AzureRelayProxy Component
Properties Methods Events Config Settings Errors
Allows local connections to be proxied to the Azure Relay Service
Syntax
nsoftware.IPWorksMQ.Azurerelayproxy
Remarks
The AzureRelayProxy component is designed to listen locally and forward received data over a connection to the Azure Relay Service.
This allows any TCP-based client to connect and send data to Azure Relay Service without any additional knowledge. When listening and a client connects a corresponding connection is made to the specified NamespaceAddress and data then flows freely between the connected client and the Azure Relay Service. Each new connection made to AzureRelayProxy results in a new connection made to the Azure Relay Service. Connections are not shared between clients.
The diagram below illustrates the design of this component.
+---------+ +----------+ Client A <---- TCP ----> | Azure | <==== WebSocket ====> | Azure | Client B <---- TCP ----> | Relay | <==== WebSocket ====> | Relay | Client C <---- TCP ----> | Proxy | <==== WebSocket ====> | Service | +---------+ +----------+
Authenticating and Listening
Authentication to Azure Relay is performed using the Shared Access Key Name and Shared Access Key created from the Azure portal for the Relay. To begin listening for incoming connections set Listening to True.
When set to True the component will begin listening for incoming connection. When a connection is made a corresponding connection is made to the Azure Relay Service. The following properties are required when setting Listening:
- AccessKey (required)
- AccessKeyName (required)
- HybridConnection (required)
- NamespaceAddress (required)
To use SSL for incoming connections set SSLCert to a valid certificate with private key and set SSLEnabled to True before setting Listening.
DoEvents should be called in a loop to ensure timely processing of all activity, including connection requests and data transfer.
To stop listening set Listening to False. To shutdown the server including existing connections call Shutdown.
Handling Connections
When a connection is made the ConnectionRequest event fires with information about the connecting client. From within this event the client connection may be accepted (default) or rejected.
If the client connection is accepted the Connected event fire when the connection completes and is ready to send and receive data.
Data will be proxied between the connected client and the Azure Relay Service. No special steps are required.
When the client disconnects the Disconnected event fires. To initiate the client disconnection call Disconnect.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
AccessKey | The Shared Access Key. |
AccessKeyName | The Shared Access Key Name. |
ConnectionBacklog | This property includes the maximum number of pending connections maintained by the Transmission Control Protocol (TCP)/IP subsystem. |
Connections | A collection of currently connected clients. |
DefaultIdleTimeout | This property includes the default idle timeout for inactive clients. |
DefaultTimeout | This property includes an initial timeout value to be used by incoming connections. |
HybridConnection | The hybrid connection name. |
KeepAlive | When True, KEEPALIVE packets are enabled (for long connections). |
Linger | When set to True, connections are terminated gracefully. |
Listening | If set to True, the component accepts incoming connections on LocalPort. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
LocalPort | This property includes the Transmission Control Protocol (TCP) port in the local host where the component listens. |
NamespaceAddress | The namespace address of the relay. |
SSLAuthenticateClients | If set to True, the server asks the client(s) for a certificate. |
SSLCert | The certificate to be used during SSL negotiation. |
SSLEnabled | Whether TLS/SSL is enabled. |
SSLStartMode | Determines how the component starts the SSL negotiation. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Disconnect | This method disconnects the specified client. |
DoEvents | Processes events from the internal message queue. |
Reset | Reset the component. |
Shutdown | This method shuts down the server. |
StartListening | This method starts listening for incoming connections. |
StopListening | This method stops listening for new connections. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Connected | This event is fired immediately after a connection completes (or fails). |
ConnectionRequest | This event is fired when a request for connection comes from a remote host. |
Disconnected | This event is fired when a connection is closed. |
Error | This event fires information about errors during data delivery. |
Log | Fires once for each log message. |
SSLClientAuthentication | This event is fired when the client presents its credentials to the server. |
SSLConnectionRequest | This event fires when a Secure Sockets Layer (SSL) connection is requested. |
SSLStatus | This event is fired to show the progress of the secure connection. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
AccessToken | Returns an access token for use outside of the components. |
LogLevel | The level of detail that is logged. |
TokenValidity | The validity time in seconds of the access token. |
AcceptEncoding | Used to tell the server which types of content encodings the client supports. |
AllowHTTPCompression | This property enables HTTP compression for receiving data. |
AllowHTTPFallback | Whether HTTP/2 connections are permitted to fallback to HTTP/1.1. |
AllowNTLMFallback | Whether to allow fallback from Negotiate to NTLM when authenticating. |
Append | Whether to append data to LocalFile. |
Authorization | The Authorization string to be sent to the server. |
BytesTransferred | Contains the number of bytes transferred in the response data. |
ChunkSize | Specifies the chunk size in bytes when using chunked encoding. |
CompressHTTPRequest | Set to true to compress the body of a PUT or POST request. |
EncodeURL | If set to True the URL will be encoded by the component. |
FollowRedirects | Determines what happens when the server issues a redirect. |
GetOn302Redirect | If set to True the component will perform a GET on the new location. |
HTTP2HeadersWithoutIndexing | HTTP2 headers that should not update the dynamic header table with incremental indexing. |
HTTPVersion | The version of HTTP used by the component. |
IfModifiedSince | A date determining the maximum age of the desired document. |
KeepAlive | Determines whether the HTTP connection is closed after completion of the request. |
KerberosSPN | The Service Principal Name for the Kerberos Domain Controller. |
LogLevel | The level of detail that is logged. |
MaxHeaders | Instructs component to save the amount of headers specified that are returned by the server after a Header event has been fired. |
MaxHTTPCookies | Instructs component to save the amount of cookies specified that are returned by the server when a SetCookie event is fired. |
MaxRedirectAttempts | Limits the number of redirects that are followed in a request. |
NegotiatedHTTPVersion | The negotiated HTTP version. |
OtherHeaders | Other headers as determined by the user (optional). |
ProxyAuthorization | The authorization string to be sent to the proxy server. |
ProxyAuthScheme | The authorization scheme to be used for the proxy. |
ProxyPassword | A password if authentication is to be used for the proxy. |
ProxyPort | Port for the proxy server (default 80). |
ProxyServer | Name or IP address of a proxy server (optional). |
ProxyUser | A user name if authentication is to be used for the proxy. |
SentHeaders | The full set of headers as sent by the client. |
StatusCode | The status code of the last response from the server. |
StatusLine | The first line of the last response from the server. |
TransferredData | The contents of the last response from the server. |
TransferredDataLimit | The maximum number of incoming bytes to be stored by the component. |
TransferredHeaders | The full set of headers as received from the server. |
TransferredRequest | The full request as sent by the client. |
UseChunkedEncoding | Enables or Disables HTTP chunked encoding for transfers. |
UseIDNs | Whether to encode hostnames to internationalized domain names. |
UsePlatformDeflate | Whether to use the platform implementation to decompress compressed responses. |
UsePlatformHTTPClient | Whether or not to use the platform HTTP client. |
UseProxyAutoConfigURL | Whether to use a Proxy auto-config file when attempting a connection. |
UserAgent | Information about the user agent (browser). |
CloseStreamAfterTransfer | If true, the component will close the upload or download stream after the transfer. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the component whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallListener | If true, the component binds to a SOCKS firewall as a server (TCPClient only). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the component binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
UseNTLMv2 | Whether to use NTLM V2. |
CACertFilePaths | The paths to CA certificate files when using Mono on Unix/Linux. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACerts | A newline separated list of CA certificate to use during SSL client authentication. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificate to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
AccessKey Property (AzureRelayProxy Component)
The Shared Access Key.
Syntax
Default Value
""
Remarks
This property specifies the Shared Access Key to use when authenticating. This is the primary or secondary key of the shared access policy created in the Azure portal. For instance 8oKRDwkl0s440MlLUi4qHxDL34j1FS6K3t5TRoJ216c=.
AccessKeyName Property (AzureRelayProxy Component)
The Shared Access Key Name.
Syntax
Default Value
""
Remarks
This property specifies the Shared Access Key name to use when authenticating. This is the name of the shared access policy created in the Azure portal. For instance RootManageSharedAccessKey.
ConnectionBacklog Property (AzureRelayProxy Component)
This property includes the maximum number of pending connections maintained by the Transmission Control Protocol (TCP)/IP subsystem.
Syntax
Default Value
5
Remarks
This property contains the maximum number of pending connections maintained by the TCP/IP subsystem. This value reflects the SOMAXCONN option for the main listening socket. The default value for most systems is 5. You may set this property to a larger value if the server is expected to receive a large number of connections, and queuing them is desirable.
This property is not available at design time.
Connections Property (AzureRelayProxy Component)
A collection of currently connected clients.
Syntax
public AzureRelayProxyConnectionMap Connections { get; }
Public ReadOnly Property Connections As AzureRelayProxyConnectionMap
Remarks
This property is a collection of currently connected clients. All of the connections may be managed using this property. Each connection is described by the different fields of the AzureRelayProxyConnection type.
This collection is a hashtable type of collection, in which the connection Id string is used as the key to the desired connection. The connection Id is present when events such as the Connected event fires.
This property is read-only.
Please refer to the AzureRelayProxyConnection type for a complete list of fields.DefaultIdleTimeout Property (AzureRelayProxy Component)
This property includes the default idle timeout for inactive clients.
Syntax
Default Value
0
Remarks
This property specifies the idle timeout (in seconds) for clients. When set to a positive value, the component will disconnect idle clients after the specified timeout.
This applies only to clients that have not sent or received data within DefaultIdleTimeout seconds.
If set to 0 (default), no idle timeout is applied.
Note: DoEvents must be called for the component to check existing connections.
DefaultTimeout Property (AzureRelayProxy Component)
This property includes an initial timeout value to be used by incoming connections.
Syntax
Default Value
0
Remarks
This property is used by the component to set the operational timeout value of all inbound connections once they are established.
This property defines the timeout when sending data. When SSLEnabled is False, a value of 0 means data will be sent asynchronously, and a positive value means data is sent synchronously.
When SSLEnabled is True, all data are sent synchronously regardless of the Timeout value.
HybridConnection Property (AzureRelayProxy Component)
The hybrid connection name.
Syntax
Default Value
""
Remarks
This setting specifies the name of the hybrid connection that was created in the Azure portal. For instance hc1.
KeepAlive Property (AzureRelayProxy Component)
When True, KEEPALIVE packets are enabled (for long connections).
Syntax
Default Value
False
Remarks
This property enables the SO_KEEPALIVE option on the incoming connections. This option prevents long connections from timing out in case of inactivity.
Note: System Transmission Control Protocol (TCP)/IP stack implementations are not required to support SO_KEEPALIVE.
This property is shared among incoming connections. When the property is set, the corresponding value is set for incoming connections as they are accepted. Existing connections are not modified.
Linger Property (AzureRelayProxy Component)
When set to True, connections are terminated gracefully.
Syntax
Default Value
True
Remarks
This property controls how a connection is closed. The default is True. In this case, the connection is closed only after all the data are sent. Setting it to False forces an abrupt (hard) disconnection. Any data that were in the sending queue may be lost.
The default behavior (which is also the default mode for stream sockets) might result in an indefinite delay in closing the connection. Although the component returns control immediately, the system might indefinitely hold system resources until all pending data are sent (even after your application closes). This means that valuable system resources might be wasted.
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you have sent (e.g., by a client acknowledgment), then setting this property to False might be the appropriate course of action.
This property is shared among incoming connections. When the property is set, the corresponding value is set for incoming connections as they are accepted. Existing connections are not modified.
Listening Property (AzureRelayProxy Component)
If set to True, the component accepts incoming connections on LocalPort.
Syntax
Default Value
False
Remarks
This property indicates whether the component is listening for connections on the port specified by the LocalPort property.
Note: Use the StartListening and StopListening methods to control whether the component is listening.
This property is not available at design time.
LocalHost Property (AzureRelayProxy Component)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
Default Value
""
Remarks
The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.
If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.
LocalPort Property (AzureRelayProxy Component)
This property includes the Transmission Control Protocol (TCP) port in the local host where the component listens.
Syntax
Default Value
0
Remarks
This property must be set before the component can start listening. If its value is 0, then the TCP/IP subsystem picks a port number at random. The port number can be found by checking the value of this property after the component is listening (i.e., after successfully assigning True to the Listening property).
The service port is not shared among servers so two components cannot be listening on the same port at the same time.
NamespaceAddress Property (AzureRelayProxy Component)
The namespace address of the relay.
Syntax
Default Value
""
Remarks
This property specifies the full fully qualified domain name of the relay namespace. For instance myrelay.servicebus.windows.net.
SSLAuthenticateClients Property (AzureRelayProxy Component)
If set to True, the server asks the client(s) for a certificate.
Syntax
Default Value
False
Remarks
This property is used in conjunction with the SSLClientAuthentication event. Please refer to the documentation of the SSLClientAuthentication event for details.
SSLCert Property (AzureRelayProxy Component)
The certificate to be used during SSL negotiation.
Syntax
public Certificate SSLCert { get; set; }
Public Property SSLCert As Certificate
Remarks
The digital certificate that the component will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.
Please refer to the Certificate type for a complete list of fields.SSLEnabled Property (AzureRelayProxy Component)
Whether TLS/SSL is enabled.
Syntax
Default Value
False
Remarks
This setting specifies whether TLS/SSL is enabled in the component. When False (default) the component operates in plaintext mode. When True TLS/SSL is enabled.
TLS/SSL may also be enabled by setting SSLStartMode. Setting SSLStartMode will automatically update this property value.
This property is not available at design time.
SSLStartMode Property (AzureRelayProxy Component)
Determines how the component starts the SSL negotiation.
Syntax
public AzurerelayproxySSLStartModes SSLStartMode { get; set; }
enum AzurerelayproxySSLStartModes { sslAutomatic, sslImplicit, sslExplicit, sslNone }
Public Property SSLStartMode As AzurerelayproxySSLStartModes
Enum AzurerelayproxySSLStartModes sslAutomatic sslImplicit sslExplicit sslNone End Enum
Default Value
3
Remarks
The SSLStartMode property may have one of the following values:
0 (sslAutomatic) | If the remote port is set to the standard plaintext port of the protocol (where applicable), the component will behave the same as if SSLStartMode is set to sslExplicit. In all other cases, SSL negotiation will be implicit (sslImplicit). |
1 (sslImplicit) | The SSL negotiation will start immediately after the connection is established. |
2 (sslExplicit) | The component will first connect in plaintext, and then explicitly start SSL negotiation through a protocol command such as STARTTLS. |
3 (sslNone - default) | No SSL negotiation, no SSL security. All communication will be in plaintext mode. |
Config Method (AzureRelayProxy Component)
Sets or retrieves a configuration setting.
Syntax
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Disconnect Method (AzureRelayProxy Component)
This method disconnects the specified client.
Syntax
public void Disconnect(string connectionId); Async Version public async Task Disconnect(string connectionId); public async Task Disconnect(string connectionId, CancellationToken cancellationToken);
Public Sub Disconnect(ByVal ConnectionId As String) Async Version Public Sub Disconnect(ByVal ConnectionId As String) As Task Public Sub Disconnect(ByVal ConnectionId As String, cancellationToken As CancellationToken) As Task
Remarks
Calling this method will disconnect the client specified by the ConnectionId parameter.
DoEvents Method (AzureRelayProxy Component)
Processes events from the internal message queue.
Syntax
public void DoEvents(); Async Version public async Task DoEvents(); public async Task DoEvents(CancellationToken cancellationToken);
Public Sub DoEvents() Async Version Public Sub DoEvents() As Task Public Sub DoEvents(cancellationToken As CancellationToken) As Task
Remarks
When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Reset Method (AzureRelayProxy Component)
Reset the component.
Syntax
public void Reset(); Async Version public async Task Reset(); public async Task Reset(CancellationToken cancellationToken);
Public Sub Reset() Async Version Public Sub Reset() As Task Public Sub Reset(cancellationToken As CancellationToken) As Task
Remarks
This method will reset the component's properties to their default values.
Shutdown Method (AzureRelayProxy Component)
This method shuts down the server.
Syntax
public void Shutdown(); Async Version public async Task Shutdown(); public async Task Shutdown(CancellationToken cancellationToken);
Public Sub Shutdown() Async Version Public Sub Shutdown() As Task Public Sub Shutdown(cancellationToken As CancellationToken) As Task
Remarks
This method shuts down the server. Calling this method is equivalent to calling StopListening and then breaking every client connection by calling Disconnect.
StartListening Method (AzureRelayProxy Component)
This method starts listening for incoming connections.
Syntax
public void StartListening(); Async Version public async Task StartListening(); public async Task StartListening(CancellationToken cancellationToken);
Public Sub StartListening() Async Version Public Sub StartListening() As Task Public Sub StartListening(cancellationToken As CancellationToken) As Task
Remarks
This method begins listening for incoming connections on the port specified by LocalPort. Once listening, events will fire as new clients connect and data are transferred.
To stop listening for new connections, call StopListening. To stop listening for new connections and to disconnect all existing clients, call Shutdown.
StopListening Method (AzureRelayProxy Component)
This method stops listening for new connections.
Syntax
public void StopListening(); Async Version public async Task StopListening(); public async Task StopListening(CancellationToken cancellationToken);
Public Sub StopListening() Async Version Public Sub StopListening() As Task Public Sub StopListening(cancellationToken As CancellationToken) As Task
Remarks
This method stops listening for new connections. After being called, any new connection attempts will be rejected. Calling this method does not disconnect existing connections.
To stop listening and to disconnect all existing clients, call Shutdown instead.
Connected Event (AzureRelayProxy Component)
This event is fired immediately after a connection completes (or fails).
Syntax
public event OnConnectedHandler OnConnected; public delegate void OnConnectedHandler(object sender, AzurerelayproxyConnectedEventArgs e); public class AzurerelayproxyConnectedEventArgs : EventArgs { public string ConnectionId { get; } public int StatusCode { get; } public string Description { get; } }
Public Event OnConnected As OnConnectedHandler Public Delegate Sub OnConnectedHandler(sender As Object, e As AzurerelayproxyConnectedEventArgs) Public Class AzurerelayproxyConnectedEventArgs Inherits EventArgs Public ReadOnly Property ConnectionId As String Public ReadOnly Property StatusCode As Integer Public ReadOnly Property Description As String End Class
Remarks
If the connection is made normally, StatusCode is 0, and Description is "OK".
If the connection fails, StatusCode has the error code returned by the system. Description contains a description of this code. The value of StatusCode is equal to the value of the system error.
Please refer to the Error Codes section for more information.
ConnectionRequest Event (AzureRelayProxy Component)
This event is fired when a request for connection comes from a remote host.
Syntax
public event OnConnectionRequestHandler OnConnectionRequest; public delegate void OnConnectionRequestHandler(object sender, AzurerelayproxyConnectionRequestEventArgs e); public class AzurerelayproxyConnectionRequestEventArgs : EventArgs { public string Address { get; } public int Port { get; } public bool Accept { get; set; } }
Public Event OnConnectionRequest As OnConnectionRequestHandler Public Delegate Sub OnConnectionRequestHandler(sender As Object, e As AzurerelayproxyConnectionRequestEventArgs) Public Class AzurerelayproxyConnectionRequestEventArgs Inherits EventArgs Public ReadOnly Property Address As String Public ReadOnly Property Port As Integer Public Property Accept As Boolean End Class
Remarks
This event indicates an incoming connection. The connection is accepted by default. Address and Port will contain information about the remote host requesting the inbound connection. If you want to refuse it, you can set the Accept parameter to False.
Disconnected Event (AzureRelayProxy Component)
This event is fired when a connection is closed.
Syntax
public event OnDisconnectedHandler OnDisconnected; public delegate void OnDisconnectedHandler(object sender, AzurerelayproxyDisconnectedEventArgs e); public class AzurerelayproxyDisconnectedEventArgs : EventArgs { public string ConnectionId { get; } public int StatusCode { get; } public string Description { get; } }
Public Event OnDisconnected As OnDisconnectedHandler Public Delegate Sub OnDisconnectedHandler(sender As Object, e As AzurerelayproxyDisconnectedEventArgs) Public Class AzurerelayproxyDisconnectedEventArgs Inherits EventArgs Public ReadOnly Property ConnectionId As String Public ReadOnly Property StatusCode As Integer Public ReadOnly Property Description As String End Class
Remarks
If the connection is broken normally, StatusCode is 0, and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the system. Description contains a description of this code. The value of StatusCode is equal to the value of the system error.
Please refer to the Error Codes section for more information.
Error Event (AzureRelayProxy Component)
This event fires information about errors during data delivery.
Syntax
public event OnErrorHandler OnError; public delegate void OnErrorHandler(object sender, AzurerelayproxyErrorEventArgs e); public class AzurerelayproxyErrorEventArgs : EventArgs { public string ConnectionId { get; } public int ErrorCode { get; } public string Description { get; } }
Public Event OnError As OnErrorHandler Public Delegate Sub OnErrorHandler(sender As Object, e As AzurerelayproxyErrorEventArgs) Public Class AzurerelayproxyErrorEventArgs Inherits EventArgs Public ReadOnly Property ConnectionId As String Public ReadOnly Property ErrorCode As Integer Public ReadOnly Property Description As String End Class
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally, the component throws an exception.
ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
ConnectionId indicates the connection for which the error is applicable.
Log Event (AzureRelayProxy Component)
Fires once for each log message.
Syntax
public event OnLogHandler OnLog; public delegate void OnLogHandler(object sender, AzurerelayproxyLogEventArgs e); public class AzurerelayproxyLogEventArgs : EventArgs { public string ConnectionId { get; } public int LogLevel { get; } public string Message { get; } public string LogType { get; } }
Public Event OnLog As OnLogHandler Public Delegate Sub OnLogHandler(sender As Object, e As AzurerelayproxyLogEventArgs) Public Class AzurerelayproxyLogEventArgs Inherits EventArgs Public ReadOnly Property ConnectionId As String Public ReadOnly Property LogLevel As Integer Public ReadOnly Property Message As String Public ReadOnly Property LogType As String End Class
Remarks
This event fires once for each log message generated by the component. The verbosity is controlled by the LogLevel setting.
LogLevel indicates the level of message. Possible values are:
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
The value 1 (Info) logs basic information including the URL, HTTP version, and connection status details.
The value 2 (Verbose) logs additional information about the initial HTTP request.
The value 3 (Debug) logs additional debug information (if available).
Message is the log entry.
LogType identifies the type of log entry. Possible values are:
- "Info"
- "Error"
- "Verbose"
- "Debug"
SSLClientAuthentication Event (AzureRelayProxy Component)
This event is fired when the client presents its credentials to the server.
Syntax
public event OnSSLClientAuthenticationHandler OnSSLClientAuthentication; public delegate void OnSSLClientAuthenticationHandler(object sender, AzurerelayproxySSLClientAuthenticationEventArgs e); public class AzurerelayproxySSLClientAuthenticationEventArgs : EventArgs { public string ConnectionId { get; } public string CertEncoded { get; }
public byte[] CertEncodedB { get; } public string CertSubject { get; } public string CertIssuer { get; } public string Status { get; } public bool Accept { get; set; } }
Public Event OnSSLClientAuthentication As OnSSLClientAuthenticationHandler Public Delegate Sub OnSSLClientAuthenticationHandler(sender As Object, e As AzurerelayproxySSLClientAuthenticationEventArgs) Public Class AzurerelayproxySSLClientAuthenticationEventArgs Inherits EventArgs Public ReadOnly Property ConnectionId As String Public ReadOnly Property CertEncoded As String
Public ReadOnly Property CertEncodedB As Byte() Public ReadOnly Property CertSubject As String Public ReadOnly Property CertIssuer As String Public ReadOnly Property Status As String Public Property Accept As Boolean End Class
Remarks
This event enables the server to decide whether or not to continue. The Accept parameter is a recommendation on whether to continue or to close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string "OK").
SSLConnectionRequest Event (AzureRelayProxy Component)
This event fires when a Secure Sockets Layer (SSL) connection is requested.
Syntax
public event OnSSLConnectionRequestHandler OnSSLConnectionRequest; public delegate void OnSSLConnectionRequestHandler(object sender, AzurerelayproxySSLConnectionRequestEventArgs e); public class AzurerelayproxySSLConnectionRequestEventArgs : EventArgs { public string ConnectionId { get; } public string SupportedCipherSuites { get; } public string SupportedSignatureAlgs { get; } public int CertStoreType { get; set; } public string CertStore { get; set; } public string CertPassword { get; set; } public string CertSubject { get; set; } }
Public Event OnSSLConnectionRequest As OnSSLConnectionRequestHandler Public Delegate Sub OnSSLConnectionRequestHandler(sender As Object, e As AzurerelayproxySSLConnectionRequestEventArgs) Public Class AzurerelayproxySSLConnectionRequestEventArgs Inherits EventArgs Public ReadOnly Property ConnectionId As String Public ReadOnly Property SupportedCipherSuites As String Public ReadOnly Property SupportedSignatureAlgs As String Public Property CertStoreType As Integer Public Property CertStore As String Public Property CertPassword As String Public Property CertSubject As String End Class
Remarks
This event fires when an SSL connection is requested and SSLProvider is set to Internal. This event provides an opportunity to select an alternative certificate to the connecting client. This event does not fire when SSLProvider is set to Platform.
This event allows the component to be configured to use both RSA and ECDSA certificates depending on the connecting client's capabilities.
ConnectionId is the connection Id of the client requesting the connection.
SupportedCipherSuites is a comma-separated list of cipher suites that the client supports.
SupportedSignatureAlgs is a comma-separated list of certificate signature algorithms that the client supports.
CertStoreType is the store type of the alternate certificate to use for this connection. The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
CertStore is the store name or location of the alternate certificate to use for this connection.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
CertPassword is the password of the certificate store containing the alternate certificate to use for this connection.
CertSubject is the subject of the alternate certificate to use for this connection.
The special value * matches any subject and will select the first certificate in the store. The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
SSLStatus Event (AzureRelayProxy Component)
This event is fired to show the progress of the secure connection.
Syntax
public event OnSSLStatusHandler OnSSLStatus; public delegate void OnSSLStatusHandler(object sender, AzurerelayproxySSLStatusEventArgs e); public class AzurerelayproxySSLStatusEventArgs : EventArgs { public string ConnectionId { get; } public string Message { get; } }
Public Event OnSSLStatus As OnSSLStatusHandler Public Delegate Sub OnSSLStatusHandler(sender As Object, e As AzurerelayproxySSLStatusEventArgs) Public Class AzurerelayproxySSLStatusEventArgs Inherits EventArgs Public ReadOnly Property ConnectionId As String Public ReadOnly Property Message As String End Class
Remarks
The event is fired for informational and logging purposes only. It is used to track the progress of the connection.
AzureRelayProxyConnection Type
A currently connected client.
Remarks
This type describes the connection of a client which is currently connected to the component. You may use the different fields of this type to manage the connection.
Fields
Connected
bool
Default Value: False
This field is used to disconnect individual connections or to show their status.
The Connected field may be set to false to close the connection.
Connected also shows the status of a particular connection (connected/disconnected).
How and when the connection is closed is controlled by the Linger property. Please refer to its description for more information.
Note: It is recommended to use the Disconnect method instead of setting this property.
ConnectionId
string (read-only)
Default Value: ""
This field contains an identifier generated by the component to identify each connection. This identifier is unique to this connection.
IdleTimeout
int
Default Value: 0
This field contains the idle timeout for this connection. This field is similar to DefaultIdleTimeout but may be set on a per-connection basis to override DefaultIdleTimeout. This field specifies the idle timeout (in seconds) for the connected client. When set to a positive value, the component will disconnect idle clients after the specified timeout.
This applies only to clients that have not sent to received data within the specified number of seconds.
If set to 0 (default), no idle timeout is applied.
Note: DoEvents must be called for the component to check existing connections.
LocalAddress
string (read-only)
Default Value: ""
This field shows the IP address of the interface through which the connection is passing.
LocalAddress is important for multihomed hosts so that it can be used to find the particular network interface through which an individual connection is going.
RemoteHost
string (read-only)
Default Value: ""
This field shows the IP address of the remote host through which the connection is coming.
The connection must be valid or an error will be fired.
If the component is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.
RemotePort
int (read-only)
Default Value: 0
This field shows the Transmission Control Protocol (TCP) port on the remote host through which the connection is coming.
The connection must be valid or an error will be fired.
Timeout
int
Default Value: 0
This field specifies a timeout for the component.
This field defines the timeout when sending data. When SSLEnabled is False, a value of 0 means data will be sent asynchronously and a positive value means data will be sent synchronously. When SSLEnabled is True, all data is sent synchronously regardless of the Timeout value. Please see the following notes for details.
Plaintext
If the Timeout field is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.
If Timeout is set to a positive value, data is sent in a blocking manner and the component will wait for the operation to complete before returning control. The component will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of Timeout seconds.
SSL
If the Timeout field is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.
If Timeout is set to a positive value, the component will wait for the operation to complete before returning control.
Additional Notes
The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.
If Timeout expires, and the operation is not yet complete, the component throws an exception.
Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout field is 0 (asynchronous for plaintext, synchronous for SSL).
UserData
string
Default Value: ""
The UserData field holds connection-specific user-specified data.
User-specified data may be set or retrieved at any point while the connection is valid. This provides a simple way to associate arbitrary data with a specific connection.
UserDataB
byte []
Default Value: ""
The UserData field holds connection-specific user-specified data.
User-specified data may be set or retrieved at any point while the connection is valid. This provides a simple way to associate arbitrary data with a specific connection.
Constructors
public AzureRelayProxyConnection();
Public AzureRelayProxyConnection()
Certificate Type
This is the digital certificate being used.
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
EffectiveDate
string (read-only)
Default Value: ""
This is the date on which this certificate becomes valid. Before this date, it is not valid. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
Encoded
string
Default Value: ""
This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
EncodedB
byte []
Default Value: ""
This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
ExpirationDate
string (read-only)
Default Value: ""
This is the date the certificate expires. After this date, the certificate will no longer be valid. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
ExtendedKeyUsage
string
Default Value: ""
This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
Fingerprint
string (read-only)
Default Value: ""
This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
FingerprintSHA1
string (read-only)
Default Value: ""
This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
FingerprintSHA256
string (read-only)
Default Value: ""
This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
Issuer
string (read-only)
Default Value: ""
This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.
PrivateKey
string (read-only)
Default Value: ""
This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.
PrivateKeyAvailable
bool (read-only)
Default Value: False
This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
PrivateKeyContainer
string (read-only)
Default Value: ""
This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
PublicKey
string (read-only)
Default Value: ""
This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.
PublicKeyAlgorithm
string
Default Value: ""
This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
PublicKeyLength
int (read-only)
Default Value: 0
This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
SerialNumber
string (read-only)
Default Value: ""
This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
SignatureAlgorithm
string (read-only)
Default Value: ""
The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
Store
string
Default Value: "MY"
This is the name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StoreB
byte []
Default Value: "MY"
This is the name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StorePassword
string
Default Value: ""
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
StoreType
CertStoreTypes
Default Value: 0
This is the type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Subject
string
Default Value: ""
This is the subject of the certificate used for client authentication.
This field will be populated with the full subject of the loaded certificate. When loading a certificate the subject is used to locate the certificate in the store.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
SubjectAltNames
string (read-only)
Default Value: ""
This field contains comma-separated lists of alternative subject names for the certificate.
ThumbprintMD5
string (read-only)
Default Value: ""
This field contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA1
string (read-only)
Default Value: ""
This field contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA256
string (read-only)
Default Value: ""
This field contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
Usage
string
Default Value: ""
This field contains the text description of UsageFlags.
This value will be of one or more of the following strings and will be separated by commas:
- Digital Signatures
- Key Authentication
- Key Encryption
- Data Encryption
- Key Agreement
- Certificate Signing
- Key Signing
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
UsageFlags
int
Default Value: 0
This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:
0x80 | Digital Signatures |
0x40 | Key Authentication (Non-Repudiation) |
0x20 | Key Encryption |
0x10 | Data Encryption |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | Key Signing |
Please see the Usage field for a text representation of UsageFlags.
This functionality currently is not available when the provider is OpenSSL.
Version
string (read-only)
Default Value: ""
This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".
Constructors
public Certificate();
Public Certificate()
Creates a Certificate instance whose properties can be set. This is useful for use with CERTMGR when generating new certificates.
public Certificate(string certificateFile);
Public Certificate(ByVal CertificateFile As String)
Opens CertificateFile and reads out the contents as an X.509 public key.
public Certificate(byte[] certificateData);
Public Certificate(ByVal CertificateData As Byte())
Parses CertificateData as an X.509 public key.
public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String)
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).
public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. ConfigurationString is a newline separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to cstUser, cstMachine, cstPublicKeyFile, and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).
public Certificate(CertStoreTypes certStoreType, string store, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Encoded As Byte())
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.
public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String)
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).
public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).
public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Encoded As Byte())
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a string (binary- or Base64-encoded) containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.
Config Settings (AzureRelayProxy Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.AzureRelayProxy Config Settings
The value will be in the format:
SharedAccessSignature sr=sb%3a%2f%2fnstest.servicebus.windows.net%2fhc1&sig=a2EjYWw%2fDlg%2bPcNb%2fC7%2fxBbM11JjfgdO6ZVsQRm18Gg%3d&se=1555368805&skn=RootManageSharedAccessKey
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
The value 1 (Info) logs basic information about the connection and connecting clients.
The value 2 (Verbose) logs detailed information about each connection and the control connection.
The value 3 (Debug) logs additional debug information (if any).
HTTP Config Settings
When True, the component adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".
The default value is True.
If set to True (default), the component will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the component throws an exception if the server does not support HTTP/2.
The default value is True.
This property is provided so that the HTTP component can be extended with other security schemes in addition to the authorization schemes already implemented by the component.
The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".
The default value is False.
If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the component throws an exception.
Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.
Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.
A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).
The default value is 0 (Never). In this case, redirects are never followed, and the component throws an exception instead.
Following are the valid options:
- 0 - Never
- 1 - Always
- 2 - Same Scheme
- "1.0"
- "1.1" (default)
- "2.0"
- "3.0"
When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.
HTTP/2 Notes
When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.
If the server does not support HTTP/2, the component will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.
HTTP/2 is supported on all versions of Windows. If the Windows version is an earlier version than Windows 8.1/Windows Server 2012 R2, the internal security implementation will be used. If the Windows version is Window 8.1/Windows Server 2012 R2 or later, the system security libraries will be used by default.
HTTP/3 Notes
HTTP/3 is supported only in .NET and Java.
When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.
The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example:
Sat, 29 Oct 2017 19:43:31 GMT.
The default value for KeepAlive is false.
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data are logged. |
3 (Debug) | Debug data are logged. |
The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.
The value 2 (Verbose) logs additional information about the request and response.
The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).
To save all items to the collection, set this configuration setting to -1. If no items are wanted, set this to 0, which will not save any items to the collection. The default for this configuration setting is -1, so all items will be included in the collection.
To save all items to the collection, set this configuration setting to -1. If no items are wanted, set this to 0, which will not save any items to the collection. The default for this configuration setting is -1, so all items will be included in the collection.
The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .
Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.
This configuration setting is useful for extending the functionality of the component beyond what is provided.
.NET
Http http = new Http();
http.Config("TransferredRequest=on");
http.PostData = "body";
http.Post("http://someserver.com");
Console.WriteLine(http.Config("TransferredRequest"));
C++
HTTP http;
http.Config("TransferredRequest=on");
http.SetPostData("body", 5);
http.Post("http://someserver.com");
printf("%s\r\n", http.Config("TransferredRequest"));
Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.
The default value is False and the hostname will always be used exactly as specified.
When True (default), the component will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.
Override the default with the name and version of your software.
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
If this entry is set, the component acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.
RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.
The connection to the firewall is made by calling the Connect method.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by components that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.
If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this config is set to false.
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
The value is formatted as a list of paths separated by semicolons. The component will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
If set to true, the component will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the component is the same.
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When set to 0 (default) the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
When set to 0 (default) the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This setting is only applicable when SSLProvider is set to Internal.
If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.
When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the component will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available in Java or when the provider is OpenSSL.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the component will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the component throws an exception.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for UDP ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Trappable Errors (AzureRelayProxy Component)
AzureRelayProxy Errors
4001 Error transmitting packet. | |
4002 Error sending CLOSE packet. | |
4003 General protocol error. |