POP Class

Properties   Methods   Events   Config Settings   Errors  

The POP Class is used to easily retrieve electronic mail from internet post office servers (POP).

Syntax

ipworksssl.POP

Remarks

The POP Class supports both plaintext and Secure Sockets Layer/Transport Layer Security (SSL/TLS) connections (RFC 2595). When connecting over Secure Sockets Layer/Transport Layer Security (SSL/TLS) the SSLServerAuthentication event allows you to check the server identity and other security attributes. The SSLStatus event provides information about the SSL handshake. Additional SSL-related settings are also supported through the Config method.

The POP Class implements a standard internet post office (POP3) client as specified in RFC 1725.

To connect to a MailServer, first set the appropriate User and Password and then connect by calling the Connect method. Upon successful connection to the MailServer, the number of waiting messages is shown by the MessageCount property. A message is selected by setting the MessageNumber property to a number between 1 and MessageCount (inclusive). Then, the message text and headers are received by calling the Retrieve method.

The message text is received through the Transfer event, whereas the message headers are received through the Header event. Additionally, up to MaxLines from the message body are provided in the MessageText property. The body of the message is also saved in the file specified by the LocalFile property. StartTransfer and EndTransfer events are fired at the beginning and end of message transmission. The PITrail event provides a trace of the interaction between the client and server (excluding message transfers).

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

AuthMechanismThis property includes the authentication mechanism to be used when connecting to the mail server.
ConnectedWhether the class is connected.
FirewallA set of properties related to firewall access.
IdleThe current status of the class.
IncludeHeadersThis property instructs the class to include the headers in the MessageText and LocalFile.
LastReplyThis property indicates the last reply received from the server.
LocalFileThis property includes the path to a local file to download the message body. If the file exists, it is overwritten (optional).
LocalHostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
MailPortThis property includes the server port for POP (default 110).
MailServerThis property includes the name or address of a mail server (internet post office server).
MaxLinesThis property includes the maximum number of message lines other than headers to retrieve.
MessageThis property provides the raw message content.
MessageCcThis property includes the value of the CC header of the last retrieved message.
MessageCountThis property includes the number of messages in the mailbox.
MessageDateThis property includes the value of the date header of the last retrieved message.
MessageFromThis property includes the value of the from header of the last retrieved message.
MessageHeadersThis property includes a collection of the message headers as retrieved from the server.
MessageHeadersStringThis property includes a string representation of the full headers of the message as retrieved from the server.
MessageNumberThis property includes the current (selected) message.
MessageRecipientsThis property includes a collection of recipients for the current message.
MessageReplyToThis property includes the value of the Reply-To header of the last retrieved message.
MessageSubjectThis property includes the value of the Subject header of the last retrieved message.
MessageTextThis property includes the full text of the message as retrieved from the server.
MessageToThis property includes the value of the To header of the last retrieved message.
PasswordThis property includes the password for the mailbox user.
SSLAcceptServerCertInstructs the class to unconditionally accept the server certificate that matches the supplied certificate.
SSLCertThe certificate to be used during Secure Sockets Layer (SSL) negotiation.
SSLProviderThe Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
SSLServerCertThe server certificate for the last established connection.
SSLStartModeThis property determines how the class starts the Secure Sockets Layer (SSL) negotiation.
TimeoutThe timeout for the class.
UserThis property includes the user identifier for the mailbox.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
ConnectThis method connects to the mail server and attempts to log in.
DeleteThis method deletes a message specified by MessageNumber on the server.
DisconnectThis method disconnects from the mail server.
DoEventsThis method processes events from the internal message queue.
InterruptThis method interrupts the current method.
ListMessageSizesThis method retrieves a list of all message sizes from the server.
ListMessageUIDsThis method retrieves a list of all message UIDs from the server.
LocalizeDateThis method converts a valid RFC 822 message date to a local date and time.
QueryMessageSizeThis method returns the size in bytes of the current message.
QueryMessageUIDThis method returns the unique identifier (UID) of the message as specified by the server.
QueryTotalSizeThis method returns the cumulative size in bytes of messages in the mailbox (including headers).
ResetThis method resets all changes and revert back to the state when the user first connected.
RetrieveThis method retrieves a message specified by MessageNumber from the server.
RetrieveHeadersThis method retrieves headers for a message specified by MessageNumber .
SendCommandThis method sends the exact command directly to the server.
SetMessageStreamThis method sets the stream to which the message downloaded from the server will be written.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

ConnectionStatusFired to indicate changes in the connection state.
EndTransferThis event is fired when the message completes transferring.
ErrorFired when information is available about errors during data delivery.
HeaderThis event is fired for every message header being retrieved.
MessageListThis event is fired for every message listed by ListMessageSizes and/or ListMessageUIDs .
PITrailThis event traces the commands sent to the mail server, and the respective replies.
SSLServerAuthenticationFired after the server presents its certificate to the client.
SSLStatusFired when secure connection progress messages are available.
StartTransferThis event is fired when the message starts transferring.
TransferThis event is fired when the message is transferred from MailServer .

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AuthorizationIdentityThe value to use as the authorization identity when SASL authentication is used.
GetMessageSizeWhether to poll the server for the message size prior to retrieving it.
IncludeHeadersWhether to include message headers in the LocalFile.
MaxHeadersInstructs class to save the amount of headers specified that are returned by the server after a Header event has been fired.
MaxLineLengthThe maximum expected length for message lines.
CloseStreamAfterTransferIf true, the class will close the upload or download stream after the transfer.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallListenerIf true, the class binds to a SOCKS firewall as a server (TCPClient only).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
UseNTLMv2Whether to use NTLM V2.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLContextProtocolThe protocol used when getting an SSLContext instance.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
SSLTrustManagerFactoryAlgorithmThe algorithm to be used to create a TrustManager through TrustManagerFactory.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.
BuildInfoInformation about the product's build.
GUIAvailableWhether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
MaskSensitiveDataWhether sensitive data is masked in log messages.
UseDaemonThreadsWhether threads created by the class are daemon threads.
UseFIPSCompliantAPITells the class whether or not to use FIPS certified APIs.
UseInternalSecurityAPIWhether or not to use the system security libraries or an internal implementation.

AuthMechanism Property (POP Class)

This property includes the authentication mechanism to be used when connecting to the mail server.

Syntax

public int getAuthMechanism();
public void setAuthMechanism(int authMechanism);

Enumerated values:
  public final static int amUserPassword = 0;
  public final static int amCRAMMD5 = 1;
  public final static int amNTLM = 2;
  public final static int amAPOP = 3;
  public final static int amSASLPlain = 4;
  public final static int amSASLDigestMD5 = 5;
  public final static int amKerberos = 6;
  public final static int amXOAUTH2 = 7;

Default Value

0

Remarks

This property is used as the authentication mechanism when connecting to the mail server. By default, this property is amUserPassword (0), and default plaintext authentication is used to log in to the server. Other, more secure, options include amCRAMMD5 (1) for CRAM-MD5, amNTLM (2) for NTLM authentication, amAPOP (3) for APOP authentication, and amSASLDigestMD5 (5) for SASL DIGEST-MD5 authentication.

amSASLPlain (4) is also available, but most servers require a Secure Sockets Layer (SSL) connection when utilizing this authentication mechanism.

amKerberos (6) is for Kerberos authentication. Note: This functionality is available only in Windows.

Connected Property (POP Class)

Whether the class is connected.

Syntax

public boolean isConnected();

Default Value

False

Remarks

This property is used to determine whether or not the class is connected to the remote host. Use the Connect and Disconnect methods to manage the connection.

This property is read-only and not available at design time.

Firewall Property (POP Class)

A set of properties related to firewall access.

Syntax

public Firewall getFirewall();
public void setFirewall(Firewall firewall);

Remarks

This is a Firewall-type property, which contains fields describing the firewall through which the class will attempt to connect.

Please refer to the Firewall type for a complete list of fields.

Idle Property (POP Class)

The current status of the class.

Syntax

public boolean isIdle();

Default Value

True

Remarks

This property will be False if the component is currently busy (communicating or waiting for an answer), and True at all other times.

This property is read-only.

IncludeHeaders Property (POP Class)

This property instructs the class to include the headers in the MessageText and LocalFile.

Syntax

public boolean isIncludeHeaders();
public void setIncludeHeaders(boolean includeHeaders);

Default Value

False

Remarks

This property instructs the component to include the headers in the MessageText and LocalFile. If set to True, the headers for the message being retrieved will be placed before the message body in the MessageText property;. If LocalFile is set, then the headers will be written to that file before the message body. In this manner, the whole content of a MIME-encoded message can be passed to the MIME class for further message processing.

LastReply Property (POP Class)

This property indicates the last reply received from the server.

Syntax

public String getLastReply();

Default Value

""

Remarks

This property indicates the last reply received from the server. It can be used for informational purposes. The same information and more also can be retrieved through the PITrail event.

This property is read-only.

LocalFile Property (POP Class)

This property includes the path to a local file to download the message body. If the file exists, it is overwritten (optional).

Syntax

public String getLocalFile();
public void setLocalFile(String localFile);

Default Value

""

Remarks

This property is used when retrieving a message. If this property is empty, then the received data are provided through the parameters of the Transfer event.

LocalHost Property (POP Class)

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

public String getLocalHost();
public void setLocalHost(String localHost);

Default Value

""

Remarks

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the class is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: LocalHost is not persistent. You must always set it in code, and never in the property window.

MailPort Property (POP Class)

This property includes the server port for POP (default 110).

Syntax

public int getMailPort();
public void setMailPort(int mailPort);

Default Value

110

Remarks

This property contains the server port for POP (default 110). A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.

For implicit Secure Sockets Layer (SSL), use port 995 (please refer to the SSLStartMode property for more information).

This property is not available at design time.

MailServer Property (POP Class)

This property includes the name or address of a mail server (internet post office server).

Syntax

public String getMailServer();
public void setMailServer(String mailServer);

Default Value

""

Remarks

This property specifies the IP address (IP number in dotted internet format) or the domain name of the mail server. It is set before a connection is attempted and cannot be changed once a connection is in progress.

If this property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class throws an exception.

If the class is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.

MaxLines Property (POP Class)

This property includes the maximum number of message lines other than headers to retrieve.

Syntax

public int getMaxLines();
public void setMaxLines(int maxLines);

Default Value

0

Remarks

This property is used to limit the number of text lines other than headers retrieved for messages. It can be used to preview message headers and a portion of their contents, without incurring the overhead of downloading the entire message.

The default value of the property is 0. In this case, the entire message will be retrieved, without interruptions.

Message Property (POP Class)

This property provides the raw message content.

Syntax

public byte[] getMessage();

Default Value

""

Remarks

This property is populated after calling Retrieve and holds the raw message content. This can be used to access the data before any processing is done by the class.

This property is read-only and not available at design time.

MessageCc Property (POP Class)

This property includes the value of the CC header of the last retrieved message.

Syntax

public String getMessageCc();

Default Value

""

Remarks

This property contains the value of the CC header of the last retrieved message. The same information also may be retrieved through the Header event.

This property is read-only.

MessageCount Property (POP Class)

This property includes the number of messages in the mailbox.

Syntax

public int getMessageCount();

Default Value

0

Remarks

This property contains the number of messages in the mailbox. When the class is not connected to the server, the value of this property is 0. When connected, it contains the number of messages in the mailbox as reported by the POP server.

This property is read-only.

MessageDate Property (POP Class)

This property includes the value of the date header of the last retrieved message.

Syntax

public String getMessageDate();

Default Value

""

Remarks

This property contains the value of the date header of the last retrieved message. The same information also may be retrieved through the Header event.

This property is read-only.

MessageFrom Property (POP Class)

This property includes the value of the from header of the last retrieved message.

Syntax

public String getMessageFrom();

Default Value

""

Remarks

This property contains the value of the from header of the last retrieved message. The same information also may be retrieved through the Header event.

This property is read-only.

MessageHeaders Property (POP Class)

This property includes a collection of the message headers as retrieved from the server.

Syntax

public HeaderList getMessageHeaders();

Remarks

This property contains a collection of the message headers as retrieved from the server. If the class is not connected, or MessageNumber does not contain a valid message number, the value of this property is an empty collection. Otherwise, it contains a parsed collection of the full headers of the mail message as reported by the server.

The MailServer is asked about the headers of the message only if the MessageNumber property has changed. If MessageNumber has not changed, the class returns a cached value.

Example. Connect and Retrieve Messages:

POPControl.MailServer = "MyPOPServer" POPControl.User = "username" POPControl.Password = "password" POPControl.Connect() POPControl.MessageNumber = 1 MessageText = POPControl.MessageText MessageHeaders = POPControl.MessageHeaders

This property is read-only.

Please refer to the Header type for a complete list of fields.

MessageHeadersString Property (POP Class)

This property includes a string representation of the full headers of the message as retrieved from the server.

Syntax

public String getMessageHeadersString();

Default Value

""

Remarks

This property contains a string representation of the full headers of the message as retrieved from the server. If the class is not connected, or MessageNumber does not contain a valid message number, the value of this property is an empty string. Otherwise, it contains the full headers of the mail message as reported by the server.

The MailServer is asked about the headers of the message only if the MessageNumber property has changed. If MessageNumber has not changed, the class returns a cached value.

Example. Connect and Retrieve Messages:

POPControl.MailServer = "MyPOPServer" POPControl.User = "username" POPControl.Password = "password" POPControl.Connect() POPControl.MessageNumber = 1 MessageText = POPControl.MessageText MessageHeadersString = POPControl.MessageHeadersString

This property is read-only.

MessageNumber Property (POP Class)

This property includes the current (selected) message.

Syntax

public int getMessageNumber();
public void setMessageNumber(int messageNumber);

Default Value

1

Remarks

This property indicates the current (selected) message. This property specifies a message number in between 1 and MessageCount. The various class methods related to single messages use this property as a message pointer (see method descriptions and the QueryMessageSize method).

MessageRecipients Property (POP Class)

This property includes a collection of recipients for the current message.

Syntax

public MessageRecipientList getMessageRecipients();

Remarks

This property contains a collection of recipients for the current message. This collection describes all of the people to whom the last retrieved message was sent. Each MessageRecipient contains information describing that recipient, and what type of recipient it is.

This collection is indexed from 0 to size -1.

This property is read-only and not available at design time.

Please refer to the MessageRecipient type for a complete list of fields.

MessageReplyTo Property (POP Class)

This property includes the value of the Reply-To header of the last retrieved message.

Syntax

public String getMessageReplyTo();

Default Value

""

Remarks

This property contains the value of the Reply-To header of the last retrieved message. The same information also may be retrieved through the Header event.

This property is read-only.

MessageSubject Property (POP Class)

This property includes the value of the Subject header of the last retrieved message.

Syntax

public String getMessageSubject();

Default Value

""

Remarks

This property contains the value of the Subject header of the last retrieved message. The same information also may be retrieved through the Header event.

This property is read-only.

MessageText Property (POP Class)

This property includes the full text of the message as retrieved from the server.

Syntax

public String getMessageText();

Default Value

""

Remarks

This property contains the full text of the message as retrieved from the server. If the class is not connected, or MessageNumber does not contain a valid message number, the value of this property is an empty string. Otherwise, it contains the text of the mail message as reported by the server (a maximum of MaxLines).

The MailServer is asked about the text of the message only if the MessageNumber property has changed. If MessageNumber has not changed, the class returns a cached value.

Example. Connect and Retrieve Messages:

POPControl.MailServer = "MyPOPServer" POPControl.User = "username" POPControl.Password = "password" POPControl.Connect() POPControl.MessageNumber = 1 MessageText = POPControl.MessageText MessageHeaders = POPControl.MessageHeaders

This property is read-only.

MessageTo Property (POP Class)

This property includes the value of the To header of the last retrieved message.

Syntax

public String getMessageTo();

Default Value

""

Remarks

This property contains the value of the To header of the last retrieved message. The same information also may be retrieved through the Header event.

This property is read-only.

Password Property (POP Class)

This property includes the password for the mailbox user.

Syntax

public String getPassword();
public void setPassword(String password);

Default Value

""

Remarks

This property contains the password for the mailbox user. This property must be set before the class connects to the MailServer.

SSLAcceptServerCert Property (POP Class)

Instructs the class to unconditionally accept the server certificate that matches the supplied certificate.

Syntax

public Certificate getSSLAcceptServerCert();
public void setSSLAcceptServerCert(Certificate SSLAcceptServerCert);

Remarks

If it finds any issues with the certificate presented by the server, the class will normally terminate the connection with an error.

You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.

Note: This functionality is provided only for cases in which you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.

Please refer to the Certificate type for a complete list of fields.

SSLCert Property (POP Class)

The certificate to be used during Secure Sockets Layer (SSL) negotiation.

Syntax

public Certificate getSSLCert();
public void setSSLCert(Certificate SSLCert);

Remarks

This property includes the digital certificate that the class will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.

Please refer to the Certificate type for a complete list of fields.

SSLProvider Property (POP Class)

The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.

Syntax

public int getSSLProvider();
public void setSSLProvider(int SSLProvider);

Enumerated values:
  public final static int sslpAutomatic = 0;
  public final static int sslpPlatform = 1;
  public final static int sslpInternal = 2;

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are as follows:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used.

SSLServerCert Property (POP Class)

The server certificate for the last established connection.

Syntax

public Certificate getSSLServerCert();

Remarks

This property contains the server certificate for the last established connection.

SSLServerCert is reset every time a new connection is attempted.

This property is read-only.

Please refer to the Certificate type for a complete list of fields.

SSLStartMode Property (POP Class)

This property determines how the class starts the Secure Sockets Layer (SSL) negotiation.

Syntax

public int getSSLStartMode();
public void setSSLStartMode(int SSLStartMode);

Enumerated values:
  public final static int sslAutomatic = 0;
  public final static int sslImplicit = 1;
  public final static int sslExplicit = 2;

Default Value

0

Remarks

The SSLStartMode property may have one of the following values:

0 (sslAutomatic)If the remote port is set to the standard plaintext port of the protocol (where applicable), the class will behave the same as if SSLStartMode is set to sslExplicit. In all other cases, SSL negotiation will be implicit (sslImplicit).
1 (sslImplicit)The SSL negotiation will start immediately after the connection is established.
2 (sslExplicit)The class will first connect in plaintext, and then will explicitly start SSL negotiation through a protocol command such as STARTTLS.

Timeout Property (POP Class)

The timeout for the class.

Syntax

public int getTimeout();
public void setTimeout(int timeout);

Default Value

60

Remarks

If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.

If Timeout is set to a positive value, the class will wait for the operation to complete before returning control.

The class will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.

If Timeout expires, and the operation is not yet complete, the class throws an exception.

Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.

The default value for the Timeout property is 60 seconds.

User Property (POP Class)

This property includes the user identifier for the mailbox.

Syntax

public String getUser();
public void setUser(String user);

Default Value

""

Remarks

This property contains the user identifier for the mailbox. This property must be set before the class connects to the MailServer.

Config Method (POP Class)

Sets or retrieves a configuration setting.

Syntax

public String config(String configurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Connect Method (POP Class)

This method connects to the mail server and attempts to log in.

Syntax

public void connect();

Remarks

This method connects to the mail server and attempts to log in using the current User and Password. Then it retrieves the initial statistics about the mailbox contents (MessageCount and QueryTotalSize).

Example. Connect to POP Mailbox:

POPControl.MailServer = "MyPOPServer" POPControl.User = "username" POPControl.Password = "password" POPControl.Connect() POPControl.MessageNumber = 1 POPControl.Retrieve() MessageText = POPControl.MessageText MessageHeaders = POPControl.MessageHeaders

Delete Method (POP Class)

This method deletes a message specified by MessageNumber on the server.

Syntax

public void delete();

Remarks

This method asks the MailServer to delete the message specified by MessageNumber. The message will not actually be deleted from the server until the connection is closed. To cancel a previous Delete, use the Reset method.

Disconnect Method (POP Class)

This method disconnects from the mail server.

Syntax

public void disconnect();

Remarks

This method makes the class disconnect from the MailServer by sending the QUIT command. If successful, all changes to the mailbox are committed by the server. Otherwise, changes are rolled back to the initial state that the server was in before the connection.

DoEvents Method (POP Class)

This method processes events from the internal message queue.

Syntax

public void doEvents();

Remarks

When DoEvents is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

Interrupt Method (POP Class)

This method interrupts the current method.

Syntax

public void interrupt();

Remarks

If there is no method in progress, Interrupt simply returns, doing nothing.

ListMessageSizes Method (POP Class)

This method retrieves a list of all message sizes from the server.

Syntax

public void listMessageSizes();

Remarks

This message retrieves a list of all message sizes from the server. For each message listed, a MessageList event will fire containing the number and size of the message.

ListMessageUIDs Method (POP Class)

This method retrieves a list of all message UIDs from the server.

Syntax

public void listMessageUIDs();

Remarks

This method retrieves a list of all message UIDs from the server. For each message listed, a MessageList event will fire containing the number and UID of the message.

LocalizeDate Method (POP Class)

This method converts a valid RFC 822 message date to a local date and time.

Syntax

public String localizeDate(String dateTime);

Remarks

This method can be used to convert an RFC 822 date and time string to the corresponding local date and time.

Note: Dates will be returned in the format: "MM/dd/yyyy hh:mm:ss".

QueryMessageSize Method (POP Class)

This method returns the size in bytes of the current message.

Syntax

public long queryMessageSize();

Remarks

This method queries the server for the size in bytes of the message specified by MessageNumber. The method returns the size (in bytes) of the message.

If the class is not connected, or MessageNumber does not contain a valid message number, the return value is 0. Otherwise, it returns the size of the mail message (including headers) as reported by the server.

The MailServer is asked about the size of the message only if the MessageNumber property has changed. If MessageNumber has not changed, the class returns a cached value.

QueryMessageUID Method (POP Class)

This method returns the unique identifier (UID) of the message as specified by the server.

Syntax

public String queryMessageUID();

Remarks

This method returns the unique identifier (UID) of the message specified by MessageNumber. If the class is not connected, or MessageNumber does not contain a valid message number, the return value of this method is an empty string. Otherwise, it returns the UID of the mail message as reported by the server.

The MailServer is asked about the UID of the message only if the MessageNumber property has changed. If MessageNumber has not changed, the class returns a cached value.

QueryTotalSize Method (POP Class)

This method returns the cumulative size in bytes of messages in the mailbox (including headers).

Syntax

public long queryTotalSize();

Remarks

This method returns the cumulative size in bytes of messages in the mailbox (including headers). When the class is not connected to the server, the return value of this method is 0. When connected, it returns the cumulative size of all the messages in the mail box as reported by the POP server.

Reset Method (POP Class)

This method resets all changes and revert back to the state when the user first connected.

Syntax

public void reset();

Remarks

This method is used to reset all changes and revert back to the state when the user first connected. Asks the MailServer to reset all changes and revert back to the state it was when connected.

Retrieve Method (POP Class)

This method retrieves a message specified by MessageNumber from the server.

Syntax

public void retrieve();

Remarks

This method is used to retrieve a message specified by MessageNumber from the server. It asks the MailServer to retrieve the message specified by MessageNumber. The message headers will arrive in the Header event, and the message text will arrive in the Transfer event.

The MaxLines property defines the number of lines retrieved.

Example. Connect and Retrieve Messages:

POPControl.MailServer = "MyPOPServer" POPControl.User = "username" POPControl.Password = "password" POPControl.Connect() POPControl.MessageNumber = 1 POPControl.Retrieve()

RetrieveHeaders Method (POP Class)

This method retrieves headers for a message specified by MessageNumber .

Syntax

public void retrieveHeaders();

Remarks

Calling this method will retrieve the headers for the message specified by the MessageNumber property. The message headers will be provided by the Header event and also stored in the MessageHeaders property.

Example. Connect and Retrieve Message Headers:

POPControl.MailServer = "MyPOPServer" POPControl.User = "username" POPControl.Password = "password" POPControl.Connect() POPControl.MessageNumber = 1 POPControl.RetrieveHeaders()

SendCommand Method (POP Class)

This method sends the exact command directly to the server.

Syntax

public void sendCommand(String command);

Remarks

This method sends the command specified by Command to the server exactly as it is provided. Use this method to send additional or custom commands directly to the server.

After calling this method, check the LastReply property or monitor the PITrail event to obtain the server's response.

SetMessageStream Method (POP Class)

This method sets the stream to which the message downloaded from the server will be written.

Syntax

public void setMessageStream(java.io.OutputStream messageStream);

Remarks

This method sets the stream to which the message downloaded from the server will be written. If a download stream is set before the Retrieve method is called, the downloaded data will be written to the stream. The stream should be open and normally set to position 0. The class will automatically close this stream if CloseStreamAfterTransfer is set to True (default). If the stream is closed, you will need to call SetMessageStream again before calling Retrieve again. The downloaded content will be written starting at the current position in the stream.

Note: SetMessageStream and LocalFile will reset the other.

ConnectionStatus Event (POP Class)

Fired to indicate changes in the connection state.

Syntax

public class DefaultPOPEventListener implements POPEventListener {
  ...
  public void connectionStatus(POPConnectionStatusEvent e) {}
  ...
}

public class POPConnectionStatusEvent {
  public String connectionEvent;
  public int statusCode;
  public String description;
}

Remarks

This event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.

The ConnectionEvent parameter indicates the type of connection event. Values may include the following:

Firewall connection complete.
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.
StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

EndTransfer Event (POP Class)

This event is fired when the message completes transferring.

Syntax

public class DefaultPOPEventListener implements POPEventListener {
  ...
  public void endTransfer(POPEndTransferEvent e) {}
  ...
}

public class POPEndTransferEvent {
  public int direction;
}

Remarks

The EndTransfer event is fired when the message body completes transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Error Event (POP Class)

Fired when information is available about errors during data delivery.

Syntax

public class DefaultPOPEventListener implements POPEventListener {
  ...
  public void error(POPErrorEvent e) {}
  ...
}

public class POPErrorEvent {
  public int errorCode;
  public String description;
}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class throws an exception.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Header Event (POP Class)

This event is fired for every message header being retrieved.

Syntax

public class DefaultPOPEventListener implements POPEventListener {
  ...
  public void header(POPHeaderEvent e) {}
  ...
}

public class POPHeaderEvent {
  public String field;
  public String value;
}

Remarks

The Field parameter contains the name of the header (in the same case as it is delivered). The Value parameter contains the header contents.

If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).

MessageList Event (POP Class)

This event is fired for every message listed by ListMessageSizes and/or ListMessageUIDs .

Syntax

public class DefaultPOPEventListener implements POPEventListener {
  ...
  public void messageList(POPMessageListEvent e) {}
  ...
}

public class POPMessageListEvent {
  public int messageNumber;
  public String messageUID;
  public int messageSize;
}

Remarks

When ListMessageSizes is called, MessageSize is valid, and MessageUID is always an empty string.

When ListMessageUIDs is called, MessageUID is valid, and MessageSize is 0.

PITrail Event (POP Class)

This event traces the commands sent to the mail server, and the respective replies.

Syntax

public class DefaultPOPEventListener implements POPEventListener {
  ...
  public void PITrail(POPPITrailEvent e) {}
  ...
}

public class POPPITrailEvent {
  public int direction;
  public String message;
}

Remarks

The PITrail event is useful for debugging purposes. It shows all of the interaction between the client and the server, line by line, except for message header and body transfers.

The Message parameter contains the full text of the message. The Direction parameter shows the originator of the message:

0 (Client)The Message originates from the client.
1 (Server)The Message originates from the server.
2 (Info)The Message is an informative message originating from the client software (the class code).

SSLServerAuthentication Event (POP Class)

Fired after the server presents its certificate to the client.

Syntax

public class DefaultPOPEventListener implements POPEventListener {
  ...
  public void SSLServerAuthentication(POPSSLServerAuthenticationEvent e) {}
  ...
}

public class POPSSLServerAuthenticationEvent {
  public byte[] certEncoded;
  public String certSubject;
  public String certIssuer;
  public String status;
  public boolean accept; //read-write
}

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

SSLStatus Event (POP Class)

Fired when secure connection progress messages are available.

Syntax

public class DefaultPOPEventListener implements POPEventListener {
  ...
  public void SSLStatus(POPSSLStatusEvent e) {}
  ...
}

public class POPSSLStatusEvent {
  public String message;
}

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

StartTransfer Event (POP Class)

This event is fired when the message starts transferring.

Syntax

public class DefaultPOPEventListener implements POPEventListener {
  ...
  public void startTransfer(POPStartTransferEvent e) {}
  ...
}

public class POPStartTransferEvent {
  public int direction;
}

Remarks

The StartTransfer event is fired when the message body starts transferring from the server to the local host.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

Transfer Event (POP Class)

This event is fired when the message is transferred from MailServer .

Syntax

public class DefaultPOPEventListener implements POPEventListener {
  ...
  public void transfer(POPTransferEvent e) {}
  ...
}

public class POPTransferEvent {
  public int direction;
  public long bytesTransferred;
  public int percentDone;
  public byte[] text;
  public boolean EOL;
}

Remarks

The Text parameter contains the portion of the message data to be retrieved.

The BytesTransferred parameter contains the number of bytes transferred since the beginning of the message, including header bytes. At the end of transmission (i.e., when the last Transfer event is fired), BytesTransferred equals the value of the QueryMessageSize method.

The Transfer event is fired for every line of the message. For complete lines, there is no terminating newline at the end of the Text parameter, and EOL is True. The EOL parameter is False when a line is broken (usually for being too long).

A faster way to retrieve a message is to assign a value to the LocalFile property and use the Transfer event to check the progress rather than to get the actual data.

The Direction parameter shows whether the client (0) or the server (1) is sending the data.

The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.

Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.

Note: For the PercentDone parameter value to be correct, the GetMessageSize configuration setting must be set to True.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

The following fields are available:

Fields

EffectiveDate
String (read-only)

Default Value: ""

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

ExpirationDate
String (read-only)

Default Value: ""

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
String (read-only)

Default Value: ""

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
String (read-only)

Default Value: ""

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
String (read-only)

Default Value: ""

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
String (read-only)

Default Value: ""

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
String (read-only)

Default Value: ""

The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

KeyPassword
String

Default Value: ""

The password for the certificate's private key (if any).

Some certificate stores may individually protect certificates' private keys, separate from the standard protection offered by the StorePassword. This field can be used to read such password-protected private keys.

Note: This property defaults to the value of StorePassword. To clear it, you must set the property to the empty string (""). It can be set at any time, but when the private key's password is different from the store's password, then it must be set before calling PrivateKey.

PrivateKey
String (read-only)

Default Value: ""

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
boolean (read-only)

Default Value: False

Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
String (read-only)

Default Value: ""

The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
String (read-only)

Default Value: ""

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
String (read-only)

Default Value: ""

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default Value: 0

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
String (read-only)

Default Value: ""

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
String (read-only)

Default Value: ""

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
String

Default Value: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StoreB
byte[]

Default Value: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

In Java, the certificate store normally is a file containing certificates and optional private keys.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
String

Default Value: ""

If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.

StoreType
int

Default Value: 0

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

SubjectAltNames
String (read-only)

Default Value: ""

Comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
String (read-only)

Default Value: ""

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
String (read-only)

Default Value: ""

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
String (read-only)

Default Value: ""

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
String (read-only)

Default Value: ""

The text description of UsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int (read-only)

Default Value: 0

The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
String (read-only)

Default Value: ""

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Subject
String

Default Value: ""

The subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate, the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Encoded
String

Default Value: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
byte[]

Default Value: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

Constructors

public Certificate();

Creates a instance whose properties can be set. This is useful for use with when generating new certificates.

public Certificate( certificateFile);

Opens CertificateFile and reads out the contents as an X.509 public key.

public Certificate( encoded);

Parses Encoded as an X.509 public key.

public Certificate( storeType,  store,  storePassword,  subject);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  subject,  configurationString);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

ConfigurationString is a newline-separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to the cstUser , cstMachine , cstPublicKeyFile , and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  encoded);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

public Certificate( storeType,  store,  storePassword,  subject);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  subject,  configurationString);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

public Certificate( storeType,  store,  storePassword,  encoded);

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the class will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.

Firewall Type

The firewall the class will connect through.

Remarks

When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.

The following fields are available:

Fields

AutoDetect
boolean

Default Value: False

Whether to automatically detect and use firewall system settings, if available.

Connection information will first be obtained from Java system properties, such as http.proxyHost and https.proxyHost. Java properties may be set in a variety of ways; please consult the Java documentation for information about how firewall and proxy values can be specified.

If no Java system properties define connection information, the class will inspect the Windows registry for connection information that may be present on the system (applicable only on Windows systems).

FirewallType
int

Default Value: 0

The type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. Port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. Port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. Port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. Port is set to 1080.

Host
String

Default Value: ""

The name or IP address of the firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the class throws an exception.

Password
String

Default Value: ""

A password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the class throws an exception.

Port
int

Default Value: 0

The Transmission Control Protocol (TCP) port for the firewall Host. See the description of the Host field for details.

Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.

User
String

Default Value: ""

A username if authentication is to be used when connecting through a firewall. If Host is specified, this field and the Password field are used to connect and authenticate to the given Firewall. If the authentication fails, the class throws an exception.

Constructors

public Firewall();

Header Type

This is an HTTP header as it is received from the server.

Remarks

When a header is received through a Header event, it is parsed into a Header type. This type contains a Field, and its corresponding Value.

The following fields are available:

Fields

Field
String

Default Value: ""

This field contains the name of the HTTP Header (this is the same case as it is delivered).

Value
String

Default Value: ""

This field contains the Header contents.

Constructors

public Header();
public Header( field,  value);

MessageRecipient Type

This types describes the message recipient.

Remarks

This type describes who the message is sent to. It includes fields to denote the name and email address of the recipient of the message. The type of recipient must also be specified if the class is sending the message.

The following fields are available:

Fields

Address
String

Default Value: ""

This field contains the email address of the recipient.

Name
String

Default Value: ""

This field contains the name of the recipient.

Options
String

Default Value: ""

This field contains the recipient sending options (used only by SMTP). This must be a string of RFC-compliant recipient options (used by SMTP).

One type of option is a delivery status notification sent per recipient, which is specified by RFC 1891.

component.MessageRecipients(0).Options = "NOTIFY SUCCESS,FAILURE,DELAY";

RecipientType
int

Default Value: 0

This field contains the recipient type: To, Cc, or Bcc.

Constructors

public MessageRecipient();
public MessageRecipient( address);
public MessageRecipient( address,  recipientType);

Config Settings (POP Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

POP Config Settings

AuthorizationIdentity:   The value to use as the authorization identity when SASL authentication is used.

When AuthMechanism is set to amSASLPlain or amSASLDigestMD5, this configuration setting may specify an authorization identity to be used when authenticating.

GetMessageSize:   Whether to poll the server for the message size prior to retrieving it.

By default, this value is False. When set to True, the class will retrieve the message size from the server before downloading it and the PercentDone parameter of the Transfer event will be populated. When this value is False (default), the PercentDone parameter of the Transfer event will not be updated and will evaluate to -1.

IncludeHeaders:   Whether to include message headers in the LocalFile.

If set to True, the LocalFile will include the message headers in addition to the message body.

MaxHeaders:   Instructs class to save the amount of headers specified that are returned by the server after a Header event has been fired.

This configuration setting should be set when the MessageHeaders collection will be populated when a Header event has been fired. This value represents the number of headers that are to be saved in the collection.

To save all items to the collection, set this configuration setting to -1. If no items are wanted, set this to 0, which will not save any items to the collection. The default for this configuration setting is -1, so all items will be included in the collection.

MaxLineLength:   The maximum expected length for message lines.

Normally, internet mail message lines are up to 80 bytes long; however, different mail systems might use other values. Change the value of this property if you are expecting longer lines.

TCPClient Config Settings

CloseStreamAfterTransfer:   If true, the component will close the upload or download stream after the transfer.

This configuration setting determines whether the input or output stream is closed after the transfer completes. When set to True (default), all streams will be closed after a transfer is completed. To keep streams open after the transfer of data, set this to False. The default value is True.

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use Timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallListener:   If true, the component binds to a SOCKS firewall as a server (TCPClient only).

This entry is for TCPClient only and does not work for other components that descend from TCPClient.

If this entry is set, the class acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.

RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.

The connection to the firewall is made by calling the Connect method.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class throws an exception.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

Possible values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class throws an exception.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The LocalHost setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This configuration setting must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.

LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an EOL string.

If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.

If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback
UseNTLMv2:   Whether to use NTLM V2.

When authenticating with NTLM, this setting specifies whether NTLM V2 is used. By default this value is False and NTLM V1 will be used. Set this to True to use NTLM V2.

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When SSLProvider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if SSLProvider is set to Platform.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When SSLProvider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the SSLCert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This configuration setting specifies whether the class will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class throws an exception.

When set to 0 (default), the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This configuration setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the class throws an exception.

When set to 0 (default), the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when SSLAuthenticateClients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLContextProtocol:   The protocol used when getting an SSLContext instance.

Possible values are SSL, SSLv2, SSLv3, TLS, and TLSv1. Use this configuration setting only in case your security provider does not support TLS. This is the parameter "protocol" inside the SSLContext.getInstance(protocol) call.

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Note: This value must be set after SSLProvider is set.

Example values: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA"); obj.config("SSLEnabledCipherSuites=SSL_RSA_WITH_RC4_128_SHA; SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA"); Possible values when SSLProvider is set to Platform include the following:

  • SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • SSL_RSA_WITH_RC4_128_SHA
  • SSL_RSA_WITH_DES_CBC_SHA
  • SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DH_anon_WITH_DES_CBC_SHA
  • SSL_RSA_EXPORT_WITH_RC4_40_MD5
  • SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
  • SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
  • SSL_DHE_DSS_WITH_DES_CBC_SHA
  • SSL_RSA_WITH_NULL_MD5
  • SSL_DH_anon_WITH_3DES_EDE_CBC_SHA
  • SSL_DHE_RSA_WITH_DES_CBC_SHA
  • SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
  • SSL_RSA_WITH_NULL_SHA
  • SSL_DH_anon_WITH_RC4_128_MD5
  • SSL_RSA_WITH_RC4_128_MD5
  • SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • SSL_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_NULL_SHA
  • TLS_DH_anon_WITH_AES_128_CBC_SHA256 (Not Recommended)
  • TLS_ECDH_anon_WITH_RC4_128_SHA
  • TLS_DH_anon_WITH_AES_128_CBC_SHA (Not Recommended)
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_KRB5_EXPORT_WITH_RC4_40_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_RC4_128_SHA
  • TLS_ECDH_ECDSA_WITH_RC4_128_SHA
  • TLS_ECDH_anon_WITH_NULL_SHA
  • TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_RSA_WITH_NULL_SHA256
  • TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA
  • TLS_KRB5_WITH_RC4_128_MD5
  • TLS_ECDHE_ECDSA_WITH_NULL_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_RC4_128_SHA
  • TLS_EMPTY_RENEGOTIATION_INFO_SCSV
  • TLS_KRB5_WITH_3DES_EDE_CBC_MD5
  • TLS_KRB5_WITH_RC4_128_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_NULL_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_WITH_DES_CBC_MD5
  • TLS_KRB5_EXPORT_WITH_RC4_40_MD5
  • TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5
  • TLS_ECDH_anon_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_KRB5_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_KRB5_EXPORT_WITH_DES_CBC_40_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_NULL_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA

Possible values when SSLProvider is set to Internal include the following:

  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.

In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is false by default, but it can be set to true to enable the extension.

This configuration setting is applicable only when SSLProvider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the SSLServerAuthentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the SSLServerAuthentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when SSLProvider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLTrustManagerFactoryAlgorithm:   The algorithm to be used to create a TrustManager through TrustManagerFactory.

Possible values include SunX509. This is the parameter "algorithm" inside the TrustManagerFactory.getInstance(algorithm) call.

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when SSLProvider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class throws an exception.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within Timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The class will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the class does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a class is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitiveData:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseDaemonThreads:   Whether threads created by the class are daemon threads.

If set to True (default), when the class creates a thread, the thread's Daemon property will be explicitly set to True. When set to False, the class will not set the Daemon property on the created thread. The default value is True.

UseFIPSCompliantAPI:   Tells the class whether or not to use FIPS certified APIs.

When set to true, the class will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle Federal Information Processing Standards (FIPS), while all other Windows editions make use of Microsoft security libraries.

The Java edition requires installation of the FIPS-certified Bouncy Castle library regardless of the target operating system. This can be downloaded from https://www.bouncycastle.org/fips-java/. Only the "Provider" library is needed. The jar file should then be installed in a JRE search path.

The following classes must be imported in the application in which the component will be used:

import java.security.Security; import org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider;

The Bouncy Castle provider must be added as a valid provider and must also be configured to operate in FIPS mode:

System.setProperty("org.bouncycastle.fips.approved_only","true"); Security.addProvider(new BouncyCastleFipsProvider());

When UseFIPSCompliantAPI is true, Secure Sockets Layer (SSL)-enabled classes can optionally be configured to use the Transport Layer Security (TLS) Bouncy Castle library. When SSLProvider is set to sslpAutomatic (default) or sslpInternal, an internal TLS implementation is used, but all cryptographic operations are offloaded to the Bouncy Castle FIPS provider to achieve FIPS-compliant operation. If SSLProvider is set to sslpPlatform, the Bouncy Castle JSSE will be used in place of the internal TLS implementation.

To enable the use of the Bouncy Castle JSSE take the following steps in addition to the steps above. Both the Bouncy Castle FIPS provider and the Bouncy Castle JSSE must be configured to use the Bouncy Castle TLS library in FIPS mode. Obtain the Bouncy Castle TLS library from https://www.bouncycastle.org/fips-java/. The jar file should then be installed in a JRE search path.

The following classes must be imported in the application in which the component will be used:

import java.security.Security; import org.bouncycastle.jcajce.provider.BouncyCastleFipsProvider; //required to use BCJSSE when SSLProvider is set to sslpPlatform import org.bouncycastle.jsse.provider.BouncyCastleJsseProvider;

The Bouncy Castle provider must be added as a valid provider and also must be configured to operate in FIPS mode:

System.setProperty("org.bouncycastle.fips.approved_only","true"); Security.addProvider(new BouncyCastleFipsProvider()); //required to use BCJSSE when SSLProvider is set to sslpPlatform Security.addProvider(new BouncyCastleJsseProvider("fips:BCFIPS")); //optional - configure logging level of BCJSSE Logger.getLogger("org.bouncycastle.jsse").setLevel(java.util.logging.Level.OFF); //configure the class to use BCJSSE component.setSSLProvider(1); //platform component.config("UseFIPSCompliantAPI=true"); Note: TLS 1.3 support requires the Bouncy Castle TLS library version 1.0.14 or later.

FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all classes of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.

For more details, please see the FIPS 140-2 Compliance article.

Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.

UseInternalSecurityAPI:   Whether or not to use the system security libraries or an internal implementation.

When set to false, the class will use the system security libraries by default to perform cryptographic functions where applicable.

Setting this configuration setting to true tells the class to use the internal implementation instead of using the system security libraries.

This setting is set to false by default on all platforms.

Trappable Errors (POP Class)

POP Errors

116   MailPort cannot be zero. Please specify a valid service port number.
118   Firewall error. Error message contains detailed description.
171   POP protocol error. Description contains the server reply.
172   Error communicating with server. Error text is attached.
173   Please specify a valid MailServer.
174   Busy executing current method.

SSLClient Errors

100   You cannot change the RemotePort at this time. A connection is in progress.
101   You cannot change the RemoteHost (Server) at this time. A connection is in progress.
102   The RemoteHost address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the LocalPort at this time. A connection is in progress.
107   You cannot change the LocalHost at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   RemotePort cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
303   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on nonsocket.
10039   [10039] Destination address required.
10040   [10040] Message is too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol is not supported.
10044   [10044] Socket type is not supported.
10045   [10045] Operation is not supported on socket.
10046   [10046] Protocol family is not supported.
10047   [10047] Address family is not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Cannot assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Cannot send after socket shutdown.
10059   [10059] Too many references, cannot splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name is too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory is not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock is not loaded yet.
11001   [11001] Host not found.
11002   [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).