SNMPTCPAgent Class

Properties   Methods   Events   Config Settings   Errors  

The SNMPTCPAgent class is used to implement TCP-based SNMP Agent Applications.

Syntax

ipworkssnmp.SNMPTCPAgent

Remarks

The SNMPTCPAgent class implements a TCP-based standard SNMP Agent as specified in the SNMP RFCs. The class supports SNMP v1, v2c, and v3.

The class provides both encoding/decoding and transport capabilities, making the task of developing a custom SNMP agent as simple as setting a few key properties and handling a few events. SNMP data such as SNMP object id-s (OID-s) are exchanged as text strings, thus further simplifying the task of handling them.

The class is activated/deactivated by calling the Activate or Deactivate method. These methods enable or disable sending and receiving. The activation status can be found in the Active property.

The class operates asynchronously. Requests are received through events such as GetRequest, GetBulkRequest, GetNextRequest, etc. and the corresponding responses are automatically sent when the events return. Traps are sent through the SendTrap method.

SNMPv3 USM security passwords are requested through the GetUserPassword event, and event parameters such as User and SecurityLevel provide information about the security attributes of received requests, and enable granular decision capability about what to provide and what not to provide. The SendSecureTrap method is used to send authenticated (secure) SNMPv3 traps.

The AddUser, RemoveUser, ShowCache, and ClearCache methods are used to manage an internal authentication cache. This internal cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.

SNMP OIDs, types, and values are provided in the Objects collection of SNMP objects for both sent and received packets.

Other packet information is provided through corresponding event parameters, such as Community, or RequestId.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

AcceptDataEnables or disables data reception.
ActiveIndicates whether the class is active.
LocalEngineIdThe Engine Id of the SNMP Agent.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
LocalPortThe port in the local host where the class listens.
ObjectsThe objects in the current request.
RequestIdThe request-id to mark outgoing packets with.
SNMPVersionVersion of SNMP used for outgoing requests (traps).
SSLAcceptServerCertInstructs the class to unconditionally accept the server certificate that matches the supplied certificate.
SSLAuthenticateClientsIf set to True, the server asks the client(s) for a certificate.
SSLCertThe certificate to be used during Secure Sockets Layer (SSL) negotiation.
SSLEnabledWhether TLS/SSL is enabled.
SSLServerCertThe server certificate for the last established connection.
SysUpTimeTime passed since the agent was initialized (in hundredths of a second).

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

ActivateActivates the class.
AddUserAdds a user to the internal authentication cache.
ClearCacheClears the internal authentication database.
ConfigSets or retrieves a configuration setting.
DeactivateDeactivates the class.
DoEventsThis method processes events from the internal message queue.
HashPasswordsHashes all passwords in the cache.
RemoveUserRemoves the user specified by User from the internal authentication cache.
ResetClears the object arrays.
SendResponseSends a response packet to a Get, Get-Next, Get-Bulk, or Set request.
SendSecureResponseSends an authenticated and/or encrypted SNMPv3 response.
SendSecureTrapSends an authenticated and/or encrypted SNMPv3 trap.
SendTrapSends an SNMP Trap.
ShowCacheLists all entries in the internal user authentication cache.
ValueReturns the value corresponding to an OID.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

BadPacketFired for erroneous and/or malformed messages.
CacheEntryShows in the internal cache.
ConnectedFired immediately after a connection completes (or fails).
ConnectionStatusThis event is fired to indicate changes in the connection state.
DisconnectedFired when a connection is closed.
DiscoveryRequestFired when an SNMPv3 discovery packet is received.
ErrorFired when information is available about errors during data delivery.
GetBulkRequestFired when a GetBulkRequest packet is received.
GetNextRequestFired when a GetNextRequest packet is received.
GetRequestFired when a GetRequest packet is received.
GetUserPasswordRetrieves a password associated with a user.
GetUserSecurityLevelSets the security level for an incoming packet.
HashPasswordFired before and after a password is hashed.
PacketTraceFired for every packet sent or received.
ReadyToSendFired when the class is ready to send data.
ReportFired when a Report packet is received.
SetRequestFired when a SetRequest packet is received.
SSLClientAuthenticationFired when the client presents its credentials to the server.
SSLServerAuthenticationFires when connecting to the server.
SSLStatusShows the progress of the secure connection.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AuthenticationKeyThe key to use for authentication.
CompatibilityModeWhether to operate the class in a specific compatibility mode.
ContextEngineIdSets the context engine id of the SNMP entity.
ContextNameSets the context name of the SNMP entity.
DecryptLogPacketsWhether to decrypt logged packets.
DerivedKeyCacheSizeThe size of the internal cache used to store derived keys.
DerivedKeyCacheStatusThe status of the internal cache used to store derived keys.
EncryptionKeyThe key to use for encryption.
ForceLocalPortForces the class to bind to a specific port.
IncomingContextEngineIdThe engine Id of the received packet.
IncomingContextNameThe context name of the received packet.
MsgMaxSizeThe maximum supported message size.
RespondFromDestIPWhether to respond from the IP address that the request was sent to.
SourceAddressThe source address of the received packet.
SourcePortThe source port of the received packet.
SynchronizeEventsControls whether or not events are fired from the main thread when timeout is positive.
TimeWindowThe time window used for SNMPv3 timeliness checking (authentication).
TrapAgentAddressThe address of the object generating the trap.
TrapCommunityThe value of the Community parameter for SNMP traps.
TrapEnterpriseThe type of the object generating the trap.
TrapPortThe port where SNMP traps are sent.
CloseStreamAfterTransferIf true, the class will close the upload or download stream after the transfer.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallListenerIf true, the class binds to a SOCKS firewall as a server (TCPClient only).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
UseNTLMv2Whether to use NTLM V2.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLContextProtocolThe protocol used when getting an SSLContext instance.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
SSLTrustManagerFactoryAlgorithmThe algorithm to be used to create a TrustManager through TrustManagerFactory.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
GUIAvailableWhether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
UseDaemonThreadsWhether threads created by the class are daemon threads.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

AcceptData Property (SNMPTCPAgent Class)

Enables or disables data reception.

Syntax

public boolean isAcceptData();
public void setAcceptData(boolean acceptData);

Default Value

True

Remarks

Setting the property to False temporarily disables data reception. Setting the property to True re-enables data reception.

This property is not available at design time.

Active Property (SNMPTCPAgent Class)

Indicates whether the class is active.

Syntax

public boolean isActive();
public void setActive(boolean active);

Default Value

False

Remarks

This property indicates whether the class is currently active and can send or receive data.

The class will be automatically activated if it is not already and you attempt to perform an operation which requires the class to be active.

Use the Activate and Deactivate methods to control whether the class is active.

This property is not available at design time.

LocalEngineId Property (SNMPTCPAgent Class)

The Engine Id of the SNMP Agent.

Syntax

public byte[] getLocalEngineId();
public void setLocalEngineId(byte[] localEngineId);

Default Value

""

Remarks

This property is only used for SNMPv3 packets (when SNMPVersion is 3).

LocalHost Property (SNMPTCPAgent Class)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

public String getLocalHost();
public void setLocalHost(String localHost);

Default Value

""

Remarks

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: LocalHost is not persistent. You must always set it in code, and never in the property window.

LocalPort Property (SNMPTCPAgent Class)

The port in the local host where the class listens.

Syntax

public int getLocalPort();
public void setLocalPort(int localPort);

Default Value

161

Remarks

The LocalPort property must be set before the class is activated (Active is set to True). It instructs the class to bind to a specific port (or communication endpoint) in the local machine (default 161).

You may also set LocalPort to 0. This allows the TCP/IP stack to choose a port at random. The value chosen is provided via the LocalPort property after the class is activated through the Active property.

LocalPort cannot be changed once the class is Active. Any attempt to set the LocalPort property when the class is Active will generate an error.

Note: on macOS and iOS, root permissions are required to set LocalPort to any value below 1024.

Objects Property (SNMPTCPAgent Class)

The objects in the current request.

Syntax

public SNMPObjectList getObjects();
public void setObjects(SNMPObjectList objects);

Remarks

The SNMP objects being sent or received in the current request. The collection is first cleared, then populated every time an SNMP packet is received. It is also used to create outgoing SNMP packets.

This collection is indexed from 0 to size -1.

Please refer to the SNMPObject type for a complete list of fields.

RequestId Property (SNMPTCPAgent Class)

The request-id to mark outgoing packets with.

Syntax

public int getRequestId();
public void setRequestId(int requestId);

Default Value

1

Remarks

If a custom value is needed for RequestId, the property must be set before sending the request. The class increments RequestId automatically after sending each packet.

This property is not available at design time.

SNMPVersion Property (SNMPTCPAgent Class)

Version of SNMP used for outgoing requests (traps).

Syntax

public int getSNMPVersion();
public void setSNMPVersion(int SNMPVersion);

Enumerated values:
  public final static int snmpverV1 = 1;
  public final static int snmpverV2c = 2;
  public final static int snmpverV3 = 3;

Default Value

2

Remarks

This property takes one of the following values:

snmpverV1 (1)SNMP Version 1.
snmpverV2c (2)SNMP Version 2c.
snmpverV3 (3)SNMP Version 3.

SSLAcceptServerCert Property (SNMPTCPAgent Class)

Instructs the class to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

public Certificate getSSLAcceptServerCert();
public void setSSLAcceptServerCert(Certificate SSLAcceptServerCert);

Remarks

If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Note: This functionality is provided only for cases in which you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

Please refer to the Certificate type for a complete list of fields.

SSLAuthenticateClients Property (SNMPTCPAgent Class)

If set to True, the server asks the client(s) for a certificate.

Syntax

public boolean isSSLAuthenticateClients();
public void setSSLAuthenticateClients(boolean SSLAuthenticateClients);

Default Value

False

Remarks

This property is used in conjunction with the SSLClientAuthentication event. Please refer to the documentation of the SSLClientAuthentication event for details.

SSLCert Property (SNMPTCPAgent Class)

The certificate to be used during Secure Sockets Layer (SSL) negotiation.

Syntax

public Certificate getSSLCert();
public void setSSLCert(Certificate SSLCert);

Remarks

This property includes the digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

Please refer to the Certificate type for a complete list of fields.

SSLEnabled Property (SNMPTCPAgent Class)

Whether TLS/SSL is enabled.

Syntax

public boolean isSSLEnabled();
public void setSSLEnabled(boolean SSLEnabled);

Default Value

False

Remarks

This setting specifies whether TLS/SSL is enabled in the class. When False (default) the class operates in plaintext mode. When True TLS/SSL is enabled.

This property is not available at design time.

SSLServerCert Property (SNMPTCPAgent Class)

The server certificate for the last established connection.

Syntax

public Certificate getSSLServerCert();

Remarks

This property contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

Please refer to the Certificate type for a complete list of fields.

SysUpTime Property (SNMPTCPAgent Class)

Time passed since the agent was initialized (in hundredths of a second).

Syntax

public long getSysUpTime();
public void setSysUpTime(long sysUpTime);

Default Value

0

Remarks

This property is used when sending SNMP traps, and it normally provides the time since the system was restarted in 1/100s of a second.

If another value is desired, you may set this property to a custom value. From that point on, SysUpTime will return the value set plus time elapsed.

This property is not available at design time.

Activate Method (SNMPTCPAgent Class)

Activates the class.

Syntax

public void activate();

Remarks

This method activates the component and will allow it to send or receive data.

The class will be automatically activated if it is not already and you attempt to perform an operation which requires the class to be active.

Note: Use the Active property to check whether the component is active.

AddUser Method (SNMPTCPAgent Class)

Adds a user to the internal authentication cache.

Syntax

public void addUser(String user, int authenticationProtocol, String authenticationPassword, int encryptionAlgorithm, String encryptionPassword);

Remarks

The internal authentication cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.

The ShowCache method is used to show the contents of the internal authentication cache.

The ClearCache method can be used to completely clear the cache.

Valid Authentication Protocols are:

HMAC-MD5-96 (1)Message-Digest algorithm 5.
HMAC-SHA-96 (2)Secure Hash Algorithm.
HMAC-192-SHA-256 (3)Secure Hash Algorithm.
HMAC-384-SHA-512 (4)Secure Hash Algorithm.

Valid Encryption Algorithms are:

DES (1)Data Encryption Standard.
AES (2)Advanced Encryption Standard with key length of 128.
3DES (3)Triple Data Encryption Standard.
AES192 (4)Advanced Encryption Standard with key length of 192.
AES256 (5)Advanced Encryption Standard with key length of 256.

NOTE: Specifying an authentication protocol of 0 is a special case where the class will attempt to verify users with all valid authentication protocols.

ClearCache Method (SNMPTCPAgent Class)

Clears the internal authentication database.

Syntax

public void clearCache();

Remarks

All user records are removed from the internal authentication cache as a result of this call.

Config Method (SNMPTCPAgent Class)

Sets or retrieves a configuration setting.

Syntax

public String config(String configurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Deactivate Method (SNMPTCPAgent Class)

Deactivates the class.

Syntax

public void deactivate();

Remarks

This method deactivates the component and will prohibit it from sending and receiving data.

Note: Use the Active property to check whether the component is active.

DoEvents Method (SNMPTCPAgent Class)

This method processes events from the internal message queue.

Syntax

public void doEvents();

Remarks

When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

HashPasswords Method (SNMPTCPAgent Class)

Hashes all passwords in the cache.

Syntax

public void hashPasswords();

Remarks

Forces computation of all passwords hashes in the cache. Used together with the HashPassword event to enable implementations of external password hash storage.

RemoveUser Method (SNMPTCPAgent Class)

Removes the user specified by User from the internal authentication cache.

Syntax

public void removeUser(String user);

Remarks

The internal authentication cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.

The ShowCache method is used to show the contents of the internal authentication cache.

The ClearCache method can be used to completely clear the cache.

Reset Method (SNMPTCPAgent Class)

Clears the object arrays.

Syntax

public void reset();

Remarks

Clears the object arrays, and sets the trap and error properties to their default values. This is useful for reinitializing all the properties that are used to create outgoing packets before building a new packet.

Note: SNMPVersion will be reset to snmpverV2c (2).

SendResponse Method (SNMPTCPAgent Class)

Sends a response packet to a Get, Get-Next, Get-Bulk, or Set request.

Syntax

public void sendResponse(String remoteHost, int remotePort, int requestId, String community, int errorStatus, int errorIndex);

Remarks

Use this method to send asynchronous response packets. A valid RequestId must be specified. SendResponse sends an unauthenticated response packet. Depending upon the value of the SNMPVersion property, the packet is constructed as an SNMPv1, SNMPv2c, or SNMPv3 (unauthenticated) response PDU. To send authenticated or encrypted SNMPv3 responses, use SendSecureResponse

The RemoteHost and RemotePort parameters are used to determine where the response is to be sent. The object identifiers, types, and values for the request are taken from the Objects collection. The RequestId, Community, ErrorStatus, and ErrorIndex parameters are used to specify other properties of the response.

SendSecureResponse Method (SNMPTCPAgent Class)

Sends an authenticated and/or encrypted SNMPv3 response.

Syntax

public void sendSecureResponse(String remoteHost, int remotePort, int requestId, int messageId, int errorStatus, int errorIndex, String user, int authenticationProtocol, String authenticationPassword, int encryptionAlgorithm, String encryptionPassword);

Remarks

Similar to the SendResponse method except that User, Authentication Protocol, and AuthenticationPassword are used to authenticate the response. EncryptionAlgorithm and EncryptionPassword (if not empty) are used to encrypt the response.

The MessageId argument must match the MessageId parameter obtained from the GetRequest, GetNextRequest, SetRequest, or GetBulkRequest event.

The user and password arguments used to send the response will be added to the internal user cache. If the user is already in the cache, its passwords will be updated with those supplied.

Valid Authentication Protocols are:

HMAC-MD5-96 (1)Message-Digest algorithm 5.
HMAC-SHA-96 (2)Secure Hash Algorithm.
HMAC-192-SHA-256 (3)Secure Hash Algorithm.
HMAC-384-SHA-512 (4)Secure Hash Algorithm.

Valid Encryption Algorithms are:

DES (1)Data Encryption Standard.
AES (2)Advanced Encryption Standard with key length of 128.
3DES (3)Triple Data Encryption Standard.
AES192 (4)Advanced Encryption Standard with key length of 192.
AES256 (5)Advanced Encryption Standard with key length of 256.

SendSecureTrap Method (SNMPTCPAgent Class)

Sends an authenticated and/or encrypted SNMPv3 trap.

Syntax

public void sendSecureTrap(String remoteHost, String trapOID, String user, int authenticationProtocol, String authenticationPassword, int encryptionAlgorithm, String encryptionPassword);

Remarks

Similar to the SendTrap method except that User, AuthenticationPassword, and Authentication Protocol are used to authenticate the trap. EncryptionPassword (if not empty) and EncryptionAlgorithm are used to encrypt the message.

The user and password arguments used to send the trap will be added to the internal user cache. If the user is already in the cache, its passwords will be updated with those supplied.

Valid Authentication Protocols are:

HMAC-MD5-96 (1)Message-Digest algorithm 5.
HMAC-SHA-96 (2)Secure Hash Algorithm.
HMAC-192-SHA-256 (3)Secure Hash Algorithm.
HMAC-384-SHA-512 (4)Secure Hash Algorithm.

Valid Encryption Algorithms are:

DES (1)Data Encryption Standard.
AES (2)Advanced Encryption Standard with key length of 128.
3DES (3)Triple Data Encryption Standard.
AES192 (4)Advanced Encryption Standard with key length of 192.
AES256 (5)Advanced Encryption Standard with key length of 256.

SendTrap Method (SNMPTCPAgent Class)

Sends an SNMP Trap.

Syntax

public void sendTrap(String remoteHost, String trapOID);

Remarks

Depending upon the value of the SNMPVersion property, the packet is constructed as an SNMPv1 or SNMPv2 Trap PDU. The following configuration settings provide more control about how traps are generated: TrapPort, TrapAgentAddress, TrapCommunity, TrapEnterprise. The SysUpTime property provides the trap timestamp.

SendTrap sends an unauthenticated trap. The SendSecureTrap method is used to send authenticated SNMPv3 traps.

If any values are provided in the Objects collection, they are sent unchanged. In the case of an SNMPv2 or SNMPv3 Trap, if Objects has a count that is equal to 0, the following values are set: sysUpTime.0 equal to SysUpTime and snmpTrapOID.0 equal to TrapOID.

For SNMPv2 and SNMPv3 Traps, TrapOID must contain the full OID of the Trap. For SNMPv1, TrapOID must be a string of the form "generic.specific" where generic and specific are numeric values providing the Trap Generic Type and Specific Type.

For SNMPv1, TrapOID must be of the form "GenericTrap.SpecificTrap". These values are sent in the PDU header. TrapAgentAddress and TrapEnterprise are taken from the corresponding configuration settings.

Additionally, the following symbolic values are recognized and translated as follows:

Trap Name OID (SNMPv2 and above) SNMPv1 GenericType
coldStart 1.3.6.1.6.3.1.1.5.1 0
warmStart 1.3.6.1.6.3.1.1.5.2 1
linkDown 1.3.6.1.6.3.1.1.5.3 2
linkUp 1.3.6.1.6.3.1.1.5.4 3
authenticationFailure 1.3.6.1.6.3.1.1.5.5 4
egpNeighborLoss 1.3.6.1.6.3.1.1.5.6 5
enterpriseSpecific 1.3.6.1.6.3.1.1.5.7 6

ShowCache Method (SNMPTCPAgent Class)

Lists all entries in the internal user authentication cache.

Syntax

public void showCache();

Remarks

A CacheEntry event is fired for every record in the internal user authentication cache.

The internal authentication cache can be used as an alternative to the GetUserPassword event, automatically checking the cache against the security parameters provided in the request signature.

The ShowCache method is used to show the contents of the internal authentication cache.

The ClearCache method can be used to completely clear the cache.

Value Method (SNMPTCPAgent Class)

Returns the value corresponding to an OID.

Syntax

public String value(String OID);

Remarks

If the OID does not exist in the Objects collection, a trappable error is generated.

Please refer to the SNMPObject type for more information.

BadPacket Event (SNMPTCPAgent Class)

Fired for erroneous and/or malformed messages.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void badPacket(SNMPTCPAgentBadPacketEvent e) {}
  ...
}

public class SNMPTCPAgentBadPacketEvent {
  public byte[] packet;
  public String sourceAddress;
  public int sourcePort;
  public int errorCode;
  public String errorDescription;
  public boolean report; //read-write
}

Remarks

The full message is provided in the Packet parameter.

The BadPacket event is also fired when authentication fails for received packets due to a bad password or other reasons.

If the Report parameter is set to True, an unauthenticated error report will be sent to the client, otherwise the packet will be silently ignored.

Please refer to the GetUserPassword event for more information concerning SNMPv3 authentication.

CacheEntry Event (SNMPTCPAgent Class)

Shows in the internal cache.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void cacheEntry(SNMPTCPAgentCacheEntryEvent e) {}
  ...
}

public class SNMPTCPAgentCacheEntryEvent {
  public String user;
  public String authenticationProtocol;
  public String authenticationPassword;
  public String encryptionAlgorithm;
  public String encryptionPassword;
}

Remarks

CacheEntry events are triggered by a call to ShowCache. One event is fired for each user.

Connected Event (SNMPTCPAgent Class)

Fired immediately after a connection completes (or fails).

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void connected(SNMPTCPAgentConnectedEvent e) {}
  ...
}

public class SNMPTCPAgentConnectedEvent {
  public String remoteAddress;
  public int remotePort;
  public int statusCode;
  public String description;
}

Remarks

This event fires after a connection completes or fails.

StatusCode is the value returned by the system TCP/IP stack. This will be 0 if the connection was successful.

Description contains a human readable description of the status. This will be "OK" if the connection was successful.

RemoteAddress is the IP address of the remote host.

RemotePort is the port on the remote host.

ConnectionStatus Event (SNMPTCPAgent Class)

This event is fired to indicate changes in the connection state.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void connectionStatus(SNMPTCPAgentConnectionStatusEvent e) {}
  ...
}

public class SNMPTCPAgentConnectionStatusEvent {
  public String connectionEvent;
  public int statusCode;
  public String description;
}

Remarks

The ConnectionStatus event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.

The ConnectionEvent parameter indicates the type of connection event. Values may include the following:

Firewall connection complete.
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.
StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack.

Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Disconnected Event (SNMPTCPAgent Class)

Fired when a connection is closed.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void disconnected(SNMPTCPAgentDisconnectedEvent e) {}
  ...
}

public class SNMPTCPAgentDisconnectedEvent {
  public String remoteAddress;
  public int remotePort;
  public int statusCode;
  public String description;
}

Remarks

This event fires after a connection is broken.

StatusCode is the value returned by the system TCP/IP stack. This will be 0 if the connection was broken normally.

Description contains a human readable description of the status. This will be "OK" if the connection was broken normally.

RemoteAddress is the IP address of the remote host.

RemotePort is the port on the remote host.

DiscoveryRequest Event (SNMPTCPAgent Class)

Fired when an SNMPv3 discovery packet is received.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void discoveryRequest(SNMPTCPAgentDiscoveryRequestEvent e) {}
  ...
}

public class SNMPTCPAgentDiscoveryRequestEvent {
  public byte[] engineId;
  public int engineBoots;
  public int engineTime;
  public String user;
  public int securityLevel;
  public String sourceAddress;
  public int sourcePort;
  public boolean respond; //read-write
}

Remarks

EngineId, EngineBoots, EngineTime, and User are the values received from SourceAddress.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

Respond is True by default, and will automatically send a response using the value in LocalEngineId. To suppress the response, set Respond to False.

The value returned to SourceAddress for EngineBoots is always 0, and EngineTime is the number of seconds since January 1st, 1970 (GMT).

Error Event (SNMPTCPAgent Class)

Fired when information is available about errors during data delivery.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void error(SNMPTCPAgentErrorEvent e) {}
  ...
}

public class SNMPTCPAgentErrorEvent {
  public int errorCode;
  public String description;
}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class throws an exception.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

GetBulkRequest Event (SNMPTCPAgent Class)

Fired when a GetBulkRequest packet is received.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void getBulkRequest(SNMPTCPAgentGetBulkRequestEvent e) {}
  ...
}

public class SNMPTCPAgentGetBulkRequestEvent {
  public int requestId;
  public int messageId;
  public int SNMPVersion;
  public String community;
  public String user;
  public int securityLevel;
  public String sourceAddress;
  public int sourcePort;
  public int nonRepeaters;
  public int maxRepetitions;
  public int errorIndex; //read-write
  public int errorStatus; //read-write
  public String errorDescription;
  public boolean respond; //read-write
}

Remarks

This is only available for SNMP versions 2 and 3.

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the Oid, ObjectType, and Value of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

The MessageId parameter identifies the received request.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

To send a response, the Respond parameter must be set to true. By default, this value is false, which means no response will be sent. The ErrorStatus parameter may also be set to a valid SNMP status code (the default value is 0, which represents no error).

The following is a list of valid SNMP status code values:

0 (noError) No error.
1 (tooBig) The response cannot fit in a single SNMP message.
2 (noSuchName) Variable does not exist.
3 (badValue) Invalid value or syntax.
4 (readOnly) Variable is read-only.
5 (genError) Other error (SNMPv1).
6 (noAccess) Access denied.
7 (wrongType) Wrong object type.
8 (wrongLength) Wrong length.
9 (wrongEncoding) Wrong encoding.
10 (wrongValue) Wrong value.
11 (noCreation) No creation.
12 (inconsistentValue) Inconsistent value.
13 (resourceUnavailable) Resource unavailable.
14 (commitFailed) Commit failed.
15 (undoFailed) Undo failed.
16 (authorizationError) Authorization error.
17 (notWritable) Variable is not writable.
18 (inconsistentName) Inconsistent name.
The ErrorIndex parameter indicates the index of the first variable (object) that caused an error. The default value is 0.

Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).

A GetBulkRequest is very similar to a GetNextRequest, the difference is that Getbulk performs a continuous GetNext operation based on the MaxRepitions value. The NonRepeaters value will determine the number of Objects for which a simple GetNext operation should be performed. For the remaining variables, a continuous GetNext operation is performed based on the MaxRepitions value.

So if you send a request containing X objects, the agent will perform N simple GetNext operations and M continuous GetNext operations X - N times. With X being the number of objects received, N being the number of NonRepeaters, and M being the number of MaxRepitions. Thus the SNMPMgr is expecting to receive N + M x (X - N) objects, assuming that each object has M successors.

GetNextRequest Event (SNMPTCPAgent Class)

Fired when a GetNextRequest packet is received.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void getNextRequest(SNMPTCPAgentGetNextRequestEvent e) {}
  ...
}

public class SNMPTCPAgentGetNextRequestEvent {
  public int requestId;
  public int messageId;
  public int SNMPVersion;
  public String community;
  public String user;
  public int securityLevel;
  public String sourceAddress;
  public int sourcePort;
  public int errorIndex; //read-write
  public int errorStatus; //read-write
  public String errorDescription;
  public boolean respond; //read-write
}

Remarks

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the Oid, ObjectType, and Value of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

The MessageId parameter identifies the received request.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

To send a response, the Respond parameter must be set to true. By default, this value is false, which means no response will be sent. The ErrorStatus parameter may also be set to a valid SNMP status code (the default value is 0, which represents no error).

The following is a list of valid SNMP status code values:

0 (noError) No error.
1 (tooBig) The response cannot fit in a single SNMP message.
2 (noSuchName) Variable does not exist.
3 (badValue) Invalid value or syntax.
4 (readOnly) Variable is read-only.
5 (genError) Other error (SNMPv1).
6 (noAccess) Access denied.
7 (wrongType) Wrong object type.
8 (wrongLength) Wrong length.
9 (wrongEncoding) Wrong encoding.
10 (wrongValue) Wrong value.
11 (noCreation) No creation.
12 (inconsistentValue) Inconsistent value.
13 (resourceUnavailable) Resource unavailable.
14 (commitFailed) Commit failed.
15 (undoFailed) Undo failed.
16 (authorizationError) Authorization error.
17 (notWritable) Variable is not writable.
18 (inconsistentName) Inconsistent name.
The ErrorIndex parameter indicates the index of the first variable (object) that caused an error. The default value is 0.

Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).

GetRequest Event (SNMPTCPAgent Class)

Fired when a GetRequest packet is received.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void getRequest(SNMPTCPAgentGetRequestEvent e) {}
  ...
}

public class SNMPTCPAgentGetRequestEvent {
  public int requestId;
  public int messageId;
  public int SNMPVersion;
  public String community;
  public String user;
  public int securityLevel;
  public String sourceAddress;
  public int sourcePort;
  public int errorIndex; //read-write
  public int errorStatus; //read-write
  public String errorDescription;
  public boolean respond; //read-write
}

Remarks

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the Oid, ObjectType, and Value of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

The MessageId parameter identifies the received request.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

To send a response, the Respond parameter must be set to true. By default, this value is false, which means no response will be sent. The ErrorStatus parameter may also be set to a valid SNMP status code (the default value is 0, which represents no error).

The following is a list of valid SNMP status code values:

0 (noError) No error.
1 (tooBig) The response cannot fit in a single SNMP message.
2 (noSuchName) Variable does not exist.
3 (badValue) Invalid value or syntax.
4 (readOnly) Variable is read-only.
5 (genError) Other error (SNMPv1).
6 (noAccess) Access denied.
7 (wrongType) Wrong object type.
8 (wrongLength) Wrong length.
9 (wrongEncoding) Wrong encoding.
10 (wrongValue) Wrong value.
11 (noCreation) No creation.
12 (inconsistentValue) Inconsistent value.
13 (resourceUnavailable) Resource unavailable.
14 (commitFailed) Commit failed.
15 (undoFailed) Undo failed.
16 (authorizationError) Authorization error.
17 (notWritable) Variable is not writable.
18 (inconsistentName) Inconsistent name.
The ErrorIndex parameter indicates the index of the first variable (object) that caused an error. The default value is 0.

Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).

GetUserPassword Event (SNMPTCPAgent Class)

Retrieves a password associated with a user.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void getUserPassword(SNMPTCPAgentGetUserPasswordEvent e) {}
  ...
}

public class SNMPTCPAgentGetUserPasswordEvent {
  public int passwordType;
  public String user;
  public String password; //read-write
  public int algorithm; //read-write
}

Remarks

The GetUserPassword event is fired after initial inspection of SNMPv3 requests.

The type of password required is provided in the PasswordType parameter: 1 for authentication, and 2 for encryption (privacy).

The password corresponding to User (if any) must be provided in the Password parameter. If the password is valid, processing will continue to other events such as GetRequest, SetRequest, etc.

If the PasswordType parameter is 1 (authentication is used), the Algorithm parameter can be set. Possible values are:

ValueAuthentication Algorithm
0 (default)Any
1MD5
2SHA1
3SHA256
4SHA512
If the PasswordType parameter is 2 (encryption is used), the Algorithm parameter must also be set. Possible values are:
ValueEncryption Algorithm
1 (default)DES
2AES
33DES
4AES192
5AES256

If the password does not match the signature in the request, a BadPacket event will be fired, at which point you can decide whether to report the error to the client (see the description of the BadPacket event for more information).

If the User is invalid or unknown, set the password to empty string (default) to ignore the request. This will result in a BadPacket event being fired, at which point you can decide whether to report the error to the client or not.

GetUserSecurityLevel Event (SNMPTCPAgent Class)

Sets the security level for an incoming packet.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void getUserSecurityLevel(SNMPTCPAgentGetUserSecurityLevelEvent e) {}
  ...
}

public class SNMPTCPAgentGetUserSecurityLevelEvent {
  public String user;
  public byte[] engineId;
  public int securityLevel; //read-write
}

Remarks

The GetUserSecurityLevel event is fired after the first inspection of each SNMPv3 request. The SecurityLevel parameter determines the level of security for the message.

On entry, the SecurityLevel parameter contains the default security level for User if the user is located in the internal cache, or if the User is not found in the cache, the SecurityLevel will be -1.

The value of SecurityLevel upon exiting the event, determines how the message will be processed:

-1The message will be ignored and a BadPacket event will be fired.
0No security. The message will be processed without any authentication and/or encryption.
1Authentication only. The message will be checked for a valid signature and the GetUserPassword event will be fired to verify the authentication password.
2Authentication and Privacy. The message will be checked for a valid signature and the GetUserPassword event will be fired twice: first to verify the authentication password, and then to verify the privacy password.

HashPassword Event (SNMPTCPAgent Class)

Fired before and after a password is hashed.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void hashPassword(SNMPTCPAgentHashPasswordEvent e) {}
  ...
}

public class SNMPTCPAgentHashPasswordEvent {
  public String password;
  public int authAlgorithm;
  public String hash; //read-write
}

Remarks

SNMPv3 passwords are hashed in order to obtain authentication and encryption keys. This is an expensive operation, and in certain situations it may be preferable to store the hashed passwords externally and supply them on demand.

If a hash is required, the event fires with an empty string in the Hash parameter. In this case, you can choose to supply a value for the hash and stop the class from computing the hash.

The event also fires every time a hash is computed. In this case, the Hash parameter contains the value of the computed hash.

AuthAlgorithm contains either 1 for HMAC-MD5-96, 2 for HMAC-SHA-96 or 3 for HMAC-192-SHA-256

PacketTrace Event (SNMPTCPAgent Class)

Fired for every packet sent or received.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void packetTrace(SNMPTCPAgentPacketTraceEvent e) {}
  ...
}

public class SNMPTCPAgentPacketTraceEvent {
  public byte[] packet;
  public int direction;
  public String packetAddress;
  public int packetPort;
}

Remarks

The PacketTrace event shows all the packets sent or received by the class.

Packet contains the full contents of the datagram.

Direction shows the direction of the packet: 1 for incoming packets, and 2 for outgoing packets.

In the case of an incoming packet, PacketAddress and PacketPort identify the source of the packet.

In the case of an outgoing packet, PacketAddress and PacketPort identify the destination of the packet.

ReadyToSend Event (SNMPTCPAgent Class)

Fired when the class is ready to send data.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void readyToSend(SNMPTCPAgentReadyToSendEvent e) {}
  ...
}

public class SNMPTCPAgentReadyToSendEvent {
}

Remarks

The ReadyToSend event indicates that the underlying TCP/IP subsystem is ready to accept data after a failed DataToSend(TBD. DataToSend is removed).

Report Event (SNMPTCPAgent Class)

Fired when a Report packet is received.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void report(SNMPTCPAgentReportEvent e) {}
  ...
}

public class SNMPTCPAgentReportEvent {
  public int requestId;
  public int SNMPVersion;
  public String community;
  public String user;
  public int securityLevel;
  public String sourceAddress;
  public int sourcePort;
  public int errorIndex;
  public int errorStatus;
  public String errorDescription;
}

Remarks

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the Oid, ObjectType, and Value of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

SetRequest Event (SNMPTCPAgent Class)

Fired when a SetRequest packet is received.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void setRequest(SNMPTCPAgentSetRequestEvent e) {}
  ...
}

public class SNMPTCPAgentSetRequestEvent {
  public int requestId;
  public int messageId;
  public int SNMPVersion;
  public String community;
  public String user;
  public int securityLevel;
  public String sourceAddress;
  public int sourcePort;
  public int errorIndex; //read-write
  public int errorStatus; //read-write
  public String errorDescription;
  public boolean respond; //read-write
}

Remarks

The list of variables in the SNMP packet, including optional values and types, is provided through the Objects collection. Each object is of type SNMPObject. This type describes the Oid, ObjectType, and Value of each SNMP object. These variables must be copied to another location before the event has completed executing, or they may be overridden by other events.

The SourceAddress and SourcePort parameters show the address and port of the sender as reported by the TCP/IP stack.

The MessageId parameter identifies the received request.

For SNMPv3, the User parameter shows the user that was supplied with the packet. This parameter MUST be used together with the SecurityLevel parameter which shows the level of security in the message.

The SecurityLevel parameter shows whether the request has been authenticated. If SecurityLevel is 0, the request has NOT been authenticated (i.e. the packet signature has not been verified). For an authenticated, non encrypted request, SecurityLevel is 1. For an authenticated and encrypted request, SecurityLevel is 2.

To send a response, the Respond parameter must be set to true. By default, this value is false, which means no response will be sent. The ErrorStatus parameter may also be set to a valid SNMP status code (the default value is 0, which represents no error).

The following is a list of valid SNMP status code values:

0 (noError) No error.
1 (tooBig) The response cannot fit in a single SNMP message.
2 (noSuchName) Variable does not exist.
3 (badValue) Invalid value or syntax.
4 (readOnly) Variable is read-only.
5 (genError) Other error (SNMPv1).
6 (noAccess) Access denied.
7 (wrongType) Wrong object type.
8 (wrongLength) Wrong length.
9 (wrongEncoding) Wrong encoding.
10 (wrongValue) Wrong value.
11 (noCreation) No creation.
12 (inconsistentValue) Inconsistent value.
13 (resourceUnavailable) Resource unavailable.
14 (commitFailed) Commit failed.
15 (undoFailed) Undo failed.
16 (authorizationError) Authorization error.
17 (notWritable) Variable is not writable.
18 (inconsistentName) Inconsistent name.
The ErrorIndex parameter indicates the index of the first variable (object) that caused an error. The default value is 0.

Variable indexes start with 0. ErrorIndex has no meaning when ErrorStatus is 0 (no error).

SSLClientAuthentication Event (SNMPTCPAgent Class)

Fired when the client presents its credentials to the server.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void SSLClientAuthentication(SNMPTCPAgentSSLClientAuthenticationEvent e) {}
  ...
}

public class SNMPTCPAgentSSLClientAuthenticationEvent {
  public String remoteAddress;
  public int remotePort;
  public byte[] certEncoded;
  public String certSubject;
  public String certIssuer;
  public String status;
  public boolean accept; //read-write
}

Remarks

This event fires when a client connects to the class and presents a certificate for authentication. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether to continue or not.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK").

RemoteAddress is the IP address of the connecting client.

RemotePort is the source port of the connecting client.

CertEncoded is the base64 encoded certificate presented by the client.

CertSubject is the subject of the certificate presented by the client.

CertIssuer is the subject of the issuer of the certificate presented by the client.

Status is the stauts of the certificate.

Accept defines whether the certificate is accepted.

SSLServerAuthentication Event (SNMPTCPAgent Class)

Fires when connecting to the server.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void SSLServerAuthentication(SNMPTCPAgentSSLServerAuthenticationEvent e) {}
  ...
}

public class SNMPTCPAgentSSLServerAuthenticationEvent {
  public String remoteAddress;
  public int remotePort;
  public byte[] certEncoded;
  public String certSubject;
  public String certIssuer;
  public String status;
  public boolean accept; //read-write
}

Remarks

This event is where the client can decide whether to continue with the connection process or not. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether to continue or not.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK"). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

RemoteAddress is the IP address of the server.

RemotePort is the source port of the server.

CertEncoded is the base64 encoded certificate presented by the server.

CertSubject is the subject of the certificate presented by the server.

CertIssuer is the subject of the issuer of the certificate presented by the server.

Status is the stauts of the certificate.

Accept defines whether the certificate is accepted.

SSLStatus Event (SNMPTCPAgent Class)

Shows the progress of the secure connection.

Syntax

public class DefaultSNMPTCPAgentEventListener implements SNMPTCPAgentEventListener {
  ...
  public void SSLStatus(SNMPTCPAgentSSLStatusEvent e) {}
  ...
}

public class SNMPTCPAgentSSLStatusEvent {
  public String remoteAddress;
  public int remotePort;
  public String message;
}

Remarks

The event is fired for informational and logging purposes only. It is used to track the progress of the connection.

RemoteAddress is the IP address of the remote machine.

RemotePort is the port of the remote machine.

Message is the log message.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

The following fields are available:

Fields

EffectiveDate
String (read-only)

Default Value: ""

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

ExpirationDate
String (read-only)

Default Value: ""

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
String (read-only)

Default Value: ""

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
String (read-only)

Default Value: ""

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
String (read-only)

Default Value: ""

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
String (read-only)

Default Value: ""

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
String (read-only)

Default Value: ""

The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

KeyPassword
String

Default Value: ""

The password for the certificate's private key (if any).

Some certificate stores may individually protect certificates' private keys, separate from the standard protection offered by the StorePassword. This field can be used to read such password-protected private keys.

Note: This property defaults to the value of StorePassword. To clear it, you must set the property to the empty string (""). It can be set at any time, but when the private key's password is different from the store's password, then it must be set before calling PrivateKey.

PrivateKey
String (read-only)

Default Value: ""

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
boolean (read-only)

Default Value: False

Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
String (read-only)

Default Value: ""

The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
String (read-only)

Default Value: ""

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
String (read-only)

Default Value: ""

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default Value: 0

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
String (read-only)

Default Value: ""

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
String (read-only)

Default Value: ""

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
String

Default Value: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StoreB
byte[]

Default Value: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
String

Default Value: ""

If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.

StoreType
int

Default Value: 0

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

SubjectAltNames
String (read-only)

Default Value: ""

Comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
String (read-only)

Default Value: ""

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
String (read-only)

Default Value: ""

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
String (read-only)

Default Value: ""

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
String (read-only)

Default Value: ""

The text description of UsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int (read-only)

Default Value: 0

The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
String (read-only)

Default Value: ""

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Subject
String

Default Value: ""

The subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate, the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Encoded
String

Default Value: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
byte[]

Default Value: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

Constructors

public Certificate();

Creates a instance whose properties can be set. This is useful for use with when generating new certificates.

public Certificate( certificateFile);

Opens CertificateFile and reads out the contents as an X.509 public key.

public Certificate( encoded);

Parses Encoded as an X.509 public key.

public Certificate( storeType,  store,  storePassword,  subject);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  subject,  configurationString);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

ConfigurationString is a newline-separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to the cstUser , cstMachine , cstPublicKeyFile , and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  encoded);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

public Certificate( storeType,  store,  storePassword,  subject);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  subject,  configurationString);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  encoded);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

SNMPObject Type

The current SNMP object.

Remarks

This type defines an SNMP object. Each object has an Oid, ObjectType, and Value. These values are populated by the class when incoming packets are received. You may use these fields to define objects to be used in outgoing packets.

The following fields are available:

Fields

ObjectType
int

Default Value: 5

The current object's type. The default type is NULL (5).

The corresponding object id and value are specified by the Oid and Value fields.

Possible object type values include:

otInteger (2) 2
otOctetString (4) 4
otNull (5) 5
otObjectID (6) 6
otIPAddress (64)64
otCounter32 (65)65
otGauge32 (66)66
otTimeTicks (67)67
otOpaque (68)68
otNSAP (69)69
otCounter64 (70)70
otUnsignedInteger32 (71)71

The class also supports the following artificial object values used to designate error conditions:

otNoSuchObject (128)No such object error.
otNoSuchInstance (129)No such instance error.
otEndOfMibView (130)End of MIB View error.

Oid
String

Default Value: ""

The current object's id which is encoded as a string of numbers separated by periods. For instance: "1.3.6.1.2.1.1.1.0" (OID for "system description").

The corresponding object type and value (if any) are specified by the ObjectType and Value fields.

Example

SNMPControl.Objects.Add(new SNMPObject()) SNMPControl.Objects(0).Oid = "1.3.6.1.2.1.1.1.0"

TypeString
String (read-only)

Default Value: ""

A string representation of the current object's ObjectType.

The corresponding object id and value are specified by the Oid and Value fields.

Value
String

Default Value: ""

The current object's value. The corresponding object id and type are specified by the Oid and ObjectType fields.

Example

SNMPControl.Objects.Add(new SNMPObject()) SNMPControl.Objects(0).Oid = "1.3.6.1.2.1.1.1.0" SNMPControl.Objects(0).Value = "New Value"

ValueB
byte[]

Default Value: ""

The current object's value. The corresponding object id and type are specified by the Oid and ObjectType fields.

Example

SNMPControl.Objects.Add(new SNMPObject()) SNMPControl.Objects(0).Oid = "1.3.6.1.2.1.1.1.0" SNMPControl.Objects(0).Value = "New Value"

Constructors

public SNMPObject();
public SNMPObject( oid);
public SNMPObject( oid,  value);
public SNMPObject( oid,  value,  objectType);

Config Settings (SNMPTCPAgent Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

SNMPTCPAgent Config Settings

AuthenticationKey:   The key to use for authentication.

This setting takes the hex-encoded key for authentication and may be set before calling SendSecureTrap.

CompatibilityMode:   Whether to operate the component in a specific compatibility mode.

This setting will cause the component to operate in a manner different than normal so that it is compatible with third-party products and libraries. The following table lists the possible values for this setting:

0 (default)Component operates normally for greatest compatibility.
1Component uses SNMP4j-compatible encryption (AES192 and AES256).
2Component automatically detects whether to use SNMP4j-compatible encryption (AES192 and AES256). Note: This option is only applicable when receiving packets. If you are using SNMPMgr or sending secure traps, you will need to select either 0 or 1.
ContextEngineId:   Sets the context engine id of the SNMP entity.

If set, the context engine id included in the PDU will be set.

ContextName:   Sets the context name of the SNMP entity.

If set, the context name included in the PDU will be set.

DecryptLogPackets:   Whether to decrypt logged packets.

When set to true this setting will cause the class to decrypt packets logged in PacketTrace. This only applies when using SNMP Version 3. The default is false.

DerivedKeyCacheSize:   The size of the internal cache used to store derived keys.

When set to a value greater than 0 the class will cache keys derived from passwords. This can improve performance in some scenarios. This value should be set to twice the number of expected unique passwords (e.g. 20 for 10 passwords). This only applies when using SNMP Version 3.

The cache is enabled by default and the default value is 20. To disable the cache set the value to 0. This setting is only applicable when SNMPVersion is set to 3.

DerivedKeyCacheStatus:   The status of the internal cache used to store derived keys.

When queried this setting returns the number of slots occupied in the cache (e.g. 6/20). This setting only applies when SNMPVersion is set to 3.

EncryptionKey:   The key to use for encryption.

This setting takes the hex-encoded key for encryption and may be set before calling SendSecureTrap.

ForceLocalPort:   Forces the class to bind to a specific port.

The default value is True, which makes the class throw an error if LocalPort is busy. When ForceLocalPort is set to False and the port is busy, the class silently chooses another random port.

IncomingContextEngineId:   The engine Id of the received packet.

This setting holds the engine Id of the received packet. This may be queried at any time, including from within an event, and returns the engine Id of the received packet. This is not needed in most cases, but can be used to store the incoming engine Id to send an asynchronous response later. This value is read-only.

IncomingContextName:   The context name of the received packet.

This setting holds the context name of the received packet. This may be queried at any time, including from within an event, and returns the context name of the received packet. This is not needed in most cases, but can be used to store the incoming context name to send an asynchronous response later. This value is read-only.

MsgMaxSize:   The maximum supported message size.

This setting specifies the maximum supported message size in bytes. This is only applicable when SNMPVersion is set to 3. This corresponds to the "msgMaxSize" field in the request.

RespondFromDestIP:   Whether to respond from the IP address that the request was sent to.

By default the class will always respond from the interface defined by LocalHost. In the case where aliases have been defined on the system, incoming traffic may have a different value for the destination. This setting tells the class to respond using a source address that matches the destination address of the received packet. This setting should only be set to True if there is a specific reason to do so.

SourceAddress:   The source address of the received packet.

This setting holds the source address of the received packet. This may be queried at any time, including from within an event, and returns the source address of the received packet. This value is read-only.

SourcePort:   The source port of the received packet.

This setting holds the source port of the received packet. This may be queried at any time, including from within an event, and returns the source port of the received packet. This value is read-only.

SynchronizeEvents:   Controls whether or not events are fired from the main thread when timeout is positive.

The default value is True, which makes the class fire events from the main thread when timeout is greater than zero. Note: If your application requires more speed and efficiency, or does not require events to be fired from the main thread, you can set this to False to fire the events from secondary threads. This config is not applicable if timeout is zero, when events will always be fired from secondary threads.

TimeWindow:   The time window used for SNMPv3 timeliness checking (authentication).

The default value is 150 (seconds).

TrapAgentAddress:   The address of the object generating the trap.

This setting is used to specify the agent-addr field when sending V1 Traps. The default value is the address of the localhost. This value must be an IPv4 address.

TrapCommunity:   The value of the Community parameter for SNMP traps.

Typical values are "public" or "private". The default value is "public".

TrapEnterprise:   The type of the object generating the trap.

This setting specifies the type of object generating the SNMP Trap. The default value is "1.3.6.1.6.3.1.1.5" (i.e. SNMPv2-MIB::snmpTraps).

TrapPort:   The port where SNMP traps are sent.

The TrapPort is the TCP port where SNMP traps are sent.

A valid port number (a value between 1 and 65535) is required. The default value is 162.

TCPClient Config Settings

CloseStreamAfterTransfer:   If true, the component will close the upload or download stream after the transfer.

This configuration setting determines whether the input or output stream is closed after the transfer completes. When set to True (default), all streams will be closed after a transfer is completed. To keep streams open after the transfer of data, set this to False. The default value is True.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallListener:   If true, the component binds to a SOCKS firewall as a server (TCPClient only).

This entry is for TCPClient only and does not work for other components that descend from TCPClient.

If this entry is set, the class acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.

RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.

The connection to the firewall is made by calling the Connect method.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class throws an exception.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

Possible values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class throws an exception.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This configuration setting must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback
UseNTLMv2:   Whether to use NTLM V2.

When authenticating with NTLM, this setting specifies whether NTLM V2 is used. By default this value is False and NTLM V1 will be used. Set this to True to use NTLM V2.

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if SSLProvider is set to Platform.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This configuration setting specifies whether the class will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class throws an exception.

When set to 0 (default), the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This configuration setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the class throws an exception.

When set to 0 (default), the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLContextProtocol:   The protocol used when getting an SSLContext instance.

Possible values are SSL, SSLv2, SSLv3, TLS, and TLSv1. Use this configuration setting only in case your security provider does not support TLS. This is the parameter "protocol" inside the SSLContext.getInstance(protocol) call.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Note: This value must be set after SSLProvider is set.

Example values: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA"); obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA; SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA"); Possible values when SSLProvider is set to Platform include the following:

  • SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • SSL_RSA_WITH_RC4_128_SHA
  • SSL_RSA_WITH_DES_CBC_SHA
  • SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DH_anon_WITH_DES_CBC_SHA
  • SSL_RSA_EXPORT_WITH_RC4_40_MD5
  • SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
  • SSL_DHE_DSS_WITH_DES_CBC_SHA
  • SSL_RSA_WITH_NULL_MD5
  • SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
  • SSL_DHE_RSA_WITH_DES_CBC_SHA
  • SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
  • SSL_RSA_WITH_NULL_SHA
  • SSL_DH_anon_WITH_RC4_128_MD5
  • SSL_RSA_WITH_RC4_128_MD5
  • SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • SSL_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_NULL_SHA
  • TLS_DH_anon_WITH_AES_128_CBC_SHA256 (Not Recommended)
  • TLS_ECDH_anon_WITH_RC4_128_SHA
  • TLS_DH_anon_WITH_AES_128_CBC_SHA (Not Recommended)
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_KRB5_EXPORT_WITH_RC4_40_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_RC4_128_SHA
  • TLS_ECDH_ECDSA_WITH_RC4_128_SHA
  • TLS_ECDH_anon_WITH_NULL_SHA
  • TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_RSA_WITH_NULL_SHA256
  • TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
  • TLS_KRB5_WITH_RC4_128_MD5
  • TLS_ECDHE_ECDSA_WITH_NULL_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_RC4_128_SHA
  • TLS_EMPTY_RENEGOTIATION_INFO_SCSV
  • TLS_KRB5_WITH_3DES_EDE_CBC_MD5
  • TLS_KRB5_WITH_RC4_128_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_NULL_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_WITH_DES_CBC_MD5
  • TLS_KRB5_EXPORT_WITH_RC4_40_MD5
  • TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
  • TLS_ECDH_anon_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_KRB5_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_NULL_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA

Possible values when SSLProvider is set to Internal include the following:

  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is false by default, but it can be set to true to enable the extension.

This configuration setting is applicable only when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLTrustManagerFactoryAlgorithm:   The algorithm to be used to create a TrustManager through TrustManagerFactory.

Possible values include SunX509. This is the parameter "algorithm" inside the TrustManagerFactory.getInstance(algorithm) call.

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class throws an exception.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The class will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the class does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseDaemonThreads:   Whether threads created by the class are daemon threads.

If set to True (default), when the class creates a thread, the thread's Daemon property will be explicitly set to True. When set to False, the class will not set the Daemon property on the created thread. The default value is True.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.

This setting is set to false by default on all platforms.

Trappable Errors (SNMPTCPAgent Class)

SNMPTCPAgent Errors

201   Timeout.
301   Bad Object Index.
302   Value exceeds maximum number of objects allowed.
303   The value must be an IP address in dotted format.
305   Unsupported SNMP version.
306   Unknown PDU type.
307   The class is busy performing the current action.
308   Verification failed.
309   Missing password for Verification.
310   Missing signature.
311   Missing remote time.
312   Missing timeout value.
313   Decryption Failed.
314   Missing password for decryption.
315   Not encrypted.
316   Security model not supported.
317   Defective packet
318   Not from bound point.
319   Operation not permitted in current role.
320   Bad packet.
321   Message not authenticated.
322   No such oid.
323   Missing privacy parameter.
324   Bad engine id.
325   Bad time frame.
326   Bad user name.
327   Security level was not accepted.
328   Discovery failed.
329   Incorrect key length.
330   No authentication password supplied.

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
303   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on nonsocket.
10039   [10039] Destination address required.
10040   [10040] Message is too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol is not supported.
10044   [10044] Socket type is not supported.
10045   [10045] Operation is not supported on socket.
10046   [10046] Protocol family is not supported.
10047   [10047] Address family is not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Cannot assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Cannot send after socket shutdown.
10059   [10059] Too many references, cannot splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name is too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory is not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock is not loaded yet.
11001   [11001] Host not found.
11002   [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).