Telnet Class
Properties Methods Events Config Settings Errors
The Telnet Class is used to communicate with servers implementing the TELNET protocol.
Syntax
Telnet
Remarks
The Telnet Class supports both plaintext and SSL/TLS connections. When connecting over SSL/TLS the SSLServerAuthentication event allows you to check the server identity and other security attributes. The SSLStatus event provides information about the SSL handshake. Additional SSL related settings are also supported via the Config method.
The Telnet Class provides a simple interface to Telnet communications as specified by RFC 854. It allows sending of Telnet command codes to remote Telnet servers and it scans the input data for Telnet commands. Appropriate events are fired for received commands.
The connection interface is very similar to that of TCPClient. The same properties and events are used for sending and receiving normal data, and the same property set is used for setting properties of the connection. The Telnet Class adds a number of properties like Command, DoOption, etc. which allow sending of Telnet commands to the other end. The respective events (Command, Do, etc.) are fired when the corresponding Telnet commands are received.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
AcceptData | This property enables or disables data reception (the DataIn event). |
BytesSent | The number of bytes actually sent after an assignment to DataToSend . |
Command | A single character Telnet command code to be sent to the server. |
Connected | Triggers a connection or disconnection. |
DataToSend | A string of data to be sent to the remote host. |
DontOption | A single character Telnet option code to be sent to the server with the Telnet DONT command. |
DoOption | A single character Telnet option code to be sent to the server with the Telnet DO command. |
DoSubOption | A Telnet SubOption to send to the server with the SubOption command. |
FirewallAutoDetect | This property tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallType | This property determines the type of firewall to connect through. |
FirewallHost | This property contains the name or IP address of firewall (optional). |
FirewallPassword | This property contains a password if authentication is to be used when connecting through the firewall. |
FirewallPort | This property contains the transmission control protocol (TCP) port for the firewall Host . |
FirewallUser | This property contains a user name if authentication is to be used connecting through a firewall. |
KeepAlive | When True, KEEPALIVE packets are enabled (for long connections). |
Linger | When set to True, this property ensures that connections are terminated gracefully. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
LocalPort | The TCP port in the local host where TCPClient binds. |
RemoteHost | This property includes the address of the remote host. Domain names are resolved to IP addresses. |
RemotePort | The secure Telnet port in the remote host (default is 23). |
SSLAcceptServerCertEncoded | This is the certificate (PEM/base64 encoded). |
SSLCertEncoded | This is the certificate (PEM/base64 encoded). |
SSLCertStore | This is the name of the certificate store for the client certificate. |
SSLCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSLCertStoreType | This is the type of certificate store for this certificate. |
SSLCertSubject | This is the subject of the certificate used for client authentication. |
SSLProvider | This specifies the SSL/TLS implementation to use. |
SSLServerCertEncoded | This is the certificate (PEM/base64 encoded). |
SSLStartMode | Determines how the class starts the SSL negotiation. |
Timeout | A timeout for the class. |
Transparent | When True, Telnet command processing is disabled. |
UrgentData | A string of data to be sent urgently (out-of-band) to the remote host. |
WillOption | A single character Telnet option code to be sent to the server with the Telnet WILL command. |
WontOption | A single character Telnet option code to be sent to the server with the Telnet WONT command. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Connect | Connects to a remote host. |
ConnectTo | Connects to a remote host. |
Disconnect | Disconnect from the remote host. |
DoEvents | Processes events from the internal message queue. |
PauseData | This method pauses data reception. |
ProcessData | This method reenables data reception after a call to PauseData . |
Reset | Reset the class. |
Send | Sends binary data to the remote host. |
SendBytes | Sends binary data to the remote host. |
SendCommand | Sends a single character Telnet command code to the server. |
SendDontOption | This method sends a single character Telnet option code to the server with the Telnet DONT command. |
SendDoOption | This method sends a single character Telnet option code to the server with the Telnet DO command. |
SendDoSubOption | This methods sends a Telnet SubOption to send to the server with the SubOption command. |
SendText | Sends text to the remote host. |
SendUrgentBytes | Urgently sends binary data to the remote host. |
SendUrgentText | Urgently sends text to the remote host. |
SendWillOption | This method sends a single character Telnet option code the server with the Telnet WILL command. |
SendWontOption | This method sends a single character Telnet option code to the server with the Telnet WONT command. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
Command | Fired when a Telnet command comes from the Telnet server. |
Connected | This event is fired immediately after a connection completes (or fails). |
ConnectionStatus | This event is fired to indicate changes in the connection state. |
DataIn | Fired when data is received from the remote host. |
Disconnected | This event is fired when a connection is closed. |
Do | Fired when a Telnet DO OPTION command comes from the Telnet server. |
Dont | Fired when a Telnet DONT OPTION command comes from the Telnet server. |
Error | Information about errors during data delivery. |
ReadyToSend | Fired when the class is ready to send data. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Shows the progress of the secure connection. |
SubOption | Fired when a Telnet SubOption command comes from the Telnet server. |
Will | Fired when a Telnet WILL OPTION command comes from the Telnet server. |
Wont | Fired when a Telnet WONT OPTION command comes from the Telnet server. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveRetryCount | The number of keep-alive packets to be sent before the remotehost is considered disconnected. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACerts | A newline separated list of CA certificate to use during SSL client authentication. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificate to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseFIPSCompliantAPI | Tells the class whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Tells the class whether or not to use the system security libraries or an internal implementation. |
AcceptData Property (Telnet Class)
This property enables or disables data reception (the DataIn event).
Syntax
ANSI (Cross Platform) int GetAcceptData();
int SetAcceptData(int bAcceptData); Unicode (Windows) BOOL GetAcceptData();
INT SetAcceptData(BOOL bAcceptData);
int ipworksssl_telnet_getacceptdata(void* lpObj);
int ipworksssl_telnet_setacceptdata(void* lpObj, int bAcceptData);
bool GetAcceptData();
int SetAcceptData(bool bAcceptData);
Default Value
TRUE
Remarks
This property enables or disables data reception (the DataIn event). Setting this property to False, temporarily disables data reception (and the DataIn event). Setting this property to True, reenables data reception.
Note: It is recommended to use the PauseData or ProcessData method instead of setting this property.
This property is not available at design time.
Data Type
Boolean
BytesSent Property (Telnet Class)
The number of bytes actually sent after an assignment to DataToSend .
Syntax
ANSI (Cross Platform) int GetBytesSent(); Unicode (Windows) INT GetBytesSent();
int ipworksssl_telnet_getbytessent(void* lpObj);
int GetBytesSent();
Default Value
0
Remarks
The BytesSent property shows how many bytes were sent after the last assignment to DataToSend or UrgentData. Please check the DataToSend property for more information.
This property is read-only and not available at design time.
Data Type
Integer
Command Property (Telnet Class)
A single character Telnet command code to be sent to the server.
Syntax
ANSI (Cross Platform) int SetCommand(int iCommand); Unicode (Windows) INT SetCommand(INT iCommand);
int ipworksssl_telnet_setcommand(void* lpObj, int iCommand);
int SetCommand(int iCommand);
Default Value
0
Remarks
Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Here are some examples:
241 (NOP) | No operation. |
242 (Data Mark) | The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification. |
243 (Break) | NVT character BRK. |
244 (Interrupt Process) | The function IP. |
245 (Abort Output) | The function AO. |
246 (Are You There) | The function AYT. |
247 (Erase Character) | The function EC. |
248 (Erase Line) | The function EL. |
249 (Go Ahead) | The GA signal. |
This property is write-only and not available at design time.
Data Type
Integer
Connected Property (Telnet Class)
Triggers a connection or disconnection.
Syntax
ANSI (Cross Platform) int GetConnected();
int SetConnected(int bConnected); Unicode (Windows) BOOL GetConnected();
INT SetConnected(BOOL bConnected);
int ipworksssl_telnet_getconnected(void* lpObj);
int ipworksssl_telnet_setconnected(void* lpObj, int bConnected);
bool GetConnected();
int SetConnected(bool bConnected);
Default Value
FALSE
Remarks
Setting the Connected property to True makes the class attempt to connect to the host identified by the RemoteHost property. If successful, after the connection is achieved, the value of the property changes to True and the Connected event is fired.
Setting Connected to False closes the connection. How and when the connection is closed is controlled by the Linger property.
Note: It is recommended to use the Connect or Disconnect method instead of setting this property.
This property is not available at design time.
Data Type
Boolean
DataToSend Property (Telnet Class)
A string of data to be sent to the remote host.
Syntax
ANSI (Cross Platform) int SetDataToSend(const char* lpDataToSend, int lenDataToSend); Unicode (Windows) INT SetDataToSend(LPCSTR lpDataToSend, INT lenDataToSend);
int ipworksssl_telnet_setdatatosend(void* lpObj, const char* lpDataToSend, int lenDataToSend);
int SetDataToSend(QByteArray qbaDataToSend);
Default Value
""
Remarks
Assigning a string to the DataToSend property makes the class send the string to the remote host. The Send method provides similar functionality.
If you are sending data to the remote host faster than it can process it, or faster than the network's bandwidth allows, the outgoing queue might fill up. When this happens, the operation fails with error 10035: "[10035] Operation would block" (WSAEWOULDBLOCK). You can check this error, and then try to send the data again. . The BytesSent property shows how many bytes were sent (if any). If 0 bytes were sent, then you can wait for the ReadyToSend event before attempting to send data again.
Note: The ReadyToSend event is not fired when part of the data is sent successfully.
This property is write-only and not available at design time.
Data Type
Binary String
DontOption Property (Telnet Class)
A single character Telnet option code to be sent to the server with the Telnet DONT command.
Syntax
ANSI (Cross Platform) int SetDontOption(int iDontOption); Unicode (Windows) INT SetDontOption(INT iDontOption);
int ipworksssl_telnet_setdontoption(void* lpObj, int iDontOption);
int SetDontOption(int iDontOption);
Default Value
0
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
This property is write-only and not available at design time.
Data Type
Integer
DoOption Property (Telnet Class)
A single character Telnet option code to be sent to the server with the Telnet DO command.
Syntax
ANSI (Cross Platform) int SetDoOption(int iDoOption); Unicode (Windows) INT SetDoOption(INT iDoOption);
int ipworksssl_telnet_setdooption(void* lpObj, int iDoOption);
int SetDoOption(int iDoOption);
Default Value
0
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
This property is write-only and not available at design time.
Data Type
Integer
DoSubOption Property (Telnet Class)
A Telnet SubOption to send to the server with the SubOption command.
Syntax
ANSI (Cross Platform) int SetDoSubOption(const char* lpDoSubOption, int lenDoSubOption); Unicode (Windows) INT SetDoSubOption(LPCSTR lpDoSubOption, INT lenDoSubOption);
int ipworksssl_telnet_setdosuboption(void* lpObj, const char* lpDoSubOption, int lenDoSubOption);
int SetDoSubOption(QByteArray qbaDoSubOption);
Default Value
""
Remarks
For a list of valid Telnet suboptions and their descriptions please look at the Telnet RFCs.
You don't need to specify the suboption start and suboption end codes. Those are appended automatically by the class. For example, to send a terminal type suboption to request setting the terminal type to 'vt100', you must send ASCII 24, followed by ASCII 0, followed by "vt100" (without the quotes).
This property is write-only and not available at design time.
Data Type
Binary String
FirewallAutoDetect Property (Telnet Class)
This property tells the class whether or not to automatically detect and use firewall system settings, if available.
Syntax
ANSI (Cross Platform) int GetFirewallAutoDetect();
int SetFirewallAutoDetect(int bFirewallAutoDetect); Unicode (Windows) BOOL GetFirewallAutoDetect();
INT SetFirewallAutoDetect(BOOL bFirewallAutoDetect);
int ipworksssl_telnet_getfirewallautodetect(void* lpObj);
int ipworksssl_telnet_setfirewallautodetect(void* lpObj, int bFirewallAutoDetect);
bool GetFirewallAutoDetect();
int SetFirewallAutoDetect(bool bFirewallAutoDetect);
Default Value
FALSE
Remarks
This property tells the class whether or not to automatically detect and use firewall system settings, if available.
Data Type
Boolean
FirewallType Property (Telnet Class)
This property determines the type of firewall to connect through.
Syntax
ANSI (Cross Platform) int GetFirewallType();
int SetFirewallType(int iFirewallType); Unicode (Windows) INT GetFirewallType();
INT SetFirewallType(INT iFirewallType);
Possible Values
FW_NONE(0),
FW_TUNNEL(1),
FW_SOCKS4(2),
FW_SOCKS5(3),
FW_SOCKS4A(10)
int ipworksssl_telnet_getfirewalltype(void* lpObj);
int ipworksssl_telnet_setfirewalltype(void* lpObj, int iFirewallType);
int GetFirewallType();
int SetFirewallType(int iFirewallType);
Default Value
0
Remarks
This property determines the type of firewall to connect through. The applicable values are as follows:
fwNone (0) | No firewall (default setting). |
fwTunnel (1) | Connect through a tunneling proxy. FirewallPort is set to 80. |
fwSOCKS4 (2) | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
fwSOCKS5 (3) | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
fwSOCKS4A (10) | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Data Type
Integer
FirewallHost Property (Telnet Class)
This property contains the name or IP address of firewall (optional).
Syntax
ANSI (Cross Platform) char* GetFirewallHost();
int SetFirewallHost(const char* lpszFirewallHost); Unicode (Windows) LPWSTR GetFirewallHost();
INT SetFirewallHost(LPCWSTR lpszFirewallHost);
char* ipworksssl_telnet_getfirewallhost(void* lpObj);
int ipworksssl_telnet_setfirewallhost(void* lpObj, const char* lpszFirewallHost);
QString GetFirewallHost();
int SetFirewallHost(QString qsFirewallHost);
Default Value
""
Remarks
This property contains the name or IP address of firewall (optional). If a FirewallHost is given, the requested connections will be authenticated through the specified firewall when connecting.
If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.
Data Type
String
FirewallPassword Property (Telnet Class)
This property contains a password if authentication is to be used when connecting through the firewall.
Syntax
ANSI (Cross Platform) char* GetFirewallPassword();
int SetFirewallPassword(const char* lpszFirewallPassword); Unicode (Windows) LPWSTR GetFirewallPassword();
INT SetFirewallPassword(LPCWSTR lpszFirewallPassword);
char* ipworksssl_telnet_getfirewallpassword(void* lpObj);
int ipworksssl_telnet_setfirewallpassword(void* lpObj, const char* lpszFirewallPassword);
QString GetFirewallPassword();
int SetFirewallPassword(QString qsFirewallPassword);
Default Value
""
Remarks
This property contains a password if authentication is to be used when connecting through the firewall. If FirewallHost is specified, the FirewallUser and FirewallPassword properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.
Data Type
String
FirewallPort Property (Telnet Class)
This property contains the transmission control protocol (TCP) port for the firewall Host .
Syntax
ANSI (Cross Platform) int GetFirewallPort();
int SetFirewallPort(int iFirewallPort); Unicode (Windows) INT GetFirewallPort();
INT SetFirewallPort(INT iFirewallPort);
int ipworksssl_telnet_getfirewallport(void* lpObj);
int ipworksssl_telnet_setfirewallport(void* lpObj, int iFirewallPort);
int GetFirewallPort();
int SetFirewallPort(int iFirewallPort);
Default Value
0
Remarks
This property contains the transmission control protocol (TCP) port for the firewall FirewallHost. See the description of the FirewallHost property for details.
Note: This property is set automatically when FirewallType is set to a valid value. See the description of the FirewallType property for details.
Data Type
Integer
FirewallUser Property (Telnet Class)
This property contains a user name if authentication is to be used connecting through a firewall.
Syntax
ANSI (Cross Platform) char* GetFirewallUser();
int SetFirewallUser(const char* lpszFirewallUser); Unicode (Windows) LPWSTR GetFirewallUser();
INT SetFirewallUser(LPCWSTR lpszFirewallUser);
char* ipworksssl_telnet_getfirewalluser(void* lpObj);
int ipworksssl_telnet_setfirewalluser(void* lpObj, const char* lpszFirewallUser);
QString GetFirewallUser();
int SetFirewallUser(QString qsFirewallUser);
Default Value
""
Remarks
This property contains a user name if authentication is to be used connecting through a firewall. If the FirewallHost is specified, this property and FirewallPassword properties are used to connect and authenticate to the given Firewall. If the authentication fails, the class fails with an error.
Data Type
String
KeepAlive Property (Telnet Class)
When True, KEEPALIVE packets are enabled (for long connections).
Syntax
ANSI (Cross Platform) int GetKeepAlive();
int SetKeepAlive(int bKeepAlive); Unicode (Windows) BOOL GetKeepAlive();
INT SetKeepAlive(BOOL bKeepAlive);
int ipworksssl_telnet_getkeepalive(void* lpObj);
int ipworksssl_telnet_setkeepalive(void* lpObj, int bKeepAlive);
bool GetKeepAlive();
int SetKeepAlive(bool bKeepAlive);
Default Value
FALSE
Remarks
The KeepAlive enables the SO_KEEPALIVE option on the socket. This option prevents long connections from timing out in case of inactivity.
Note: System Transmission Control Protocol (TCP)/IP stack implementations are not required to support SO_KEEPALIVE.
Data Type
Boolean
Linger Property (Telnet Class)
When set to True, this property ensures that connections are terminated gracefully.
Syntax
ANSI (Cross Platform) int GetLinger();
int SetLinger(int bLinger); Unicode (Windows) BOOL GetLinger();
INT SetLinger(BOOL bLinger);
int ipworksssl_telnet_getlinger(void* lpObj);
int ipworksssl_telnet_setlinger(void* lpObj, int bLinger);
bool GetLinger();
int SetLinger(bool bLinger);
Default Value
TRUE
Remarks
This property controls how a connection is closed. The default is True.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
Data Type
Boolean
LocalHost Property (Telnet Class)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
ANSI (Cross Platform) char* GetLocalHost();
int SetLocalHost(const char* lpszLocalHost); Unicode (Windows) LPWSTR GetLocalHost();
INT SetLocalHost(LPCWSTR lpszLocalHost);
char* ipworksssl_telnet_getlocalhost(void* lpObj);
int ipworksssl_telnet_setlocalhost(void* lpObj, const char* lpszLocalHost);
QString GetLocalHost();
int SetLocalHost(QString qsLocalHost);
Default Value
""
Remarks
The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.
Data Type
String
LocalPort Property (Telnet Class)
The TCP port in the local host where TCPClient binds.
Syntax
ANSI (Cross Platform) int GetLocalPort();
int SetLocalPort(int iLocalPort); Unicode (Windows) INT GetLocalPort();
INT SetLocalPort(INT iLocalPort);
int ipworksssl_telnet_getlocalport(void* lpObj);
int ipworksssl_telnet_setlocalport(void* lpObj, int iLocalPort);
int GetLocalPort();
int SetLocalPort(int iLocalPort);
Default Value
0
Remarks
The LocalPort property must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.
Setting it to 0 (default) enables the TCP/IP stack to choose a port at random. The chosen port will be shown by the LocalPort property after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set the LocalPort property when a connection is active will generate an error.
The LocalPort property is useful when trying to connect to services that require a trusted port in the client side.
Data Type
Integer
RemoteHost Property (Telnet Class)
This property includes the address of the remote host. Domain names are resolved to IP addresses.
Syntax
ANSI (Cross Platform) char* GetRemoteHost();
int SetRemoteHost(const char* lpszRemoteHost); Unicode (Windows) LPWSTR GetRemoteHost();
INT SetRemoteHost(LPCWSTR lpszRemoteHost);
char* ipworksssl_telnet_getremotehost(void* lpObj);
int ipworksssl_telnet_setremotehost(void* lpObj, const char* lpszRemoteHost);
QString GetRemoteHost();
int SetRemoteHost(QString qsRemoteHost);
Default Value
""
Remarks
This property specifies the IP address (IP number in dotted internet format) or the domain name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.
If this property is set to a domain name, a DNS request is initiated, and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.
If the class is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.
Example. Connecting:
TCPClientControl.RemoteHost = "MyHostNameOrIP"
TCPClientControl.RemotePort = 777
TCPClientControl.Connected = true
Data Type
String
RemotePort Property (Telnet Class)
The secure Telnet port in the remote host (default is 23).
Syntax
ANSI (Cross Platform) int GetRemotePort();
int SetRemotePort(int iRemotePort); Unicode (Windows) INT GetRemotePort();
INT SetRemotePort(INT iRemotePort);
int ipworksssl_telnet_getremoteport(void* lpObj);
int ipworksssl_telnet_setremoteport(void* lpObj, int iRemotePort);
int GetRemotePort();
int SetRemotePort(int iRemotePort);
Default Value
23
Remarks
For implicit SSL, use port 992 (please refer to the SSLStartMode property for more information).
A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.
This property is not available at design time.
Data Type
Integer
SSLAcceptServerCertEncoded Property (Telnet Class)
This is the certificate (PEM/base64 encoded).
Syntax
ANSI (Cross Platform) int GetSSLAcceptServerCertEncoded(char* &lpSSLAcceptServerCertEncoded, int &lenSSLAcceptServerCertEncoded);
int SetSSLAcceptServerCertEncoded(const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded); Unicode (Windows) INT GetSSLAcceptServerCertEncoded(LPSTR &lpSSLAcceptServerCertEncoded, INT &lenSSLAcceptServerCertEncoded);
INT SetSSLAcceptServerCertEncoded(LPCSTR lpSSLAcceptServerCertEncoded, INT lenSSLAcceptServerCertEncoded);
int ipworksssl_telnet_getsslacceptservercertencoded(void* lpObj, char** lpSSLAcceptServerCertEncoded, int* lenSSLAcceptServerCertEncoded);
int ipworksssl_telnet_setsslacceptservercertencoded(void* lpObj, const char* lpSSLAcceptServerCertEncoded, int lenSSLAcceptServerCertEncoded);
QByteArray GetSSLAcceptServerCertEncoded();
int SetSSLAcceptServerCertEncoded(QByteArray qbaSSLAcceptServerCertEncoded);
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.
When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Binary String
SSLCertEncoded Property (Telnet Class)
This is the certificate (PEM/base64 encoded).
Syntax
ANSI (Cross Platform) int GetSSLCertEncoded(char* &lpSSLCertEncoded, int &lenSSLCertEncoded);
int SetSSLCertEncoded(const char* lpSSLCertEncoded, int lenSSLCertEncoded); Unicode (Windows) INT GetSSLCertEncoded(LPSTR &lpSSLCertEncoded, INT &lenSSLCertEncoded);
INT SetSSLCertEncoded(LPCSTR lpSSLCertEncoded, INT lenSSLCertEncoded);
int ipworksssl_telnet_getsslcertencoded(void* lpObj, char** lpSSLCertEncoded, int* lenSSLCertEncoded);
int ipworksssl_telnet_setsslcertencoded(void* lpObj, const char* lpSSLCertEncoded, int lenSSLCertEncoded);
QByteArray GetSSLCertEncoded();
int SetSSLCertEncoded(QByteArray qbaSSLCertEncoded);
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.
When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Binary String
SSLCertStore Property (Telnet Class)
This is the name of the certificate store for the client certificate.
Syntax
ANSI (Cross Platform) int GetSSLCertStore(char* &lpSSLCertStore, int &lenSSLCertStore);
int SetSSLCertStore(const char* lpSSLCertStore, int lenSSLCertStore); Unicode (Windows) INT GetSSLCertStore(LPSTR &lpSSLCertStore, INT &lenSSLCertStore);
INT SetSSLCertStore(LPCSTR lpSSLCertStore, INT lenSSLCertStore);
int ipworksssl_telnet_getsslcertstore(void* lpObj, char** lpSSLCertStore, int* lenSSLCertStore);
int ipworksssl_telnet_setsslcertstore(void* lpObj, const char* lpSSLCertStore, int lenSSLCertStore);
QByteArray GetSSLCertStore();
int SetSSLCertStore(QByteArray qbaSSLCertStore);
Default Value
"MY"
Remarks
This is the name of the certificate store for the client certificate.
The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password protected, specify the password in SSLCertStorePassword.
SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Binary String
SSLCertStorePassword Property (Telnet Class)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
ANSI (Cross Platform) char* GetSSLCertStorePassword();
int SetSSLCertStorePassword(const char* lpszSSLCertStorePassword); Unicode (Windows) LPWSTR GetSSLCertStorePassword();
INT SetSSLCertStorePassword(LPCWSTR lpszSSLCertStorePassword);
char* ipworksssl_telnet_getsslcertstorepassword(void* lpObj);
int ipworksssl_telnet_setsslcertstorepassword(void* lpObj, const char* lpszSSLCertStorePassword);
QString GetSSLCertStorePassword();
int SetSSLCertStorePassword(QString qsSSLCertStorePassword);
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
SSLCertStoreType Property (Telnet Class)
This is the type of certificate store for this certificate.
Syntax
ANSI (Cross Platform) int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType); Unicode (Windows) INT GetSSLCertStoreType();
INT SetSSLCertStoreType(INT iSSLCertStoreType);
Possible Values
CST_USER(0),
CST_MACHINE(1),
CST_PFXFILE(2),
CST_PFXBLOB(3),
CST_JKSFILE(4),
CST_JKSBLOB(5),
CST_PEMKEY_FILE(6),
CST_PEMKEY_BLOB(7),
CST_PUBLIC_KEY_FILE(8),
CST_PUBLIC_KEY_BLOB(9),
CST_SSHPUBLIC_KEY_BLOB(10),
CST_P7BFILE(11),
CST_P7BBLOB(12),
CST_SSHPUBLIC_KEY_FILE(13),
CST_PPKFILE(14),
CST_PPKBLOB(15),
CST_XMLFILE(16),
CST_XMLBLOB(17),
CST_JWKFILE(18),
CST_JWKBLOB(19),
CST_SECURITY_KEY(20),
CST_BCFKSFILE(21),
CST_BCFKSBLOB(22),
CST_PKCS11(23),
CST_AUTO(99)
int ipworksssl_telnet_getsslcertstoretype(void* lpObj);
int ipworksssl_telnet_setsslcertstoretype(void* lpObj, int iSSLCertStoreType);
int GetSSLCertStoreType();
int SetSSLCertStoreType(int iSSLCertStoreType);
Default Value
0
Remarks
This is the type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
SSLCertSubject Property (Telnet Class)
This is the subject of the certificate used for client authentication.
Syntax
ANSI (Cross Platform) char* GetSSLCertSubject();
int SetSSLCertSubject(const char* lpszSSLCertSubject); Unicode (Windows) LPWSTR GetSSLCertSubject();
INT SetSSLCertSubject(LPCWSTR lpszSSLCertSubject);
char* ipworksssl_telnet_getsslcertsubject(void* lpObj);
int ipworksssl_telnet_setsslcertsubject(void* lpObj, const char* lpszSSLCertSubject);
QString GetSSLCertSubject();
int SetSSLCertSubject(QString qsSSLCertSubject);
Default Value
""
Remarks
This is the subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
SSLProvider Property (Telnet Class)
This specifies the SSL/TLS implementation to use.
Syntax
ANSI (Cross Platform) int GetSSLProvider();
int SetSSLProvider(int iSSLProvider); Unicode (Windows) INT GetSSLProvider();
INT SetSSLProvider(INT iSSLProvider);
Possible Values
SSLP_AUTOMATIC(0),
SSLP_PLATFORM(1),
SSLP_INTERNAL(2)
int ipworksssl_telnet_getsslprovider(void* lpObj);
int ipworksssl_telnet_setsslprovider(void* lpObj, int iSSLProvider);
int GetSSLProvider();
int SetSSLProvider(int iSSLProvider);
Default Value
0
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.
When Automatic is selected, on Windows the class will use the platform implementation. On Linux/macOS the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used on all platforms.
Data Type
Integer
SSLServerCertEncoded Property (Telnet Class)
This is the certificate (PEM/base64 encoded).
Syntax
ANSI (Cross Platform) int GetSSLServerCertEncoded(char* &lpSSLServerCertEncoded, int &lenSSLServerCertEncoded); Unicode (Windows) INT GetSSLServerCertEncoded(LPSTR &lpSSLServerCertEncoded, INT &lenSSLServerCertEncoded);
int ipworksssl_telnet_getsslservercertencoded(void* lpObj, char** lpSSLServerCertEncoded, int* lenSSLServerCertEncoded);
QByteArray GetSSLServerCertEncoded();
Default Value
""
Remarks
This is the certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLServerCertStore and SSLServerCertSubject properties also may be used to specify a certificate.
When SSLServerCertEncoded is set, a search is initiated in the current SSLServerCertStore for the private key of the certificate. If the key is found, SSLServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLServerCertSubject is set to an empty string.
This property is read-only and not available at design time.
Data Type
Binary String
SSLStartMode Property (Telnet Class)
Determines how the class starts the SSL negotiation.
Syntax
ANSI (Cross Platform) int GetSSLStartMode();
int SetSSLStartMode(int iSSLStartMode); Unicode (Windows) INT GetSSLStartMode();
INT SetSSLStartMode(INT iSSLStartMode);
Possible Values
SSL_AUTOMATIC(0),
SSL_IMPLICIT(1),
SSL_EXPLICIT(2)
int ipworksssl_telnet_getsslstartmode(void* lpObj);
int ipworksssl_telnet_setsslstartmode(void* lpObj, int iSSLStartMode);
int GetSSLStartMode();
int SetSSLStartMode(int iSSLStartMode);
Default Value
0
Remarks
The SSLStartMode property may have one of the following values:
0 (sslAutomatic) | If the remote port is set to the standard plaintext port of the protocol (where applicable), the class will behave the same as if SSLStartMode is set to sslExplicit. In all other cases, SSL negotiation will be implicit (sslImplicit). |
1 (sslImplicit) | The SSL negotiation will start immediately after the connection is established. |
2 (sslExplicit) | The class will first connect in plaintext, and then explicitly start SSL negotiation through a protocol command such as STARTTLS. |
Data Type
Integer
Timeout Property (Telnet Class)
A timeout for the class.
Syntax
ANSI (Cross Platform) int GetTimeout();
int SetTimeout(int iTimeout); Unicode (Windows) INT GetTimeout();
INT SetTimeout(INT iTimeout);
int ipworksssl_telnet_gettimeout(void* lpObj);
int ipworksssl_telnet_settimeout(void* lpObj, int iTimeout);
int GetTimeout();
int SetTimeout(int iTimeout);
Default Value
0
Remarks
If the Timeout property is set to 0, all operations return immediately, potentially failing with an 'WOULDBLOCK' error if data can't be sent or received immediately.
If Timeout is set to a positive value, the class will automatically retry each operation that would otherwise result in a 'WOULDBLOCK' error for a maximum of Timeout seconds.
The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.
If Timeout expires, and the operation is not yet complete, the class fails with an error.
Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 0 (asynchronous operation).
Data Type
Integer
Transparent Property (Telnet Class)
When True, Telnet command processing is disabled.
Syntax
ANSI (Cross Platform) int GetTransparent();
int SetTransparent(int bTransparent); Unicode (Windows) BOOL GetTransparent();
INT SetTransparent(BOOL bTransparent);
int ipworksssl_telnet_gettransparent(void* lpObj);
int ipworksssl_telnet_settransparent(void* lpObj, int bTransparent);
bool GetTransparent();
int SetTransparent(bool bTransparent);
Default Value
FALSE
Remarks
The Transparent property allows you to enable or disable Telnet command processing. When command processing is disabled, any data received is provided with no modifications.
Data Type
Boolean
UrgentData Property (Telnet Class)
A string of data to be sent urgently (out-of-band) to the remote host.
Syntax
ANSI (Cross Platform) int SetUrgentData(const char* lpUrgentData, int lenUrgentData); Unicode (Windows) INT SetUrgentData(LPCSTR lpUrgentData, INT lenUrgentData);
int ipworksssl_telnet_seturgentdata(void* lpObj, const char* lpUrgentData, int lenUrgentData);
int SetUrgentData(QByteArray qbaUrgentData);
Default Value
""
Remarks
The UrgentData property behaves exactly like the DataToSend property except that the data is sent Out Of Band (urgent). This means that the data assigned to UrgentData will bypass the normal TCP queuing mechanism. Use this property with caution.
This property is write-only and not available at design time.
Data Type
Binary String
WillOption Property (Telnet Class)
A single character Telnet option code to be sent to the server with the Telnet WILL command.
Syntax
ANSI (Cross Platform) int SetWillOption(int iWillOption); Unicode (Windows) INT SetWillOption(INT iWillOption);
int ipworksssl_telnet_setwilloption(void* lpObj, int iWillOption);
int SetWillOption(int iWillOption);
Default Value
0
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
This property is write-only and not available at design time.
Data Type
Integer
WontOption Property (Telnet Class)
A single character Telnet option code to be sent to the server with the Telnet WONT command.
Syntax
ANSI (Cross Platform) int SetWontOption(int iWontOption); Unicode (Windows) INT SetWontOption(INT iWontOption);
int ipworksssl_telnet_setwontoption(void* lpObj, int iWontOption);
int SetWontOption(int iWontOption);
Default Value
0
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
This property is write-only and not available at design time.
Data Type
Integer
Config Method (Telnet Class)
Sets or retrieves a configuration setting.
Syntax
ANSI (Cross Platform) char* Config(const char* lpszConfigurationString); Unicode (Windows) LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksssl_telnet_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);
Remarks
Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Error Handling (C++)
This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Connect Method (Telnet Class)
Connects to a remote host.
Syntax
ANSI (Cross Platform) int Connect(); Unicode (Windows) INT Connect();
int ipworksssl_telnet_connect(void* lpObj);
int Connect();
Remarks
This method connects to the remote host specified by RemoteHost. For instance:
component.RemoteHost = "MyHostNameOrIP";
component.Connect();
To specify a non-standard port number set RemotePort before calling this method.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ConnectTo Method (Telnet Class)
Connects to a remote host.
Syntax
ANSI (Cross Platform) int ConnectTo(const char* lpszHost); Unicode (Windows) INT ConnectTo(LPCWSTR lpszHost);
int ipworksssl_telnet_connectto(void* lpObj, const char* lpszHost);
int ConnectTo(const QString& qsHost);
Remarks
This method connects to the remote host specified by the Host. For instance:
component.Connect("MyTelnetServer");
To specify a non-standard port number set RemotePort before calling this method.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Disconnect Method (Telnet Class)
Disconnect from the remote host.
Syntax
ANSI (Cross Platform) int Disconnect(); Unicode (Windows) INT Disconnect();
int ipworksssl_telnet_disconnect(void* lpObj);
int Disconnect();
Remarks
Calling this method is equivalent to setting the Connected property to False.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
DoEvents Method (Telnet Class)
Processes events from the internal message queue.
Syntax
ANSI (Cross Platform) int DoEvents(); Unicode (Windows) INT DoEvents();
int ipworksssl_telnet_doevents(void* lpObj);
int DoEvents();
Remarks
When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
PauseData Method (Telnet Class)
This method pauses data reception.
Syntax
ANSI (Cross Platform) int PauseData(); Unicode (Windows) INT PauseData();
int ipworksssl_telnet_pausedata(void* lpObj);
int PauseData();
Remarks
This method pauses data reception when called. While data reception is paused, the DataIn event will not fire. Call ProcessData to reenable data reception.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
ProcessData Method (Telnet Class)
This method reenables data reception after a call to PauseData .
Syntax
ANSI (Cross Platform) int ProcessData(); Unicode (Windows) INT ProcessData();
int ipworksssl_telnet_processdata(void* lpObj);
int ProcessData();
Remarks
This method reenables data reception after a previous call to PauseData. When PauseData is called, the DataIn event will not fire. To reenable data reception and allow DataIn to fire, call this method.
Note: This method is used only after previously calling PauseData. It does not need to be called to process incoming data by default.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Reset Method (Telnet Class)
Reset the class.
Syntax
ANSI (Cross Platform) int Reset(); Unicode (Windows) INT Reset();
int ipworksssl_telnet_reset(void* lpObj);
int Reset();
Remarks
This method will reset the class's properties to their default values.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Send Method (Telnet Class)
Sends binary data to the remote host.
Syntax
ANSI (Cross Platform) int Send(const char* lpText, int lenText); Unicode (Windows) INT Send(LPCSTR lpText, INT lenText);
int ipworksssl_telnet_send(void* lpObj, const char* lpText, int lenText);
int Send(QByteArray qbaText);
Remarks
This method sends the specified binary data to the remote host. To send text use the SendText method instead.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendBytes Method (Telnet Class)
Sends binary data to the remote host.
Syntax
ANSI (Cross Platform) int SendBytes(const char* lpData, int lenData); Unicode (Windows) INT SendBytes(LPCSTR lpData, INT lenData);
int ipworksssl_telnet_sendbytes(void* lpObj, const char* lpData, int lenData);
int SendBytes(QByteArray qbaData);
Remarks
This method sends the specified binary data to the remote host. To send text use the SendText method instead.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendCommand Method (Telnet Class)
Sends a single character Telnet command code to the server.
Syntax
ANSI (Cross Platform) int SendCommand(int iCommand); Unicode (Windows) INT SendCommand(INT iCommand);
int ipworksssl_telnet_sendcommand(void* lpObj, int iCommand);
int SendCommand(int iCommand);
Remarks
This method sends the single character command code specified by Command to the server. Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Some common commands are:
241 (NOP) | No operation. |
242 (Data Mark) | The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification. |
243 (Break) | NVT character BRK. |
244 (Interrupt Process) | The function IP. |
245 (Abort Output) | The function AO. |
246 (Are You There) | The function AYT. |
247 (Erase Character) | The function EC. |
248 (Erase Line) | The function EL. |
249 (Go Ahead) | The GA signal. |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendDontOption Method (Telnet Class)
This method sends a single character Telnet option code to the server with the Telnet DONT command.
Syntax
ANSI (Cross Platform) int SendDontOption(int iDontOption); Unicode (Windows) INT SendDontOption(INT iDontOption);
int ipworksssl_telnet_senddontoption(void* lpObj, int iDontOption);
int SendDontOption(int iDontOption);
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendDoOption Method (Telnet Class)
This method sends a single character Telnet option code to the server with the Telnet DO command.
Syntax
ANSI (Cross Platform) int SendDoOption(int iDoOption); Unicode (Windows) INT SendDoOption(INT iDoOption);
int ipworksssl_telnet_senddooption(void* lpObj, int iDoOption);
int SendDoOption(int iDoOption);
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendDoSubOption Method (Telnet Class)
This methods sends a Telnet SubOption to send to the server with the SubOption command.
Syntax
ANSI (Cross Platform) int SendDoSubOption(const char* lpDoSubOption, int lenDoSubOption); Unicode (Windows) INT SendDoSubOption(LPCSTR lpDoSubOption, INT lenDoSubOption);
int ipworksssl_telnet_senddosuboption(void* lpObj, const char* lpDoSubOption, int lenDoSubOption);
int SendDoSubOption(QByteArray qbaDoSubOption);
Remarks
Valid suboptions and their descriptions are defined in the Telnet RFCs.
For example, to send a terminal type suboption to request setting the terminal type to 'vt100', send ASCII 24, followed by ASCII 0, followed by vt100.
Suboption start and end codes are automatically added by the class.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendText Method (Telnet Class)
Sends text to the remote host.
Syntax
ANSI (Cross Platform) int SendText(const char* lpszText); Unicode (Windows) INT SendText(LPCWSTR lpszText);
int ipworksssl_telnet_sendtext(void* lpObj, const char* lpszText);
int SendText(const QString& qsText);
Remarks
This method sends the specified text to the remote host. To send binary data use the SendBytes method instead.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendUrgentBytes Method (Telnet Class)
Urgently sends binary data to the remote host.
Syntax
ANSI (Cross Platform) int SendUrgentBytes(const char* lpUrgentBytes, int lenUrgentBytes); Unicode (Windows) INT SendUrgentBytes(LPCSTR lpUrgentBytes, INT lenUrgentBytes);
int ipworksssl_telnet_sendurgentbytes(void* lpObj, const char* lpUrgentBytes, int lenUrgentBytes);
int SendUrgentBytes(QByteArray qbaUrgentBytes);
Remarks
This method sends the bytes specified by UrgentBytes as urgent data (out-of-band) to the remote host. To send text urgently use the SendUrgentText method instead.
Data sent using this method will bypass the normal TCP queuing mechanism. Use this method with caution.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendUrgentText Method (Telnet Class)
Urgently sends text to the remote host.
Syntax
ANSI (Cross Platform) int SendUrgentText(const char* lpszUrgentText); Unicode (Windows) INT SendUrgentText(LPCWSTR lpszUrgentText);
int ipworksssl_telnet_sendurgenttext(void* lpObj, const char* lpszUrgentText);
int SendUrgentText(const QString& qsUrgentText);
Remarks
This method sends the text specified by UrgentText as urgent data (out-of-band) to the remote host. To send binary data urgently use the SendUrgentBytes method instead.
Data sent using this method will bypass the normal TCP queuing mechanism. Use this method with caution.
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendWillOption Method (Telnet Class)
This method sends a single character Telnet option code the server with the Telnet WILL command.
Syntax
ANSI (Cross Platform) int SendWillOption(int iWillOption); Unicode (Windows) INT SendWillOption(INT iWillOption);
int ipworksssl_telnet_sendwilloption(void* lpObj, int iWillOption);
int SendWillOption(int iWillOption);
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
SendWontOption Method (Telnet Class)
This method sends a single character Telnet option code to the server with the Telnet WONT command.
Syntax
ANSI (Cross Platform) int SendWontOption(int iWontOption); Unicode (Windows) INT SendWontOption(INT iWontOption);
int ipworksssl_telnet_sendwontoption(void* lpObj, int iWontOption);
int SendWontOption(int iWontOption);
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Error Handling (C++)
This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)
Command Event (Telnet Class)
Fired when a Telnet command comes from the Telnet server.
Syntax
ANSI (Cross Platform) virtual int FireCommand(TelnetCommandEventParams *e);
typedef struct {
int CommandCode; int reserved; } TelnetCommandEventParams;
Unicode (Windows) virtual INT FireCommand(TelnetCommandEventParams *e);
typedef struct {
INT CommandCode; INT reserved; } TelnetCommandEventParams;
#define EID_TELNET_COMMAND 1 virtual INT IPWORKSSSL_CALL FireCommand(INT &iCommandCode);
class TelnetCommandEventParams { public: int CommandCode(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Command(TelnetCommandEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireCommand(TelnetCommandEventParams *e) {...}
Remarks
Codes for Telnet commands and their meanings are defined in the Telnet RFCs. Here are some examples:
241 (NOP) | No operation. |
242 (Data Mark) | The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification. |
243 (Break) | NVT character BRK. |
244 (Interrupt Process) | The function IP. |
245 (Abort Output) | The function AO. |
246 (Are You There) | The function AYT. |
247 (Erase Character) | The function EC. |
248 (Erase Line) | The function EL. |
249 (Go Ahead) | The GA signal. |
Connected Event (Telnet Class)
This event is fired immediately after a connection completes (or fails).
Syntax
ANSI (Cross Platform) virtual int FireConnected(TelnetConnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } TelnetConnectedEventParams;
Unicode (Windows) virtual INT FireConnected(TelnetConnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } TelnetConnectedEventParams;
#define EID_TELNET_CONNECTED 2 virtual INT IPWORKSSSL_CALL FireConnected(INT &iStatusCode, LPSTR &lpszDescription);
class TelnetConnectedEventParams { public: int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Connected(TelnetConnectedEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireConnected(TelnetConnectedEventParams *e) {...}
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.
Please refer to the Error Codes section for more information.
ConnectionStatus Event (Telnet Class)
This event is fired to indicate changes in the connection state.
Syntax
ANSI (Cross Platform) virtual int FireConnectionStatus(TelnetConnectionStatusEventParams *e);
typedef struct {
const char *ConnectionEvent;
int StatusCode;
const char *Description; int reserved; } TelnetConnectionStatusEventParams;
Unicode (Windows) virtual INT FireConnectionStatus(TelnetConnectionStatusEventParams *e);
typedef struct {
LPCWSTR ConnectionEvent;
INT StatusCode;
LPCWSTR Description; INT reserved; } TelnetConnectionStatusEventParams;
#define EID_TELNET_CONNECTIONSTATUS 3 virtual INT IPWORKSSSL_CALL FireConnectionStatus(LPSTR &lpszConnectionEvent, INT &iStatusCode, LPSTR &lpszDescription);
class TelnetConnectionStatusEventParams { public: const QString &ConnectionEvent(); int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ConnectionStatus(TelnetConnectionStatusEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireConnectionStatus(TelnetConnectionStatusEventParams *e) {...}
Remarks
The ConnectionStatus event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.
The ConnectionEvent parameter indicates the type of connection event. Values may include the following:
Firewall connection complete. | |
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable). | |
Remote host connection complete. | |
Remote host disconnected. | |
SSL or S/Shell connection broken. | |
Firewall host disconnected. |
DataIn Event (Telnet Class)
Fired when data is received from the remote host.
Syntax
ANSI (Cross Platform) virtual int FireDataIn(TelnetDataInEventParams *e);
typedef struct {
const char *Text; int lenText; int reserved; } TelnetDataInEventParams;
Unicode (Windows) virtual INT FireDataIn(TelnetDataInEventParams *e);
typedef struct {
LPCSTR Text; INT lenText; INT reserved; } TelnetDataInEventParams;
#define EID_TELNET_DATAIN 4 virtual INT IPWORKSSSL_CALL FireDataIn(LPSTR &lpText, INT &lenText);
class TelnetDataInEventParams { public: const QByteArray &Text(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void DataIn(TelnetDataInEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireDataIn(TelnetDataInEventParams *e) {...}
Remarks
Trapping the DataIn event is your only chance to get the data coming from the other end of the connection. The incoming data is provided through the Text parameter.
Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.
Disconnected Event (Telnet Class)
This event is fired when a connection is closed.
Syntax
ANSI (Cross Platform) virtual int FireDisconnected(TelnetDisconnectedEventParams *e);
typedef struct {
int StatusCode;
const char *Description; int reserved; } TelnetDisconnectedEventParams;
Unicode (Windows) virtual INT FireDisconnected(TelnetDisconnectedEventParams *e);
typedef struct {
INT StatusCode;
LPCWSTR Description; INT reserved; } TelnetDisconnectedEventParams;
#define EID_TELNET_DISCONNECTED 5 virtual INT IPWORKSSSL_CALL FireDisconnected(INT &iStatusCode, LPSTR &lpszDescription);
class TelnetDisconnectedEventParams { public: int StatusCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Disconnected(TelnetDisconnectedEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireDisconnected(TelnetDisconnectedEventParams *e) {...}
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.
Please refer to the Error Codes section for more information.
Do Event (Telnet Class)
Fired when a Telnet DO OPTION command comes from the Telnet server.
Syntax
ANSI (Cross Platform) virtual int FireDo(TelnetDoEventParams *e);
typedef struct {
int OptionCode; int reserved; } TelnetDoEventParams;
Unicode (Windows) virtual INT FireDo(TelnetDoEventParams *e);
typedef struct {
INT OptionCode; INT reserved; } TelnetDoEventParams;
#define EID_TELNET_DO 6 virtual INT IPWORKSSSL_CALL FireDo(INT &iOptionCode);
class TelnetDoEventParams { public: int OptionCode(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Do(TelnetDoEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireDo(TelnetDoEventParams *e) {...}
Remarks
The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Dont Event (Telnet Class)
Fired when a Telnet DONT OPTION command comes from the Telnet server.
Syntax
ANSI (Cross Platform) virtual int FireDont(TelnetDontEventParams *e);
typedef struct {
int OptionCode; int reserved; } TelnetDontEventParams;
Unicode (Windows) virtual INT FireDont(TelnetDontEventParams *e);
typedef struct {
INT OptionCode; INT reserved; } TelnetDontEventParams;
#define EID_TELNET_DONT 7 virtual INT IPWORKSSSL_CALL FireDont(INT &iOptionCode);
class TelnetDontEventParams { public: int OptionCode(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Dont(TelnetDontEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireDont(TelnetDontEventParams *e) {...}
Remarks
The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Error Event (Telnet Class)
Information about errors during data delivery.
Syntax
ANSI (Cross Platform) virtual int FireError(TelnetErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } TelnetErrorEventParams;
Unicode (Windows) virtual INT FireError(TelnetErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } TelnetErrorEventParams;
#define EID_TELNET_ERROR 8 virtual INT IPWORKSSSL_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class TelnetErrorEventParams { public: int ErrorCode(); const QString &Description(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Error(TelnetErrorEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireError(TelnetErrorEventParams *e) {...}
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
ReadyToSend Event (Telnet Class)
Fired when the class is ready to send data.
Syntax
ANSI (Cross Platform) virtual int FireReadyToSend(TelnetReadyToSendEventParams *e);
typedef struct { int reserved; } TelnetReadyToSendEventParams;
Unicode (Windows) virtual INT FireReadyToSend(TelnetReadyToSendEventParams *e);
typedef struct { INT reserved; } TelnetReadyToSendEventParams;
#define EID_TELNET_READYTOSEND 9 virtual INT IPWORKSSSL_CALL FireReadyToSend();
class TelnetReadyToSendEventParams { public: int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void ReadyToSend(TelnetReadyToSendEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireReadyToSend(TelnetReadyToSendEventParams *e) {...}
Remarks
The ReadyToSend event indicates that the underlying TCP/IP subsystem is ready to accept data after a failed DataToSend. The event is also fired immediately after a connection to the remote host is established.
SSLServerAuthentication Event (Telnet Class)
Fired after the server presents its certificate to the client.
Syntax
ANSI (Cross Platform) virtual int FireSSLServerAuthentication(TelnetSSLServerAuthenticationEventParams *e);
typedef struct {
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *Status;
int Accept; int reserved; } TelnetSSLServerAuthenticationEventParams;
Unicode (Windows) virtual INT FireSSLServerAuthentication(TelnetSSLServerAuthenticationEventParams *e);
typedef struct {
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR Status;
BOOL Accept; INT reserved; } TelnetSSLServerAuthenticationEventParams;
#define EID_TELNET_SSLSERVERAUTHENTICATION 10 virtual INT IPWORKSSSL_CALL FireSSLServerAuthentication(LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszStatus, BOOL &bAccept);
class TelnetSSLServerAuthenticationEventParams { public: const QByteArray &CertEncoded(); const QString &CertSubject(); const QString &CertIssuer(); const QString &Status(); bool Accept(); void SetAccept(bool bAccept); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSLServerAuthentication(TelnetSSLServerAuthenticationEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireSSLServerAuthentication(TelnetSSLServerAuthenticationEventParams *e) {...}
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (Telnet Class)
Shows the progress of the secure connection.
Syntax
ANSI (Cross Platform) virtual int FireSSLStatus(TelnetSSLStatusEventParams *e);
typedef struct {
const char *Message; int reserved; } TelnetSSLStatusEventParams;
Unicode (Windows) virtual INT FireSSLStatus(TelnetSSLStatusEventParams *e);
typedef struct {
LPCWSTR Message; INT reserved; } TelnetSSLStatusEventParams;
#define EID_TELNET_SSLSTATUS 11 virtual INT IPWORKSSSL_CALL FireSSLStatus(LPSTR &lpszMessage);
class TelnetSSLStatusEventParams { public: const QString &Message(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SSLStatus(TelnetSSLStatusEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireSSLStatus(TelnetSSLStatusEventParams *e) {...}
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
SubOption Event (Telnet Class)
Fired when a Telnet SubOption command comes from the Telnet server.
Syntax
ANSI (Cross Platform) virtual int FireSubOption(TelnetSubOptionEventParams *e);
typedef struct {
const char *SubOption; int lenSubOption; int reserved; } TelnetSubOptionEventParams;
Unicode (Windows) virtual INT FireSubOption(TelnetSubOptionEventParams *e);
typedef struct {
LPCSTR SubOption; INT lenSubOption; INT reserved; } TelnetSubOptionEventParams;
#define EID_TELNET_SUBOPTION 12 virtual INT IPWORKSSSL_CALL FireSubOption(LPSTR &lpSubOption, INT &lenSubOption);
class TelnetSubOptionEventParams { public: const QByteArray &SubOption(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void SubOption(TelnetSubOptionEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireSubOption(TelnetSubOptionEventParams *e) {...}
Remarks
The SubOption parameter contains the suboption data as sent by the other end. The enclosing suboption command codes are stripped away.
For a list of valid Telnet suboptions and their descriptions please look at the Telnet RFCs.
Will Event (Telnet Class)
Fired when a Telnet WILL OPTION command comes from the Telnet server.
Syntax
ANSI (Cross Platform) virtual int FireWill(TelnetWillEventParams *e);
typedef struct {
int OptionCode; int reserved; } TelnetWillEventParams;
Unicode (Windows) virtual INT FireWill(TelnetWillEventParams *e);
typedef struct {
INT OptionCode; INT reserved; } TelnetWillEventParams;
#define EID_TELNET_WILL 13 virtual INT IPWORKSSSL_CALL FireWill(INT &iOptionCode);
class TelnetWillEventParams { public: int OptionCode(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Will(TelnetWillEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireWill(TelnetWillEventParams *e) {...}
Remarks
For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Wont Event (Telnet Class)
Fired when a Telnet WONT OPTION command comes from the Telnet server.
Syntax
ANSI (Cross Platform) virtual int FireWont(TelnetWontEventParams *e);
typedef struct {
int OptionCode; int reserved; } TelnetWontEventParams;
Unicode (Windows) virtual INT FireWont(TelnetWontEventParams *e);
typedef struct {
INT OptionCode; INT reserved; } TelnetWontEventParams;
#define EID_TELNET_WONT 14 virtual INT IPWORKSSSL_CALL FireWont(INT &iOptionCode);
class TelnetWontEventParams { public: int OptionCode(); int EventRetVal(); void SetEventRetVal(int iRetVal); };
// To handle, connect one or more slots to this signal. void Wont(TelnetWontEventParams *e);
// Or, subclass Telnet and override this emitter function. virtual int FireWont(TelnetWontEventParams *e) {...}
Remarks
The OptionCode parameter identifies the option code. For a list of option codes and their descriptions, please look at the Telnet RFCs. The following are a few examples:
0 (TRANSMIT-BINARY) | Enables or disables binary (8 bit) transmission. |
1 (ECHO) | Telnet ECHO option. Specifies whether bytes sent should be echoed or not. |
3 (SUPPRESS-GO-AHEAD) | Used to enable or disable transmission of the Telnet GO_AHEAD command. |
24 (TERMINAL-TYPE) | Allows or disallows terminal type negotiation. |
31 (NAWS) | Allows or disallows window size negotiation. |
Config Settings (Telnet Class)
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
Note: This configuration setting is only available in the Unix platform. It is not supported in masOS or FreeBSD.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this config is set to false.
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). OpenSSL recommends to use the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default OpenSSL uses the device file "/dev/urandom" to seed the PRNG and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to true, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This setting is only applicable when SSLProvider is set to Internal.
If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the class will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the class will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the class fails with an error.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for UDP ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting which applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details please see the FIPS 140-2 Compliance article.
Note: This setting is only applicable on Windows.
Note: Enabling FIPS-compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
Trappable Errors (Telnet Class)
Error Handling (C++)
Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.
Telnet Errors
118 Firewall Error. Error message contains detailed description. | |
191 SubOption string too long. Truncated. | |
4001 Telnet protocol error (Invalid server response). |
The class may also return one of the following error codes, which are inherited from other classes.
SSLClient Errors
100 You cannot change the RemotePort at this time. A connection is in progress. | |
101 You cannot change the RemoteHost (Server) at this time. A connection is in progress. | |
102 The RemoteHost address is invalid (0.0.0.0). | |
104 Already connected. If you want to reconnect, close the current connection first. | |
106 You cannot change the LocalPort at this time. A connection is in progress. | |
107 You cannot change the LocalHost at this time. A connection is in progress. | |
112 You cannot change MaxLineLength at this time. A connection is in progress. | |
116 RemotePort cannot be zero. Please specify a valid service port number. | |
117 You cannot change the UseConnection option while the class is active. | |
135 Operation would block. | |
201 Timeout. | |
211 Action impossible in control's present state. | |
212 Action impossible while not connected. | |
213 Action impossible while listening. | |
301 Timeout. | |
302 Could not open file. | |
434 Unable to convert string to selected CodePage. | |
1105 Already connecting. If you want to reconnect, close the current connection first. | |
1117 You need to connect first. | |
1119 You cannot change the LocalHost at this time. A connection is in progress. | |
1120 Connection dropped by remote host. |
SSL Errors
270 Cannot load specified security library. | |
271 Cannot open certificate store. | |
272 Cannot find specified certificate. | |
273 Cannot acquire security credentials. | |
274 Cannot find certificate chain. | |
275 Cannot verify certificate chain. | |
276 Error during handshake. | |
280 Error verifying certificate. | |
281 Could not find client certificate. | |
282 Could not find server certificate. | |
283 Error encrypting data. | |
284 Error decrypting data. |
TCP/IP Errors
10004 [10004] Interrupted system call. | |
10009 [10009] Bad file number. | |
10013 [10013] Access denied. | |
10014 [10014] Bad address. | |
10022 [10022] Invalid argument. | |
10024 [10024] Too many open files. | |
10035 [10035] Operation would block. | |
10036 [10036] Operation now in progress. | |
10037 [10037] Operation already in progress. | |
10038 [10038] Socket operation on non-socket. | |
10039 [10039] Destination address required. | |
10040 [10040] Message too long. | |
10041 [10041] Protocol wrong type for socket. | |
10042 [10042] Bad protocol option. | |
10043 [10043] Protocol not supported. | |
10044 [10044] Socket type not supported. | |
10045 [10045] Operation not supported on socket. | |
10046 [10046] Protocol family not supported. | |
10047 [10047] Address family not supported by protocol family. | |
10048 [10048] Address already in use. | |
10049 [10049] Can't assign requested address. | |
10050 [10050] Network is down. | |
10051 [10051] Network is unreachable. | |
10052 [10052] Net dropped connection or reset. | |
10053 [10053] Software caused connection abort. | |
10054 [10054] Connection reset by peer. | |
10055 [10055] No buffer space available. | |
10056 [10056] Socket is already connected. | |
10057 [10057] Socket is not connected. | |
10058 [10058] Can't send after socket shutdown. | |
10059 [10059] Too many references, can't splice. | |
10060 [10060] Connection timed out. | |
10061 [10061] Connection refused. | |
10062 [10062] Too many levels of symbolic links. | |
10063 [10063] File name too long. | |
10064 [10064] Host is down. | |
10065 [10065] No route to host. | |
10066 [10066] Directory not empty | |
10067 [10067] Too many processes. | |
10068 [10068] Too many users. | |
10069 [10069] Disc Quota Exceeded. | |
10070 [10070] Stale NFS file handle. | |
10071 [10071] Too many levels of remote in path. | |
10091 [10091] Network subsystem is unavailable. | |
10092 [10092] WINSOCK DLL Version out of range. | |
10093 [10093] Winsock not loaded yet. | |
11001 [11001] Host not found. | |
11002 [11002] Non-authoritative 'Host not found' (try again or check DNS setup). | |
11003 [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP. | |
11004 [11004] Valid name, no data record (check DNS setup). |