SMPP Class

Properties   Methods   Events   Config Settings   Errors  

The SMPP Class implements a lightweight message transmission interface using the Short Message Peer-to-Peer protocol, most known for its use in cellular text messaging.

Syntax

ipworks.SMPP

Remarks

The SMPP class supports both plaintext and Secure Sockets Layer/Transport Layer Security (SSL/TLS) connections. When connecting over Secure Sockets Layer/Transport Layer Security (SSL/TLS) the SSLServerAuthentication event allows you to check the server identity and other security attributes. The SSLStatus event provides information about the SSL handshake. Additional SSL-related settings are also supported through the Config method.

The Smpp Class will bind as a transceiver, and thus it can send and receive messages from the server. Additionally, it can send single and multirecipient messages and also can upload data.

Using Smpp is quite easy. First, simply set the SMPPServer, SMPPPort, and, if needed, the SMPPVersion properties. Second, a single call to the Connect method with a specified user Id and password will connect the class.

Transmitting messages is just as easy. You can manipulate the Recipients collection directly, or just use AddRecipient method to add recipients one at a time to the recipient list. After all recipients have been added, a single call to the SendMessage method will transmit the specified message. If the send is successful, the method will set and return the value of the MessageId property. Otherwise, an Error event will fire for each unsuccessful message destination.

The Smpp Class supports message and data transmission, as well as auxiliary operations, such as CheckMessageStatus and ReplaceMessage. All nonimplemented features of the protocol are supported through the SendCommand method and PITrail event. Because of the nature of the protocol, all methods and operations are implemented synchronously.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

ConnectedThis property indicates whether the class is connected.
FirewallA set of properties related to firewall access.
IdleThe current status of the class.
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
MessageExpirationThis property denotes the validity period of the current message.
MessageIdThis property indicates the identifier of the most recently sent message.
MessagePriorityThis property indicates the priority level of the current message.
PasswordThis property contains the user's password.
ProtocolThis property defines the SMPP protocol to be used.
RecipientsThis property includes the list of message recipients.
ScheduledDeliveryThis property tells the server when to deliver the current message.
SenderAddressThis property contains the address of the External Short Messaging Entity (ESME).
ServiceTypeThis property indicates the type of service for the current message.
SMPPPortThis property contains the server port for secure SMPP (default 2775).
SMPPServerThis property is the SMPP entity to which the class will connect.
SMPPVersionThis property indicates the SMPP version to be used throughout the connection.
SSLAcceptServerCertInstructs the class to unconditionally accept the server certificate that matches the supplied certificate.
SSLCertThe certificate to be used during Secure Sockets Layer (SSL) negotiation.
SSLEnabledThis property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled.
SSLProviderThe Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
SSLServerCertThe server certificate for the last established connection.
SSLStartModeThis property determines how the class starts the Secure Sockets Layer (SSL) negotiation.
SystemTypeThis property contains a string representing the type of system during a connection.
TimeoutThe timeout for the class.
UserIdThis property is used for identification with the SMPP service.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

AddRecipientThis method will add a recipient of the specified type to the recipient list.
CancelMessageThis method will cancel the specified message.
CheckLinkThis method will check the connection to the server.
CheckMessageStatusThis method will retrieve the status of the specified message.
ConfigSets or retrieves a configuration setting.
ConnectThis method will bind as a transceiver to the SMPP service.
ConnectToThis method will bind as a transceiver to the SMPP service.
DisconnectThis method will disconnect from the SMPP service.
DoEventsThis method processes events from the internal message queue.
InterruptThis method interrupts the current method.
ReplaceMessageThis method replaces a previously sent message with a new one.
ResetThis method will reset the class.
SendCommandThis method will format and send a protocol data unit (PDU) using the specified command identifier and payload.
SendDataThis method sends raw data to Recipients .
SendMessageThis method sends a message to all recipients in the recipient list.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ConnectedThis event is fired after a successful bind operation.
ConnectionStatusFired to indicate changes in the connection state.
DisconnectedThis event is fired when connection to the SMS service is lost.
ErrorThis event is fired when the server detects an error.
MessageInThis event is fired upon receipt of a message.
MessageStatusThis event is fired upon receipt of a message.
PITrailThis event is fired once for each protocol data unit (PDU) sent between the client and server.
ReadyToSendThis event is fired when the class is ready to send data.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AddressRangeSpecifies the addr_range parameter when binding.
BinaryDataCodingWhether or not to binary encode the message when DataCoding is set.
BindAsReceiverCauses the class to bind as a receiver.
BindAsTransmitterCauses the class to bind as a transmitter.
CustomTLVOptional TLV parameters added after the mandatory parameters and before the payload.
DataCodingThe data encoding mechanism to be used for the current message.
DestinationNPIThe Number Planning Indicator for the destination ESME.
DestinationTONThe Type of Number for the destination ESME.
DoSplitLargeMessagesSplits long messages and returns the UDH and Message Parts.
HexStringA hex-encoded binary string to be sent to the current recipient.
IntermediateNotificationCauses the class to request intermediate notification.
MaxCIMDSMSLengthIndicates the maximum SMS message length for the CIMD protocol.
MaxSMSLengthIndicates the maximum SMS message length.
MCReceiptThe Type of MC Delivery Receipt requested.
MessageInReceiptedMessageIdThe receipted_message_id field of an incoming deliver_sm PDU.
MessageModeThe Type of Messaging Mode requested.
MessageTypeThe Type of Message.
PDUFormatThe format of the PDU.
ProtocolIdThe protocol identifier.
ReplaceIfPresentIndicates whether the replace_if_present_flag is enabled when sending a message.
SMEAcknowledgementThe Type of SME originated acknowledgment requested.
SourceNPIThe Number Planning Indicator for the ESME.
SourceTONThe Type of Number for the ESME.
SplitLargeMessagesDetermines whether large messages are split into multiple parts.
SplitMessageMethodDetermines how large messages are split into multiple parts.
StatusReportRequestDefines in what cases a status report is created by the server.
SubAddrDefines a unique index for application instance.
SynchronousSendCommandControls whether SendCommand behaves synchronously or asynchronously.
SynchronousSendMessageControls whether SendMessage behaves synchronously or asynchronously.
UseGSM7BitEncodingWhether or not to use GSM 7-bit encoding.
UseGSM7bitEncodingCompressionWhether to compress GSM 7-bit encoded characters.
WaitForBannerSpecifies the CIMD2 banner the class will wait for when connecting.
CloseStreamAfterTransferIf true, the class will close the upload or download stream after the transfer.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallListenerIf true, the class binds to a SOCKS firewall as a server (TCPClient only).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
UseNTLMv2Whether to use NTLM V2.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLContextProtocolThe protocol used when getting an SSLContext instance.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
SSLTrustManagerFactoryAlgorithmThe algorithm to be used to create a TrustManager through TrustManagerFactory.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
GUIAvailableWhether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
UseDaemonThreadsWhether threads created by the class are daemon threads.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

Connected Property (SMPP Class)

This property indicates whether the class is connected.

Syntax

public boolean isConnected();

Default Value

False

Remarks

This property indicates whether the class is connected to the remote host. Use the Connect and Disconnect methods to manage the connection.

This property is read-only and not available at design time.

Firewall Property (SMPP Class)

A set of properties related to firewall access.

Syntax

public Firewall getFirewall();
public void setFirewall(Firewall firewall);

Remarks

This is a Firewall-type property, which contains fields describing the firewall through which the class will attempt to connect.

Please refer to the Firewall type for a complete list of fields.

Idle Property (SMPP Class)

The current status of the class.

Syntax

public boolean isIdle();

Default Value

True

Remarks

This property will be False if the component is currently busy (communicating or waiting for an answer), and True at all other times.

This property is read-only.

LocalHost Property (SMPP Class)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

public String getLocalHost();
public void setLocalHost(String localHost);

Default Value

""

Remarks

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: LocalHost is not persistent. You must always set it in code, and never in the property window.

MessageExpiration Property (SMPP Class)

This property denotes the validity period of the current message.

Syntax

public String getMessageExpiration();
public void setMessageExpiration(String messageExpiration);

Default Value

""

Remarks

This property indicates the Message Center expiration time, after which the message should be discarded if not delivered to the destination. It can be set using absolute or relative time formats.

Absolute Time Format is a 16-character string represented as "YYMMDDhhmmsstnnp" where:

YYthe last two digits of the year (00-99)
MMmonth (01-12)
DDday (01-31)
hhhour (00-23)
mmminute (00-59)
sssecond (00-59)
ttenths of a second (0-9)
nnquarter-hour time difference between local time and UTC time (00-48)
p"+" or "-" indicating the direction of the time offset in nn

Relative Time Format is the same 16-character string where "p" should be set to "R" for "relative". For relative time, "tnn" are ignored and thus should be set to a constant value of "000".

MessageId Property (SMPP Class)

This property indicates the identifier of the most recently sent message.

Syntax

public String getMessageId();

Default Value

""

Remarks

This property indicates the identifier of the most recently sent message. After a successful call to SendMessage, this property will be set to the server-assigned Id for that message.

This property is read-only and not available at design time.

MessagePriority Property (SMPP Class)

This property indicates the priority level of the current message.

Syntax

public int getMessagePriority();
public void setMessagePriority(int messagePriority);

Enumerated values:
  public final static int smppMessagePriorityLow = 0;
  public final static int smppMessagePriorityNormal = 1;
  public final static int smppMessagePriorityHigh = 2;
  public final static int smppMessagePriorityUrgent = 3;

Default Value

1

Remarks

When sending a message, this property will tell the server what type of priority to assign to the message. The effect of the message priority setting depends on the Message Center (MC) manufacturer and the network on which the target recipient lies. For example, some MCs may immediately forward "urgent" messages, some networks may use the priority setting as a visual indicator of the message's urgency (e.g., blinking icons), and some networks may entirely ignore the priority setting.

Password Property (SMPP Class)

This property contains the user's password.

Syntax

public String getPassword();
public void setPassword(String password);

Default Value

""

Remarks

This property contains the user's password. When binding to the SMPPServer, the client must provide a known user identifier and a valid password for that Id.

The two ways to bind are (1) by calling Connect with a user identifier and password, which will set the UserId and this property before connecting; or (2) by setting those two properties and calling SendMessage while not connected.

Protocol Property (SMPP Class)

This property defines the SMPP protocol to be used.

Syntax

public int getProtocol();
public void setProtocol(int protocol);

Enumerated values:
  public final static int smppSMPP = 0;
  public final static int smppCIMD2 = 1;

Default Value

0

Remarks

This property defines the protocol to be used when connecting to the server. Possible values are as follows:

0 (smppSMPP - default) SMPP for traditional SMPP servers
1 (smppCIMD2) CIMD2 for Nokia Short Message Service Center servers

Recipients Property (SMPP Class)

This property includes the list of message recipients.

Syntax

public SMPPRecipientList getRecipients();
public void setRecipients(SMPPRecipientList recipients);

Remarks

This property is used to specify the recipient(s) of the message. Each recipient is represented by an SMPPRecipient type, which contains fields for the address and type of address for the recipient.

An AddRecipient method also may be used to add recipients to this collection property.

This collection is indexed from 0 to size -1.

Please refer to the SMPPRecipient type for a complete list of fields.

ScheduledDelivery Property (SMPP Class)

This property tells the server when to deliver the current message.

Syntax

public String getScheduledDelivery();
public void setScheduledDelivery(String scheduledDelivery);

Default Value

""

Remarks

This property is used by the class when sending a message to inform the Message Center to forward the message to the intended recipients at a specific time. It can be set using absolute or relative time formats.

Absolute Time Format is a 16-character string represented as "YYMMDDhhmmsstnnp" where:

YYthe last two digits of the year (00-99)
MMmonth (01-12)
DDday (01-31)
hhhour (00-23)
mmminute (00-59)
sssecond (00-59)
ttenths of a second (0-9)
nnquarter-hour time difference between local time and UTC time (00-48)
p"+" or "-" indicating the direction of the time offset in nn

Relative Time Format is the same 16-character string where "p" should be set to "R" for "relative". For relative time, "tnn" are ignored and thus should be set to a constant value of "000".

SenderAddress Property (SMPP Class)

This property contains the address of the External Short Messaging Entity (ESME).

Syntax

public String getSenderAddress();
public void setSenderAddress(String senderAddress);

Default Value

""

Remarks

This property contains the address of the External Short Messaging Entity (ESME). The SMPP protocol allows an ESME to specify its address, whether it is a phone number or an IP address. If this property is not set, the class will default to the value in LocalHost.

ServiceType Property (SMPP Class)

This property indicates the type of service for the current message.

Syntax

public int getServiceType();
public void setServiceType(int serviceType);

Enumerated values:
  public final static int smppServiceDefault = 0;
  public final static int smppServiceCMT = 1;
  public final static int smppServiceCPT = 2;
  public final static int smppServiceVMN = 3;
  public final static int smppServiceVMA = 4;
  public final static int smppServiceWAP = 5;
  public final static int smppServiceUSSD = 6;
  public final static int smppServiceCBS = 7;

Default Value

0

Remarks

When sending messages, this property is used to define the SMS application service to be associated with the message. The Message Center (MC) will use the value to determine the availability of enhanced messaging services and to control the teleservice used on the air interface.

The values are defined in the SMPP 5.0 specification as follows:

"" (NULL)MC Default
CMTCellular Messaging
CPTCellular Paging
VMNVoice Mail Notification
VMAVoice Mail Alerting
WAPWireless Application Protocol
USSDUnstructured Supplementary Services Data
CBSCell Broadcast Service

SMPPPort Property (SMPP Class)

This property contains the server port for secure SMPP (default 2775).

Syntax

public int getSMPPPort();
public void setSMPPPort(int SMPPPort);

Default Value

2775

Remarks

For an implicit Secure Sockets Layer (SSL), use port 3551 (please refer to the SSLStartMode property for more information).

A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.

SMPPServer Property (SMPP Class)

This property is the SMPP entity to which the class will connect.

Syntax

public String getSMPPServer();
public void setSMPPServer(String SMPPServer);

Default Value

""

Remarks

This property is the instant messaging server to which the class will connect when the Connect method is called. This property must contain a valid SMPP service application address.

SMPPVersion Property (SMPP Class)

This property indicates the SMPP version to be used throughout the connection.

Syntax

public int getSMPPVersion();
public void setSMPPVersion(int SMPPVersion);

Enumerated values:
  public final static int smppVersion50 = 0;
  public final static int smppVersion34 = 1;
  public final static int smppVersion33 = 2;

Default Value

1

Remarks

This property contains the SMPP version to be used throughout the connection.

The default value is version 3.4 because it is the most widely used version of the protocol.

Choosing the highest mutually supported version is generally recommended. Version 3.4 is the default value; however, if version 5.0 is supported, it is recommended.

SSLAcceptServerCert Property (SMPP Class)

Instructs the class to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

public Certificate getSSLAcceptServerCert();
public void setSSLAcceptServerCert(Certificate SSLAcceptServerCert);

Remarks

If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Note: This functionality is provided only for cases in which you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

Please refer to the Certificate type for a complete list of fields.

SSLCert Property (SMPP Class)

The certificate to be used during Secure Sockets Layer (SSL) negotiation.

Syntax

public Certificate getSSLCert();
public void setSSLCert(Certificate SSLCert);

Remarks

This property includes the digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

Please refer to the Certificate type for a complete list of fields.

SSLEnabled Property (SMPP Class)

This property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled.

Syntax

public boolean isSSLEnabled();
public void setSSLEnabled(boolean SSLEnabled);

Default Value

False

Remarks

This property specifies whether TLS/SSL is enabled in the class. When False (default), the class operates in plaintext mode. When True, TLS/SSL is enabled.

TLS/SSL may also be enabled by setting SSLStartMode. Setting SSLStartMode will automatically update this property value.

This property is not available at design time.

SSLProvider Property (SMPP Class)

The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.

Syntax

public int getSSLProvider();
public void setSSLProvider(int SSLProvider);

Enumerated values:
  public final static int sslpAutomatic = 0;
  public final static int sslpPlatform = 1;
  public final static int sslpInternal = 2;

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are as follows:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used.

SSLServerCert Property (SMPP Class)

The server certificate for the last established connection.

Syntax

public Certificate getSSLServerCert();

Remarks

This property contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

Please refer to the Certificate type for a complete list of fields.

SSLStartMode Property (SMPP Class)

This property determines how the class starts the Secure Sockets Layer (SSL) negotiation.

Syntax

public int getSSLStartMode();
public void setSSLStartMode(int SSLStartMode);

Enumerated values:
  public final static int sslAutomatic = 0;
  public final static int sslImplicit = 1;
  public final static int sslExplicit = 2;
  public final static int sslNone = 3;

Default Value

3

Remarks

The SSLStartMode property may have one of the following values:

0 (sslAutomatic)If the remote port is set to the standard plaintext port of the protocol (where applicable), the class will behave the same as if SSLStartMode is set to sslExplicit. In all other cases, SSL negotiation will be implicit (sslImplicit).
1 (sslImplicit)The SSL negotiation will start immediately after the connection is established.
2 (sslExplicit)The class will first connect in plaintext, and then will explicitly start SSL negotiation through a protocol command such as STARTTLS.
3 (sslNone - default)No SSL negotiation; no SSL security. All communication will be in plaintext mode.

SystemType Property (SMPP Class)

This property contains a string representing the type of system during a connection.

Syntax

public String getSystemType();
public void setSystemType(String systemType);

Default Value

""

Remarks

This property contains a string representing the type of system during a connection. Some SMS servers require that a system type be supplied during connection. The system type is a string representation, usually as an abbreviation, of a particular kind of system. The string cannot exceed 12 bytes.

Timeout Property (SMPP Class)

The timeout for the class.

Syntax

public int getTimeout();
public void setTimeout(int timeout);

Default Value

60

Remarks

If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If Timeout is set to a positive value, the class will wait for the operation to complete before returning control.

The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.

If Timeout expires, and the operation is not yet complete, the class throws an exception.

Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

UserId Property (SMPP Class)

This property is used for identification with the SMPP service.

Syntax

public String getUserId();
public void setUserId(String userId);

Default Value

""

Remarks

This property is used for identification with the SMPP service. When binding to the SMPPServer, the client must provide a known user identifier and a valid password for that Id.

The two ways to bind are (1) by calling Connect with a user Id and password, which will set the UserId and Password properties before connecting; or (2) by setting those two properties and calling SendMessage while not connected.

AddRecipient Method (SMPP Class)

This method will add a recipient of the specified type to the recipient list.

Syntax

public void addRecipient(int recipientType, String recipientAddress);

Remarks

This method will add a recipient of the specified type to the recipient list. For normal-type recipients, the addresses should be either a dotted IPv4 address (for sending messages to other SMS-enabled applications) or the directory number of a mobile phone. To send messages to distributed lists, the name of the list should be used.

Valid values for RecipientType are as follows:

0 (smppRecipientTypeNormal)Normal SME (Short Message Entity) Address
1 (smppRecipientTypeList)Distribution List

CancelMessage Method (SMPP Class)

This method will cancel the specified message.

Syntax

public void cancelMessage(String messageId);

Remarks

This method will cancel the message stored on the SMPPServer under the value in MessageId.

CheckLink Method (SMPP Class)

This method will check the connection to the server.

Syntax

public void checkLink();

Remarks

This method will check the connection to the server. This method is used to ensure that the host on the other end of the connection is still active, or that it is still available. Although a socket connection may still be available between the client and server, the SMS application on the server may have been taken offline without releasing the socket or the CPU may be bogged down. This method will send a PDU to the server and wait the length of Timeout for a response.

CheckMessageStatus Method (SMPP Class)

This method will retrieve the status of the specified message.

Syntax

public void checkMessageStatus(String messageId);

Remarks

This method will retrieve the last known status of the message stored on the server under MessageId. The class will fire a MessageStatus containing the parsed response from the server.

Config Method (SMPP Class)

Sets or retrieves a configuration setting.

Syntax

public String config(String configurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Connect Method (SMPP Class)

This method will bind as a transceiver to the SMPP service.

Syntax

public void connect();

Remarks

This method will establish a socket connection to the SMPPServer and attempt to bind as a transceiver. Once the bind operation has been completed, a Connected event will be fired containing the status of the connection.

ConnectTo Method (SMPP Class)

This method will bind as a transceiver to the SMPP service.

Syntax

public void connectTo(String userId, String password);

Remarks

This method will establish a socket connection to the SMPPServer and attempt to bind as a transceiver. Once the bind operation has completed, a Connected event will be fired containing the status of the connection.

Disconnect Method (SMPP Class)

This method will disconnect from the SMPP service.

Syntax

public void disconnect();

Remarks

This method will send an unbind command and close the socket connection to the SMPPServer. After an unbind operation and socket closing, a Disconnected event will be fired containing the status of the unbind operation.

DoEvents Method (SMPP Class)

This method processes events from the internal message queue.

Syntax

public void doEvents();

Remarks

When this method is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

Interrupt Method (SMPP Class)

This method interrupts the current method.

Syntax

public void interrupt();

Remarks

If there is no method in progress, Interrupt simply returns, doing nothing.

ReplaceMessage Method (SMPP Class)

This method replaces a previously sent message with a new one.

Syntax

public void replaceMessage(String messageId, String newMessage);

Remarks

Assuming that a message on the SMPPServer is being stored under the value in MessageId, this method will replace that message with the value in NewMessage.

If no message corresponds to MessageId, the SMS service will respond with an error message.

Reset Method (SMPP Class)

This method will reset the class.

Syntax

public void reset();

Remarks

This method will reset the class's properties to their default values.

SendCommand Method (SMPP Class)

This method will format and send a protocol data unit (PDU) using the specified command identifier and payload.

Syntax

public byte[] sendCommand(int commandId, byte[] payload);

Remarks

This method offers a way to do more with the class than is directly supported. This method takes a command identifier and a payload, which includes every required and optional field after the header, and creates the 16-byte header for it before sending it to the server. The response PDU is returned both in the PITrail and by this method.

SendData Method (SMPP Class)

This method sends raw data to Recipients .

Syntax

public String sendData(byte[] data);

Remarks

This method sends raw data to Recipients. Up to 64 KB of additional data can be supplied at a time for transmission to the SMPPServer. Unlike the SendMessage method, this method can send to only one destination at a time. The target is whatever value is in the Recipients collection.

SendMessage Method (SMPP Class)

This method sends a message to all recipients in the recipient list.

Syntax

public String sendMessage(String message);

Remarks

This method sends a message to all recipients in the recipient list. The return value of this method is the server-assigned identifier of the message. The maximum size of the message sent is 256 bytes.

Connected Event (SMPP Class)

This event is fired after a successful bind operation.

Syntax

public class DefaultSMPPEventListener implements SMPPEventListener {
  ...
  public void connected(SMPPConnectedEvent e) {}
  ...
}

public class SMPPConnectedEvent {
  public int statusCode;
  public String description;
}

Remarks

After establishing a socket connection to the SMPPServer, the class will attempt to send a bind as a transmitter command. Upon completion of this operation, the server will respond with either a success or failure state, which will be reflected in the Connected event's parameters.

StatusCode will contain the command status (error code) returned by the server. For a StatusCode of 0, Description will be OK. Otherwise, it will contain a standard interpretation of the error.

ConnectionStatus Event (SMPP Class)

Fired to indicate changes in the connection state.

Syntax

public class DefaultSMPPEventListener implements SMPPEventListener {
  ...
  public void connectionStatus(SMPPConnectionStatusEvent e) {}
  ...
}

public class SMPPConnectionStatusEvent {
  public String connectionEvent;
  public int statusCode;
  public String description;
}

Remarks

This event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.

The ConnectionEvent parameter indicates the type of connection event. Values may include the following:

Firewall connection complete.
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.
StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Disconnected Event (SMPP Class)

This event is fired when connection to the SMS service is lost.

Syntax

public class DefaultSMPPEventListener implements SMPPEventListener {
  ...
  public void disconnected(SMPPDisconnectedEvent e) {}
  ...
}

public class SMPPDisconnectedEvent {
  public int statusCode;
  public String description;
}

Remarks

After sending an unbind operation to the server, this event will be fired containing the results of that operation. This event may also be fired if the socket connection to the service is lost.

If the event was fired because of an unbind operation, StatusCode will contain the command status set by the server. Otherwise, it will contain the socket code for the type of disconnection. For a status code value of 0, Description will contain OK. Otherwise, it will contain a standard interpretation of the value in StatusCode.

Error Event (SMPP Class)

This event is fired when the server detects an error.

Syntax

public class DefaultSMPPEventListener implements SMPPEventListener {
  ...
  public void error(SMPPErrorEvent e) {}
  ...
}

public class SMPPErrorEvent {
  public int errorCode;
  public String description;
}

Remarks

If the server sends an error not related to a command sent from the class, the class will fire an Error event containing information related to the error.

ErrorCode will contain the code sent by the server, and Description will contain a standard interpretation of that code.

MessageIn Event (SMPP Class)

This event is fired upon receipt of a message.

Syntax

public class DefaultSMPPEventListener implements SMPPEventListener {
  ...
  public void messageIn(SMPPMessageInEvent e) {}
  ...
}

public class SMPPMessageInEvent {
  public String sourceAddress;
  public String scheduleDeliveryTime;
  public String validityPeriod;
  public String message;
  public int messagePart;
  public int messagePartCount;
  public int messagePartReference;
  public String destinationAddress;
  public int responseErrorCode; //read-write
}

Remarks

When a message is received, the SMPP class will parse the sender's message into the SourceAddress, ScheduleDeliveryTime, ValidityPeriod, and Message fields.

The SourceAddress parameter is the address of the originator of the message.

The DestinationAddress parameter holds the address of the recipient.

The ScheduleDeliveryTime parameter is the delivery time at which the short message is scheduled to be forwarded to another Message Center (MC). This will be an empty string if it is not scheduled.

The ValidityPeriod parameter is applicable only if this short message is being forwarded to another MC. When this occurs, it specifies how long the receiving MC should retain the Short Message (SM) and continue trying to deliver it. This will be an empty string if the current validity period is unavailable.

The Message parameter is the plaintext portion of the message body.

If the incoming message is a part of a larger message (the message was split up into several parts), the MessagePartCount, MessagePart, and MessagePartReference parameters will be set. MessagePartCount will hold the total number of parts for the message. MessagePart will indicate the current part's location in the message to determine the order when reassembling the message. This will be a value from 1 to MessagePartCount. MessagePartReference holds a reference value that will be the same across all parts for the message.

The ResponseErrorCode parameter may be set to return an error condition to the server. This corresponds to the command_status protocol-level field of the response.

MessageStatus Event (SMPP Class)

This event is fired upon receipt of a message.

Syntax

public class DefaultSMPPEventListener implements SMPPEventListener {
  ...
  public void messageStatus(SMPPMessageStatusEvent e) {}
  ...
}

public class SMPPMessageStatusEvent {
  public String messageId;
  public int messageState;
  public int messageError;
  public String finalDate;
}

Remarks

When a CheckMessageStatus is called, the SMPP class will retrieve the status of the message represented by MessageId from the server, parse the response, and fire MessageStatus.

MessageState represents the last known state the message was left in on the SMPPServer. This code is version specific. For v3.4:

1ENROUTE, the message is en route.
2DELIVERED, the message is delivered.
3EXPIRED, the message validity period expired.
4DELETED, the message has been deleted.
5UNDELIVERABLE, the message is undeliverable.
6ACCEPTED, the message has been read on behalf of subscriber by customer service.
7UNKNOWN, the message is in an invalid state.
8REJECTED, the message is in a rejected state.
For v5.0:
0SCHEDULED, the message is scheduled for delivery, but it has not yet been delivered.
1ENROUTE, the message is en route.
2DELIVERED, the message is delivered.
3EXPIRED, the message validity period expired.
4DELETED, the message has been deleted.
5UNDELIVERABLE, the message is undeliverable.
6ACCEPTED, the message has been read on behalf of subscriber by customer service.
7UNKNOWN, the message is in an invalid state.
8REJECTED, the message is in a rejected state.
9SKIPPED, the message was accepted but not delivered.

MessageError will contain an error code representing any failure encountered during message delivery. This code may be vendor-specific.

FinalDate contains a human-readable string representing the date on which the message was delivered. If the message was not delivered, this parameter will be empty.

PITrail Event (SMPP Class)

This event is fired once for each protocol data unit (PDU) sent between the client and server.

Syntax

public class DefaultSMPPEventListener implements SMPPEventListener {
  ...
  public void PITrail(SMPPPITrailEvent e) {}
  ...
}

public class SMPPPITrailEvent {
  public int direction;
  public byte[] PDU;
  public int commandLength;
  public int commandId;
  public String commandDescription;
  public String commandStatus;
  public int sequenceNumber;
}

Remarks

Whenever either the class or the SMPPServer sends any data across the connection, the class will fire a PITrail event containing that data. It will usually be in SMPP-PDU format.

A PDU will contain at least the SMPP header, which is always 16 bytes long. The first four bytes represent the total length of the PDU, including the 16-byte header. The next four bytes are the command Id associated with the PDU. The command Id of a response PDU is always the command Id to which it is responding plus 0x80000000.

The class parses the values contained in the PDU header into the appropriate fields. The CommandLength, CommandId, CommandStatus, and SequenceNumber parameters contain these parsed values.

The third set of four bytes are the command status (status code) of the command. All originating commands will have a status code of 0x00000000, which will be ignored by the receiver. The field is only set in response PDUs to indicate the status of the originating command. The final four bytes represent the sequence number of the command. All response PDUs will contain the same sequence number as the originating command.

ReadyToSend Event (SMPP Class)

This event is fired when the class is ready to send data.

Syntax

public class DefaultSMPPEventListener implements SMPPEventListener {
  ...
  public void readyToSend(SMPPReadyToSendEvent e) {}
  ...
}

public class SMPPReadyToSendEvent {
}

Remarks

The ReadyToSend event indicates that the underlying Transmission Control Protocol (TCP)/IP subsystem is ready to accept data after a failed SendBytes. This event also is fired immediately after a connection to the remote host is established.

SSLServerAuthentication Event (SMPP Class)

Fired after the server presents its certificate to the client.

Syntax

public class DefaultSMPPEventListener implements SMPPEventListener {
  ...
  public void SSLServerAuthentication(SMPPSSLServerAuthenticationEvent e) {}
  ...
}

public class SMPPSSLServerAuthenticationEvent {
  public byte[] certEncoded;
  public String certSubject;
  public String certIssuer;
  public String status;
  public boolean accept; //read-write
}

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (SMPP Class)

Fired when secure connection progress messages are available.

Syntax

public class DefaultSMPPEventListener implements SMPPEventListener {
  ...
  public void SSLStatus(SMPPSSLStatusEvent e) {}
  ...
}

public class SMPPSSLStatusEvent {
  public String message;
}

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

The following fields are available:

Fields

EffectiveDate
String (read-only)

Default Value: ""

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

ExpirationDate
String (read-only)

Default Value: ""

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
String (read-only)

Default Value: ""

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
String (read-only)

Default Value: ""

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
String (read-only)

Default Value: ""

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
String (read-only)

Default Value: ""

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
String (read-only)

Default Value: ""

The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

KeyPassword
String

Default Value: ""

The password for the certificate's private key (if any).

Some certificate stores may individually protect certificates' private keys, separate from the standard protection offered by the StorePassword. This field can be used to read such password-protected private keys.

Note: This property defaults to the value of StorePassword. To clear it, you must set the property to the empty string (""). It can be set at any time, but when the private key's password is different from the store's password, then it must be set before calling PrivateKey.

PrivateKey
String (read-only)

Default Value: ""

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
boolean (read-only)

Default Value: False

Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
String (read-only)

Default Value: ""

The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
String (read-only)

Default Value: ""

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
String (read-only)

Default Value: ""

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default Value: 0

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
String (read-only)

Default Value: ""

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
String (read-only)

Default Value: ""

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
String

Default Value: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StoreB
byte[]

Default Value: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
String

Default Value: ""

If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.

StoreType
int

Default Value: 0

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

SubjectAltNames
String (read-only)

Default Value: ""

Comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
String (read-only)

Default Value: ""

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
String (read-only)

Default Value: ""

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
String (read-only)

Default Value: ""

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
String (read-only)

Default Value: ""

The text description of UsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int (read-only)

Default Value: 0

The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
String (read-only)

Default Value: ""

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Subject
String

Default Value: ""

The subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate, the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Encoded
String

Default Value: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
byte[]

Default Value: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

Constructors

public Certificate();

Creates a instance whose properties can be set. This is useful for use with when generating new certificates.

public Certificate( certificateFile);

Opens CertificateFile and reads out the contents as an X.509 public key.

public Certificate( encoded);

Parses Encoded as an X.509 public key.

public Certificate( storeType,  store,  storePassword,  subject);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  subject,  configurationString);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

ConfigurationString is a newline-separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to the cstUser , cstMachine , cstPublicKeyFile , and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  encoded);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

public Certificate( storeType,  store,  storePassword,  subject);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  subject,  configurationString);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  encoded);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

Firewall Type

The firewall the class will connect through.

Remarks

When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.

The following fields are available:

Fields

AutoDetect
boolean

Default Value: False

Whether to automatically detect and use firewall system settings, if available.

Connection information will first be obtained from Java system properties, such as http.proxyHost and https.proxyHost. Java properties may be set in a variety of ways; please consult the Java documentation for information about how firewall and proxy values can be specified.

If no Java system properties define connection information, the class will inspect the Windows registry for connection information that may be present on the system (applicable only on Windows systems).

FirewallType
int

Default Value: 0

The type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. Port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. Port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. Port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. Port is set to 1080.

Host
String

Default Value: ""

The name or IP address of the firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the class throws an exception.

Password
String

Default Value: ""

A password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the class throws an exception.

Port
int

Default Value: 0

The Transmission Control Protocol (TCP) port for the firewall Host. See the description of the Host field for details.

Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.

User
String

Default Value: ""

A username if authentication is to be used when connecting through a firewall. If Host is specified, this field and the Password field are used to connect and authenticate to the given Firewall. If the authentication fails, the class throws an exception.

Constructors

public Firewall();

SMPPRecipient Type

This type describes a recipient of the SMPP message.

Remarks

This type describes a recipient of the SMPP message that is being sent. The fields describe the RecipientType of recipient and the Address of the recipient of the message.

The following fields are available:

Fields

Address
String

Default Value: ""

This field contains the email address of a particular recipient. This can be used to set single or multiple recipients. The RecipientType contains the corresponding type.

For a recipient type of normal, the value in the Address should be either the dotted IPv4 of an SMS-enabled device or the directory number of a target mobile phone. For distributed lists, the value should be the name of the list as it is stored on the SMPPServer.

RecipientType
int

Default Value: 0

This field contains the type of a particular recipient. This field is used only for multiple recipient messages. The Address contains the corresponding recipient's address.

For a recipient type of normal, the value in Address should be either the dotted IPv4 of an SMS-enabled device or the directory number of a target mobile phone. For distributed lists, the value should be the name of the list as it is stored on the SMPPServer.

Valid values for RecipientType are as follows:

0 (smppRecipientTypeNormal)Normal SME (Short Message Entity) Address
1 (smppRecipientTypeList)Distribution List

Constructors

public SMPPRecipient();
public SMPPRecipient( address);
public SMPPRecipient( address,  recipientType);

Config Settings (SMPP Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

SMPP Config Settings

AddressRange:   Specifies the addr_range parameter when binding.

The addr_range parameter is used when binding as a receiver or transceiver to specify a set of short message entity (SME) addresses serviced by the external SME (ESME) client. A single SME address may be specified in the address_range parameter. UNIX Regular Expression notation should be used to specify a range of addresses. Messages addressed to any destination in this range shall be routed to the ESME.

Note 1: For IP addresses, it is only possible to specify a single IP address. A range of IP addresses is not allowed. IP version 6.0 is not currently supported in this version of the protocol.

Note 2: It is likely that the addr_range field is not supported or deliberately ignored on most Message Centers (MCs). Most carriers will not allow an ESME to control the message routing because this can carry the risk of incorrectly routing messages. In such circumstances, the ESME will be requested to set the field to NULL.

BinaryDataCoding:   Whether or not to binary encode the message when DataCoding is set.

By default, when the DataCoding configuration setting is used, the component will treat the message as binary. This configuration setting can be set to false to send the text user data instead.

BindAsReceiver:   Causes the component to bind as a receiver.

This configuration setting will instruct the component to bind to the SMPP service as a receiver instead of a transceiver.

BindAsTransmitter:   Causes the component to bind as a transmitter.

This configuration setting will instruct the component to bind to the SMPP service as a transmitter instead of a transceiver.

CustomTLV:   Optional TLV parameters added after the mandatory parameters and before the payload.

The format of the tag length value (TLV) parameter is as follows:

  • One two-byte integer containing the parameter type (tag).
  • One two-byte integer indicating the length of the data contained in this parameter.
  • The variable-length parameter data itself.
All of these values must be hex-encoded before setting the CustomTLV configuration setting.

For instance, to add a gn_lookup_userdata parameter, the type/tag is decimal 5633 (that's 0x1601 in hex), and the data in this example is "Hello World", which is 11 characters in length. So the TLV is as follows: 5633 + 11 + "Hello World", or 0x16 0x01 0x00 0x0b and then the ASCII text "Hello World". When hex-encoded, this yields the string "1601000b48656c6c6f20576f726c64". This is the value you would then use to set the CustomTLV configuration setting. You are not restricted to only one optional parameter. Multiple TLV parameters may be concatenated together.

Note: This is advanced functionality, and the class does not verify the data in this configuration setting before transmission. After the class internally decodes the string back into binary, it is passed on inside the protocol data unit (PDU) as-is without validation or modification.

This configuration setting is applicable only when using the SendMessage or SendData methods.

DataCoding:   The data encoding mechanism to be used for the current message.

This configuration setting informs the message recipient about how data were encoded. The possible values are as follows:

0MC Specific encoding
1IA5 (CCITT T.50)/ASCII (ANSI X3.4)
2Octet unspecified (8-bit binary)
3Latin 1 (ISO-8859-1)
4Octet unspecified (8-bit binary)
5JIS (X 0208-1990)
6Cyrillic (ISO-8859-5)
7Latin/Hebrew (ISO-8859-8)
8UCS2 (ISO/IEC-10646)
9Pictogram Encoding
10ISO-2022-JP (Music Codes)
11Reserved
12Reserved 2
13Extended Kanji JIS (X 0212-1990)
14KS C 5601
DestinationNPI:   The Number Planning Indicator for the destination ESME.

When sending messages, this configuration setting is used to indicate the numbering plan the destination ESME. For a list of possible values, please see SourceNPI.

DestinationTON:   The Type of Number for the destination ESME.

When sending messages, this configuration setting is used to indicate the Type of Number for the destination ESME. For a list of possible values, please see SourceTON.

DoSplitLargeMessages:   Splits long messages and returns the UDH and Message Parts.

This configuration setting accepts a string that will be the long message to be split into parts. The user data header (UDH) and Message Parts will be returned in hex, in the following format:

[UDH1],[MessagePart1];[UDH2],[MessagePart2];[UDH3],[MessagePart3]
HexString:   A hex-encoded binary string to be sent to the current recipient.

When set, this configuration setting will cause the component to internally call SendMessage with the binary contents of the hex-encoded string. The return value when setting this property is the server-assigned Id of the message. Querying this property will result in an empty string.

Note: When using HexString, DataCoding must be set to 8, and the value provided to this configuration setting should be the UTF-16 hex-encoded message.

IntermediateNotification:   Causes the component to request intermediate notification.

This configuration setting will request intermediate notification. By default, intermediate notification is not requested.

MaxCIMDSMSLength:   Indicates the maximum SMS message length for the CIMD protocol.

This configuration setting is applicable only when SplitLargeMessages is True and Protocol is set to CIMD2. The configuration setting controls the maximum size of SMS messages before they are split and has a default value of 160.

MaxSMSLength:   Indicates the maximum SMS message length.

This configuration setting is applicable only when SplitLargeMessages is True. The setting controls the maximum size of SMS messages before they are split and has a default value of 140.

MCReceipt:   The Type of MC Delivery Receipt requested.

When sending a message, this configuration setting is used to determine whether or not an MC delivery receipt is requested. This value is 0 by default, and no receipt is requested. The possible values are as follows:

0No MC Delivery Receipt requested (default).
1MC Delivery Receipt is requested after final delivery (success or failure).
2MC Delivery Receipt is requested after a failed delivery.
3MC Delivery Receipt is requested after a successful delivery.
MessageInReceiptedMessageId:   The receipted_message_id field of an incoming deliver_sm PDU.

This configuration setting indicates the Id of the message being receipted in an MC delivery receipt.

Note: This is applicable only within the MessageIn event.

MessageMode:   The Type of Messaging Mode requested.

When sending a message, this configuration setting is used to specify the Messaging Mode in the outgoing request. For incoming messages, this value can be queried from within the MessageIn event. The possible values are as follows:

0Default SMSC Mode (e.g., Store and Forward).
1Datagram mode.
2Forward (i.e., Transaction) mode.
3Store and Forward mode.
MessageType:   The Type of Message.

When sending a message, this configuration setting is used to specify the Message Type in the outgoing request. For incoming messages, this value can be queried from within the MessageIn event. The possible values are as follows:

0Default message Type (i.e., normal message).
1Short Message contains MC Delivery Receipt.
2Short Message contains Intermediate Delivery Notification.
PDUFormat:   The format of the PDU.

Decides the format of the PDU parameter when decoding a PDU for the PITrail event. When set to Hex (1), the PDU will be encoded as a hex string. When set to Verbose (2) the PDU will be a longer hex dump.

0Raw (Default)
1Hex string
2Verbose
ProtocolId:   The protocol identifier.

This configuration setting allows control of the protocol identifier field value used in the outgoing messages.

ReplaceIfPresent:   Indicates whether the replace_if_present_flag is enabled when sending a message.

This configuration indicates whether the replace_if_present_flag is enabled when sending a message. By default, this value is False, and the flag is disabled. When enabled (True), this indicates to the SMSC that the user wishes to replace a previously submitted message that is still pending delivery. If the previous message is still pending delivery, the new message will replace it. If the previous message has already been delivered or does not exist, the new message will also be delivered.

SMEAcknowledgement:   The Type of SME originated acknowledgment requested.

When sending a message, this configuration setting is used to determine whether or not an SME acknowledgment is requested. This value is 0 by default, and no acknowledgment is requested. The possible values are as follows:

0No SME acknowledgment requested (default).
1SME delivery acknowledgment is requested.
2SME manual/user acknowledgment is requested.
3Both delivery and manual/user acknowledgment is requested.
SourceNPI:   The Number Planning Indicator for the ESME.

When binding, this configuration setting is used to specify the numbering plan of the ESME. Mobiles tend to set this value to 1. Because most ESMEs are mobiles, the default value for SourceNPI is 1. The possible value are as follows:

Unknown (0)
ISDN (1)
Data (3)
Telex (4)
LandMobile (6)
National (8)
Private (9)
ERMES (10)
Internet (14)
WAP (18)
SourceTON:   The Type of Number for the ESME.

When binding, this configuration setting is used to indicate the Type of Number for the ESME address. The possible values are as follows:

Unknown (0)The number type is unknown
International (1)The number includes the international trunk prefix
National (2)The number includes the national trunk prefix
NetworkSpecific (3)The number exists on a network that uses a specific delivery protocol
SubscriberNumber (4)The number is just the subscriber number, without prefixes
Alphanumeric (5)The address is human-readable (contains letters and digits)
Abbreviated (6)The number is abbreviated
SplitLargeMessages:   Determines whether large messages are split into multiple parts.

The default value is False. If set to true and the message is larger than MaxSMSLength (or MaxCIMDSMSLength), the message will automatically be split into parts when SendMessage is called.

Note: This is valid only for GSM networks.

When receiving a message that has been split, the MessageIn event provides parameters to reassemble the message.

SplitMessageMethod:   Determines how large messages are split into multiple parts.

The component can split large messages using either the UDH or segmentation and reassembly (SAR) method. The mode used is determined by this configuration setting. The possible values are as follows:

0UDH (Default)
1SAR

StatusReportRequest:   Defines in what cases a status report is created by the server.

This configuration setting is applicable only when Protocol is set to smppCIMD2. This may be set to request that the server create a status report for the given conditions. The assigned value should be the sum of all desired conditions. For instance, a value of 62 means that a report should be created for all events except for a temporary error. Possible flags are as follows:

1Temporary Error
2Validity Period Expired
4Delivery Failed
8Delivery Successful
16Message Canceled
32Message Deleted By The Operator
SubAddr:   Defines a unique index for application instance.

This configuration setting is useful for correct delivery of status reports when multiple instances of the same application are connected.

This configuration setting is applicable only when Protocol is set to smppCIMD2.

SynchronousSendCommand:   Controls whether SendCommand behaves synchronously or asynchronously.

The default value is True, which means SendCommand will not return until a response has been received. If set to False, the class returns and does not wait for a response from the server.

SynchronousSendMessage:   Controls whether SendMessage behaves synchronously or asynchronously.

The default value is True, which means SendMessage will not return until a response has been received. If set to False, the class returns the sequence number used and does not wait for a response from the server. You may then monitor the PITrail event to match the response from the server to the sent message.

UseGSM7BitEncoding:   Whether or not to use GSM 7-bit encoding.

When set to True (False by default), this will instruct the component to use 7-bit GSM encoding.

UseGSM7bitEncodingCompression:   Whether to compress GSM 7-bit encoded characters.

When set to True (True by default), the component will compress GSM 7-bit encoded characters. Some devices do not support compression. Setting this to False may allow them to be displayed.

This configuration setting applies only when UseGSM7BitEncoding is True.

WaitForBanner:   Specifies the CIMD2 banner the class will wait for when connecting.

This configuration setting is applicable only when Protocol is set to smppCIMD2. If set, the class will wait for a banner containing this string to be returned by the server before proceeding with the connection.

TCPClient Config Settings

CloseStreamAfterTransfer:   If true, the component will close the upload or download stream after the transfer.

This configuration setting determines whether the input or output stream is closed after the transfer completes. When set to True (default), all streams will be closed after a transfer is completed. To keep streams open after the transfer of data, set this to False. The default value is True.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallListener:   If true, the component binds to a SOCKS firewall as a server (TCPClient only).

This entry is for TCPClient only and does not work for other components that descend from TCPClient.

If this entry is set, the class acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.

RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.

The connection to the firewall is made by calling the Connect method.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class throws an exception.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

Possible values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class throws an exception.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This configuration setting must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback
UseNTLMv2:   Whether to use NTLM V2.

When authenticating with NTLM, this setting specifies whether NTLM V2 is used. By default this value is False and NTLM V1 will be used. Set this to True to use NTLM V2.

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if SSLProvider is set to Platform.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This configuration setting specifies whether the class will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class throws an exception.

When set to 0 (default), the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This configuration setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the class throws an exception.

When set to 0 (default), the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLContextProtocol:   The protocol used when getting an SSLContext instance.

Possible values are SSL, SSLv2, SSLv3, TLS, and TLSv1. Use this configuration setting only in case your security provider does not support TLS. This is the parameter "protocol" inside the SSLContext.getInstance(protocol) call.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Note: This value must be set after SSLProvider is set.

Example values: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA"); obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA; SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA"); Possible values when SSLProvider is set to Platform include the following:

  • SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • SSL_RSA_WITH_RC4_128_SHA
  • SSL_RSA_WITH_DES_CBC_SHA
  • SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DH_anon_WITH_DES_CBC_SHA
  • SSL_RSA_EXPORT_WITH_RC4_40_MD5
  • SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
  • SSL_DHE_DSS_WITH_DES_CBC_SHA
  • SSL_RSA_WITH_NULL_MD5
  • SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
  • SSL_DHE_RSA_WITH_DES_CBC_SHA
  • SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
  • SSL_RSA_WITH_NULL_SHA
  • SSL_DH_anon_WITH_RC4_128_MD5
  • SSL_RSA_WITH_RC4_128_MD5
  • SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • SSL_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_NULL_SHA
  • TLS_DH_anon_WITH_AES_128_CBC_SHA256 (Not Recommended)
  • TLS_ECDH_anon_WITH_RC4_128_SHA
  • TLS_DH_anon_WITH_AES_128_CBC_SHA (Not Recommended)
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_KRB5_EXPORT_WITH_RC4_40_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_RC4_128_SHA
  • TLS_ECDH_ECDSA_WITH_RC4_128_SHA
  • TLS_ECDH_anon_WITH_NULL_SHA
  • TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_RSA_WITH_NULL_SHA256
  • TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
  • TLS_KRB5_WITH_RC4_128_MD5
  • TLS_ECDHE_ECDSA_WITH_NULL_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_RC4_128_SHA
  • TLS_EMPTY_RENEGOTIATION_INFO_SCSV
  • TLS_KRB5_WITH_3DES_EDE_CBC_MD5
  • TLS_KRB5_WITH_RC4_128_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_NULL_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_WITH_DES_CBC_MD5
  • TLS_KRB5_EXPORT_WITH_RC4_40_MD5
  • TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
  • TLS_ECDH_anon_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_KRB5_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_NULL_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA

Possible values when SSLProvider is set to Internal include the following:

  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is false by default, but it can be set to true to enable the extension.

This configuration setting is applicable only when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLTrustManagerFactoryAlgorithm:   The algorithm to be used to create a TrustManager through TrustManagerFactory.

Possible values include SunX509. This is the parameter "algorithm" inside the TrustManagerFactory.getInstance(algorithm) call.

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class throws an exception.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The class will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the class does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseDaemonThreads:   Whether threads created by the class are daemon threads.

If set to True (default), when the class creates a thread, the thread's Daemon property will be explicitly set to True. When set to False, the class will not set the Daemon property on the created thread. The default value is True.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.

This setting is set to false by default on all platforms.

Trappable Errors (SMPP Class)

SMPP Errors

620   SMPP protocol error
621   You cannot change this property while connected
622   Server disconnected before responding
623   Field value out of range
624   Unsupported SMPP version
625   Message parameter too long

TCPClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
303   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on nonsocket.
10039   [10039] Destination address required.
10040   [10040] Message is too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol is not supported.
10044   [10044] Socket type is not supported.
10045   [10045] Operation is not supported on socket.
10046   [10046] Protocol family is not supported.
10047   [10047] Address family is not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Cannot assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Cannot send after socket shutdown.
10059   [10059] Too many references, cannot splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name is too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory is not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock is not loaded yet.
11001   [11001] Host not found.
11002   [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).