specified in DetachedSignatureData. In addition the DetachedSignature property must be set to True to instruct the class to treat the input message as a detached signature.

If the input message is compressed EnableCompression must be set to True before calling this method.

Input and Output Properties

The class will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found, the search stops. The order in which the output properties are checked is as follows:

When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.

Sign and Verify a message Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - DER Output Format Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.OutputFormat = "DER"; cms.Sign(); byte[] signedMessage = cms.OutputMessageB; //Binary output cms = new Cms(); cms.InputMessageB = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - Detached Signature Cms cms = new Cms(); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.InputMessage = "My Data"; cms.DetachedSignature = true; cms.Sign(); string signature = cms.OutputMessage; cms = new Cms(); cms.InputMessage = "My Data"; cms.DetachedSignatureData = signature; cms.DetachedSignature = true; cms.VerifySignature(); Sign and Verify a message - Multiple Signatures Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test2.pfx", "password2", "*")); cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage; Sign and Verify a message - No Included Certificate Cms cms = new Cms(); cms.InputMessage = "My Data"; cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*")); cms.IncludeCertificates = CmsIncludeCertificates.icsNone; cms.Sign(); string signedMessage = cms.OutputMessage; cms = new Cms(); cms.OnSignerCertInfo += (s, e) => { Console.WriteLine(e.Issuer); Console.WriteLine(e.SerialNumber); if (e.Issuer == "CN=100") //Identify the certificate to load based on event params { //Load the correct signer certificate. cms.SignerCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*")); } }; cms.InputMessage = signedMessage; cms.VerifySignature(); string plaintextMessage = cms.OutputMessage;

Error Event (CMS Class)

Fired when information is available about errors during data delivery.

Syntax

public class DefaultCMSEventListener implements CMSEventListener {
  ...
  public void error(CMSErrorEvent e) {}
  ...
}

public class CMSErrorEvent {
  public int errorCode;
  public String description;
}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class throws an exception.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Log Event (CMS Class)

Fires with log information during processing.

Syntax

public class DefaultCMSEventListener implements CMSEventListener {
  ...
  public void log(CMSLogEvent e) {}
  ...
}

public class CMSLogEvent {
  public int logLevel;
  public String message;
  public String logType;
}

Remarks

This event fires during processing with log information. The level of detail that is logged is controlled via the LogLevel.

LogLevel indicates the level of message. Possible values are:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data is logged.
3 (Debug) Debug data is logged.

LogMessage is the log entry.

LogType indicates the type of log. Possible values are:

  • "INFO"
  • "ENCRYPT"
  • "COMPRESS"
  • "SIGN"
  • "DECRYPT"
  • "DECOMPRESS"
  • "VERIFY"
  • "DEBUG"

RecipientInfo Event (CMS Class)

This event is fired for each recipient certificate of the encrypted message.

Syntax

public class DefaultCMSEventListener implements CMSEventListener {
  ...
  public void recipientInfo(CMSRecipientInfoEvent e) {}
  ...
}

public class CMSRecipientInfoEvent {
  public String issuer;
  public String serialNumber;
  public String subjectKeyIdentifier;
  public String encryptionAlgorithm;
}

Remarks

When GetRecipientInfo is called on a valid encrypted message, this event will fire once for each recipient certificate that the message has been encrypted for. This may be used to identify the certificate to load.

Issuer is the subject of the issuer certificate.

SerialNumber is the serial number of the encryption certificate.

SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.

EncryptionAlgorithm is the encryption algorithm used to encrypt the message. Possible values are as follows:

  • "3DES"
  • "DES"
  • "RC2CBC40"
  • "RC2CBC64"
  • "RC2CBC128" or "RC2"
  • "AESCBC128" or "AES"
  • "AESCBC192"
  • "AESCBC256"
  • "AESGCM128" or "AESGCM"
  • "AESGCM192"
  • "AESGCM256"

SignerCertInfo Event (CMS Class)

Fired during verification of the signed message.

Syntax

public class DefaultCMSEventListener implements CMSEventListener {
  ...
  public void signerCertInfo(CMSSignerCertInfoEvent e) {}
  ...
}

public class CMSSignerCertInfoEvent {
  public String issuer;
  public String serialNumber;
  public String subjectKeyIdentifier;
  public byte[] certEncoded;
}

Remarks

During verification, this event will be raised while parsing the signer's certificate information. The parameters which are populated depends on the options used when the message was originally signed. This information may be used to select the correct certificate for SignerCerts in order to verify the signature. The following parameters may be populated.

Issuer specifies the subject of the issuer of the certificate used to sign the message.

SerialNumber is the serial number of the certificate used to sign the message.

SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.

CertEncoded is the PEM (base64 encoded) public certificate needed to verify the signature. Note: when this value is present the class will automatically use this value to perform signature verification.

The SignerCerts property may be set from within this event. In this manner the decision of which signer certificate to load may be delayed until the parameters of this event are inspected and the correct certificate can be located and loaded.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

The following fields are available:

Fields

EffectiveDate
String (read-only)

Default Value: ""

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

ExpirationDate
String (read-only)

Default Value: ""

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
String (read-only)

Default Value: ""

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
String (read-only)

Default Value: ""

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
String (read-only)

Default Value: ""

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
String (read-only)

Default Value: ""

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
String (read-only)

Default Value: ""

The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

KeyPassword
String

Default Value: ""

The password for the certificate's private key (if any).

Some certificate stores may individually protect certificates' private keys, separate from the standard protection offered by the StorePassword. This field can be used to read such password-protected private keys.

Note: This property defaults to the value of StorePassword. To clear it, you must set the property to the empty string (""). It can be set at any time, but when the private key's password is different from the store's password, then it must be set before calling PrivateKey.

PrivateKey
String (read-only)

Default Value: ""

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
boolean (read-only)

Default Value: False

Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
String (read-only)

Default Value: ""

The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
String (read-only)

Default Value: ""

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
String (read-only)

Default Value: ""

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default Value: 0

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
String (read-only)

Default Value: ""

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
String (read-only)

Default Value: ""

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
String

Default Value: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StoreB
byte[]

Default Value: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
String

Default Value: ""

If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.

StoreType
int

Default Value: 0

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

SubjectAltNames
String (read-only)

Default Value: ""

Comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
String (read-only)

Default Value: ""

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
String (read-only)

Default Value: ""

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
String (read-only)

Default Value: ""

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
String (read-only)

Default Value: ""

The text description of UsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int (read-only)

Default Value: 0

The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
String (read-only)

Default Value: ""

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Subject
String

Default Value: ""

The subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate, the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Encoded
String

Default Value: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
byte[]

Default Value: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

Constructors

public Certificate();

Creates a instance whose properties can be set. This is useful for use with when generating new certificates.

public Certificate( certificateFile);

Opens CertificateFile and reads out the contents as an X.509 public key.

public Certificate( encoded);

Parses Encoded as an X.509 public key.

public Certificate( storeType,  store,  storePassword,  subject);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  subject,  configurationString);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

ConfigurationString is a newline-separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to the cstUser , cstMachine , cstPublicKeyFile , and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  encoded);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

public Certificate( storeType,  store,  storePassword,  subject);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  subject,  configurationString);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  encoded);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

Config Settings (CMS Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

CMS Config Settings

CloseInputStreamAfterProcess:   Determines whether or not the input stream is closed after processing.

Determines whether or not the input stream set by SetInputStream is closed after processing is complete. The default value is False.

CloseOutputStreamAfterProcess:   Determines whether or not the output stream is closed after processing.

Determines whether or not the output stream set by SetOutputStream is closed after processing is complete. The default value is False.

CompressBeforeSign:   Specifies whether to compress before signing.

When EnableCompression is set to True this property controls whether compression happens before or after signing. If set to True the input data will be compressed before signing. If set to False (default) the input data will be signed and then compressed.

ContentTypeOID:   Specifies the oid for content type.

This setting optionally specifies an OID defining the data content type for the data being processed. This may be set before calling Encrypt, Sign, or SignAndEncrypt.

The default value is 1.2.840.113549.1.7.1 which is the OID for id-data.

CSP:   The Cryptographic Service Provider.

For the Win32 editions, the name of the Cryptographic Service Provider used to provide access to encryption/decryption and signature operations.

NOTE: This config may only be used when the UseCryptoAPI is true.

GenerateSignatureTimestamp:   Whether to generate timestamps in signatures.

If GenerateSignatureTimestamp is True, a timestamp will be generated and added to all signatures created by the class.

The default value is True.

IncludeHeaders:   Tells the class whether to include the headers when encoding the message.

If True (default), the class will include MIME headers when Sign, Encrypt, or SignAndEncrypt are called. If False, only the message will be encoded.

The default value for IncludeHeaders is true.

Note: This setting is only applicable to when OutputFormat is set to SMIME.

IncludeInternalHeaders:   Tells the class whether or not to include the internal headers when encoding the message.

If True, the class will generate and include MIME part headers when Sign, Encrypt, or SignAndEncrypt are called. When VerifySignature, Decrypt, or DecryptAndVerifySignature are called the MIME part headers will be stripped.

When set to False, only the message will be processed, MIME part headers will not be generated or stripped.

The default value for IncludeInternalHeaders is False.

Note: This setting is only applicable to when OutputFormat is set to SMIME.

InputContentTransferEncoding:   Sets the Content-Transfer-Encoding for the signed message.

This setting specifies the Content-Transfer-Encoding header value in signed messages. By default the class will automatically determine the Content-Transfer-Encoding based on the file extension set in InputFile, however this setting may be set to override the determined value or to specify a value if data is read from InputMessage.

If no value is specified and a value cannot be automatically determined the default value 7bit will be used.

Note: This setting is only applicable when OutputFormat is set to SMIME and when calling Sign or SignAndEncrypt and DetachedSignature is True.

InputContentType:   Sets the Content-Type for the signed message.

This setting specifies the Content-Type header value in signed messages. By default the class will automatically determine the Content-Type based on the file extension set in InputFile, however this setting may be set to override the determined value or to specify a value if data is read from InputMessage.

If no value is specified and a value cannot be automatically determined the default value text/plain; charset="iso-8859-1" will be used.

Note: This setting is only applicable when OutputFormat is set to SMIME and when calling Sign or SignAndEncrypt and DetachedSignature is True.

InputMessageHeaders:   Message headers.

This setting specifies the headers of the SMIME message if they are not already present in the input message. In most cases the input message itself will contain the necessary headers, however if the headers are and body of the SMIME message are separate, the headers may be specified in this setting before calling Decrypt, DecryptAndVerifySignature, or VerifySignature.

LogDirectory:   The directory on disk where debug logs are written.

This setting specifies a directory on disk to which debug logs will be written during operation. This should only be set for debugging purposes. Files with various extensions will be written to disk at the location specified with debug data for the operation being performed. If LogFileName is not specified the filenames will be in the format yyyy-MM-dd-HH-mm-ss-fff.

LogFileName:   The base filename to use with LogDirectory.

This setting specifies the base filename to use when LogDirectory is set. If specified the name should be a filename without extension. Various files will be logged with different extensions during operation. This setting defines only the base filename. If unspecified the files will be named with a timestamp in the format yyyy-MM-dd-HH-mm-ss-fff.

LogLevel:   The level of detail for log messages.

This setting specifies the level of detail that is logged via the Log event. Possible values are:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data is logged.
3 (Debug) Debug data is logged.
OAEPMGF1HashAlgorithm:   The MGF1 hash algorithm used with OAEP.

This configuration setting specifies the MGF1 hash algorithm used when UseOAEP is set to True. The default value is SHA256. Possible values are as follows:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"
  • "RIPEMD160"
  • "MD2"
  • "MD5"
  • "MD5SHA1"

OAEPParams:   The hex encoded OAEP parameters.

This configuration setting optionally specifies Optimal Asymmetric Encryption Padding (OAEP) parameters to be used when UseOAEP is set to True. The specified value should be hex encoded.

OAEPRSAHashAlgorithm:   The RSA hash algorithm used with OAEP.

This configuration setting specifies that RSA hash algorithm used when UseOAEP is set to True. The default value is SHA256. Possible values are as follows:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"
  • "RIPEMD160"
  • "MD2"
  • "MD5"
  • "MD5SHA1"
OutputMessageHeaders:   The SMIME headers of the output message.

When IncludeHeaders is set to False the SMIME headers are not included in the output message itself when Sign, Encrypt, or SignAndEncrypt are called. This setting may be used to obtain the SMIME headers separately. This setting is only applicable when OutputFormat is set to SMIME.

RecipientInfoType:   The type of signer information to include in the signed message.

This configuration setting specifies which type of information about the recipient's encryption certificate is included in the encrypted message. Possible values are as follows:

  • 0 (issuerAndSerialNumber - default)
  • 1 (subjectKeyIdentifier)

Note: When subjectKeyIdentifier is selected, the recipient's encryption certificate must contain the subjectKeyIdentifier extension.

SignatureTimestamp:   The signature timestamp in the signed message.

This setting holds the timestamp of the signature. After calling VerifySignature this setting will hold the timestamp identifying when the signature was created. The timestamp is in UTC time with the format yyyyMMddHHmmss. For instance 20181130223821.

SignerInfoType:   The type of signer information to include in the signed message.

This configuration setting specifies which type of information about the signer certificate is included in the signed message. Possible values are as follows:

  • 0 (issuerAndSerialNumber - default)
  • 1 (subjectKeyIdentifier)

Note: When subjectKeyIdentifier is selected, the signing certificate must contain the subjectKeyIdentifier extension.

UseAlgorithmOIDs:   Whether OIDs are used when providing information about the algorithms.

This configuration setting controls whether the EncryptionAlgorithm parameter of the RecipientInfo event is populated with the name of the algorithm, such as 3DES or the corresponding OID such as 1.2.840.113549.3.7.

The default value is False, and the name of the algorithm is used. Set this to True to use the object identifiers instead.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The class will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the class does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseDaemonThreads:   Whether threads created by the class are daemon threads.

If set to True (default), when the class creates a thread, the thread's Daemon property will be explicitly set to True. When set to False, the class will not set the Daemon property on the created thread. The default value is True.

UseFIPSCompliantAPI:   Tells the class whether or not to use FIPS certified APIs.

When set to true, the class will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle Federal Information Processing Standards (FIPS), while all other Windows editions make use of Microsoft security libraries.

The Java edition requires installation of the FIPS-certified Bouncy Castle library regardless of the target operating system. This can be downloaded from https://www.bouncycastle.org/fips-java/. Only the "Provider" library is needed. The jar file should then be installed in a JRE search path.

The following classes must be imported in the application in which the component will be used:

import java.security.Security; import org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider;

The Bouncy Castle provider must be added as a valid provider and must also be configured to operate in FIPS mode:

System.setProperty("org.bouncycastle.fips.approved_only","true"); Security.addProvider(new BouncyCastleFipsProvider());

When UseFIPSCompliantAPI is true, Secure Sockets Layer (SSL)-enabled classes can optionally be configured to use the Transport Layer Security (TLS) Bouncy Castle library. When SSLProvider is set to sslpAutomatic (default) or sslpInternal, an internal TLS implementation is used, but all cryptographic operations are offloaded to the Bouncy Castle FIPS provider to achieve FIPS-compliant operation. If SSLProvider is set to sslpPlatform, the Bouncy Castle JSSE will be used in place of the internal TLS implementation.

To enable the use of the Bouncy Castle JSSE take the following steps in addition to the steps above. Both the Bouncy Castle FIPS provider and the Bouncy Castle JSSE must be configured to use the Bouncy Castle TLS library in FIPS mode. Obtain the Bouncy Castle TLS library from https://www.bouncycastle.org/fips-java/. The jar file should then be installed in a JRE search path.

The following classes must be imported in the application in which the component will be used:

import java.security.Security; import org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider; //required to use BCJSSE when SSLProvider is set to sslpPlatform import org.bouncycastle.jsse.provider.BouncyCastleJsseProvider;

The Bouncy Castle provider must be added as a valid provider and also must be configured to operate in FIPS mode:

System.setProperty("org.bouncycastle.fips.approved_only","true"); Security.addProvider(new BouncyCastleFipsProvider()); //required to use BCJSSE when SSLProvider is set to sslpPlatform Security.addProvider(new BouncyCastleJsseProvider("fips:BCFIPS")); //optional - configure logging level of BCJSSE Logger.getLogger("org.bouncycastle.jsse").setLevel(java.util.logging.Level.OFF); //configure the class to use BCJSSE component.setSSLProvider(1); //platform component.config("UseFIPSCompliantAPI=true"); Note: TLS 1.3 support requires the Bouncy Castle TLS library version 1.0.14 or later.

FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.

For more details, please see the FIPS 140-2 Compliance article.

Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.

This setting is set to false by default on all platforms.

Trappable Errors (CMS Class)

CMS Errors

10191   Invalid index (RecipientIndex).
10192   Message decoding error (code).
10193   Unexpected message type.
10194   Unsupported hashing/signing algorithm.
10195   The message does not have any signers.
10196   The message signature could not be verified.
10197   Could not locate a suitable decryption certificate.
10198   The signer certificate could not be found.
10199   No signing certificate was supplied for signing the message.
10201   The specified certificate was not the one required.
10202   The specified certificate could not be found.
10221   Could not acquire CSP.
10222   Type validation error.
10223   Unsupported key size.
10224   Unrecognized Content-Type object identifier.
10225   Unrecognized public key format.
10226   No choices specified.
10228   Must specify output stream.
10280   Invalid part index.
10281   Unknown MIME type.
10283   No MIME-boundary found.
10280   Error decoding certificate.