JWS Class
Properties Methods Events Config Settings Errors
Create, Sign and Verify JSON Web Signatures (JWS).
Syntax
class ipworksencrypt.JWS
Remarks
The JWS class supports signing and verifying JSON Web Signatures (JWS).
Specify any payload via input properties and use sign to create a JWS message using a variety of algorithms including HMAC, RSA, and ECDSA. Use verify to verify the signature of any received JWS message. The following algorithms are supported:
- HS256
- HS384
- HS512
- RS256
- RS384
- RS512
- PS256
- PS384
- PS512
- ES256
- ES384
- ES512
- None
See algorithm for more details about supported algorithms.
Signing
The sign method may be used to sign a payload with a variety of algorithms. Before calling the sign method set algorithm to the algorithm which will be used to sign the message. The result of signing is a compact serialized JWS string. For instance:
eyJhbGciOiJIUzI1NiJ9.dGVzdA.o_JihJlCwvBO1AgY_Ao3_VBivdFmj3ufv3ZWAqYF4Ow
The class is agnostic of the payload that is signed. Any value may be signed. key_id may be set to include an identifier to help the receiving party identify the key used to sign the message. The following properties are applicable when calling this method:
- algorithm (required)
- certificate (conditional - required for ECDSA and RSA)
- key (conditional - required for HMAC)
- header_params
- key_id
- overwrite
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Notes for HMAC Algorithms (HS256, HS384, HS512)
When algorithm is set to a HMAC algorithm key must be set to a key of appropriate length for the algorithm. The key should be the same number of bits as the algorithm being used. For instance a 256 bit key would be used for HS256.
The example code below uses the EzRand class to generate a key, but the key may be created using any means. The key must be known by both parties in order for signing and verification to take place.
//Generate a 256 bit (32 byte) key
Ezrand ezrand = new Ezrand();
ezrand.RandBytesLength = 32;
ezrand.GetNextBytes();
byte[] key = ezrand.RandBytesB;
//Sign the payload using HS256
Jws jws = new Jws();
jws.Algorithm = JwsAlgorithms.jwsHS256;
jws.InputMessage = "test data";
jws.KeyB = key;
jws.Sign();
string signedData = jws.OutputMessage;
To use an existing HMAC key provide the bytes to the key property. For instance:
//HMAC SHA-256 Key
byte[] key = new byte[] { 170, 171, 221, 209, 7, 181, 48, 178, 48, 118, 242, 132, 36, 218, 74, 140, 216, 165, 161, 70, 11, 42, 246, 205, 235, 231, 19, 48, 87, 141, 122, 10 };
//Sign the payload using HS256
Jws jws = new Jws();
jws.Algorithm = JwsAlgorithms.jwsHS256;
jws.InputMessage = "test data";
jws.KeyB = key;
jws.Sign();
string signedData = jws.OutputMessage;
Notes for RSA Algorithms (RS256, RS384, RS512, PS256, PS384, PS512)
The RSA based algorithms use asymmetric encryption. Signing is done with a private key and verification is done with a public key. The private key may be in PFX or PEM format.
Jws jws = new Jws();
jws.Algorithm = JwsAlgorithms.jwsRS256;
jws.Certificate = new Certificate(CertStoreTypes.cstPFXFile, "..\\jwt.pfx", "test", "*");
jws.InputMessage = "test";
jws.Sign();
string signedMessage = jws.OutputMessage;
Notes for ECDSA Algorithms (ES256, ES384, ES512)
ECDSA algorithms require a valid ECC private key to sign. The ECC class can be used to create or import an ECC key into the Certificate format accepted by the JWS class.
//Create an ECC key with SHA-256
Ecc ecc = new Ecc();
ecc.HashAlgorithm = EccHashAlgorithms.ehaSHA256;
ecc.CreateKey();
string privKey = ecc.Key.PrivateKey;
//Sign the payload using ES256
Jws jws = new Jws();
jws.Algorithm = JwsAlgorithms.jwsES256;
jws.Certificate = new Certificate(CertStoreTypes.cstPEMKeyBlob, privKey, "", "*");
jws.InputMessage = "test";
jws.Sign();
string signedMessage = jws.OutputMessage;
To use an existing ECC Key populate the Rx, Ry, and K values of Key property in the ECC class first. For instance:
//Import an existing ECC private key
Ecc ecc = new Ecc();
byte[] x_bytes = new byte[] { 171, 170, 196, 151, 94, 196, 231, 12, 128, 232, 17, 61, 45, 105, 41, 209, 192, 187, 112, 242, 110, 178, 95, 240, 36, 55, 83, 171, 190, 176, 78, 13 };
byte[] y_bytes = new byte[] { 197, 75, 134, 245, 245, 28, 199, 9, 7, 117, 1, 54, 49, 178, 135, 252, 62, 89, 35, 180, 117, 80, 231, 23, 110, 250, 28, 124, 219, 253, 224, 156 };
byte[] k_bytes = new byte[] { 81, 65, 201, 24, 235, 249, 162, 148, 169, 150, 109, 181, 61, 238, 145, 122, 31, 30, 151, 94, 239, 90, 222, 217, 63, 103, 54, 2, 176, 232, 248, 168 };
ecc.Key.RxB = x_bytes;
ecc.Key.RyB = y_bytes;
ecc.Key.KB = k_bytes;
string privKey = ecc.Key.PrivateKey;
//Sign the payload using ES256
Jws jws = new Jws();
jws.Algorithm = JwsAlgorithms.jwsES256;
jws.Certificate = new Certificate(CertStoreTypes.cstPEMKeyBlob, privKey, "", "*");
jws.InputMessage = "test";
jws.Sign();
string signedMessage = jws.OutputMessage;
Notes for Unsecured (none)
To create a JWS token without any security set algorithm to jwsNone.
Jws jws = new Jws();
jws.Algorithm = JwsAlgorithms.jwsNone;
jws.InputMessage = "test";
jws.Sign();
string unsecuredMessage = jws.OutputMessage;
Signature Verification
The verify method may be used to verify a received JWS message. Before calling the verify method set input_message or input_file to a valid compact serialized JWS string. For instance:
eyJhbGciOiJIUzI1NiJ9.dGVzdA.o_JihJlCwvBO1AgY_Ao3_VBivdFmj3ufv3ZWAqYF4Ow
key or certificate should be set to the HMAC key or public certificate respectively. If the correct key or certificate is not known ahead of time the KeyId parameter of the on_signer_info event may be used to identify the correct key.
If this method returns without error verification was successful. If verification fails then this method fails with an error. After calling this method the payload will be present in the output_message or file specified by output_file and the header_params property will contain the headers. Headers of the parsed message are also available through the on_header_param event.
The following properties are applicable when calling this method:
- key (conditional - required for HMAC)
- certificate (conditional - required for ECDSA and RSA)
- algorithm (only if StrictValidation is True)
- overwrite
- StrictValidation
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Notes for HMAC Algorithms (HS256, HS384, HS512)
When verifying a message originally signed with a HMAC algorithm key must be set to the same key used during signing. The key must be known by both parties in order for signing and verification to take place.
byte[] key = new byte[] { 170, 171, 221, 209, 7, 181, 48, 178, 48, 118, 242, 132, 36, 218, 74, 140, 216, 165, 161, 70, 11, 42, 246, 205, 235, 231, 19, 48, 87, 141, 122, 10 };
Jws jws = new Jws();
jws.KeyB = key;
jws.InputMessage = signedData;
jws.Verify();
string verifiedPayload = jws.OutputMessage;
Notes for RSA Algorithms (RS256, RS384, RS512, PS256, PS384, PS512)
The RSA based algorithms use asymmetric encryption. Signing is done with a private key and verification is done with a public key. The public key is typically in PEM format.
Jws jws = new Jws();
jws.Certificate = new Certificate("..\\jwt.cer");
jws.InputMessage = signedData;
jws.Verify();
string verifiedPayload = jws.OutputMessage;
Notes for ECDSA Algorithms (ES256, ES384, ES512)
ECDSA algorithms require a valid ECC public key to verify the message. If the key was originally created with the ECC class the PEM encoded PublicKey may be used directly with the certificate property. An example PEM encoded public certificate created by the ECC class:
-----BEGIN PUBLIC KEY----- MIIBMjCB7AYHKoZIzj0CATCB4AIBATAsBgcqhkjOPQEBAiEA/////wAAAAEAAAAAAAAAAAAA AAD///////////////8wRAQg/////wAAAAEAAAAAAAAAAAAAAAD///////////////wEIFrG NdiqOpPns+u9VXaYhrxlHQawzFOw9jvOPD4n0mBLBEEEaxfR8uEsQkf4vOblY6RA8ncDfYEt 6zOg9KE5RdiYwpZP40Li/hp/m47n60p8D54WK84zV2sxXs7LtkBoN79R9QIhAP////8AAAAA //////////+85vqtpxeehPO5ysL8YyVRAgEBA0EEIC5rbLp11Mnz6cBXLLriaDIov3rm8RAY x/OR0bOKiff0cQy+sLVaxjseqFk/+Xvl4ORSv5Z6HdHv5GyEpA0UoA== -----END PUBLIC KEY-----
Jws jws = new Jws();
jws.Certificate = new Certificate(CertStoreTypes.cstPublicKeyFile, pubKey, "", "*");
jws.InputMessage = signedData;
jws.Verify();
string verifiedPayload = jws.OutputMessage;
To use an ECC public key created by other means the ECC class may be used to import the key parameters. Populate the Rx and Ry of the ECC class first to obtain the PEM formatted public key. For instance:
//Import an existing ECC public key
Ecc ecc = new Ecc();
byte[] x_bytes = new byte[] { 171, 170, 196, 151, 94, 196, 231, 12, 128, 232, 17, 61, 45, 105, 41, 209, 192, 187, 112, 242, 110, 178, 95, 240, 36, 55, 83, 171, 190, 176, 78, 13 };
byte[] y_bytes = new byte[] { 197, 75, 134, 245, 245, 28, 199, 9, 7, 117, 1, 54, 49, 178, 135, 252, 62, 89, 35, 180, 117, 80, 231, 23, 110, 250, 28, 124, 219, 253, 224, 156 };
ecc.Key.RxB = x_bytes;
ecc.Key.RyB = y_bytes;
string pubKey = ecc.Key.PublicKey;
Jws jws = new Jws();
jws.Certificate = new Certificate(CertStoreTypes.cstPublicKeyFile, pubKey, "", "*");
jws.InputMessage = signedData;
jws.Verify();
string verifiedPayload = jws.OutputMessage;
Notes for Unsecured (none)
To parse a JWS token without any security call the sign method without setting key or certificate.
Jws jws = new Jws();
jws.InputMessage = signedData;
jws.Verify();
string unsecuredPayload = jws.OutputMessage;
Other Functionality
In addition to standard signing and verifying the class also supports a variety of other features including:
- Adding custom header parameters with add_header_param
- Enforcing algorithm restrictions when verifying by setting StrictValidation
- Inspect the JWS without verifying by calling parse
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
algorithm | The algorithm used when signing. |
cert_effective_date | The date on which this certificate becomes valid. |
cert_expiration_date | The date on which the certificate expires. |
cert_extended_key_usage | A comma-delimited list of extended key usage identifiers. |
cert_fingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
cert_fingerprint_sha1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
cert_fingerprint_sha256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
cert_issuer | The issuer of the certificate. |
cert_private_key | The private key of the certificate (if available). |
cert_private_key_available | Whether a PrivateKey is available for the selected certificate. |
cert_private_key_container | The name of the PrivateKey container for the certificate (if available). |
cert_public_key | The public key of the certificate. |
cert_public_key_algorithm | The textual description of the certificate's public key algorithm. |
cert_public_key_length | The length of the certificate's public key (in bits). |
cert_serial_number | The serial number of the certificate encoded as a string. |
cert_signature_algorithm | The text description of the certificate's signature algorithm. |
cert_store | The name of the certificate store for the client certificate. |
cert_store_password | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
cert_store_type | The type of certificate store for this certificate. |
cert_subject_alt_names | Comma-separated lists of alternative subject names for the certificate. |
cert_thumbprint_md5 | The MD5 hash of the certificate. |
cert_thumbprint_sha1 | The SHA-1 hash of the certificate. |
cert_thumbprint_sha256 | The SHA-256 hash of the certificate. |
cert_usage | The text description of UsageFlags . |
cert_usage_flags | The flags that show intended use for the certificate. |
cert_version | The certificate's version number. |
cert_subject | The subject of the certificate used for client authentication. |
cert_encoded | The certificate (PEM/Base64 encoded). |
header_param_count | The number of records in the HeaderParam arrays. |
header_param_data_type | The data type of the header parameter. |
header_param_name | The header parameter name. |
header_param_value | The header parameter value. |
input_file | The file to process. |
input_message | The message to process. |
key | The secret key for the hash algorithm. |
key_id | The Id of the key used to sign the message. |
output_file | The output file when encrypting or decrypting. |
output_message | The output message after processing. |
overwrite | Indicates whether or not the class should overwrite files. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
add_header_param | Adds additional header parameters. |
config | Sets or retrieves a configuration setting. |
parse | Parses the compact serialized JWS string. |
reset | Resets the class. |
sign | Signs the payload with the specified algorithm. |
verify | Verifies the signature of the JWS token. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
on_error | Fired when information is available about errors during data delivery. |
on_header_param | Fires once for each JOSE header parameter. |
on_signer_info | Fires with information about the signature. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
AllowedSigningAlgorithms | Allowed signing algorithms when StrictValidation is set to True. |
IncludeCertificateFormat | The certificate values to include in the signed message (if any). |
IssuerCerts | A collection of issuer certificates used with IncludeCertificateFormat. |
KeyEncoding | The encoding of the Key value. |
RawHeader | Holds the raw JOSE header. |
SerializationType | Determines the serialization type to use when reading and writing JWS content. |
StrictValidation | Requires a specific algorithm when verifying signatures. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
algorithm Property
The algorithm used when signing.
Syntax
def get_algorithm() -> int: ... def set_algorithm(value: int) -> None: ...
algorithm = property(get_algorithm, set_algorithm)
Default Value
0
Remarks
This property specifies the algorithm to use when signing.
When signing with an HMAC algorithm key must be specified. When an RSA or ECDSA algorithm is selected certificate must be set before calling sign and certificate must be set before calling verify. The following values are supported:
Algorithm | Description | Private Key Location |
0 (jwsHS256 - default) | HMAC using SHA-256 | key |
1 (jwsHS384) | HMAC using SHA-384 | key |
2 (jwsHS512) | HMAC using SHA-512 | key |
3 (jwsRS256) | RSASSA-PKCS1-v1_5 using SHA-256 | certificate |
4 (jwsRS384) | RSASSA-PKCS1-v1_5 using SHA-384 | certificate |
5 (jwsRS512) | RSASSA-PKCS1-v1_5 using SHA-512 | certificate |
6 (jwsPS256) | RSASSA-PSS using SHA-256 and MGF1 with SHA-256 | certificate |
7 (jwsPS384) | RSASSA-PSS using SHA-384 and MGF1 with SHA-384 | certificate |
8 (jwsPS512) | RSASSA-PSS using SHA-512 and MGF1 with SHA-512 | certificate |
9 (jwsES256) | ECDSA using P-256 and SHA-256 | certificate |
10 (jwsES384) | ECDSA using P-384 and SHA-384 | certificate |
11 (jwsES512) | ECDSA using P-521 and SHA-512 | certificate |
12 (jwsES256K) | ECDSA using secp256k1 curve and SHA-256 | certificate |
99 (jwsNone) | None (unprotected) | Not Applicable |
Note: This setting is also applicable when StrictValidation is enabled before calling verify.
cert_effective_date Property
The date on which this certificate becomes valid.
Syntax
def get_cert_effective_date() -> str: ...
cert_effective_date = property(get_cert_effective_date, None)
Default Value
""
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
cert_expiration_date Property
The date on which the certificate expires.
Syntax
def get_cert_expiration_date() -> str: ...
cert_expiration_date = property(get_cert_expiration_date, None)
Default Value
""
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
cert_extended_key_usage Property
A comma-delimited list of extended key usage identifiers.
Syntax
def get_cert_extended_key_usage() -> str: ...
cert_extended_key_usage = property(get_cert_extended_key_usage, None)
Default Value
""
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
cert_fingerprint Property
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
def get_cert_fingerprint() -> str: ...
cert_fingerprint = property(get_cert_fingerprint, None)
Default Value
""
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
cert_fingerprint_sha1 Property
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
def get_cert_fingerprint_sha1() -> str: ...
cert_fingerprint_sha1 = property(get_cert_fingerprint_sha1, None)
Default Value
""
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
cert_fingerprint_sha256 Property
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
def get_cert_fingerprint_sha256() -> str: ...
cert_fingerprint_sha256 = property(get_cert_fingerprint_sha256, None)
Default Value
""
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
cert_issuer Property
The issuer of the certificate.
Syntax
def get_cert_issuer() -> str: ...
cert_issuer = property(get_cert_issuer, None)
Default Value
""
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
cert_private_key Property
The private key of the certificate (if available).
Syntax
def get_cert_private_key() -> str: ...
cert_private_key = property(get_cert_private_key, None)
Default Value
""
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The cert_private_key may be available but not exportable. In this case, cert_private_key returns an empty string.
This property is read-only.
cert_private_key_available Property
Whether a PrivateKey is available for the selected certificate.
Syntax
def get_cert_private_key_available() -> bool: ...
cert_private_key_available = property(get_cert_private_key_available, None)
Default Value
FALSE
Remarks
Whether a cert_private_key is available for the selected certificate. If cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
cert_private_key_container Property
The name of the PrivateKey container for the certificate (if available).
Syntax
def get_cert_private_key_container() -> str: ...
cert_private_key_container = property(get_cert_private_key_container, None)
Default Value
""
Remarks
The name of the cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
cert_public_key Property
The public key of the certificate.
Syntax
def get_cert_public_key() -> str: ...
cert_public_key = property(get_cert_public_key, None)
Default Value
""
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
cert_public_key_algorithm Property
The textual description of the certificate's public key algorithm.
Syntax
def get_cert_public_key_algorithm() -> str: ...
cert_public_key_algorithm = property(get_cert_public_key_algorithm, None)
Default Value
""
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
cert_public_key_length Property
The length of the certificate's public key (in bits).
Syntax
def get_cert_public_key_length() -> int: ...
cert_public_key_length = property(get_cert_public_key_length, None)
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
cert_serial_number Property
The serial number of the certificate encoded as a string.
Syntax
def get_cert_serial_number() -> str: ...
cert_serial_number = property(get_cert_serial_number, None)
Default Value
""
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
cert_signature_algorithm Property
The text description of the certificate's signature algorithm.
Syntax
def get_cert_signature_algorithm() -> str: ...
cert_signature_algorithm = property(get_cert_signature_algorithm, None)
Default Value
""
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
cert_store Property
The name of the certificate store for the client certificate.
Syntax
def get_cert_store() -> bytes: ... def set_cert_store(value: bytes) -> None: ...
cert_store = property(get_cert_store, set_cert_store)
Default Value
"MY"
Remarks
The name of the certificate store for the client certificate.
The cert_store_type property denotes the type of the certificate store specified by cert_store. If the store is password-protected, specify the password in cert_store_password.
cert_store is used in conjunction with the cert_subject property to specify client certificates. If cert_store has a value, and cert_subject or cert_encoded is set, a search for a certificate is initiated. Please see the cert_subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
cert_store_password Property
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
def get_cert_store_password() -> str: ... def set_cert_store_password(value: str) -> None: ...
cert_store_password = property(get_cert_store_password, set_cert_store_password)
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
cert_store_type Property
The type of certificate store for this certificate.
Syntax
def get_cert_store_type() -> int: ... def set_cert_store_type(value: int) -> None: ...
cert_store_type = property(get_cert_store_type, set_cert_store_type)
Default Value
0
Remarks
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the cert_store and set cert_store_password to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
cert_subject_alt_names Property
Comma-separated lists of alternative subject names for the certificate.
Syntax
def get_cert_subject_alt_names() -> str: ...
cert_subject_alt_names = property(get_cert_subject_alt_names, None)
Default Value
""
Remarks
Comma-separated lists of alternative subject names for the certificate.
This property is read-only.
cert_thumbprint_md5 Property
The MD5 hash of the certificate.
Syntax
def get_cert_thumbprint_md5() -> str: ...
cert_thumbprint_md5 = property(get_cert_thumbprint_md5, None)
Default Value
""
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
cert_thumbprint_sha1 Property
The SHA-1 hash of the certificate.
Syntax
def get_cert_thumbprint_sha1() -> str: ...
cert_thumbprint_sha1 = property(get_cert_thumbprint_sha1, None)
Default Value
""
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
cert_thumbprint_sha256 Property
The SHA-256 hash of the certificate.
Syntax
def get_cert_thumbprint_sha256() -> str: ...
cert_thumbprint_sha256 = property(get_cert_thumbprint_sha256, None)
Default Value
""
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
cert_usage Property
The text description of UsageFlags .
Syntax
def get_cert_usage() -> str: ...
cert_usage = property(get_cert_usage, None)
Default Value
""
Remarks
The text description of cert_usage_flags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
cert_usage_flags Property
The flags that show intended use for the certificate.
Syntax
def get_cert_usage_flags() -> int: ...
cert_usage_flags = property(get_cert_usage_flags, None)
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of cert_usage_flags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the cert_usage property for a text representation of cert_usage_flags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
cert_version Property
The certificate's version number.
Syntax
def get_cert_version() -> str: ...
cert_version = property(get_cert_version, None)
Default Value
""
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
cert_subject Property
The subject of the certificate used for client authentication.
Syntax
def get_cert_subject() -> str: ... def set_cert_subject(value: str) -> None: ...
cert_subject = property(get_cert_subject, set_cert_subject)
Default Value
""
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
cert_encoded Property
The certificate (PEM/Base64 encoded).
Syntax
def get_cert_encoded() -> bytes: ... def set_cert_encoded(value: bytes) -> None: ...
cert_encoded = property(get_cert_encoded, set_cert_encoded)
Default Value
""
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The cert_store and cert_subject properties also may be used to specify a certificate.
When cert_encoded is set, a search is initiated in the current cert_store for the private key of the certificate. If the key is found, cert_subject is updated to reflect the full subject of the selected certificate; otherwise, cert_subject is set to an empty string.
header_param_count Property
The number of records in the HeaderParam arrays.
Syntax
def get_header_param_count() -> int: ... def set_header_param_count(value: int) -> None: ...
header_param_count = property(get_header_param_count, set_header_param_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at header_param_count - 1.header_param_data_type Property
The data type of the header parameter.
Syntax
def get_header_param_data_type(header_param_index: int) -> int: ... def set_header_param_data_type(header_param_index: int, value: int) -> None: ...
Default Value
2
Remarks
The data type of the header parameter.
This property specifies the JSON type of the header parameter value. Possible values are:
- 0 (Object)
- 1 (Array)
- 2 (String)
- 3 (Number)
- 4 (Bool)
- 5 (Null)
The header_param_index parameter specifies the index of the item in the array. The size of the array is controlled by the header_param_count property.
header_param_name Property
The header parameter name.
Syntax
def get_header_param_name(header_param_index: int) -> str: ... def set_header_param_name(header_param_index: int, value: str) -> None: ...
Default Value
""
Remarks
The header parameter name.
The header_param_index parameter specifies the index of the item in the array. The size of the array is controlled by the header_param_count property.
header_param_value Property
The header parameter value.
Syntax
def get_header_param_value(header_param_index: int) -> str: ... def set_header_param_value(header_param_index: int, value: str) -> None: ...
Default Value
""
Remarks
The header parameter value.
The header_param_index parameter specifies the index of the item in the array. The size of the array is controlled by the header_param_count property.
input_file Property
The file to process.
Syntax
def get_input_file() -> str: ... def set_input_file(value: str) -> None: ...
input_file = property(get_input_file, set_input_file)
Default Value
""
Remarks
This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- input_file
- input_message
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
input_message Property
The message to process.
Syntax
def get_input_message() -> bytes: ... def set_input_message(value: bytes) -> None: ...
input_message = property(get_input_message, set_input_message)
Default Value
""
Remarks
This property specifies the message to be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- input_file
- input_message
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
key Property
The secret key for the hash algorithm.
Syntax
def get_key() -> bytes: ... def set_key(value: bytes) -> None: ...
key = property(get_key, set_key)
Default Value
""
Remarks
This property holds the secret key used when creating the hash. The key can be arbitrarily long.
Note: This property is only applicable when algorithm is set to an HMAC algorithm.
It is recommended that the length of the key be equal to or larger than the hash size of the algorithm. Use of keys shorter than the hash size is discouraged.
Sizes (in bytes)
SHA1 | SHA224 | SHA256 | SHA384 | SHA512 | MD5 | RIPEMD160 | |
Recommended Key Size | 20 | 28 | 32 | 48 | 64 | 16 | 20 |
Hash Size | 20 | 28 | 32 | 48 | 64 | 16 | 20 |
Block Size | 64 | 64 | 64 | 128 | 128 | 64 | 64 |
Key Length Details
As mentioned above it is recommended to use a key size equal to the hash size. Use of keys larger than the hash size does not typically significantly increase the function strength. Keys of any length are technically valid however see the below processing rules to understand how keys of varying lengths are treated:
- If the key length is equal to the hash size (recommended) it is used without modification.
- If the key length is less than the hash size it is used without modification.
- If the key length is less than or equal to the block size it is used without modification.
- If the key length is larger than the block size is it first hashed with the same algorithm.
key_id Property
The Id of the key used to sign the message.
Syntax
def get_key_id() -> str: ... def set_key_id(value: str) -> None: ...
key_id = property(get_key_id, set_key_id)
Default Value
""
Remarks
This property optionally specifies the Id of the key used to sign the message.
Any string value may be supplied here to help the other party identify the key used to sign the message. This may be set before calling the sign method.
output_file Property
The output file when encrypting or decrypting.
Syntax
def get_output_file() -> str: ... def set_output_file(value: str) -> None: ...
output_file = property(get_output_file, set_output_file)
Default Value
""
Remarks
This property specifies the file to which the output will be written when encrypt or decrypt is called. This may be set to an absolute or relative path.
This property is only applicable to encrypt and decrypt.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
output_message Property
The output message after processing.
Syntax
def get_output_message() -> bytes: ...
output_message = property(get_output_message, None)
Default Value
""
Remarks
This property will be populated with the output from the operation if output_file is not set.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
This property is read-only.
overwrite Property
Indicates whether or not the class should overwrite files.
Syntax
def get_overwrite() -> bool: ... def set_overwrite(value: bool) -> None: ...
overwrite = property(get_overwrite, set_overwrite)
Default Value
FALSE
Remarks
This property indicates whether or not the class will overwrite output_file. If overwrite is False, an error will be thrown whenever output_file exists before an operation. The default value is False.
add_header_param Method
Adds additional header parameters.
Syntax
def add_header_param(name: str, value: str, data_type: int) -> None: ...
Remarks
This method is used to add additional header parameters before calling sign.
The Name and Value parameters define the name and value of the parameter respectively. The DataType parameter specifies the JSON data type of the value. Possible values for DataType are:
- 0 (Object)
- 1 (Array)
- 2 (String)
- 3 (Number)
- 4 (Bool)
- 5 (Null)
{ "alg": "HS512", "crit": [ "exp" ], "exp": 12345687, "kid": "myKeyId", "type": "JWT" }
The following code can be used:
jws.Algorithm = JwsAlgorithms.jwsHS512;
jws.KeyId = "myKeyId";
jws.KeyB = key;
jws.AddHeaderParam("type", "JWT", 2);
jws.AddHeaderParam("crit", "[\"exp\"]", 1);
jws.AddHeaderParam("exp", "12345687", 3);
jws.InputMessage = "test";
jws.Sign();
string signedData = jws.OutputMessage;
Note: when calling sign the class will automatically add some headers based on properties that are set.
Parameters Automatically Set:
config Method
Sets or retrieves a configuration setting.
Syntax
def config(configuration_string: str) -> str: ...
Remarks
config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
parse Method
Parses the compact serialized JWS string.
Syntax
def parse() -> None: ...
Remarks
This method parses, but does not verify, the JWS string.
Take care when using this method as no signature verification is performed. This method may be helpful in cases where information about the signature is contained within the payload, or for any other reason where the signature is not important.
If verification is desired, use verify instead. It is not necessary to call this method before calling verify. verify will both parse and verify the message.
When calling this method the headers and payload are parsed. The on_header_param and on_signer_info events will fire and the header_params property will be populated. The payload will be written to the specified output location.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
reset Method
Resets the class.
Syntax
def reset() -> None: ...
Remarks
When called, the class will reset all of its properties to their default values.
sign Method
Signs the payload with the specified algorithm.
Syntax
def sign() -> None: ...
Remarks
This method signs the input with the specified algorithm.
Before calling the sign method set algorithm to the algorithm which will be used to sign the message. The result of signing is a compact serialized JWS string. For instance:
eyJhbGciOiJIUzI1NiJ9.dGVzdA.o_JihJlCwvBO1AgY_Ao3_VBivdFmj3ufv3ZWAqYF4Ow
The class is agnostic of the payload that is signed. Any value may be signed. key_id may be set to include an identifier to help the receiving party identify the key used to sign the message. The following properties are applicable when calling this method:
- algorithm (required)
- certificate (conditional - required for ECDSA and RSA)
- key (conditional - required for HMAC)
- header_params
- key_id
- overwrite
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Notes for HMAC Algorithms (HS256, HS384, HS512)
When algorithm is set to a HMAC algorithm key must be set to a key of appropriate length for the algorithm. The key should be the same number of bits as the algorithm being used. For instance a 256 bit key would be used for HS256.
The example code below uses the EzRand class to generate a key, but the key may be created using any means. The key must be known by both parties in order for signing and verification to take place.
//Generate a 256 bit (32 byte) key
Ezrand ezrand = new Ezrand();
ezrand.RandBytesLength = 32;
ezrand.GetNextBytes();
byte[] key = ezrand.RandBytesB;
//Sign the payload using HS256
Jws jws = new Jws();
jws.Algorithm = JwsAlgorithms.jwsHS256;
jws.InputMessage = "test data";
jws.KeyB = key;
jws.Sign();
string signedData = jws.OutputMessage;
To use an existing HMAC key provide the bytes to the key property. For instance:
//HMAC SHA-256 Key
byte[] key = new byte[] { 170, 171, 221, 209, 7, 181, 48, 178, 48, 118, 242, 132, 36, 218, 74, 140, 216, 165, 161, 70, 11, 42, 246, 205, 235, 231, 19, 48, 87, 141, 122, 10 };
//Sign the payload using HS256
Jws jws = new Jws();
jws.Algorithm = JwsAlgorithms.jwsHS256;
jws.InputMessage = "test data";
jws.KeyB = key;
jws.Sign();
string signedData = jws.OutputMessage;
Notes for RSA Algorithms (RS256, RS384, RS512, PS256, PS384, PS512)
The RSA based algorithms use asymmetric encryption. Signing is done with a private key and verification is done with a public key. The private key may be in PFX or PEM format.
Jws jws = new Jws();
jws.Algorithm = JwsAlgorithms.jwsRS256;
jws.Certificate = new Certificate(CertStoreTypes.cstPFXFile, "..\\jwt.pfx", "test", "*");
jws.InputMessage = "test";
jws.Sign();
string signedMessage = jws.OutputMessage;
Notes for ECDSA Algorithms (ES256, ES384, ES512)
ECDSA algorithms require a valid ECC private key to sign. The ECC class can be used to create or import an ECC key into the Certificate format accepted by the JWS class.
//Create an ECC key with SHA-256
Ecc ecc = new Ecc();
ecc.HashAlgorithm = EccHashAlgorithms.ehaSHA256;
ecc.CreateKey();
string privKey = ecc.Key.PrivateKey;
//Sign the payload using ES256
Jws jws = new Jws();
jws.Algorithm = JwsAlgorithms.jwsES256;
jws.Certificate = new Certificate(CertStoreTypes.cstPEMKeyBlob, privKey, "", "*");
jws.InputMessage = "test";
jws.Sign();
string signedMessage = jws.OutputMessage;
To use an existing ECC Key populate the Rx, Ry, and K values of Key property in the ECC class first. For instance:
//Import an existing ECC private key
Ecc ecc = new Ecc();
byte[] x_bytes = new byte[] { 171, 170, 196, 151, 94, 196, 231, 12, 128, 232, 17, 61, 45, 105, 41, 209, 192, 187, 112, 242, 110, 178, 95, 240, 36, 55, 83, 171, 190, 176, 78, 13 };
byte[] y_bytes = new byte[] { 197, 75, 134, 245, 245, 28, 199, 9, 7, 117, 1, 54, 49, 178, 135, 252, 62, 89, 35, 180, 117, 80, 231, 23, 110, 250, 28, 124, 219, 253, 224, 156 };
byte[] k_bytes = new byte[] { 81, 65, 201, 24, 235, 249, 162, 148, 169, 150, 109, 181, 61, 238, 145, 122, 31, 30, 151, 94, 239, 90, 222, 217, 63, 103, 54, 2, 176, 232, 248, 168 };
ecc.Key.RxB = x_bytes;
ecc.Key.RyB = y_bytes;
ecc.Key.KB = k_bytes;
string privKey = ecc.Key.PrivateKey;
//Sign the payload using ES256
Jws jws = new Jws();
jws.Algorithm = JwsAlgorithms.jwsES256;
jws.Certificate = new Certificate(CertStoreTypes.cstPEMKeyBlob, privKey, "", "*");
jws.InputMessage = "test";
jws.Sign();
string signedMessage = jws.OutputMessage;
Notes for Unsecured (none)
To create a JWS token without any security set algorithm to jwsNone.
Jws jws = new Jws();
jws.Algorithm = JwsAlgorithms.jwsNone;
jws.InputMessage = "test";
jws.Sign();
string unsecuredMessage = jws.OutputMessage;
verify Method
Verifies the signature of the JWS token.
Syntax
def verify() -> None: ...
Remarks
This method verifies the signature of the JWS token.
Before calling the verify method set input_message or input_file to a valid compact serialized JWS string. For instance:
eyJhbGciOiJIUzI1NiJ9.dGVzdA.o_JihJlCwvBO1AgY_Ao3_VBivdFmj3ufv3ZWAqYF4Ow
key or certificate should be set to the HMAC key or public certificate respectively. If the correct key or certificate is not known ahead of time the KeyId parameter of the on_signer_info event may be used to identify the correct key.
If this method returns without error verification was successful. If verification fails then this method fails with an error. After calling this method the payload will be present in the output_message or file specified by output_file and the header_params property will contain the headers. Headers of the parsed message are also available through the on_header_param event.
The following properties are applicable when calling this method:
- key (conditional - required for HMAC)
- certificate (conditional - required for ECDSA and RSA)
- algorithm (only if StrictValidation is True)
- overwrite
- StrictValidation
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Notes for HMAC Algorithms (HS256, HS384, HS512)
When verifying a message originally signed with a HMAC algorithm key must be set to the same key used during signing. The key must be known by both parties in order for signing and verification to take place.
byte[] key = new byte[] { 170, 171, 221, 209, 7, 181, 48, 178, 48, 118, 242, 132, 36, 218, 74, 140, 216, 165, 161, 70, 11, 42, 246, 205, 235, 231, 19, 48, 87, 141, 122, 10 };
Jws jws = new Jws();
jws.KeyB = key;
jws.InputMessage = signedData;
jws.Verify();
string verifiedPayload = jws.OutputMessage;
Notes for RSA Algorithms (RS256, RS384, RS512, PS256, PS384, PS512)
The RSA based algorithms use asymmetric encryption. Signing is done with a private key and verification is done with a public key. The public key is typically in PEM format.
Jws jws = new Jws();
jws.Certificate = new Certificate("..\\jwt.cer");
jws.InputMessage = signedData;
jws.Verify();
string verifiedPayload = jws.OutputMessage;
Notes for ECDSA Algorithms (ES256, ES384, ES512)
ECDSA algorithms require a valid ECC public key to verify the message. If the key was originally created with the ECC class the PEM encoded PublicKey may be used directly with the certificate property. An example PEM encoded public certificate created by the ECC class:
-----BEGIN PUBLIC KEY----- MIIBMjCB7AYHKoZIzj0CATCB4AIBATAsBgcqhkjOPQEBAiEA/////wAAAAEAAAAAAAAAAAAA AAD///////////////8wRAQg/////wAAAAEAAAAAAAAAAAAAAAD///////////////wEIFrG NdiqOpPns+u9VXaYhrxlHQawzFOw9jvOPD4n0mBLBEEEaxfR8uEsQkf4vOblY6RA8ncDfYEt 6zOg9KE5RdiYwpZP40Li/hp/m47n60p8D54WK84zV2sxXs7LtkBoN79R9QIhAP////8AAAAA //////////+85vqtpxeehPO5ysL8YyVRAgEBA0EEIC5rbLp11Mnz6cBXLLriaDIov3rm8RAY x/OR0bOKiff0cQy+sLVaxjseqFk/+Xvl4ORSv5Z6HdHv5GyEpA0UoA== -----END PUBLIC KEY-----
Jws jws = new Jws();
jws.Certificate = new Certificate(CertStoreTypes.cstPublicKeyFile, pubKey, "", "*");
jws.InputMessage = signedData;
jws.Verify();
string verifiedPayload = jws.OutputMessage;
To use an ECC public key created by other means the ECC class may be used to import the key parameters. Populate the Rx and Ry of the ECC class first to obtain the PEM formatted public key. For instance:
//Import an existing ECC public key
Ecc ecc = new Ecc();
byte[] x_bytes = new byte[] { 171, 170, 196, 151, 94, 196, 231, 12, 128, 232, 17, 61, 45, 105, 41, 209, 192, 187, 112, 242, 110, 178, 95, 240, 36, 55, 83, 171, 190, 176, 78, 13 };
byte[] y_bytes = new byte[] { 197, 75, 134, 245, 245, 28, 199, 9, 7, 117, 1, 54, 49, 178, 135, 252, 62, 89, 35, 180, 117, 80, 231, 23, 110, 250, 28, 124, 219, 253, 224, 156 };
ecc.Key.RxB = x_bytes;
ecc.Key.RyB = y_bytes;
string pubKey = ecc.Key.PublicKey;
Jws jws = new Jws();
jws.Certificate = new Certificate(CertStoreTypes.cstPublicKeyFile, pubKey, "", "*");
jws.InputMessage = signedData;
jws.Verify();
string verifiedPayload = jws.OutputMessage;
Notes for Unsecured (none)
To parse a JWS token without any security call the sign method without setting key or certificate.
Jws jws = new Jws();
jws.InputMessage = signedData;
jws.Verify();
string unsecuredPayload = jws.OutputMessage;
on_error Event
Fired when information is available about errors during data delivery.
Syntax
class JWSErrorEventParams(object): @property def error_code() -> int: ... @property def description() -> str: ... # In class JWS: @property def on_error() -> Callable[[JWSErrorEventParams], None]: ... @on_error.setter def on_error(event_hook: Callable[[JWSErrorEventParams], None]) -> None: ...
Remarks
The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
on_header_param Event
Fires once for each JOSE header parameter.
Syntax
class JWSHeaderParamEventParams(object): @property def name() -> str: ... @property def value() -> str: ... @property def data_type() -> int: ... # In class JWS: @property def on_header_param() -> Callable[[JWSHeaderParamEventParams], None]: ... @on_header_param.setter def on_header_param(event_hook: Callable[[JWSHeaderParamEventParams], None]) -> None: ...
Remarks
When verify or parse is called this event will fire once for each JOSE header parameter.
Name is the name of the parameter.
Value is the value of the parameter.
DataType specifies the JSON data type of the value. Possible values are:
- 0 (Object)
- 1 (Array)
- 2 (String)
- 3 (Number)
- 4 (Bool)
- 5 (Null)
on_signer_info Event
Fires with information about the signature.
Syntax
class JWSSignerInfoEventParams(object): @property def key_id() -> str: ... @property def algorithm() -> str: ... # In class JWS: @property def on_signer_info() -> Callable[[JWSSignerInfoEventParams], None]: ... @on_signer_info.setter def on_signer_info(event_hook: Callable[[JWSSignerInfoEventParams], None]) -> None: ...
Remarks
This event fires with information about the signature. This may be used to help identify the key or certificate to load in order to verify the signature. This event fires when verify or parse is called.
KeyId is the Id of the key as supplied by the signer that created the message. This may be empty.
Algorithm is the signature algorithm used to sign the message.
JWS Config Settings
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.JWS Config Settings
- HS256
- HS384
- HS512
- RS256
- RS384
- RS512
- ES256
- ES384
- ES512
- PS256
- PS384
- PS512
Example value: HS512,HS256.
Multiple formats may be included in the signed message. The value specified should be the binary 'OR' of one or more of the following values:
Value | Description | JWS Header Param |
0 (0x00 - default) | None | |
1 (0x01) | X.509 Certificate Chain | x5c |
2 (0x02) | X.509 Certificate SHA-1 Thumbprint (Base64-URL encoded) | x5t |
4 (0x04) | X.509 Certificate SHA-256 Thumbprint (Base64-URL encoded) | x5t#S256 |
Note: When including the certificate chain (0x01) the public certificate of certificate property will automatically be included. IssuerCerts may also be set to the public issuer certificates that will be used when building the chain to include.
For instance, to include both the certificate chain and SHA-256 thumbprint of the certificate set this to 5.
The format of the value must be one or more PEM encoded certificates with headers and footers. For instance to include 2 issuer certificates the value may be:
-----BEGIN CERTIFICATE----- MIIBujCCASOgAwIBAgICA+kwDQYJKoZIhvcNAQELBQAwHTEbMBkGA1UEAxMSbnVuaXRDZXJ0 Q2hhaW5Sb290MCAXDTE4MTAxNTA5MDAxN1oYDzIxMTgwOTIxMDkwMDE3WjAmMSQwIgYDVQQD ... Tr+wi0ouNo7ifWRcE83Z15PhfGn1nkfxMYj4rya5n+V0RVVcgFUdiolCI5o/sYq503a7kH16 JSF5Zw+TiMz/COM8R94= -----END CERTIFICATE----- -----BEGIN CERTIFICATE----- MIIBsTCCARqgAwIBAgICA+gwDQYJKoZIhvcNAQELBQAwHTEbMBkGA1UEAxMSbnVuaXRDZXJ0 Q2hhaW5Sb290MCAXDTE4MTAxNTA5MDAxN1oYDzIxMTgwOTIxMDkwMDE3WjAdMRswGQYDVQQD ... 5u2K9PuJ3ySgL7AvYsqbB/e0/gw8j253SOU+gNTpFahOJsLGEJ43CRtaowkLnWEzs+OPnRfw iQmqruw= -----END CERTIFICATE-----
- 0 (none - default)
- 1 (Base64)
- 2 (Hex)
- 3 (Base64URL)
{"alg":"ES384","kid":"myKeyId"}
- 0 (default): Compact serialization (content is serialized as a single base64url-encoded string).
- 1: Standard JSON serialization.
- 2: Flattened JSON serialization.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to True. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to True tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to False by default. On Linux/macOS, this setting is set to True by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
JWS Errors
JWS Errors
201 | Invalid JWS value. Not recognized as a compact serialized JWS string. |
202 | Signature verification failed. |
203 | Key must be specified before attempting this operation. |
204 | The specified key is too short for the selected algorithm. |
205 | Certificate must be specified before attempting this operation. |
206 | Unsupported algorithm. |
207 | OutputFile already exists and Overwrite is False. |
208 | Error writing data. See error message for details. |