IP*Works! OpenPGP 2016 C++ Edition
IP*Works! OpenPGP 2016 C++ Edition
Questions / Feedback?

OpenPGP Configuration

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

OpenPGP Configuration Settings

AllowEmptyInput:   Whether to allow empty files for input.

This setting controls whether the class allows empty input when processing. When True, the class will process 0 byte files specified by InputFile, or 0 byte messages specified by InputMessage. The default value is False.

AllowOldPacketType:   Whether to allow the older encrypted packet type.

By default the class will only encrypt data using the newer and more secure integrity protected data packet type. Old implementations such as PGP 6.5.8 may require the older less secure data packet type.

When set to True the class will read the features from the recipient key to determine if the older packet type is required. If the key does require the old packet type, then the older packet type will be used. If the key does not require the old packet type, then the new integrity protected packet type will still be used.

By default this value is False. This means under no conditions is the older less secure packet type used. The newer integrity protected packet type is always used.

Only enable this setting if you have a requirement to do so.

CompressionLevel:   The Zip or Zlib compression level.

This setting specifies the level of compression to be used: possible values are 1 to 6. Higher values will cause the class to compress better; lower values will cause the class to compress faster. The default value is 4. Note: This setting is only applicable when CompressionMethod is set to "zlib" or "zip".

DetachedSignatureData:   The detached signature.

This setting is used to specify the detached signature before calling VerifySignature. The message data should be specified normally and this setting should be set to the detached signature data. Both hex-string and OpenPGP ASCII-armored message formats are allowed. Hex-encoded data should be provided as a string like so:

89011C04000102000605025100459B000A0910E2...
FileName:   The original name of the encrypted file.

When encrypting, this configuration setting can be used to specify the original name of the encrypted data. When specifying an InputFile to encrypt from, this is included automatically in the encrypted packet. After decrypting, this will contain the file name of the original encrypted file.

KeySelectionMethod:   The method used to select a key for encryption or signing.

When more than one key is present this class can be configured to automatically select a key based on certain criteria (described below) or allow for manual selection.

0 Automatic selection, first suitable subkey. Expired keys accepted.
99 Manual Selection.

A key's suitability is determined by its usage flags.

Manual Selection

To manually select a key for any operation pass the key's Id in the constructor.

  Openpgp pgp = new Openpgp();
  pgp.Config("KeySelectionMethod=99");
  pgp.RecipientKeys.Add(new Key(@"C:\path\to\key.asc", "7CA1376C39768977")); // Key with Id 7CA1376C39768977 will be used for encryption.

PGPZipDir:   The directory used when creating or extracting a PGP zip file.

A PGP zip file is a Tar archive that is encrypted. It is commonly used by utilities to protect multiple files in one OpenPGP message. The class supports creating and extracting these types of files.

  • To create a PGP zip file set this value to a location on disk including a filemask and call Encrypt. For instance:
    OpenPGP1.Config("PGPZipDir=C:\MyFiles\*.txt");
    OpenPGP1.OutputFile = "C:\PGPZip.pgp";
    OpenPGP1.Encrypt();
    The created file returned in the OutputFile property is the PGP zip. If InputFile is specified it is used to temporarily hold the Tar archive while creating the PGP zip file. The temporary file is not automatically deleted. If InputFile is not specified the Tar archive is held in memory while creating the PGP zip file.
  • To extract a PGP zip file set this value to a location on disk and call Decrypt. For instance:
    OpenPGP1.Config("PGPZipDir=C:\MyFiles");
    OpenPGP1.InputFile = "C:\PGPZip.pgp";
    OpenPGP1.Decrypt();
    The extracted files will be present in the specified directory. If OutputFile is specified it is used to temporarily hold the Tar archive. The temporary file is not automatically deleted. If OutputFile is not specified the Tar archive is held in memory while extracting the PGP zip file. Note that if the OpenPGP message supplied is not a PGP zip file the decryption will occur as normal without error.

RequireValidSignature:   Specifies if an invalid signature is considered an error condition.

By default, if the signature is not valid the class fails with an error. This setting may be set to False to disable this requirement. When False, the Status parameter of the VerificationStatus event should be checked to determine the result of the operation. The default value is True.

RequireEncryption:   Whether to throw an error when decrypting and encryption is not detected.

By default, the component's decryption methods will succeed if the message is not encrypted. To cause an error to be thrown in this case, set this option to true.

The default value is false.

RequireSignature:   Whether to throw an error when verifying a signature and no signature is found.

By default, the component's signature verification methods will succeed if the message is not signed. To cause an error to be thrown in this case, set this option to true.

The default value is false.

SplitHeaders:   Controls whether ASCII Armor headers are split or not.

By default, when headers are specified via MessageHeaders, the class will split headers over a certain length onto multiple lines. This is done to avoid potential errors during transport of the message. If false, the headers will be on one line regardless of length. The default value is True.

SymmetricPassphrase:   The password used for symmetric encryption or decryption.

This setting specifies the passphrase when using symmetric encryption. If a value is provided, symmetric encryption/decryption will be attempted. In this case no keys are used for either encryption or decryption. Only Encrypt and Decrypt are valid operations when a value is set. Sign, SignAndEncrypt, VerifySignature, and DecryptAndVerifySignature are not valid operations when using this option.

PublicKeyringFile:   The file name of the public keyring file.

This specifies the name of the public keyring file. The default value is "pubring.gpg". This may be set to a file name only, or a full path including the file name.

SecretKeyringFile:   The file name of the secret keyring file.

This specifies the name of the secret keyring file. The default value is "secring.gpg". This may be set to a file name only, or a full path including the file name.

EnsureValidDSASignatureHashAlgorithm:   Whether or not to select a suitable signature hash algorithm automatically.

The DSA Signature Hash Algorithm selection will ensure that a valid algorithm compatible with DSA is selected. DSA requires that the hash be 160 bits or larger, which means MD5 is not a suitable algorithm. When DSA Signature Hash Algorithm selection is enabled (default) the class will use the preferred algorithm from the key if it meets the requirements for DSA. If the preferred algorithm is MD5 and does not meed the requirements for DSA the class will automatically use a suitable based on the Q element of the DSA key (may be SHA1, SHA224, or SHA256).

VersionHeader:   The Version header value in the ASCII armored OpenPGP message.

This setting specifies the Version header value included in the ASCII armored OpenPGP message. This may be set before calling Encrypt, Sign, or SignAndEncrypt. The default value is "IPWorks! OpenPGP 2016".

This setting will be populated after calling Decrypt, VerifySignature, or DecryptAndVerifySignature.

LogLevel:   Specifies the level of detail that is logged.

This setting controls the level of detail that is logged through the Status event. Possible values are:

0 (None)No events are logged.
1 (Info - default)Informational events are logged.
2 (Verbose)Detailed data is logged.
3 (Debug)Debug data is logged.

ProgressEventThreshold:   The amount of data in bytes to process before firing the progress event.

When encrypting or decrypting, the Progress event is fired as data is processed by the class. When this setting is specified, the event will only fire after processing at least the specified number of bytes. The default value is 0.

ReadFromProgressEvent:   Whether to read input data from inside the progress event.

When set to True this setting allows input data to be specified from within the Progress event. The class will repeatedly fire the Progress event to ask for data. Inside the event set InputMessage when the Operation parameter of the event is 1 (Read). When all data has been provided set the IsEOF parameter of the event to True. This allows input data to be chunked and provided piece by piece. The default value is False.

WriteToProgressEvent:   Whether to write output data so it is accessible from inside the progress event.

When set to True this setting allows output data to be obtained from within the Progress event. The class will repeatedly fire the Progress event to provide output data. Inside the event check OutputMessage when the Operation parameter of the event is 2 (Write). The IsEOF parameter should be checked inside the event to determine when all output data has been provided. This allows output data to be chunked and obtained piece by piece. The default value is False.

UseFipsCompliantAlgorithms:   Restricts the usage to FIPS compliant algorithms only.

When enabled the class will only support FIPS compliant algorithms. If a non-FIPS compliant algorithm is used an exception is thrown. The following algorithms are supported when this setting is True:

  • 3DES
  • AES128
  • AES192
  • AES256
  • RSA
  • DSA
  • SHA1
  • SHA256
  • SHA384
  • SHA512
  • SHA224
The default value is False.
RecursiveDecryptMode:   Whether the encrypted data should be decrypted recursively.

In some instances data will be encrypted multiple times. This configuration option determines how the class will handle this situation. Options are:

0Automatic - If the PGP message contains the special header version "PGP Command Line" then recursive decryption will be attempted. (Default)
1Always attempt recursive decryption.
2Never attempt recursive decryption.

Base Configuration Settings

SelectWaitMillis:   The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process.

If there are no events to process when DoEvents is called, the class will wait for the amount of time specified here before returning. The default value is 20.

CodePage:   The system code page used for Unicode to Multibyte translations.

The default code page is the Active Code Page (0).

The following is a list of valid code page identifiers:

IdentifierName
037IBM EBCDIC - U.S./Canada
437OEM - United States
500IBM EBCDIC - International
708Arabic - ASMO 708
709Arabic - ASMO 449+, BCON V4
710Arabic - Transparent Arabic
720Arabic - Transparent ASMO
737OEM - Greek (formerly 437G)
775OEM - Baltic
850OEM - Multilingual Latin I
852OEM - Latin II
855OEM - Cyrillic (primarily Russian)
857OEM - Turkish
858OEM - Multlingual Latin I + Euro symbol
860OEM - Portuguese
861OEM - Icelandic
862OEM - Hebrew
863OEM - Canadian-French
864OEM - Arabic
865OEM - Nordic
866OEM - Russian
869OEM - Modern Greek
870IBM EBCDIC - Multilingual/ROECE (Latin-2)
874ANSI/OEM - Thai (same as 28605, ISO 8859-15)
875IBM EBCDIC - Modern Greek
932ANSI/OEM - Japanese, Shift-JIS
936ANSI/OEM - Simplified Chinese (PRC, Singapore)
949ANSI/OEM - Korean (Unified Hangeul Code)
950ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
1026IBM EBCDIC - Turkish (Latin-5)
1047IBM EBCDIC - Latin 1/Open System
1140IBM EBCDIC - U.S./Canada (037 + Euro symbol)
1141IBM EBCDIC - Germany (20273 + Euro symbol)
1142IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
1143IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
1144IBM EBCDIC - Italy (20280 + Euro symbol)
1145IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
1146IBM EBCDIC - United Kingdom (20285 + Euro symbol)
1147IBM EBCDIC - France (20297 + Euro symbol)
1148IBM EBCDIC - International (500 + Euro symbol)
1149IBM EBCDIC - Icelandic (20871 + Euro symbol)
1200Unicode UCS-2 Little-Endian (BMP of ISO 10646)
1201Unicode UCS-2 Big-Endian
1250ANSI - Central European
1251ANSI - Cyrillic
1252ANSI - Latin I
1253ANSI - Greek
1254ANSI - Turkish
1255ANSI - Hebrew
1256ANSI - Arabic
1257ANSI - Baltic
1258ANSI/OEM - Vietnamese
1361Korean (Johab)
10000MAC - Roman
10001MAC - Japanese
10002MAC - Traditional Chinese (Big5)
10003MAC - Korean
10004MAC - Arabic
10005MAC - Hebrew
10006MAC - Greek I
10007MAC - Cyrillic
10008MAC - Simplified Chinese (GB 2312)
10010MAC - Romania
10017MAC - Ukraine
10021MAC - Thai
10029MAC - Latin II
10079MAC - Icelandic
10081MAC - Turkish
10082MAC - Croatia
12000Unicode UCS-4 Little-Endian
12001Unicode UCS-4 Big-Endian
20000CNS - Taiwan
20001TCA - Taiwan
20002Eten - Taiwan
20003IBM5550 - Taiwan
20004TeleText - Taiwan
20005Wang - Taiwan
20105IA5 IRV International Alphabet No. 5 (7-bit)
20106IA5 German (7-bit)
20107IA5 Swedish (7-bit)
20108IA5 Norwegian (7-bit)
20127US-ASCII (7-bit)
20261T.61
20269ISO 6937 Non-Spacing Accent
20273IBM EBCDIC - Germany
20277IBM EBCDIC - Denmark/Norway
20278IBM EBCDIC - Finland/Sweden
20280IBM EBCDIC - Italy
20284IBM EBCDIC - Latin America/Spain
20285IBM EBCDIC - United Kingdom
20290IBM EBCDIC - Japanese Katakana Extended
20297IBM EBCDIC - France
20420IBM EBCDIC - Arabic
20423IBM EBCDIC - Greek
20424IBM EBCDIC - Hebrew
20833IBM EBCDIC - Korean Extended
20838IBM EBCDIC - Thai
20866Russian - KOI8-R
20871IBM EBCDIC - Icelandic
20880IBM EBCDIC - Cyrillic (Russian)
20905IBM EBCDIC - Turkish
20924IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
20932JIS X 0208-1990 & 0121-1990
20936Simplified Chinese (GB2312)
21025IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
21027Extended Alpha Lowercase
21866Ukrainian (KOI8-U)
28591ISO 8859-1 Latin I
28592ISO 8859-2 Central Europe
28593ISO 8859-3 Latin 3
28594ISO 8859-4 Baltic
28595ISO 8859-5 Cyrillic
28596ISO 8859-6 Arabic
28597ISO 8859-7 Greek
28598ISO 8859-8 Hebrew
28599ISO 8859-9 Latin 5
28605ISO 8859-15 Latin 9
29001Europa 3
38598ISO 8859-8 Hebrew
50220ISO 2022 Japanese with no halfwidth Katakana
50221ISO 2022 Japanese with halfwidth Katakana
50222ISO 2022 Japanese JIS X 0201-1989
50225ISO 2022 Korean
50227ISO 2022 Simplified Chinese
50229ISO 2022 Traditional Chinese
50930Japanese (Katakana) Extended
50931US/Canada and Japanese
50933Korean Extended and Korean
50935Simplified Chinese Extended and Simplified Chinese
50936Simplified Chinese
50937US/Canada and Traditional Chinese
50939Japanese (Latin) Extended and Japanese
51932EUC - Japanese
51936EUC - Simplified Chinese
51949EUC - Korean
51950EUC - Traditional Chinese
52936HZ-GB2312 Simplified Chinese
54936Windows XP: GB18030 Simplified Chinese (4 Byte)
57002ISCII Devanagari
57003ISCII Bengali
57004ISCII Tamil
57005ISCII Telugu
57006ISCII Assamese
57007ISCII Oriya
57008ISCII Kannada
57009ISCII Malayalam
57010ISCII Gujarati
57011ISCII Punjabi
65000Unicode UTF-7
65001Unicode UTF-8

The following is a list of valid code page identifiers for Mac OS only:

IdentifierName
1ASCII
2NEXTSTEP
3JapaneseEUC
4UTF8
5ISOLatin1
6Symbol
7NonLossyASCII
8ShiftJIS
9ISOLatin2
10Unicode
11WindowsCP1251
12WindowsCP1252
13WindowsCP1253
14WindowsCP1254
15WindowsCP1250
21ISO2022JP
30MacOSRoman
10UTF16String
0x90000100UTF16BigEndian
0x94000100UTF16LittleEndian
0x8c000100UTF32String
0x98000100UTF32BigEndian
0x9c000100UTF32LittleEndian
65536Proprietary

UseInternalSecurityAPI:   Tells the class whether or not to use the system security libraries or an internal implementation.

By default the class will use the system security libraries to perform cryptographic functions. Setting this to True tells the class to use the internal implementation instead of using the system's security API.

 
 
Copyright (c) 2019 /n software inc. - All rights reserved.
IP*Works! OpenPGP 2016 C++ Edition - Version 16.0 [Build 7239]