CMS Class
Properties Methods Events Config Settings Errors
The CMS class is used to digitally sign, encrypt, verify, and decrypt data.
Syntax
class ipworksencrypt.CMS
Remarks
The CMS class implements the Cryptographic Message Syntax and allow for various cryptographic operations to be performed on data including:
The class can generate and consume message in a variety of formats including PEM, DER (Binary), and SMIME. The encryption_algorithm and signature_hash_algorithm are fully configurable and support a variety of industry standard encryption and hash algorithms.
The class supports additional functionality such as Compression, OAEP, and PSS. The get_recipient_info and get_signer_cert_info methods as well as the on_recipient_info and on_signer_cert_info events allow for a dynamic and flexible approach to message processing. Certificate may be loaded ahead of time or as-needed from the events.
Signing Notes
sign digitally signs the input data with the the specified certificate(s). Certificates are specified by calling add_certificate or setting the certificates property.output_format specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. include_certificates specifies whether the public certificate is included in the signed message. Additional settings allow further configuration. The following properties are applicable when calling this method:
- certificates (required)
- detached_signature
- enable_compression
- GenerateSignatureTimestamp
- include_certificates
- output_format
- signature_hash_algorithm
- use_pss
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Sign and Verify a message
Cms cms = new Cms();
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.InputMessage = "My Data";
cms.Sign();
string signedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Sign and Verify a message - DER Output Format
Cms cms = new Cms();
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.InputMessage = "My Data";
cms.OutputFormat = "DER";
cms.Sign();
byte[] signedMessage = cms.OutputMessageB; //Binary output
cms = new Cms();
cms.InputMessageB = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Sign and Verify a message - Detached Signature
Cms cms = new Cms();
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.InputMessage = "My Data";
cms.DetachedSignature = true;
cms.Sign();
string signature = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = "My Data";
cms.DetachedSignatureData = signature;
cms.DetachedSignature = true;
cms.VerifySignature();
Sign and Verify a message - Multiple Signatures
Cms cms = new Cms();
cms.InputMessage = "My Data";
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test2.pfx", "password2", "*"));
cms.Sign();
string signedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Sign and Verify a message - No Included Certificate
Cms cms = new Cms();
cms.InputMessage = "My Data";
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.IncludeCertificates = CmsIncludeCertificates.icsNone;
cms.Sign();
string signedMessage = cms.OutputMessage;
cms = new Cms();
cms.OnSignerCertInfo += (s, e) => {
Console.WriteLine(e.Issuer);
Console.WriteLine(e.SerialNumber);
if (e.Issuer == "CN=100") //Identify the certificate to load based on event params
{
//Load the correct signer certificate.
cms.SignerCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
}
};
cms.InputMessage = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Encryption Notes
encrypt encrypts the input data with the the specified certificate(s). Certificates are specified by calling add_recipient_cert or setting the recipient_certs property.output_format specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. Additional settings allow further configuration. The following properties are applicable when calling this method:
- recipient_certs (required)
- encryption_algorithm
- output_format
- use_oaep
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Encrypt and Decrypt a message
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.InputMessage = "My Data";
cms.Encrypt();
string encryptedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = encryptedMessage;
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Encrypt and Decrypt a message - DER Output Format
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.InputMessage = "My Data";
cms.OutputFormat = "DER";
cms.Encrypt();
byte[] encryptedMessage = cms.OutputMessageB; //Binary output
cms = new Cms();
cms.InputMessageB = encryptedMessage;
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Encrypt and Decrypt - Multiple Recipients
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test2.cer", "", "*"));
cms.InputMessage = "My Data";
cms.Encrypt();
string encryptedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = encryptedMessage;
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Encrypt and Decrypt - Get Recipient Info
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.InputMessage = "My Data";
cms.Encrypt();
string encryptedMessage = cms.OutputMessage;
//If the recipient certificate is not known ahead of time the GetRecipientInfo method may be called
//to find information about the certificate.
cms = new Cms();
cms.InputMessage = encryptedMessage;
cms.OnRecipientInfo += (s, e) => {
Console.WriteLine(e.SerialNumber);
Console.WriteLine(e.Issuer);
if (e.Issuer == "CN=100") //Identify the certificate to load based on event params
{
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
}
};
cms.GetRecipientInfo();
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Signature Verification Notes
verify_signature verifies the signature of the input message.In order to perform signature verification the public signer's certificate must be present or explicitly specified. In many cases the certificate itself is included in the input message and a certificate does not need to explicitly be set. If a certificate does need to be set for signature verification the certificate may be specified by calling add_recipient_cert or setting recipient_certs.
When this method is called the on_signer_cert_info event fires once for each signature on the message. This event provides details about the signer certificate, as well as the signer certificate itself (if present). The information provided via on_signer_cert_info may be used to load an appropriate certificate for verification from within the event. If the CertEncoded parameter of on_signer_cert_info is populated the certificate required for verification is already present in the message.
The following property are applicable when calling this method:
If the input message is a detached signature, the original data that was signed must be specified in detached_signature_data. In addition the detached_signature property must be set to True to instruct the class to treat the input message as a detached signature.
If the input message is compressed enable_compression must be set to True before calling this method.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Sign and Verify a message
Cms cms = new Cms();
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.InputMessage = "My Data";
cms.Sign();
string signedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Sign and Verify a message - DER Output Format
Cms cms = new Cms();
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.InputMessage = "My Data";
cms.OutputFormat = "DER";
cms.Sign();
byte[] signedMessage = cms.OutputMessageB; //Binary output
cms = new Cms();
cms.InputMessageB = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Sign and Verify a message - Detached Signature
Cms cms = new Cms();
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.InputMessage = "My Data";
cms.DetachedSignature = true;
cms.Sign();
string signature = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = "My Data";
cms.DetachedSignatureData = signature;
cms.DetachedSignature = true;
cms.VerifySignature();
Sign and Verify a message - Multiple Signatures
Cms cms = new Cms();
cms.InputMessage = "My Data";
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test2.pfx", "password2", "*"));
cms.Sign();
string signedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Sign and Verify a message - No Included Certificate
Cms cms = new Cms();
cms.InputMessage = "My Data";
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.IncludeCertificates = CmsIncludeCertificates.icsNone;
cms.Sign();
string signedMessage = cms.OutputMessage;
cms = new Cms();
cms.OnSignerCertInfo += (s, e) => {
Console.WriteLine(e.Issuer);
Console.WriteLine(e.SerialNumber);
if (e.Issuer == "CN=100") //Identify the certificate to load based on event params
{
//Load the correct signer certificate.
cms.SignerCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
}
};
cms.InputMessage = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Decryption Notes
decrypt decrypts the input data with the specified certificate. Certificates are specified by calling add_certificate or setting the certificates property.
If the certificate used to encrypt the message is not known ahead of time get_recipient_info may be called prior to calling decrypt to obtain information about the recipient (the entity the for which the message was encrypted). If get_recipient_info is called, the on_recipient_info event is fired with information about the recipient which may be used to load an appropriate decryption certificate.
The following properties are applicable when calling this method:
- certificates (Required)
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Encrypt and Decrypt a message
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.InputMessage = "My Data";
cms.Encrypt();
string encryptedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = encryptedMessage;
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Encrypt and Decrypt a message - DER Output Format
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.InputMessage = "My Data";
cms.OutputFormat = "DER";
cms.Encrypt();
byte[] encryptedMessage = cms.OutputMessageB; //Binary output
cms = new Cms();
cms.InputMessageB = encryptedMessage;
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Encrypt and Decrypt - Multiple Recipients
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test2.cer", "", "*"));
cms.InputMessage = "My Data";
cms.Encrypt();
string encryptedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = encryptedMessage;
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Encrypt and Decrypt - Get Recipient Info
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.InputMessage = "My Data";
cms.Encrypt();
string encryptedMessage = cms.OutputMessage;
//If the recipient certificate is not known ahead of time the GetRecipientInfo method may be called
//to find information about the certificate.
cms = new Cms();
cms.InputMessage = encryptedMessage;
cms.OnRecipientInfo += (s, e) => {
Console.WriteLine(e.SerialNumber);
Console.WriteLine(e.Issuer);
if (e.Issuer == "CN=100") //Identify the certificate to load based on event params
{
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
}
};
cms.GetRecipientInfo();
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
cert_count | The number of records in the Cert arrays. |
cert_effective_date | The date on which this certificate becomes valid. |
cert_expiration_date | The date on which the certificate expires. |
cert_extended_key_usage | A comma-delimited list of extended key usage identifiers. |
cert_fingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
cert_fingerprint_sha1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
cert_fingerprint_sha256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
cert_issuer | The issuer of the certificate. |
cert_private_key | The private key of the certificate (if available). |
cert_private_key_available | Whether a PrivateKey is available for the selected certificate. |
cert_private_key_container | The name of the PrivateKey container for the certificate (if available). |
cert_public_key | The public key of the certificate. |
cert_public_key_algorithm | The textual description of the certificate's public key algorithm. |
cert_public_key_length | The length of the certificate's public key (in bits). |
cert_serial_number | The serial number of the certificate encoded as a string. |
cert_signature_algorithm | The text description of the certificate's signature algorithm. |
cert_store | The name of the certificate store for the client certificate. |
cert_store_password | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
cert_store_type | The type of certificate store for this certificate. |
cert_subject_alt_names | Comma-separated lists of alternative subject names for the certificate. |
cert_thumbprint_md5 | The MD5 hash of the certificate. |
cert_thumbprint_sha1 | The SHA-1 hash of the certificate. |
cert_thumbprint_sha256 | The SHA-256 hash of the certificate. |
cert_usage | The text description of UsageFlags . |
cert_usage_flags | The flags that show intended use for the certificate. |
cert_version | The certificate's version number. |
cert_subject | The subject of the certificate used for client authentication. |
cert_encoded | The certificate (PEM/Base64 encoded). |
detached_signature | Specifies whether to include a detached signature when signing a message. |
detached_signature_data | The detached signature. |
enable_compression | Specifies whether to compress the message. |
encryption_algorithm | The algorithm used for encryption. |
include_certificates | Specifies whether to include the signer's certificate with the signed message. |
input_file | The file to process. |
input_message | The message to process. |
output_file | The output file. |
output_format | Specifies the output format. |
output_message | The output message after processing. |
recipient_cert_count | The number of records in the RecipientCert arrays. |
recipient_cert_effective_date | The date on which this certificate becomes valid. |
recipient_cert_expiration_date | The date on which the certificate expires. |
recipient_cert_extended_key_usage | A comma-delimited list of extended key usage identifiers. |
recipient_cert_fingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
recipient_cert_fingerprint_sha1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
recipient_cert_fingerprint_sha256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
recipient_cert_issuer | The issuer of the certificate. |
recipient_cert_private_key | The private key of the certificate (if available). |
recipient_cert_private_key_available | Whether a PrivateKey is available for the selected certificate. |
recipient_cert_private_key_container | The name of the PrivateKey container for the certificate (if available). |
recipient_cert_public_key | The public key of the certificate. |
recipient_cert_public_key_algorithm | The textual description of the certificate's public key algorithm. |
recipient_cert_public_key_length | The length of the certificate's public key (in bits). |
recipient_cert_serial_number | The serial number of the certificate encoded as a string. |
recipient_cert_signature_algorithm | The text description of the certificate's signature algorithm. |
recipient_cert_store | The name of the certificate store for the client certificate. |
recipient_cert_store_password | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
recipient_cert_store_type | The type of certificate store for this certificate. |
recipient_cert_subject_alt_names | Comma-separated lists of alternative subject names for the certificate. |
recipient_cert_thumbprint_md5 | The MD5 hash of the certificate. |
recipient_cert_thumbprint_sha1 | The SHA-1 hash of the certificate. |
recipient_cert_thumbprint_sha256 | The SHA-256 hash of the certificate. |
recipient_cert_usage | The text description of UsageFlags . |
recipient_cert_usage_flags | The flags that show intended use for the certificate. |
recipient_cert_version | The certificate's version number. |
recipient_cert_subject | The subject of the certificate used for client authentication. |
recipient_cert_encoded | The certificate (PEM/Base64 encoded). |
signature_hash_algorithm | The signature hash algorithm used during signing. |
signer_cert_count | The number of records in the SignerCert arrays. |
signer_cert_effective_date | The date on which this certificate becomes valid. |
signer_cert_expiration_date | The date on which the certificate expires. |
signer_cert_extended_key_usage | A comma-delimited list of extended key usage identifiers. |
signer_cert_fingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
signer_cert_fingerprint_sha1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
signer_cert_fingerprint_sha256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
signer_cert_issuer | The issuer of the certificate. |
signer_cert_private_key | The private key of the certificate (if available). |
signer_cert_private_key_available | Whether a PrivateKey is available for the selected certificate. |
signer_cert_private_key_container | The name of the PrivateKey container for the certificate (if available). |
signer_cert_public_key | The public key of the certificate. |
signer_cert_public_key_algorithm | The textual description of the certificate's public key algorithm. |
signer_cert_public_key_length | The length of the certificate's public key (in bits). |
signer_cert_serial_number | The serial number of the certificate encoded as a string. |
signer_cert_signature_algorithm | The text description of the certificate's signature algorithm. |
signer_cert_store | The name of the certificate store for the client certificate. |
signer_cert_store_password | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
signer_cert_store_type | The type of certificate store for this certificate. |
signer_cert_subject_alt_names | Comma-separated lists of alternative subject names for the certificate. |
signer_cert_thumbprint_md5 | The MD5 hash of the certificate. |
signer_cert_thumbprint_sha1 | The SHA-1 hash of the certificate. |
signer_cert_thumbprint_sha256 | The SHA-256 hash of the certificate. |
signer_cert_usage | The text description of UsageFlags . |
signer_cert_usage_flags | The flags that show intended use for the certificate. |
signer_cert_version | The certificate's version number. |
signer_cert_subject | The subject of the certificate used for client authentication. |
signer_cert_encoded | The certificate (PEM/Base64 encoded). |
use_oaep | This property specifies whether or not to use Optimal Asymmetric Encryption Padding (OAEP). |
use_pss | Whether to use RSA-PSS during signing and verification. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
add_certificate | Used to add certificates for signing. |
add_recipient_cert | Used to add recipient certificates used to encrypt messages. |
config | Sets or retrieves a configuration setting. |
decrypt | Decrypts the current message. |
decrypt_and_verify_signature | Decrypts and verifies the signature of the current message. |
encrypt | Encrypts the current message. |
get_recipient_info | Gets the recipient certificate information for an encrypted message. |
get_signer_cert_info | This method gets the signature information for an signed message. |
reset | This method resets the class properties. |
sign | Signs the current message. |
sign_and_encrypt | Signs and encrypts the current message. |
verify_signature | Verifies the signature of the current message. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
on_error | Fired when information is available about errors during data delivery. |
on_log | Fires with log information during processing. |
on_recipient_info | This event is fired for each recipient certificate of the encrypted message. |
on_signer_cert_info | Fired during verification of the signed message. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
CompressBeforeSign | Specifies whether to compress before signing. |
ContentTypeOID | Specifies the oid for content type. |
CSP | The Cryptographic Service Provider. |
GenerateSignatureTimestamp | Whether to generate timestamps in signatures. |
IncludeHeaders | Tells the class whether to include the headers when encoding the message. |
IncludeInternalHeaders | Tells the class whether or not to include the internal headers when encoding the message. |
InputContentTransferEncoding | Sets the Content-Transfer-Encoding for the signed message. |
InputContentType | Sets the Content-Type for the signed message. |
InputMessageHeaders | Message headers. |
LogDirectory | The directory on disk where debug logs are written. |
LogFileName | The base filename to use with LogDirectory. |
LogLevel | The level of detail for log messages. |
OAEPMGF1HashAlgorithm | The MGF1 hash algorithm used with OAEP. |
OAEPParams | The hex encoded OAEP parameters. |
OAEPRSAHashAlgorithm | The RSA hash algorithm used with OAEP. |
OutputMessageHeaders | The SMIME headers of the output message. |
RecipientInfoType | The type of signer information to include in the signed message. |
SignatureTimestamp | The signature timestamp in the signed message. |
SignerInfoType | The type of signer information to include in the signed message. |
UseAlgorithmOIDs | Whether OIDs are used when providing information about the algorithms. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
cert_count Property
The number of records in the Cert arrays.
Syntax
def get_cert_count() -> int: ... def set_cert_count(value: int) -> None: ...
cert_count = property(get_cert_count, set_cert_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
- cert_effective_date
- cert_encoded
- cert_expiration_date
- cert_extended_key_usage
- cert_fingerprint
- cert_fingerprint_sha1
- cert_fingerprint_sha256
- cert_issuer
- cert_private_key
- cert_private_key_available
- cert_private_key_container
- cert_public_key
- cert_public_key_algorithm
- cert_public_key_length
- cert_serial_number
- cert_signature_algorithm
- cert_store
- cert_store_password
- cert_store_type
- cert_subject
- cert_subject_alt_names
- cert_thumbprint_md5
- cert_thumbprint_sha1
- cert_thumbprint_sha256
- cert_usage
- cert_usage_flags
- cert_version
cert_effective_date Property
The date on which this certificate becomes valid.
Syntax
def get_cert_effective_date(cert_index: int) -> str: ...
Default Value
""
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_expiration_date Property
The date on which the certificate expires.
Syntax
def get_cert_expiration_date(cert_index: int) -> str: ...
Default Value
""
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_extended_key_usage Property
A comma-delimited list of extended key usage identifiers.
Syntax
def get_cert_extended_key_usage(cert_index: int) -> str: ...
Default Value
""
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_fingerprint Property
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
def get_cert_fingerprint(cert_index: int) -> str: ...
Default Value
""
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_fingerprint_sha1 Property
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
def get_cert_fingerprint_sha1(cert_index: int) -> str: ...
Default Value
""
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_fingerprint_sha256 Property
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
def get_cert_fingerprint_sha256(cert_index: int) -> str: ...
Default Value
""
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_issuer Property
The issuer of the certificate.
Syntax
def get_cert_issuer(cert_index: int) -> str: ...
Default Value
""
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_private_key Property
The private key of the certificate (if available).
Syntax
def get_cert_private_key(cert_index: int) -> str: ...
Default Value
""
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The cert_private_key may be available but not exportable. In this case, cert_private_key returns an empty string.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_private_key_available Property
Whether a PrivateKey is available for the selected certificate.
Syntax
def get_cert_private_key_available(cert_index: int) -> bool: ...
Default Value
FALSE
Remarks
Whether a cert_private_key is available for the selected certificate. If cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_private_key_container Property
The name of the PrivateKey container for the certificate (if available).
Syntax
def get_cert_private_key_container(cert_index: int) -> str: ...
Default Value
""
Remarks
The name of the cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_public_key Property
The public key of the certificate.
Syntax
def get_cert_public_key(cert_index: int) -> str: ...
Default Value
""
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_public_key_algorithm Property
The textual description of the certificate's public key algorithm.
Syntax
def get_cert_public_key_algorithm(cert_index: int) -> str: ...
Default Value
""
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_public_key_length Property
The length of the certificate's public key (in bits).
Syntax
def get_cert_public_key_length(cert_index: int) -> int: ...
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_serial_number Property
The serial number of the certificate encoded as a string.
Syntax
def get_cert_serial_number(cert_index: int) -> str: ...
Default Value
""
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_signature_algorithm Property
The text description of the certificate's signature algorithm.
Syntax
def get_cert_signature_algorithm(cert_index: int) -> str: ...
Default Value
""
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_store Property
The name of the certificate store for the client certificate.
Syntax
def get_cert_store(cert_index: int) -> bytes: ... def set_cert_store(cert_index: int, value: bytes) -> None: ...
Default Value
"MY"
Remarks
The name of the certificate store for the client certificate.
The cert_store_type property denotes the type of the certificate store specified by cert_store. If the store is password-protected, specify the password in cert_store_password.
cert_store is used in conjunction with the cert_subject property to specify client certificates. If cert_store has a value, and cert_subject or cert_encoded is set, a search for a certificate is initiated. Please see the cert_subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
cert_store_password Property
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
def get_cert_store_password(cert_index: int) -> str: ... def set_cert_store_password(cert_index: int, value: str) -> None: ...
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
cert_store_type Property
The type of certificate store for this certificate.
Syntax
def get_cert_store_type(cert_index: int) -> int: ... def set_cert_store_type(cert_index: int, value: int) -> None: ...
Default Value
0
Remarks
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the cert_store and set cert_store_password to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
cert_subject_alt_names Property
Comma-separated lists of alternative subject names for the certificate.
Syntax
def get_cert_subject_alt_names(cert_index: int) -> str: ...
Default Value
""
Remarks
Comma-separated lists of alternative subject names for the certificate.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_thumbprint_md5 Property
The MD5 hash of the certificate.
Syntax
def get_cert_thumbprint_md5(cert_index: int) -> str: ...
Default Value
""
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_thumbprint_sha1 Property
The SHA-1 hash of the certificate.
Syntax
def get_cert_thumbprint_sha1(cert_index: int) -> str: ...
Default Value
""
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_thumbprint_sha256 Property
The SHA-256 hash of the certificate.
Syntax
def get_cert_thumbprint_sha256(cert_index: int) -> str: ...
Default Value
""
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_usage Property
The text description of UsageFlags .
Syntax
def get_cert_usage(cert_index: int) -> str: ...
Default Value
""
Remarks
The text description of cert_usage_flags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_usage_flags Property
The flags that show intended use for the certificate.
Syntax
def get_cert_usage_flags(cert_index: int) -> int: ...
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of cert_usage_flags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the cert_usage property for a text representation of cert_usage_flags.
This functionality currently is not available when the provider is OpenSSL.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_version Property
The certificate's version number.
Syntax
def get_cert_version(cert_index: int) -> str: ...
Default Value
""
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
This property is read-only.
cert_subject Property
The subject of the certificate used for client authentication.
Syntax
def get_cert_subject(cert_index: int) -> str: ... def set_cert_subject(cert_index: int, value: str) -> None: ...
Default Value
""
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
cert_encoded Property
The certificate (PEM/Base64 encoded).
Syntax
def get_cert_encoded(cert_index: int) -> bytes: ... def set_cert_encoded(cert_index: int, value: bytes) -> None: ...
Default Value
""
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The cert_store and cert_subject properties also may be used to specify a certificate.
When cert_encoded is set, a search is initiated in the current cert_store for the private key of the certificate. If the key is found, cert_subject is updated to reflect the full subject of the selected certificate; otherwise, cert_subject is set to an empty string.
The cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the cert_count property.
detached_signature Property
Specifies whether to include a detached signature when signing a message.
Syntax
def get_detached_signature() -> bool: ... def set_detached_signature(value: bool) -> None: ...
detached_signature = property(get_detached_signature, set_detached_signature)
Default Value
FALSE
Remarks
This property specifies whether the sign operation products a message that includes both a signature and the message data, or just a signature.
When set to False default the output message holds the data and signature in one CMS message. This may be passed in its entirety to the receiving party for signature verification.
When set to True the output message holds only a signature in the CMS message. Both the original input data and the signature in the output message produced by the sign operation must be passed to the receiving party for signature verification.
detached_signature_data Property
The detached signature.
Syntax
def get_detached_signature_data() -> bytes: ... def set_detached_signature_data(value: bytes) -> None: ...
detached_signature_data = property(get_detached_signature_data, set_detached_signature_data)
Default Value
""
Remarks
This setting is used to specify the detached signature before calling verify_signature. The message data should be specified normally and this property should be set to the detached signature data. This may be set to the PEM, DER, or SMIME encoded signature message.
enable_compression Property
Specifies whether to compress the message.
Syntax
def get_enable_compression() -> bool: ... def set_enable_compression(value: bool) -> None: ...
enable_compression = property(get_enable_compression, set_enable_compression)
Default Value
FALSE
Remarks
This property specifies whether the input data will be compressed during the signing process.
If set to True the data will be compressed. If set to False (default) the data will not be compressed.
When compression is enabled the input will first be signed, and then compressed. To compress the data before signing set CompressBeforeSign.
encryption_algorithm Property
The algorithm used for encryption.
Syntax
def get_encryption_algorithm() -> str: ... def set_encryption_algorithm(value: str) -> None: ...
encryption_algorithm = property(get_encryption_algorithm, set_encryption_algorithm)
Default Value
"3DES"
Remarks
This property specifies the encryption algorithm used when encrypt is called.
This may be the name of the algorithm, or the corresponding OID of the algorithm. The default value is 3DES. Possible values are:
- "3DES"
- "DES"
- "RC2CBC40"
- "RC2CBC64"
- "RC2CBC128" or "RC2"
- "AESCBC128" or "AES"
- "AESCBC192"
- "AESCBC256"
- "AESGCM128" or "AESGCM"
- "AESGCM192"
- "AESGCM256"
include_certificates Property
Specifies whether to include the signer's certificate with the signed message.
Syntax
def get_include_certificates() -> int: ... def set_include_certificates(value: int) -> None: ...
include_certificates = property(get_include_certificates, set_include_certificates)
Default Value
1
Remarks
This setting specifies which certificates (if any) are included in the signed message. By default the public certificate of the certificate used to sign the message is included. This allows the receiving party to verify the signature without any additional knowledge. If this is set to icsNone the recipient must obtain and specify the public certificate to be used for signature verification. Possible values are:
Value | Description |
0 (icsNone) | No signer certificates are included. |
1 (icsSignerCerts - default) | The certificates specified in certificates are included. |
2 (icsSignerCertsAndChain) | The certificates specified in certificates and the full chain of each certificate are included. |
input_file Property
The file to process.
Syntax
def get_input_file() -> str: ... def set_input_file(value: str) -> None: ...
input_file = property(get_input_file, set_input_file)
Default Value
""
Remarks
This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.
Encrypt and/or Sign
When encrypting or signing this may be set to a file containing content that will be encrypted and/or signed.
Decrypt and/or Verify
When decrypting or verifying a signature this may be set to a file containing the PEM, DER, or SMIME encoded message.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- input_file
- input_message
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
input_message Property
The message to process.
Syntax
def get_input_message() -> bytes: ... def set_input_message(value: bytes) -> None: ...
input_message = property(get_input_message, set_input_message)
Default Value
""
Remarks
This property specifies the message to be processed.
Encrypt and/or Sign
When encrypting or signing this may be set to the content that will be encrypted and/or signed.
Decrypt and/or Verify
When decrypting or verifying a signature this may be set to the PEM, DER, or SMIME encoded message.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- input_file
- input_message
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
output_file Property
The output file.
Syntax
def get_output_file() -> str: ... def set_output_file(value: str) -> None: ...
output_file = property(get_output_file, set_output_file)
Default Value
""
Remarks
This property specifies the file to which the output will be written. This may be set to an absolute or relative path.
Encrypt and/or Sign
When encrypting or signing this specifies a file where the message will be written.
Decrypt and/or Verify
When decrypting or verifying a signature this specifies a file where the decrypted/verified content will be written.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
output_format Property
Specifies the output format.
Syntax
def get_output_format() -> str: ... def set_output_format(value: str) -> None: ...
output_format = property(get_output_format, set_output_format)
Default Value
"PEM"
Remarks
This property specifies the format of the output message created when calling sign, encrypt, or sign_and_encrypt.
The various formats allow for easier transport of the signed or encrypted message, as well as interoperability with other utilities.
Possible values are:
Value | Description |
PEM (default) | A PEM formatted message. For instance:
-----BEGIN CMS----- MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwGggCSABGFD b250ZW50LVR5cGU6IHRleHQvcGxhaW47IGNoYXJzZXQ9Imlzby04ODU5LTEiDQpDb250ZW50LVRy ... mlJLPoCw5pf3Cjae56oXs29IZMcDXKersNjFGYSaG0o9k3lAcj9llLFh54Xr1ljx7K0VpVvlrmgu kNHAf7cUvvilW/KrDa+T2n+sOFAAAAAAAAA= -----END CMS----- |
DER | The message is binary (raw bytes). |
SMIME | The message is S/MIME encoded. For instance:
MIME-Version: 1.0 Content-Type: application/pkcs7-mime; smime-type=signed-data; name="smime.p7m" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="smime.p7m" MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwGggCSABGFD b250ZW50LVR5cGU6IHRleHQvcGxhaW47IGNoYXJzZXQ9Imlzby04ODU5LTEiDQpDb250ZW50LVRy ... Mpc/PtPNeHA3CCFGRFnHju/yb9CsQWpgf8TTWytjP7O1hFUecW0yiuGSDeeNlQ4ZcX0TOm6haRMT lqYIrHUNMn4tYaREevNBL9CQB8MAAAAAAAA= |
output_message Property
The output message after processing.
Syntax
def get_output_message() -> bytes: ...
output_message = property(get_output_message, None)
Default Value
""
Remarks
This property will be populated with the output of the operation if output_file is not set.
Encrypt and/or Sign
When encrypting or signing this will hold the fully encoded message.
Decrypt and/or Verify
When decrypting or verifying a signature this will hold the decrypted/verified content.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
This property is read-only.
recipient_cert_count Property
The number of records in the RecipientCert arrays.
Syntax
def get_recipient_cert_count() -> int: ... def set_recipient_cert_count(value: int) -> None: ...
recipient_cert_count = property(get_recipient_cert_count, set_recipient_cert_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
- recipient_cert_effective_date
- recipient_cert_encoded
- recipient_cert_expiration_date
- recipient_cert_extended_key_usage
- recipient_cert_fingerprint
- recipient_cert_fingerprint_sha1
- recipient_cert_fingerprint_sha256
- recipient_cert_issuer
- recipient_cert_private_key
- recipient_cert_private_key_available
- recipient_cert_private_key_container
- recipient_cert_public_key
- recipient_cert_public_key_algorithm
- recipient_cert_public_key_length
- recipient_cert_serial_number
- recipient_cert_signature_algorithm
- recipient_cert_store
- recipient_cert_store_password
- recipient_cert_store_type
- recipient_cert_subject
- recipient_cert_subject_alt_names
- recipient_cert_thumbprint_md5
- recipient_cert_thumbprint_sha1
- recipient_cert_thumbprint_sha256
- recipient_cert_usage
- recipient_cert_usage_flags
- recipient_cert_version
recipient_cert_effective_date Property
The date on which this certificate becomes valid.
Syntax
def get_recipient_cert_effective_date(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_expiration_date Property
The date on which the certificate expires.
Syntax
def get_recipient_cert_expiration_date(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_extended_key_usage Property
A comma-delimited list of extended key usage identifiers.
Syntax
def get_recipient_cert_extended_key_usage(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_fingerprint Property
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
def get_recipient_cert_fingerprint(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_fingerprint_sha1 Property
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
def get_recipient_cert_fingerprint_sha1(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_fingerprint_sha256 Property
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
def get_recipient_cert_fingerprint_sha256(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_issuer Property
The issuer of the certificate.
Syntax
def get_recipient_cert_issuer(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_private_key Property
The private key of the certificate (if available).
Syntax
def get_recipient_cert_private_key(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The recipient_cert_private_key may be available but not exportable. In this case, recipient_cert_private_key returns an empty string.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_private_key_available Property
Whether a PrivateKey is available for the selected certificate.
Syntax
def get_recipient_cert_private_key_available(recipient_cert_index: int) -> bool: ...
Default Value
FALSE
Remarks
Whether a recipient_cert_private_key is available for the selected certificate. If recipient_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_private_key_container Property
The name of the PrivateKey container for the certificate (if available).
Syntax
def get_recipient_cert_private_key_container(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The name of the recipient_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_public_key Property
The public key of the certificate.
Syntax
def get_recipient_cert_public_key(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_public_key_algorithm Property
The textual description of the certificate's public key algorithm.
Syntax
def get_recipient_cert_public_key_algorithm(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_public_key_length Property
The length of the certificate's public key (in bits).
Syntax
def get_recipient_cert_public_key_length(recipient_cert_index: int) -> int: ...
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_serial_number Property
The serial number of the certificate encoded as a string.
Syntax
def get_recipient_cert_serial_number(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_signature_algorithm Property
The text description of the certificate's signature algorithm.
Syntax
def get_recipient_cert_signature_algorithm(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_store Property
The name of the certificate store for the client certificate.
Syntax
def get_recipient_cert_store(recipient_cert_index: int) -> bytes: ... def set_recipient_cert_store(recipient_cert_index: int, value: bytes) -> None: ...
Default Value
"MY"
Remarks
The name of the certificate store for the client certificate.
The recipient_cert_store_type property denotes the type of the certificate store specified by recipient_cert_store. If the store is password-protected, specify the password in recipient_cert_store_password.
recipient_cert_store is used in conjunction with the recipient_cert_subject property to specify client certificates. If recipient_cert_store has a value, and recipient_cert_subject or recipient_cert_encoded is set, a search for a certificate is initiated. Please see the recipient_cert_subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
recipient_cert_store_password Property
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
def get_recipient_cert_store_password(recipient_cert_index: int) -> str: ... def set_recipient_cert_store_password(recipient_cert_index: int, value: str) -> None: ...
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
recipient_cert_store_type Property
The type of certificate store for this certificate.
Syntax
def get_recipient_cert_store_type(recipient_cert_index: int) -> int: ... def set_recipient_cert_store_type(recipient_cert_index: int, value: int) -> None: ...
Default Value
0
Remarks
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the recipient_cert_store and set recipient_cert_store_password to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
recipient_cert_subject_alt_names Property
Comma-separated lists of alternative subject names for the certificate.
Syntax
def get_recipient_cert_subject_alt_names(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
Comma-separated lists of alternative subject names for the certificate.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_thumbprint_md5 Property
The MD5 hash of the certificate.
Syntax
def get_recipient_cert_thumbprint_md5(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_thumbprint_sha1 Property
The SHA-1 hash of the certificate.
Syntax
def get_recipient_cert_thumbprint_sha1(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_thumbprint_sha256 Property
The SHA-256 hash of the certificate.
Syntax
def get_recipient_cert_thumbprint_sha256(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_usage Property
The text description of UsageFlags .
Syntax
def get_recipient_cert_usage(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The text description of recipient_cert_usage_flags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_usage_flags Property
The flags that show intended use for the certificate.
Syntax
def get_recipient_cert_usage_flags(recipient_cert_index: int) -> int: ...
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of recipient_cert_usage_flags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the recipient_cert_usage property for a text representation of recipient_cert_usage_flags.
This functionality currently is not available when the provider is OpenSSL.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_version Property
The certificate's version number.
Syntax
def get_recipient_cert_version(recipient_cert_index: int) -> str: ...
Default Value
""
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
This property is read-only.
recipient_cert_subject Property
The subject of the certificate used for client authentication.
Syntax
def get_recipient_cert_subject(recipient_cert_index: int) -> str: ... def set_recipient_cert_subject(recipient_cert_index: int, value: str) -> None: ...
Default Value
""
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
recipient_cert_encoded Property
The certificate (PEM/Base64 encoded).
Syntax
def get_recipient_cert_encoded(recipient_cert_index: int) -> bytes: ... def set_recipient_cert_encoded(recipient_cert_index: int, value: bytes) -> None: ...
Default Value
""
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The recipient_cert_store and recipient_cert_subject properties also may be used to specify a certificate.
When recipient_cert_encoded is set, a search is initiated in the current recipient_cert_store for the private key of the certificate. If the key is found, recipient_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, recipient_cert_subject is set to an empty string.
The recipient_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the recipient_cert_count property.
signature_hash_algorithm Property
The signature hash algorithm used during signing.
Syntax
def get_signature_hash_algorithm() -> str: ... def set_signature_hash_algorithm(value: str) -> None: ...
signature_hash_algorithm = property(get_signature_hash_algorithm, set_signature_hash_algorithm)
Default Value
"SHA256"
Remarks
This property specifies the signature hash algorithm used when sign is called.
When sign is called the input data is first hashed with the algorithm specified by this property to produce a message digest. The computed digest is then digitally signed with the certificates specified in certificates.
The value specified here may be the name of the algorithm or the corresponding OID. Possible values are:
- "SHA-256" (default)
- "SHA-384"
- "SHA-512"
- "SHA-224"
- "SHA1"
- "MD5"
signer_cert_count Property
The number of records in the SignerCert arrays.
Syntax
def get_signer_cert_count() -> int: ... def set_signer_cert_count(value: int) -> None: ...
signer_cert_count = property(get_signer_cert_count, set_signer_cert_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
- signer_cert_effective_date
- signer_cert_encoded
- signer_cert_expiration_date
- signer_cert_extended_key_usage
- signer_cert_fingerprint
- signer_cert_fingerprint_sha1
- signer_cert_fingerprint_sha256
- signer_cert_issuer
- signer_cert_private_key
- signer_cert_private_key_available
- signer_cert_private_key_container
- signer_cert_public_key
- signer_cert_public_key_algorithm
- signer_cert_public_key_length
- signer_cert_serial_number
- signer_cert_signature_algorithm
- signer_cert_store
- signer_cert_store_password
- signer_cert_store_type
- signer_cert_subject
- signer_cert_subject_alt_names
- signer_cert_thumbprint_md5
- signer_cert_thumbprint_sha1
- signer_cert_thumbprint_sha256
- signer_cert_usage
- signer_cert_usage_flags
- signer_cert_version
signer_cert_effective_date Property
The date on which this certificate becomes valid.
Syntax
def get_signer_cert_effective_date(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_expiration_date Property
The date on which the certificate expires.
Syntax
def get_signer_cert_expiration_date(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_extended_key_usage Property
A comma-delimited list of extended key usage identifiers.
Syntax
def get_signer_cert_extended_key_usage(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_fingerprint Property
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
def get_signer_cert_fingerprint(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_fingerprint_sha1 Property
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
def get_signer_cert_fingerprint_sha1(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_fingerprint_sha256 Property
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
def get_signer_cert_fingerprint_sha256(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_issuer Property
The issuer of the certificate.
Syntax
def get_signer_cert_issuer(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_private_key Property
The private key of the certificate (if available).
Syntax
def get_signer_cert_private_key(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The signer_cert_private_key may be available but not exportable. In this case, signer_cert_private_key returns an empty string.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_private_key_available Property
Whether a PrivateKey is available for the selected certificate.
Syntax
def get_signer_cert_private_key_available(signer_cert_index: int) -> bool: ...
Default Value
FALSE
Remarks
Whether a signer_cert_private_key is available for the selected certificate. If signer_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_private_key_container Property
The name of the PrivateKey container for the certificate (if available).
Syntax
def get_signer_cert_private_key_container(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The name of the signer_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_public_key Property
The public key of the certificate.
Syntax
def get_signer_cert_public_key(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_public_key_algorithm Property
The textual description of the certificate's public key algorithm.
Syntax
def get_signer_cert_public_key_algorithm(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_public_key_length Property
The length of the certificate's public key (in bits).
Syntax
def get_signer_cert_public_key_length(signer_cert_index: int) -> int: ...
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_serial_number Property
The serial number of the certificate encoded as a string.
Syntax
def get_signer_cert_serial_number(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_signature_algorithm Property
The text description of the certificate's signature algorithm.
Syntax
def get_signer_cert_signature_algorithm(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_store Property
The name of the certificate store for the client certificate.
Syntax
def get_signer_cert_store(signer_cert_index: int) -> bytes: ... def set_signer_cert_store(signer_cert_index: int, value: bytes) -> None: ...
Default Value
"MY"
Remarks
The name of the certificate store for the client certificate.
The signer_cert_store_type property denotes the type of the certificate store specified by signer_cert_store. If the store is password-protected, specify the password in signer_cert_store_password.
signer_cert_store is used in conjunction with the signer_cert_subject property to specify client certificates. If signer_cert_store has a value, and signer_cert_subject or signer_cert_encoded is set, a search for a certificate is initiated. Please see the signer_cert_subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
signer_cert_store_password Property
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
def get_signer_cert_store_password(signer_cert_index: int) -> str: ... def set_signer_cert_store_password(signer_cert_index: int, value: str) -> None: ...
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
signer_cert_store_type Property
The type of certificate store for this certificate.
Syntax
def get_signer_cert_store_type(signer_cert_index: int) -> int: ... def set_signer_cert_store_type(signer_cert_index: int, value: int) -> None: ...
Default Value
0
Remarks
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the signer_cert_store and set signer_cert_store_password to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
signer_cert_subject_alt_names Property
Comma-separated lists of alternative subject names for the certificate.
Syntax
def get_signer_cert_subject_alt_names(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
Comma-separated lists of alternative subject names for the certificate.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_thumbprint_md5 Property
The MD5 hash of the certificate.
Syntax
def get_signer_cert_thumbprint_md5(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_thumbprint_sha1 Property
The SHA-1 hash of the certificate.
Syntax
def get_signer_cert_thumbprint_sha1(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_thumbprint_sha256 Property
The SHA-256 hash of the certificate.
Syntax
def get_signer_cert_thumbprint_sha256(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_usage Property
The text description of UsageFlags .
Syntax
def get_signer_cert_usage(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The text description of signer_cert_usage_flags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_usage_flags Property
The flags that show intended use for the certificate.
Syntax
def get_signer_cert_usage_flags(signer_cert_index: int) -> int: ...
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of signer_cert_usage_flags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the signer_cert_usage property for a text representation of signer_cert_usage_flags.
This functionality currently is not available when the provider is OpenSSL.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_version Property
The certificate's version number.
Syntax
def get_signer_cert_version(signer_cert_index: int) -> str: ...
Default Value
""
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
This property is read-only.
signer_cert_subject Property
The subject of the certificate used for client authentication.
Syntax
def get_signer_cert_subject(signer_cert_index: int) -> str: ... def set_signer_cert_subject(signer_cert_index: int, value: str) -> None: ...
Default Value
""
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
signer_cert_encoded Property
The certificate (PEM/Base64 encoded).
Syntax
def get_signer_cert_encoded(signer_cert_index: int) -> bytes: ... def set_signer_cert_encoded(signer_cert_index: int, value: bytes) -> None: ...
Default Value
""
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The signer_cert_store and signer_cert_subject properties also may be used to specify a certificate.
When signer_cert_encoded is set, a search is initiated in the current signer_cert_store for the private key of the certificate. If the key is found, signer_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, signer_cert_subject is set to an empty string.
The signer_cert_index parameter specifies the index of the item in the array. The size of the array is controlled by the signer_cert_count property.
use_oaep Property
This property specifies whether or not to use Optimal Asymmetric Encryption Padding (OAEP).
Syntax
def get_use_oaep() -> bool: ... def set_use_oaep(value: bool) -> None: ...
use_oaep = property(get_use_oaep, set_use_oaep)
Default Value
FALSE
Remarks
This property specifies whether or not to use Optimal Asymmetric Encryption Padding (OAEP). By default, this value is False and the class will use PKCS1.
To specify nondefault OAEP options, please see OAEPRSAHashAlgorithm, OAEPMGF1HashAlgorithm, and OAEPParams
use_pss Property
Whether to use RSA-PSS during signing and verification.
Syntax
def get_use_pss() -> bool: ... def set_use_pss(value: bool) -> None: ...
use_pss = property(get_use_pss, set_use_pss)
Default Value
FALSE
Remarks
This property specifies whether RSA-PSS will be used when signing and verifying messages. The default value is False.
add_certificate Method
Used to add certificates for signing.
Syntax
def add_certificate(cert_store_type: int, cert_store: str, cert_store_password: str, cert_subject: str) -> None: ...
Remarks
This method adds a signing certificate. Signing certificates may be added using this method or by adding a certificate directly to certificates.
The added certificate(s) will be used to sign the message when sign is called.
CertStoreType specifies the type of certificate store. The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the and set to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
CertStore specifies the path to the certificate file. If the CertStoreType is a blob, this specifies the certificate content. See certificates for details.
CertStorePassword is the password for the certificate (if any).
CertSubject specified the subject of the certificate to load. The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
add_recipient_cert Method
Used to add recipient certificates used to encrypt messages.
Syntax
def add_recipient_cert(cert_encoded: bytes) -> None: ...
Remarks
This method adds a public certificate used when encrypt is called. Public certificates of recipients may be added using this method or by adding a certificate directly to the recipient_certs property.
CertEncoded must contain the PEM or Base64 encoded public certificate.
config Method
Sets or retrieves a configuration setting.
Syntax
def config(configuration_string: str) -> str: ...
Remarks
config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
decrypt Method
Decrypts the current message.
Syntax
def decrypt() -> None: ...
Remarks
decrypt decrypts the input data with the specified certificate. Certificates are specified by calling add_certificate or setting the certificates property.
If the certificate used to encrypt the message is not known ahead of time get_recipient_info may be called prior to calling decrypt to obtain information about the recipient (the entity the for which the message was encrypted). If get_recipient_info is called, the on_recipient_info event is fired with information about the recipient which may be used to load an appropriate decryption certificate.
The following properties are applicable when calling this method:
- certificates (Required)
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Encrypt and Decrypt a message
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.InputMessage = "My Data";
cms.Encrypt();
string encryptedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = encryptedMessage;
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Encrypt and Decrypt a message - DER Output Format
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.InputMessage = "My Data";
cms.OutputFormat = "DER";
cms.Encrypt();
byte[] encryptedMessage = cms.OutputMessageB; //Binary output
cms = new Cms();
cms.InputMessageB = encryptedMessage;
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Encrypt and Decrypt - Multiple Recipients
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test2.cer", "", "*"));
cms.InputMessage = "My Data";
cms.Encrypt();
string encryptedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = encryptedMessage;
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Encrypt and Decrypt - Get Recipient Info
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.InputMessage = "My Data";
cms.Encrypt();
string encryptedMessage = cms.OutputMessage;
//If the recipient certificate is not known ahead of time the GetRecipientInfo method may be called
//to find information about the certificate.
cms = new Cms();
cms.InputMessage = encryptedMessage;
cms.OnRecipientInfo += (s, e) => {
Console.WriteLine(e.SerialNumber);
Console.WriteLine(e.Issuer);
if (e.Issuer == "CN=100") //Identify the certificate to load based on event params
{
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
}
};
cms.GetRecipientInfo();
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
decrypt_and_verify_signature Method
Decrypts and verifies the signature of the current message.
Syntax
def decrypt_and_verify_signature() -> None: ...
Remarks
This method decrypts the input data and verifies the signature. Decryption certificates are specified by calling add_certificate or setting the certificates property. Certificates used to verify the signature will be taken from the message itself if included, or from the signer_certs property.
If the certificate used to encrypt the message is not known ahead of time get_recipient_info may be called prior to calling decrypt to obtain information about the recipient (the entity the for which the message was encrypted). If get_recipient_info is called, the on_recipient_info event is fired with information about the recipient which may be used to load an appropriate decryption certificate.
In order to perform signature verification the public signer's certificate must be present or explicitly specified. In many cases the certificate itself is included in the input message and a certificate does not need to explicitly be set. If a certificate does need to be set for signature verification the certificate may be specified by calling add_recipient_cert or setting recipient_certs.
When this method is called the on_signer_cert_info event fires once for each signature on the message. This event provides details about the signer certificate, as well as the signer certificate itself (if present). The information provided via on_signer_cert_info may be used to load an appropriate certificate for verification from within the event. If the CertEncoded parameter of on_signer_cert_info is populated the certificate required for verification is already present in the message.
The following properties are applicable when calling this method:
- certificates (Required)
- detached_signature
- detached_signature_data
- enable_compression
- signer_certs
If the input message is a detached signature, the original data that was signed must be specified in detached_signature_data. In addition the detached_signature property must be set to True to instruct the class to treat the input message as a detached signature.
If the input message is compressed enable_compression must be set to True before calling this method.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
encrypt Method
Encrypts the current message.
Syntax
def encrypt() -> None: ...
Remarks
encrypt encrypts the input data with the the specified certificate(s). Certificates are specified by calling add_recipient_cert or setting the recipient_certs property.
output_format specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. Additional settings allow further configuration. The following properties are applicable when calling this method:
- recipient_certs (required)
- encryption_algorithm
- output_format
- use_oaep
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Encrypt and Decrypt a message
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.InputMessage = "My Data";
cms.Encrypt();
string encryptedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = encryptedMessage;
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Encrypt and Decrypt a message - DER Output Format
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.InputMessage = "My Data";
cms.OutputFormat = "DER";
cms.Encrypt();
byte[] encryptedMessage = cms.OutputMessageB; //Binary output
cms = new Cms();
cms.InputMessageB = encryptedMessage;
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Encrypt and Decrypt - Multiple Recipients
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test2.cer", "", "*"));
cms.InputMessage = "My Data";
cms.Encrypt();
string encryptedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = encryptedMessage;
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
Encrypt and Decrypt - Get Recipient Info
Cms cms = new Cms();
cms.RecipientCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
cms.InputMessage = "My Data";
cms.Encrypt();
string encryptedMessage = cms.OutputMessage;
//If the recipient certificate is not known ahead of time the GetRecipientInfo method may be called
//to find information about the certificate.
cms = new Cms();
cms.InputMessage = encryptedMessage;
cms.OnRecipientInfo += (s, e) => {
Console.WriteLine(e.SerialNumber);
Console.WriteLine(e.Issuer);
if (e.Issuer == "CN=100") //Identify the certificate to load based on event params
{
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
}
};
cms.GetRecipientInfo();
cms.Decrypt();
string plaintextMessage = cms.OutputMessage;
get_recipient_info Method
Gets the recipient certificate information for an encrypted message.
Syntax
def get_recipient_info() -> None: ...
Remarks
This method retrieves information about the recipient(s) of the encrypted message. This may be called prior to calling decrypt to determine which certificate should be loaded for decryption.
When this method is called the on_recipient_info event fires once for each recipient found within the message. Use the parameters of the on_recipient_info to determine which certificate to specify via add_certificate or certificates before calling decrypt.
get_signer_cert_info Method
This method gets the signature information for an signed message.
Syntax
def get_signer_cert_info() -> None: ...
Remarks
This method retrieves information about the certificate used to sign the message. This may be called before calling verify_signature to determine which certificate should be loaded for verification.
When this method is called, the on_signer_cert_info event fires once for each signer of the message. Use the parameters of the on_signer_cert_info to determine which certificate to specify before calling verify_signature.
Note: Use of this method is optional. If no certificate is specified before calling verify_signature, the class will fire the on_signer_cert_info and a certificate may be loaded from within the event at that time (if necessary).
reset Method
This method resets the class properties.
Syntax
def reset() -> None: ...
Remarks
This method resets the values of all message and certificate properties. It is an easy way to reset the class properties before starting to populate with new values.
sign Method
Signs the current message.
Syntax
def sign() -> None: ...
Remarks
sign digitally signs the input data with the the specified certificate(s). Certificates are specified by calling add_certificate or setting the certificates property.
output_format specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. include_certificates specifies whether the public certificate is included in the signed message. Additional settings allow further configuration. The following properties are applicable when calling this method:
- certificates (required)
- detached_signature
- enable_compression
- GenerateSignatureTimestamp
- include_certificates
- output_format
- signature_hash_algorithm
- use_pss
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Sign and Verify a message
Cms cms = new Cms();
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.InputMessage = "My Data";
cms.Sign();
string signedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Sign and Verify a message - DER Output Format
Cms cms = new Cms();
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.InputMessage = "My Data";
cms.OutputFormat = "DER";
cms.Sign();
byte[] signedMessage = cms.OutputMessageB; //Binary output
cms = new Cms();
cms.InputMessageB = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Sign and Verify a message - Detached Signature
Cms cms = new Cms();
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.InputMessage = "My Data";
cms.DetachedSignature = true;
cms.Sign();
string signature = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = "My Data";
cms.DetachedSignatureData = signature;
cms.DetachedSignature = true;
cms.VerifySignature();
Sign and Verify a message - Multiple Signatures
Cms cms = new Cms();
cms.InputMessage = "My Data";
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test2.pfx", "password2", "*"));
cms.Sign();
string signedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Sign and Verify a message - No Included Certificate
Cms cms = new Cms();
cms.InputMessage = "My Data";
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.IncludeCertificates = CmsIncludeCertificates.icsNone;
cms.Sign();
string signedMessage = cms.OutputMessage;
cms = new Cms();
cms.OnSignerCertInfo += (s, e) => {
Console.WriteLine(e.Issuer);
Console.WriteLine(e.SerialNumber);
if (e.Issuer == "CN=100") //Identify the certificate to load based on event params
{
//Load the correct signer certificate.
cms.SignerCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
}
};
cms.InputMessage = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
sign_and_encrypt Method
Signs and encrypts the current message.
Syntax
def sign_and_encrypt() -> None: ...
Remarks
This method signs encrypts the input data with the the specified certificate(s). Encryption certificates are specified by calling add_recipient_cert or setting the recipient_certs property. Signing certificates are set via the certificates property.
output_format specifies the encoding of the output message. Valid values are PEM, DER, and SMIME. Additional settings allow further configuration. include_certificates specifies whether the public certificate is included in the signed message. The following properties are applicable when calling this method:
- certificates (required)
- recipient_certs (required)
- detached_signature
- enable_compression
- encryption_algorithm
- GenerateSignatureTimestamp
- include_certificates
- output_format
- signature_hash_algorithm
- use_oaep
- use_pss
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
verify_signature Method
Verifies the signature of the current message.
Syntax
def verify_signature() -> None: ...
Remarks
verify_signature verifies the signature of the input message.
In order to perform signature verification the public signer's certificate must be present or explicitly specified. In many cases the certificate itself is included in the input message and a certificate does not need to explicitly be set. If a certificate does need to be set for signature verification the certificate may be specified by calling add_recipient_cert or setting recipient_certs.
When this method is called the on_signer_cert_info event fires once for each signature on the message. This event provides details about the signer certificate, as well as the signer certificate itself (if present). The information provided via on_signer_cert_info may be used to load an appropriate certificate for verification from within the event. If the CertEncoded parameter of on_signer_cert_info is populated the certificate required for verification is already present in the message.
The following property are applicable when calling this method:
If the input message is a detached signature, the original data that was signed must be specified in detached_signature_data. In addition the detached_signature property must be set to True to instruct the class to treat the input message as a detached signature.
If the input message is compressed enable_compression must be set to True before calling this method.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Sign and Verify a message
Cms cms = new Cms();
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.InputMessage = "My Data";
cms.Sign();
string signedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Sign and Verify a message - DER Output Format
Cms cms = new Cms();
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.InputMessage = "My Data";
cms.OutputFormat = "DER";
cms.Sign();
byte[] signedMessage = cms.OutputMessageB; //Binary output
cms = new Cms();
cms.InputMessageB = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Sign and Verify a message - Detached Signature
Cms cms = new Cms();
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.InputMessage = "My Data";
cms.DetachedSignature = true;
cms.Sign();
string signature = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = "My Data";
cms.DetachedSignatureData = signature;
cms.DetachedSignature = true;
cms.VerifySignature();
Sign and Verify a message - Multiple Signatures
Cms cms = new Cms();
cms.InputMessage = "My Data";
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test2.pfx", "password2", "*"));
cms.Sign();
string signedMessage = cms.OutputMessage;
cms = new Cms();
cms.InputMessage = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
Sign and Verify a message - No Included Certificate
Cms cms = new Cms();
cms.InputMessage = "My Data";
cms.Certificates.Add(new Certificate(CertStoreTypes.cstPFXFile, @"C:\temp\test.pfx", "password", "*"));
cms.IncludeCertificates = CmsIncludeCertificates.icsNone;
cms.Sign();
string signedMessage = cms.OutputMessage;
cms = new Cms();
cms.OnSignerCertInfo += (s, e) => {
Console.WriteLine(e.Issuer);
Console.WriteLine(e.SerialNumber);
if (e.Issuer == "CN=100") //Identify the certificate to load based on event params
{
//Load the correct signer certificate.
cms.SignerCerts.Add(new Certificate(CertStoreTypes.cstPublicKeyFile, @"C:\temp\test.cer", "", "*"));
}
};
cms.InputMessage = signedMessage;
cms.VerifySignature();
string plaintextMessage = cms.OutputMessage;
on_error Event
Fired when information is available about errors during data delivery.
Syntax
class CMSErrorEventParams(object): @property def error_code() -> int: ... @property def description() -> str: ... # In class CMS: @property def on_error() -> Callable[[CMSErrorEventParams], None]: ... @on_error.setter def on_error(event_hook: Callable[[CMSErrorEventParams], None]) -> None: ...
Remarks
The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
on_log Event
Fires with log information during processing.
Syntax
class CMSLogEventParams(object): @property def log_level() -> int: ... @property def message() -> str: ... @property def log_type() -> str: ... # In class CMS: @property def on_log() -> Callable[[CMSLogEventParams], None]: ... @on_log.setter def on_log(event_hook: Callable[[CMSLogEventParams], None]) -> None: ...
Remarks
This event fires during processing with log information. The level of detail that is logged is controlled via the LogLevel.
LogLevel indicates the level of message. Possible values are:
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
LogMessage is the log entry.
LogType indicates the type of log. Possible values are:
- "INFO"
- "ENCRYPT"
- "COMPRESS"
- "SIGN"
- "DECRYPT"
- "DECOMPRESS"
- "VERIFY"
- "DEBUG"
on_recipient_info Event
This event is fired for each recipient certificate of the encrypted message.
Syntax
class CMSRecipientInfoEventParams(object): @property def issuer() -> str: ... @property def serial_number() -> str: ... @property def subject_key_identifier() -> str: ... @property def encryption_algorithm() -> str: ... # In class CMS: @property def on_recipient_info() -> Callable[[CMSRecipientInfoEventParams], None]: ... @on_recipient_info.setter def on_recipient_info(event_hook: Callable[[CMSRecipientInfoEventParams], None]) -> None: ...
Remarks
When get_recipient_info is called on a valid encrypted message, this event will fire once for each recipient certificate that the message has been encrypted for. This may be used to identify the certificate to load.
Issuer is the subject of the issuer certificate.
SerialNumber is the serial number of the encryption certificate.
SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.
EncryptionAlgorithm is the encryption algorithm used to encrypt the message. Possible values are as follows:
- "3DES"
- "DES"
- "RC2CBC40"
- "RC2CBC64"
- "RC2CBC128" or "RC2"
- "AESCBC128" or "AES"
- "AESCBC192"
- "AESCBC256"
- "AESGCM128" or "AESGCM"
- "AESGCM192"
- "AESGCM256"
on_signer_cert_info Event
Fired during verification of the signed message.
Syntax
class CMSSignerCertInfoEventParams(object): @property def issuer() -> str: ... @property def serial_number() -> str: ... @property def subject_key_identifier() -> str: ... @property def cert_encoded() -> bytes: ... # In class CMS: @property def on_signer_cert_info() -> Callable[[CMSSignerCertInfoEventParams], None]: ... @on_signer_cert_info.setter def on_signer_cert_info(event_hook: Callable[[CMSSignerCertInfoEventParams], None]) -> None: ...
Remarks
During verification, this event will be raised while parsing the signer's certificate information. The parameters which are populated depends on the options used when the message was originally signed. This information may be used to select the correct certificate for signer_certs in order to verify the signature. The following parameters may be populated.
Issuer specifies the subject of the issuer of the certificate used to sign the message.
SerialNumber is the serial number of the certificate used to sign the message.
SubjectKeyIdentifier is the X.509 subjectKeyIdentifier extension value of the certificate used to sign the message encoded as a hex string.
CertEncoded is the PEM (base64 encoded) public certificate needed to verify the signature. Note: when this value is present the class will automatically use this value to perform signature verification.
The signer_certs property may be set from within this event. In this manner the decision of which signer certificate to load may be delayed until the parameters of this event are inspected and the correct certificate can be located and loaded.
CMS Config Settings
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.CMS Config Settings
The default value is 1.2.840.113549.1.7.1 which is the OID for id-data.
NOTE: This config may only be used when the UseCryptoAPI is true.
The default value is True.
The default value for IncludeHeaders is true.
Note: This setting is only applicable to when output_format is set to SMIME.
When set to False, only the message will be processed, MIME part headers will not be generated or stripped.
The default value for IncludeInternalHeaders is False.
Note: This setting is only applicable to when output_format is set to SMIME.
If no value is specified and a value cannot be automatically determined the default value 7bit will be used.
Note: This setting is only applicable when output_format is set to SMIME and when calling sign or sign_and_encrypt and detached_signature is True.
If no value is specified and a value cannot be automatically determined the default value text/plain; charset="iso-8859-1" will be used.
Note: This setting is only applicable when output_format is set to SMIME and when calling sign or sign_and_encrypt and detached_signature is True.
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
- "SHA1"
- "SHA224"
- "SHA256" (default)
- "SHA384"
- "SHA512"
- "RIPEMD160"
- "MD2"
- "MD5"
- "MD5SHA1"
Note: This setting is not applicable when UseFIPSCompliantAPI is set to True or when the private key of the signing certificate is not exportable since the underlying system implementation does not support separate OAEPRSAHashAlgorithm and OAEPMGF1HashAlgorithm values. In this case the OAEPRSAHashAlgorithm is also used for MGF1.
- "SHA1"
- "SHA224"
- "SHA256" (default)
- "SHA384"
- "SHA512"
- "RIPEMD160"
- "MD2"
- "MD5"
- "MD5SHA1"
- 0 (issuerAndSerialNumber - default)
- 1 (subjectKeyIdentifier)
Note: When subjectKeyIdentifier is selected, the recipient's encryption certificate must contain the subjectKeyIdentifier extension.
- 0 (issuerAndSerialNumber - default)
- 1 (subjectKeyIdentifier)
Note: When subjectKeyIdentifier is selected, the signing certificate must contain the subjectKeyIdentifier extension.
The default value is False, and the name of the algorithm is used. Set this to True to use the object identifiers instead.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to True. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to True tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to False by default. On Linux/macOS, this setting is set to True by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
CMS Errors
CMS Errors
10191 | Invalid index (RecipientIndex). |
10192 | Message decoding error (code). |
10193 | Unexpected message type. |
10194 | Unsupported hashing/signing algorithm. |
10195 | The message does not have any signers. |
10196 | The message signature could not be verified. |
10197 | Could not locate a suitable decryption certificate. |
10198 | The signer certificate could not be found. |
10199 | No signing certificate was supplied for signing the message. |
10201 | The specified certificate was not the one required. |
10202 | The specified certificate could not be found. |
10221 | Could not acquire CSP. |
10222 | Type validation error. |
10223 | Unsupported key size. |
10224 | Unrecognized Content-Type object identifier. |
10225 | Unrecognized public key format. |
10226 | No choices specified. |
10228 | Must specify output stream. |
10280 | Invalid part index. |
10281 | Unknown MIME type. |
10283 | No MIME-boundary found. |
10280 | Error decoding certificate. |