STOMP Component
Properties Methods Events Config Settings Errors
A simple but powerful STOMP client implementation.
Syntax
nsoftware.IPWorksMQ.Stomp
Remarks
The STOMP component provides an easy-to-use STOMP client implementation that supports STOMP versions 1.1 and 1.2. The component supports both plaintext and TLS-enabled connections over TCP.
Connecting
Connecting to a STOMP server is easy; in the simplest case just call the ConnectTo method, passing the server's hostname and port number.
When connecting to a STOMP server, the component sends information from the following properties, if populated:
In addition to the above properties, the following configuration settings can be set before connecting (though in most cases this is not necessary):
- SupportedVersions: Controls which STOMP versions the component advertises support for.
- VirtualHost: Controls the virtual host to connect to. If left empty (default), the value from RemoteHost is used.
Subscriptions & Receiving Messages
The Subscribe and Unsubscribe methods are used to subscribe to and unsubscribe from message destinations on the server.When Subscribe is called, it will return a subscription Id. To unsubscribe, pass this subscription Id to the Unsubscribe method.
After subscribing to a message destination, any messages received will cause the MessageIn event to fire.
Basic Subscriptions Example
stomp1.OnMessageIn += (s, e) => {
Console.WriteLine("Received message from destination '" + e.Destination + "':");
Console.WriteLine(e.Data);
};
string subId = stomp1.Subscribe("test/a/b", false);
// Some time later...
stomp1.Unsubscribe(subId);
Refer to Subscribe, Unsubscribe, and MessageIn for more information about subscriptions and receiving messages.
Sending Messages
To send messages, use the SendMessage and SendData methods. SendMessage is used to send messages with string payloads, while SendData is used to send messages with binary payloads.
Send String Message Example
stomp1.SendMessage("test/a/b", "Hello, world!");
Send Binary Message Example
byte[] fileContent = File.ReadAllBytes("C:\test\stuff.dat");
stomp1.SendData("test/a/b", fileContent);
Refer to SendMessage and SendData for more information about sending messages.
Using Transactions
STOMP transactions are used to group messages together for processing on the server. Messages sent as part of a transaction will not be delivered by the server until the transaction is committed. If the transaction is aborted, the server will discard the messages without attempting to deliver them.
Basic Transaction Example
// Open a new transaction.
stomp1.BeginTransaction("txn1");
// Set the Transaction property to make sure that messages are sent as part of the transaction.
stomp1.Transaction = "txn1";
stomp1.SendMessage("test/a/b", "Hello, world!");
stomp1.SendMessage("test/a/b", "This is a test.");
stomp1.SendMessage("test/a/b", "Another test!");
// At this point, none of the messages sent above would have been delivered to any clients
// subscribed to the "test/a/b" destination yet, because the transaction is still open.
// If we close and commit the transaction, the server will then deliver the messages to subscribers,
// queue them, or process them in another manner; the behavior is server-dependent.
stomp1.CommitTransaction("txn1");
// Or, the transaction can be aborted, in which case the server will discard the messages
// without delivering them to the subscribers.
//stomp1.AbortTransaction("txn1");
// Reset (or change) the Transaction property after committing or aborting a transaction
// so that future messages are not associated with the previous transaction.
stomp1.Transaction = "";
Refer to BeginTransaction for more information about using transactions.
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
Connected | Triggers a connection or disconnection. |
ContentType | The content type of the outgoing message. |
Firewall | A set of properties related to firewall access. |
Headers | User-defined headers added to outgoing messages. |
IncomingHeartbeat | Specifies the server-to-component heartbeat timing. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
LocalPort | The TCP port in the local host where the component binds. |
OutgoingHeartbeat | Specifies the component-to-server heartbeat timing. |
ParsedHeaders | Headers parsed from incoming messages. |
Password | A password if authentication is to be used. |
ReadyToSend | Indicates whether the component is ready to send data. |
RemoteHost | The address of the remote host. Domain names are resolved to IP addresses. |
RemotePort | The port of the STOMP server (default is 61613). The default port for SSL is 61612. |
RequestReceipts | Whether the component should request that the server provide message receipts. |
SSLAcceptServerCert | Instructs the component to unconditionally accept the server certificate that matches the supplied certificate. |
SSLCert | The certificate to be used during SSL negotiation. |
SSLEnabled | Whether TLS/SSL is enabled. |
SSLProvider | This specifies the SSL/TLS implementation to use. |
SSLServerCert | The server certificate for the last established connection. |
Subscriptions | Collection of current subscriptions. |
Timeout | A timeout for the component. |
TransactionId | Specifies the Id of the transaction that outgoing messages are associated with. |
User | A username if authentication is to be used. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
AbortTransaction | Aborts an existing transaction. |
AddHeader | Adds a custom header to send with outgoing messages. |
BeginTransaction | Begins a new transaction. |
CommitTransaction | Commits an existing transaction. |
Config | Sets or retrieves a configuration setting. |
Connect | Connects to the remote host. |
ConnectTo | Connects to the remote host. |
Disconnect | This method disconnects from the remote host. |
DoEvents | Processes events from the internal message queue. |
Interrupt | Interrupt the current action and disconnects from the remote host. |
Reset | Reset the component. |
ResetHeaders | Clear the user-defined headers collection. |
SendData | Publishes a message with a raw data payload. |
SendMessage | Publishes a message with a string payload. |
Subscribe | Subscribes to a message destination on the server. |
Unsubscribe | Removes an existing subscription. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Connected | This event is fired immediately after a connection completes (or fails). |
ConnectionStatus | This event is fired to indicate changes in the connection state. |
Disconnected | This event is fired when a connection is closed. |
Error | Fired when a component or protocol error occurs. |
Log | Fired once for each log message. |
MessageIn | Fired when a message has been received. |
MessageOut | Fired after a message has been sent. |
ReadyToSend | Fired when the component is ready to send data. |
ReceiptIn | Fires when the component receives a receipt from the server. |
ReceiptOut | Fires when the component sends a STOMP frame that includes a 'receipt' header. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
Subscribed | Fired when the component has subscribed to a message destination on the server. |
Unsubscribed | Fired when the component has unsubscribed from a message destination on the server. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
AckTransactionId | The transaction Id to include when sending a message acknowledgment. |
CollapseHeaders | Whether the component should collapse headers on incoming messages. |
ErrorHeaders | Raw headers from a STOMP 'ERROR' frame. |
LogLevel | The level of detail that is logged. |
OpenTransactions | A comma-separated list of currently open transactions. |
ProtocolVersion | The agreed-upon STOMP protocol version that the component is using. |
RequestAckReceipts | Whether the component should request receipts for any message acknowledgments that are sent. |
RequestSubscriptionReceipts | Whether the component should request receipts when sending subscribe and unsubscribe requests. |
RequestTransactionReceipts | Whether the component should request receipts when sending begin, commit, and abort transaction requests. |
SendCustomFrame | Sends a frame constructed using the supplied hex byte string. |
ServerInfo | Information about the currently connected server. |
SessionId | The server-assigned session Id. |
SupportedVersions | Which STOMP protocol versions the component should advertise support for when connecting. |
VirtualHost | The virtual host to connect to. |
CloseStreamAfterTransfer | If true, the component will close the upload or download stream after the transfer. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the component whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallListener | If true, the component binds to a SOCKS firewall as a server (TCPClient only). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the component binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
UseNTLMv2 | Whether to use NTLM V2. |
CACertFilePaths | The paths to CA certificate files when using Mono on Unix/Linux. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACerts | A newline separated list of CA certificate to use during SSL client authentication. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificate to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
Connected Property (STOMP Component)
Triggers a connection or disconnection.
Syntax
Default Value
False
Remarks
This property triggers a connection or disconnection. Setting this property to True makes the component attempt to connect to the host identified by the RemoteHost property. If successful, after the connection is achieved the value of the property changes to True and the Connected event is fired.
Setting this property to False closes the connection.
When connecting to a STOMP server, the component sends information from the following properties, if populated:
In addition to the above properties, the following configuration settings can be set before connecting (though in most cases this is not necessary):
- SupportedVersions: Controls which STOMP versions the component advertises support for.
- VirtualHost: Controls the virtual host to connect to. If left empty (default), the value from RemoteHost is used.
This property is not available at design time.
ContentType Property (STOMP Component)
The content type of the outgoing message.
Syntax
Default Value
"text/plain"
Remarks
This property is used to specify the content type (MIME type) for outgoing messages sent using SendMessage. The default value is text/plain, which should be sufficient is most cases.
Note that this property is ignored for messages sent using SendData, as such messages do not have a content-type header added to them. The absence of a content-type header indicates to the server that the data should be treated as a binary blob.
This property is not available at design time.
Firewall Property (STOMP Component)
A set of properties related to firewall access.
Syntax
Remarks
This is a Firewall-type property, which contains fields describing the firewall through which the component will attempt to connect.
Please refer to the Firewall type for a complete list of fields.Headers Property (STOMP Component)
User-defined headers added to outgoing messages.
Syntax
public STOMPHeaderList Headers { get; }
Public Property Headers As STOMPHeaderList
Remarks
This property holds a collection of STOMPHeader items representing user-defined headers. The headers in this collection are added to each outgoing message sent with SendMessage or SendData.
Note that the STOMP specification defines a number of standard headers necessary for implementing the STOMP protocol. When constructing an outgoing message, the component silently ignores any user-defined headers that are already set by the component.
This property is not available at design time.
Please refer to the STOMPHeader type for a complete list of fields.IncomingHeartbeat Property (STOMP Component)
Specifies the server-to-component heartbeat timing.
Syntax
Default Value
0
Remarks
This property specifies the incoming heartbeat interval, which is the number of seconds without any server-to-component communication that the server will allow to elapse before sending the component a heartbeat (keepalive). If set to 0 (default), incoming heartbeats are disabled.
For information about outgoing (component-to-server) heartbeats; see the OutgoingHeartbeat property.
Before Connecting
Before connecting, this property is used to specify the desired incoming heartbeat interval (in seconds). By default, this property is set to 0 (no heartbeat).
During the connection process, the incoming heartbeat interval requested by the component is compared to the minimum interval supported by the server, and the larger of the two values is selected. If one or both sides supply 0 as their value, then no server-to-component heartbeats will be sent.
After Connecting
After connecting, this property cannot be set. Instead, it reflects the incoming heartbeat interval agreed upon by the component and the server during the connection process.
As the incoming heartbeat interval negotiation notes above imply, it is possible that the agreed-upon incoming heartbeat interval may either be larger than what the component requested, or may be 0 (i.e., incoming heartbeats are disabled).
This property is not available at design time.
LocalHost Property (STOMP Component)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
Default Value
""
Remarks
The LocalHost property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.
If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
NOTE: LocalHost is not persistent. You must always set it in code, and never in the property window.
LocalPort Property (STOMP Component)
The TCP port in the local host where the component binds.
Syntax
Default Value
0
Remarks
This property must be set before a connection is attempted. It instructs the component to bind to a specific port (or communication endpoint) in the local machine.
Setting this property to 0 (default) enables the system to choose an open port at random. The chosen port will be returned by the LocalPort property after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this property when a connection is active will generate an error.
This property is useful when trying to connect to services that require a trusted port in the client side.
OutgoingHeartbeat Property (STOMP Component)
Specifies the component-to-server heartbeat timing.
Syntax
Default Value
0
Remarks
This property specifies the outgoing heartbeat interval, which is the number of seconds without any component-to-server communication that the component will allow to elapse before sending the server a heartbeat (keepalive). If set to 0 (default), outgoing heartbeats are disabled.
For information about incoming (server-to-component) heartbeats; see the IncomingHeartbeat property.
Before Connecting
Before connecting, this property is used to specify the minimum supported outgoing heartbeat interval (in seconds). By default, this property is set to 0 (no heartbeat).
During the connection process, the minimum outgoing heartbeat interval supported by the component is compared to the interval requested by the server, and the larger of the two values is selected. If one or both sides supply 0 as their value, then no component-to-server heartbeats will be sent.
After Connecting
After connecting, this property cannot be set. Instead, it reflects the outgoing heartbeat interval agreed upon by the component and the server during the connection process.
As the outgoing heartbeat interval negotiation notes above imply, it is possible that the agreed-upon outgoing heartbeat interval may either be larger than the component's supported minimum, or may be 0 (i.e., outgoing heartbeats are disabled).
This property is not available at design time.
ParsedHeaders Property (STOMP Component)
Headers parsed from incoming messages.
Syntax
public STOMPHeaderList ParsedHeaders { get; }
Public ReadOnly Property ParsedHeaders As STOMPHeaderList
Remarks
This property holds a collection of STOMPHeader items, representing both standard and user-defined headers parsed from incoming messages. It is populated each time the MessageIn event fires, and is cleared after the MessageIn event completes.
Note that the component collapses headers with duplicate key names by default for incoming messages, only keeping the first header for each unique key. This behavior can be controlled using the CollapseHeaders configuration setting.
This property is read-only and not available at design time.
Please refer to the STOMPHeader type for a complete list of fields.Password Property (STOMP Component)
A password if authentication is to be used.
Syntax
Default Value
""
Remarks
If this property is set when connecting, the component will send the password in the passcode header.
This property is not available at design time.
ReadyToSend Property (STOMP Component)
Indicates whether the component is ready to send data.
Syntax
Default Value
False
Remarks
This property indicates that the underlying TCP/IP subsystem is ready to accept data. This is True after connecting to the remote host, and will become False if a call to SendData or SendMessage fails due to a WOULDBLOCK condition.
Once data can be sent again, the ReadyToSend event will fire and this property will be True.
If a WOULDBLOCK error occurs while sending a message the component will automatically complete the transmission when sending is possible. No action needs to be taken to re-send the message. ReadyToSend will fire after the component completes any partially sent messages.
This property is read-only and not available at design time.
RemoteHost Property (STOMP Component)
The address of the remote host. Domain names are resolved to IP addresses.
Syntax
Default Value
""
Remarks
This property specifies the IP address (IP number in dotted internet format) or Domain Name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.
If this property is set to a Domain Name, a DNS request is initiated, and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.
If the component is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.
By default the component will connect in plaintext. To enable SSL set SSLEnabled to True.
RemotePort Property (STOMP Component)
The port of the STOMP server (default is 61613). The default port for SSL is 61612.
Syntax
Default Value
61613
Remarks
This property specifies a service port on the remote host to connect to.
A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.
This property is not available at design time.
RequestReceipts Property (STOMP Component)
Whether the component should request that the server provide message receipts.
Syntax
Default Value
False
Remarks
This property is used to specify whether the component should request that the server send back confirmations (known as a "receipts" in STOMP terminology) when it receives messages from the component. This is done by adding a receipt header to the outgoing frame.
When this property is set to True, and a message is sent, the ReceiptOut event will fire immediately after the MessageOut event fires.
Note that, while this property only controls receipt requests for outgoing messages, the component is capable of requesting receipts for any outgoing frame type. Use this table to determine which API members control receipt request for each outgoing frame type (all are False by default):
To Request Receipts For... | Set The... |
Messages | RequestReceipts property |
Message acknowledgment frames | RequestAckReceipts configuration setting |
Subscribe and Unsubscribe frames | RequestSubscriptionReceipts configuration setting |
Begin, Commit, and Abort transaction frames | RequestTransactionReceipts configuration setting |
Received Receipt Notes
When a receipt is received, the ReceiptIn event fires.
Note that receipts are cumulative, and a STOMP server is not required to send back discrete receipts for each frame it receives that has a receipt header. For example, if the component has sent four message frames with the following receipt header values (in chronological order):
- SEND-3
- SEND-4
- SEND-5
- SEND-6
This property is not available at design time.
SSLAcceptServerCert Property (STOMP Component)
Instructs the component to unconditionally accept the server certificate that matches the supplied certificate.
Syntax
public Certificate SSLAcceptServerCert { get; set; }
Public Property SSLAcceptServerCert As Certificate
Remarks
If it finds any issues with the certificate presented by the server, the component will normally terminate the connection with an error.
You may override this behavior by supplying a value for SSLAcceptServerCert. If the certificate supplied in SSLAcceptServerCert is the same as the certificate presented by the server, then the server certificate is accepted unconditionally, and the connection will continue normally.
Please note that this functionality is provided only for cases where you otherwise know that you are communicating with the right server. If used improperly, this property may create a security breach. Use it at your own risk.
Please refer to the Certificate type for a complete list of fields.SSLCert Property (STOMP Component)
The certificate to be used during SSL negotiation.
Syntax
public Certificate SSLCert { get; set; }
Public Property SSLCert As Certificate
Remarks
The digital certificate that the component will use during SSL negotiation. Set this property to a valid certificate before starting SSL negotiation. To set a certificate, you may set the Encoded field to the encoded certificate. To select a certificate, use the store and subject fields.
Please refer to the Certificate type for a complete list of fields.SSLEnabled Property (STOMP Component)
Whether TLS/SSL is enabled.
Syntax
Default Value
False
Remarks
This setting specifies whether TLS/SSL is enabled in the component. When False (default) the component operates in plaintext mode. When True TLS/SSL is enabled.
TLS/SSL may also be enabled by setting SSLStartMode. Setting SSLStartMode will automatically update this property value.
This property is not available at design time.
SSLProvider Property (STOMP Component)
This specifies the SSL/TLS implementation to use.
Syntax
public StompSSLProviders SSLProvider { get; set; }
enum StompSSLProviders { sslpAutomatic, sslpPlatform, sslpInternal }
Public Property SSLProvider As StompSSLProviders
Enum StompSSLProviders sslpAutomatic sslpPlatform sslpInternal End Enum
Default Value
0
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic) the component will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The component will select a provider depending on the current platform.
When Automatic is selected, on Windows the component will use the platform implementation. On Linux/macOS the component will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols the internal implementation is used on all platforms.
The .NET Standard library will always use the internal implementation on all platforms.
SSLServerCert Property (STOMP Component)
The server certificate for the last established connection.
Syntax
public Certificate SSLServerCert { get; }
Public ReadOnly Property SSLServerCert As Certificate
Remarks
SSLServerCert contains the server certificate for the last established connection.
SSLServerCert is reset every time a new connection is attempted.
This property is read-only.
Please refer to the Certificate type for a complete list of fields.Subscriptions Property (STOMP Component)
Collection of current subscriptions.
Syntax
public STOMPSubscriptionList Subscriptions { get; }
Public ReadOnly Property Subscriptions As STOMPSubscriptionList
Remarks
This property holds a collection of STOMPSubscription items representing the component's current subscriptions.
This property is read-only and not available at design time.
Please refer to the STOMPSubscription type for a complete list of fields.Timeout Property (STOMP Component)
A timeout for the component.
Syntax
Default Value
60
Remarks
This property defines the timeout when sending data. When SSLEnabled is False a value of 0 means data will be sent asynchronously and a positive value means data is sent synchronously. When SSLEnabled is True all data is sent synchronously regardless of the Timeout value. Please see the notes below for details.
Plaintext
If the Timeout property is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.
If Timeout is set to a positive value, data is sent in a blocking manner and the component will wait for the operation to complete before returning control. The component will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of Timeout seconds.
SSL
If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.
If Timeout is set to a positive value, the component will wait for the operation to complete before returning control.
Additional Notes
The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not "freeze" and remains responsive.
If Timeout expires, and the operation is not yet complete, the component throws an exception.
Please note that by default, all timeouts are inactivity timeouts, i.e. the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 60 seconds.
TransactionId Property (STOMP Component)
Specifies the Id of the transaction that outgoing messages are associated with.
Syntax
Default Value
""
Remarks
This property, if not empty, is used to specify which transaction outgoing messages sent using SendMessage or SendData are associated with.
This property must either be empty, or set to the Id of a currently open transaction. The OpenTransactions configuration setting can be queried at any time to retrieve a comma-separated list of currently open transactions' Ids.
Note that this property only affects outgoing messages. It is also possible to send a message acknowledgment as part of a transaction by setting the AckTransactionId configuration setting during the MessageIn event handler.
Refer to BeginTransaction for more information about transactions.
This property is not available at design time.
User Property (STOMP Component)
A username if authentication is to be used.
Syntax
Default Value
""
Remarks
If this property is set when connecting, the component will send the user in the login header.
This property is not available at design time.
AbortTransaction Method (STOMP Component)
Aborts an existing transaction.
Syntax
public void AbortTransaction(string id); Async Version public async Task AbortTransaction(string id); public async Task AbortTransaction(string id, CancellationToken cancellationToken);
Public Sub AbortTransaction(ByVal Id As String) Async Version Public Sub AbortTransaction(ByVal Id As String) As Task Public Sub AbortTransaction(ByVal Id As String, cancellationToken As CancellationToken) As Task
Remarks
This method aborts a transaction previously started with BeginTransaction. Id identifies the transaction to abort.
The OpenTransactions configuration setting can be queried to obtain a list of currently-open transactions.
Refer to BeginTransaction for more information about transactions.
AddHeader Method (STOMP Component)
Adds a custom header to send with outgoing messages.
Syntax
Remarks
This method is used to add user-defined headers to the list of headers held by the Headers collection property.
When SendMessage or SendData is called, all headers in the Headers collection property are added to the outgoing message.
Note that the STOMP specification defines a number of standard headers necessary for implementing the STOMP protocol. When constructing an outgoing message, the component silently ignores any user-defined headers that are already set by the component.
BeginTransaction Method (STOMP Component)
Begins a new transaction.
Syntax
public void BeginTransaction(string id); Async Version public async Task BeginTransaction(string id); public async Task BeginTransaction(string id, CancellationToken cancellationToken);
Public Sub BeginTransaction(ByVal Id As String) Async Version Public Sub BeginTransaction(ByVal Id As String) As Task Public Sub BeginTransaction(ByVal Id As String, cancellationToken As CancellationToken) As Task
Remarks
This method begins a new transaction using the specified Id, which must be unique. There is no limit to how many transactions may be open at any given time.
A transaction is a group of messages and message acknowledgments which are all processed atomically when the transaction is committed or aborted.
Messages sent in a transaction will not be delivered to clients subscribed to the messages' destinations until the transaction is committed.
Since it is possible for multiple transactions to be open at any given time, the TransactionId property is used to specify which transaction (if any) messages should be sent in. Similarly, message acknowledgments can be sent in a transaction by setting the AckTransactionId configuration setting during the MessageIn event handler.
The OpenTransactions configuration setting can be queried at any time to retrieve a comma-separated list of currently open transactions' Ids.
Basic Transaction Example
// Open a new transaction.
stomp1.BeginTransaction("txn1");
// Set the Transaction property to make sure that messages are sent as part of the transaction.
stomp1.Transaction = "txn1";
stomp1.SendMessage("test/a/b", "Hello, world!");
stomp1.SendMessage("test/a/b", "This is a test.");
stomp1.SendMessage("test/a/b", "Another test!");
// At this point, none of the messages sent above would have been delivered to any clients
// subscribed to the "test/a/b" destination yet, because the transaction is still open.
// If we close and commit the transaction, the server will then deliver the messages to subscribers,
// queue them, or process them in another manner; the behavior is server-dependent.
stomp1.CommitTransaction("txn1");
// Or, the transaction can be aborted, in which case the server will discard the messages
// without delivering them to the subscribers.
//stomp1.AbortTransaction("txn1");
// Reset (or change) the Transaction property after committing or aborting a transaction
// so that future messages are not associated with the previous transaction.
stomp1.Transaction = "";
CommitTransaction Method (STOMP Component)
Commits an existing transaction.
Syntax
public void CommitTransaction(string id); Async Version public async Task CommitTransaction(string id); public async Task CommitTransaction(string id, CancellationToken cancellationToken);
Public Sub CommitTransaction(ByVal Id As String) Async Version Public Sub CommitTransaction(ByVal Id As String) As Task Public Sub CommitTransaction(ByVal Id As String, cancellationToken As CancellationToken) As Task
Remarks
This method commits a transaction previously started with BeginTransaction. Id identifies the transaction to commit.
The OpenTransactions configuration setting can be queried to obtain a list of currently-open transactions.
Refer to BeginTransaction for more information about transactions.
Config Method (STOMP Component)
Sets or retrieves a configuration setting.
Syntax
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Connect Method (STOMP Component)
Connects to the remote host.
Syntax
public void Connect(); Async Version public async Task Connect(); public async Task Connect(CancellationToken cancellationToken);
Public Sub Connect() Async Version Public Sub Connect() As Task Public Sub Connect(cancellationToken As CancellationToken) As Task
Remarks
This method connects to the remote host, specified by RemoteHost and RemotePort. Calling this method is equivalent to setting the Connected property to True.
By default the component will connect in plaintext. To enable SSL set SSLEnabled to True.
When connecting to a STOMP server, the component sends information from the following properties, if populated:
In addition to the above properties, the following configuration settings can be set before connecting (though in most cases this is not necessary):
- SupportedVersions: Controls which STOMP versions the component advertises support for.
- VirtualHost: Controls the virtual host to connect to. If left empty (default), the value from RemoteHost is used.
ConnectTo Method (STOMP Component)
Connects to the remote host.
Syntax
Remarks
This method connects to the remote host specified by the Host and Port parameters. Calling this method is equivalent to setting the RemoteHost property to Host, setting RemotePort to Port, and then setting the Connected property to True.
By default the component will connect in plaintext. To enable SSL set SSLEnabled to True.
When connecting to a STOMP server, the component sends information from the following properties, if populated:
In addition to the above properties, the following configuration settings can be set before connecting (though in most cases this is not necessary):
- SupportedVersions: Controls which STOMP versions the component advertises support for.
- VirtualHost: Controls the virtual host to connect to. If left empty (default), the value from RemoteHost is used.
Disconnect Method (STOMP Component)
This method disconnects from the remote host.
Syntax
public void Disconnect(); Async Version public async Task Disconnect(); public async Task Disconnect(CancellationToken cancellationToken);
Public Sub Disconnect() Async Version Public Sub Disconnect() As Task Public Sub Disconnect(cancellationToken As CancellationToken) As Task
Remarks
This method disconnects from the remote host. Calling this method is equivalent to setting the Connected property to False.
DoEvents Method (STOMP Component)
Processes events from the internal message queue.
Syntax
public void DoEvents(); Async Version public async Task DoEvents(); public async Task DoEvents(CancellationToken cancellationToken);
Public Sub DoEvents() Async Version Public Sub DoEvents() As Task Public Sub DoEvents(cancellationToken As CancellationToken) As Task
Remarks
When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Interrupt Method (STOMP Component)
Interrupt the current action and disconnects from the remote host.
Syntax
public void Interrupt(); Async Version public async Task Interrupt(); public async Task Interrupt(CancellationToken cancellationToken);
Public Sub Interrupt() Async Version Public Sub Interrupt() As Task Public Sub Interrupt(cancellationToken As CancellationToken) As Task
Remarks
This method will interrupt the current method (if applicable) and cause the component to disconnect from the remote host.
Reset Method (STOMP Component)
Reset the component.
Syntax
public void Reset(); Async Version public async Task Reset(); public async Task Reset(CancellationToken cancellationToken);
Public Sub Reset() Async Version Public Sub Reset() As Task Public Sub Reset(cancellationToken As CancellationToken) As Task
Remarks
This method will reset the component's properties to their default values.
ResetHeaders Method (STOMP Component)
Clear the user-defined headers collection.
Syntax
public void ResetHeaders(); Async Version public async Task ResetHeaders(); public async Task ResetHeaders(CancellationToken cancellationToken);
Public Sub ResetHeaders() Async Version Public Sub ResetHeaders() As Task Public Sub ResetHeaders(cancellationToken As CancellationToken) As Task
Remarks
This method clears the Headers collection property.
SendData Method (STOMP Component)
Publishes a message with a raw data payload.
Syntax
Remarks
This method publishes a STOMP message with a raw data payload to the specified Destination. The MessageOut event will fire after the message has been sent.
The STOMP specification does not place any restrictions on Destination names. Instead, each STOMP server is free to define its own requirements for, and/or interpretations of, a Destination name; for example, a server might prohibit certain characters, require a specific format, or interpret some patterns in a special manner. Be sure to consult the documentation for your STOMP server to determine how to build proper Destination names.
In addition to the payload, the outgoing messages will include:
- All user-defined headers held by the Headers collection property.
- If the TransactionId property is populated, the transaction Id that it specifies (which associates the message with that transaction).
If RequestReceipts is enabled when this method is called, the component will request that the server send back a receipt to confirm it has received the message. Refer to RequestReceipts for more information.
Note that no content type is defined for raw data payload messages; so the ContentType property is ignored by this method.
Send String Message Example
stomp1.SendMessage("test/a/b", "Hello, world!");
Send Binary Message Example
byte[] fileContent = File.ReadAllBytes("C:\test\stuff.dat");
stomp1.SendData("test/a/b", fileContent);
SendMessage Method (STOMP Component)
Publishes a message with a string payload.
Syntax
public void SendMessage(string destination, string message); Async Version public async Task SendMessage(string destination, string message); public async Task SendMessage(string destination, string message, CancellationToken cancellationToken);
Public Sub SendMessage(ByVal Destination As String, ByVal Message As String) Async Version Public Sub SendMessage(ByVal Destination As String, ByVal Message As String) As Task Public Sub SendMessage(ByVal Destination As String, ByVal Message As String, cancellationToken As CancellationToken) As Task
Remarks
This method publishes a STOMP message with a string payload to the specified Destination. The MessageOut event will fire after the message has been sent.
The ContentType property can be used to specify the content type of the payload. By default, ContentType is set to text/plain.
The STOMP specification does not place any restrictions on Destination names. Instead, each STOMP server is free to define its own requirements for, and/or interpretations of, a Destination name; for example, a server might prohibit certain characters, require a specific format, or interpret some patterns in a special manner. Be sure to consult the documentation for your STOMP server to determine how to build proper Destination names.
In addition to the payload, the outgoing messages will include:
- All user-defined headers held by the Headers collection property.
- If the TransactionId property is populated, the transaction Id that it specifies (which associates the message with that transaction).
If RequestReceipts is enabled when this method is called, the component will request that the server send back a receipt to confirm it has received the message. Refer to RequestReceipts for more information.
Send String Message Example
stomp1.SendMessage("test/a/b", "Hello, world!");
Send Binary Message Example
byte[] fileContent = File.ReadAllBytes("C:\test\stuff.dat");
stomp1.SendData("test/a/b", fileContent);
Subscribe Method (STOMP Component)
Subscribes to a message destination on the server.
Syntax
public string Subscribe(string destination, bool requireAcks); Async Version public async Task<string> Subscribe(string destination, bool requireAcks); public async Task<string> Subscribe(string destination, bool requireAcks, CancellationToken cancellationToken);
Public Function Subscribe(ByVal Destination As String, ByVal RequireAcks As Boolean) As String Async Version Public Function Subscribe(ByVal Destination As String, ByVal RequireAcks As Boolean) As Task(Of String) Public Function Subscribe(ByVal Destination As String, ByVal RequireAcks As Boolean, cancellationToken As CancellationToken) As Task(Of String)
Remarks
This method is used to subscribe to the specified message Destination on the server. The Id of the subscription is returned.
Once subscribed, the Subscribed event will fire and an item will be added to the Subscriptions collection property. The MessageIn event will fire anytime a message is received for any subscription.
The STOMP specification does not place any restrictions on Destination names. Instead, each STOMP server is free to define its own requirements for, and/or interpretations of, a Destination name; for example, a server might prohibit certain characters, require a specific format, or interpret some patterns in a special manner. Be sure to consult the documentation for your STOMP server to determine how to build proper Destination names.
If the RequireAcks parameter is set to True, the server will expect the component to send it a message acknowledgment for each message it delivers as part of this subscription. (Refer to the MessageIn event for more information about sending message acknowledgments).
Basic Subscriptions Example
stomp1.OnMessageIn += (s, e) => {
Console.WriteLine("Received message from destination '" + e.Destination + "':");
Console.WriteLine(e.Data);
};
string subId = stomp1.Subscribe("test/a/b", false);
// Some time later...
stomp1.Unsubscribe(subId);
Unsubscribe Method (STOMP Component)
Removes an existing subscription.
Syntax
public void Unsubscribe(string id); Async Version public async Task Unsubscribe(string id); public async Task Unsubscribe(string id, CancellationToken cancellationToken);
Public Sub Unsubscribe(ByVal Id As String) Async Version Public Sub Unsubscribe(ByVal Id As String) As Task Public Sub Unsubscribe(ByVal Id As String, cancellationToken As CancellationToken) As Task
Remarks
This method removes an existing subscription identified by the given Id, unsubscribing the component from the destination associated with the subscription.
Once unsubscribed, the relevant item will be removed from the Subscriptions collection property and the Unsubscribed event will fire.
Basic Subscriptions Example
stomp1.OnMessageIn += (s, e) => {
Console.WriteLine("Received message from destination '" + e.Destination + "':");
Console.WriteLine(e.Data);
};
string subId = stomp1.Subscribe("test/a/b", false);
// Some time later...
stomp1.Unsubscribe(subId);
Connected Event (STOMP Component)
This event is fired immediately after a connection completes (or fails).
Syntax
public event OnConnectedHandler OnConnected; public delegate void OnConnectedHandler(object sender, StompConnectedEventArgs e); public class StompConnectedEventArgs : EventArgs { public int StatusCode { get; } public string Description { get; } }
Public Event OnConnected As OnConnectedHandler Public Delegate Sub OnConnectedHandler(sender As Object, e As StompConnectedEventArgs) Public Class StompConnectedEventArgs Inherits EventArgs Public ReadOnly Property StatusCode As Integer Public ReadOnly Property Description As String End Class
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.
Please refer to the Error Codes section for more information.
ConnectionStatus Event (STOMP Component)
This event is fired to indicate changes in the connection state.
Syntax
public event OnConnectionStatusHandler OnConnectionStatus; public delegate void OnConnectionStatusHandler(object sender, StompConnectionStatusEventArgs e); public class StompConnectionStatusEventArgs : EventArgs { public string ConnectionEvent { get; } public int StatusCode { get; } public string Description { get; } }
Public Event OnConnectionStatus As OnConnectionStatusHandler Public Delegate Sub OnConnectionStatusHandler(sender As Object, e As StompConnectionStatusEventArgs) Public Class StompConnectionStatusEventArgs Inherits EventArgs Public ReadOnly Property ConnectionEvent As String Public ReadOnly Property StatusCode As Integer Public ReadOnly Property Description As String End Class
Remarks
The ConnectionStatus event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.
The ConnectionEvent parameter indicates the type of connection event. Values may include the following:
Firewall connection complete. | |
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable). | |
Remote host connection complete. | |
Remote host disconnected. | |
SSL or S/Shell connection broken. | |
Firewall host disconnected. |
Disconnected Event (STOMP Component)
This event is fired when a connection is closed.
Syntax
public event OnDisconnectedHandler OnDisconnected; public delegate void OnDisconnectedHandler(object sender, StompDisconnectedEventArgs e); public class StompDisconnectedEventArgs : EventArgs { public int StatusCode { get; } public string Description { get; } }
Public Event OnDisconnected As OnDisconnectedHandler Public Delegate Sub OnDisconnectedHandler(sender As Object, e As StompDisconnectedEventArgs) Public Class StompDisconnectedEventArgs Inherits EventArgs Public ReadOnly Property StatusCode As Integer Public ReadOnly Property Description As String End Class
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.
Please refer to the Error Codes section for more information.
Error Event (STOMP Component)
Fired when a component or protocol error occurs.
Syntax
public event OnErrorHandler OnError; public delegate void OnErrorHandler(object sender, StompErrorEventArgs e); public class StompErrorEventArgs : EventArgs { public int ErrorCode { get; } public string Description { get; } public string Data { get; }
public byte[] DataB { get; } }
Public Event OnError As OnErrorHandler Public Delegate Sub OnErrorHandler(sender As Object, e As StompErrorEventArgs) Public Class StompErrorEventArgs Inherits EventArgs Public ReadOnly Property ErrorCode As Integer Public ReadOnly Property Description As String Public ReadOnly Property Data As String
Public ReadOnly Property DataB As Byte() End Class
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the component throws an exception.
ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
STOMP Protocol Errors
The component will fire the Error event anytime the server reports a STOMP protocol error (i.e., the component receives an ERROR frame).When this occurs, ErrorCode will be 600, Description will reflect the value of the ERROR frame's message header, and Data will contain the body of the ERROR frame (if one is present).
The ErrorHeaders configuration setting will also be populated with the raw headers from the ERROR frame for the duration of the Error event handler.
Log Event (STOMP Component)
Fired once for each log message.
Syntax
public event OnLogHandler OnLog; public delegate void OnLogHandler(object sender, StompLogEventArgs e); public class StompLogEventArgs : EventArgs { public int LogLevel { get; } public string Message { get; } public string LogType { get; } }
Public Event OnLog As OnLogHandler Public Delegate Sub OnLogHandler(sender As Object, e As StompLogEventArgs) Public Class StompLogEventArgs Inherits EventArgs Public ReadOnly Property LogLevel As Integer Public ReadOnly Property Message As String Public ReadOnly Property LogType As String End Class
Remarks
This event fires once for each log message generated by the component. The verbosity is controlled by the LogLevel setting.
LogLevel indicates the level of the Message. Possible values are:
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
LogType identifies the type of log entry. Possible values are:
- Info: General information about the component.
- Acknowledgment: Information about outgoing message acknowledgments.
- Frame: Frame content logging.
MessageIn Event (STOMP Component)
Fired when a message has been received.
Syntax
public event OnMessageInHandler OnMessageIn; public delegate void OnMessageInHandler(object sender, StompMessageInEventArgs e); public class StompMessageInEventArgs : EventArgs { public string MessageId { get; } public string SubscriptionId { get; } public string Destination { get; } public string Data { get; }
public byte[] DataB { get; } public string ContentType { get; } public bool Ack { get; set; } }
Public Event OnMessageIn As OnMessageInHandler Public Delegate Sub OnMessageInHandler(sender As Object, e As StompMessageInEventArgs) Public Class StompMessageInEventArgs Inherits EventArgs Public ReadOnly Property MessageId As String Public ReadOnly Property SubscriptionId As String Public ReadOnly Property Destination As String Public ReadOnly Property Data As String
Public ReadOnly Property DataB As Byte() Public ReadOnly Property ContentType As String Public Property Ack As Boolean End Class
Remarks
This events fires whenever the component has received a message.
In addition to the message details exposed by the event parameters, the ParsedHeaders collection property is populated with the headers parsed from the message. When the MessageIn event handler exits, the parsed headers are cleared. The following parameters are available within this event:
- MessageId: The unique Id of the message.
- SubscriptionId: The subscription Id the message is associated with.
- Destination: The message destination on the server which the message originated from.
- Data: The message's payload.
- ContentType: The content type of the message (may be empty).
- Ack: Set to True or False to control whether the component should send back a positive (True, default) or negative (False) message acknowledgment.
Message acknowledgments are only sent back to the server for messages which require them. A positive acknowledgment indicates that the message has been accepted, while a negative acknowledgment represents that the message has been rejected.
The following two configuration settings are also relevant in the context of sending back message acknowledgments for incoming messages:
- The AckTransactionId configuration setting, if not empty, specifies a transaction Id to associate the message acknowledgment with. It can only be set during the MessageIn event handler, and will be reset when the event handler ends.
- The RequestAckReceipts configuration setting controls whether the component will request that the server confirm receipt of the message acknowledgment. It is False by default, and can be set at any time.
MessageOut Event (STOMP Component)
Fired after a message has been sent.
Syntax
public event OnMessageOutHandler OnMessageOut; public delegate void OnMessageOutHandler(object sender, StompMessageOutEventArgs e); public class StompMessageOutEventArgs : EventArgs { public string Destination { get; } public string Data { get; }
public byte[] DataB { get; } public string ContentType { get; } }
Public Event OnMessageOut As OnMessageOutHandler Public Delegate Sub OnMessageOutHandler(sender As Object, e As StompMessageOutEventArgs) Public Class StompMessageOutEventArgs Inherits EventArgs Public ReadOnly Property Destination As String Public ReadOnly Property Data As String
Public ReadOnly Property DataB As Byte() Public ReadOnly Property ContentType As String End Class
Remarks
This event fires after a message has been sent using either SendMessage or SendData. The following parameters are available within this event:
- Destination: The destination the message was sent to.
- Data: The message's payload.
- ContentType: The content type of the message (always empty for messages sent with SendData).
ReadyToSend Event (STOMP Component)
Fired when the component is ready to send data.
Syntax
public event OnReadyToSendHandler OnReadyToSend; public delegate void OnReadyToSendHandler(object sender, StompReadyToSendEventArgs e); public class StompReadyToSendEventArgs : EventArgs { }
Public Event OnReadyToSend As OnReadyToSendHandler Public Delegate Sub OnReadyToSendHandler(sender As Object, e As StompReadyToSendEventArgs) Public Class StompReadyToSendEventArgs Inherits EventArgs End Class
Remarks
The ReadyToSend event indicates that the underlying TCP/IP subsystem is ready to accept data after a call to SendData or SendMessage fails due to a WOULDBLOCK condition. The event is also fired immediately after a connection to the remote host is established.
ReceiptIn Event (STOMP Component)
Fires when the component receives a receipt from the server.
Syntax
public event OnReceiptInHandler OnReceiptIn; public delegate void OnReceiptInHandler(object sender, StompReceiptInEventArgs e); public class StompReceiptInEventArgs : EventArgs { public string ReceiptId { get; } }
Public Event OnReceiptIn As OnReceiptInHandler Public Delegate Sub OnReceiptInHandler(sender As Object, e As StompReceiptInEventArgs) Public Class StompReceiptInEventArgs Inherits EventArgs Public ReadOnly Property ReceiptId As String End Class
Remarks
This event fires anytime the component receives a receipt (that is, a confirmation that the server has received one or more frames) from the server. The ReceiptId parameter reflects the value of the receipt-id header in the incoming RECEIPT frame.
Note that receipts are cumulative, and a STOMP server is not required to send back discrete receipts for each frame it receives that has a receipt header. For example, if the component has sent four message frames with the following receipt header values (in chronological order):
- SEND-3
- SEND-4
- SEND-5
- SEND-6
Refer to RequestReceipts for more information about receipts.
ReceiptOut Event (STOMP Component)
Fires when the component sends a STOMP frame that includes a 'receipt' header.
Syntax
public event OnReceiptOutHandler OnReceiptOut; public delegate void OnReceiptOutHandler(object sender, StompReceiptOutEventArgs e); public class StompReceiptOutEventArgs : EventArgs { public string ReceiptId { get; } }
Public Event OnReceiptOut As OnReceiptOutHandler Public Delegate Sub OnReceiptOutHandler(sender As Object, e As StompReceiptOutEventArgs) Public Class StompReceiptOutEventArgs Inherits EventArgs Public ReadOnly Property ReceiptId As String End Class
Remarks
This event fires anytime the component sends any STOMP frame that includes a receipt header on it. The ReceiptId parameter reflects the value of the receipt header.
Having a receipt header on an outgoing frame indicates to the server that it should send back a receipt to confirm that it has received the frame (though it is not required to do so immediately; see ReceiptIn for details). Anytime the server sends back a receipt, the ReceiptIn event will fire.
Refer to RequestReceipts for more information about receipts.
SSLServerAuthentication Event (STOMP Component)
Fired after the server presents its certificate to the client.
Syntax
public event OnSSLServerAuthenticationHandler OnSSLServerAuthentication; public delegate void OnSSLServerAuthenticationHandler(object sender, StompSSLServerAuthenticationEventArgs e); public class StompSSLServerAuthenticationEventArgs : EventArgs { public string CertEncoded { get; }
public byte[] CertEncodedB { get; } public string CertSubject { get; } public string CertIssuer { get; } public string Status { get; } public bool Accept { get; set; } }
Public Event OnSSLServerAuthentication As OnSSLServerAuthenticationHandler Public Delegate Sub OnSSLServerAuthenticationHandler(sender As Object, e As StompSSLServerAuthenticationEventArgs) Public Class StompSSLServerAuthenticationEventArgs Inherits EventArgs Public ReadOnly Property CertEncoded As String
Public ReadOnly Property CertEncodedB As Byte() Public ReadOnly Property CertSubject As String Public ReadOnly Property CertIssuer As String Public ReadOnly Property Status As String Public Property Accept As Boolean End Class
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (STOMP Component)
Fired when secure connection progress messages are available.
Syntax
public event OnSSLStatusHandler OnSSLStatus; public delegate void OnSSLStatusHandler(object sender, StompSSLStatusEventArgs e); public class StompSSLStatusEventArgs : EventArgs { public string Message { get; } }
Public Event OnSSLStatus As OnSSLStatusHandler Public Delegate Sub OnSSLStatusHandler(sender As Object, e As StompSSLStatusEventArgs) Public Class StompSSLStatusEventArgs Inherits EventArgs Public ReadOnly Property Message As String End Class
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
Subscribed Event (STOMP Component)
Fired when the component has subscribed to a message destination on the server.
Syntax
public event OnSubscribedHandler OnSubscribed; public delegate void OnSubscribedHandler(object sender, StompSubscribedEventArgs e); public class StompSubscribedEventArgs : EventArgs { public string Id { get; } public string Destination { get; } public bool RequireAcks { get; } }
Public Event OnSubscribed As OnSubscribedHandler Public Delegate Sub OnSubscribedHandler(sender As Object, e As StompSubscribedEventArgs) Public Class StompSubscribedEventArgs Inherits EventArgs Public ReadOnly Property Id As String Public ReadOnly Property Destination As String Public ReadOnly Property RequireAcks As Boolean End Class
Remarks
This event fires each time the component has subscribed to a message destination on the server. The following parameters are available within this event:
- Id: The Id used to identify the subscription.
- Destination: The message destination on the server which the subscription is associated with.
- RequireAcks: Whether messages the component receives as a result of the subscription will require acknowledgments to be sent back to the server.
Unsubscribed Event (STOMP Component)
Fired when the component has unsubscribed from a message destination on the server.
Syntax
public event OnUnsubscribedHandler OnUnsubscribed; public delegate void OnUnsubscribedHandler(object sender, StompUnsubscribedEventArgs e); public class StompUnsubscribedEventArgs : EventArgs { public string Id { get; } public string Destination { get; } }
Public Event OnUnsubscribed As OnUnsubscribedHandler Public Delegate Sub OnUnsubscribedHandler(sender As Object, e As StompUnsubscribedEventArgs) Public Class StompUnsubscribedEventArgs Inherits EventArgs Public ReadOnly Property Id As String Public ReadOnly Property Destination As String End Class
Remarks
This event fires each time the component has unsubscribed from a message destination on the server. The following parameters are available within this event:
- Id: The Id that was used to identify the subscription.
- Destination: The message destination on the server which the subscription was associated with.
Certificate Type
This is the digital certificate being used.
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
EffectiveDate
string (read-only)
Default Value: ""
This is the date on which this certificate becomes valid. Before this date, it is not valid. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
Encoded
string
Default Value: ""
This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
EncodedB
byte []
Default Value: ""
This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
ExpirationDate
string (read-only)
Default Value: ""
This is the date the certificate expires. After this date, the certificate will no longer be valid. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
ExtendedKeyUsage
string
Default Value: ""
This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
Fingerprint
string (read-only)
Default Value: ""
This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
FingerprintSHA1
string (read-only)
Default Value: ""
This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
FingerprintSHA256
string (read-only)
Default Value: ""
This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
Issuer
string (read-only)
Default Value: ""
This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.
PrivateKey
string (read-only)
Default Value: ""
This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.
PrivateKeyAvailable
bool (read-only)
Default Value: False
This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
PrivateKeyContainer
string (read-only)
Default Value: ""
This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
PublicKey
string (read-only)
Default Value: ""
This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.
PublicKeyAlgorithm
string
Default Value: ""
This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
PublicKeyLength
int (read-only)
Default Value: 0
This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
SerialNumber
string (read-only)
Default Value: ""
This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
SignatureAlgorithm
string (read-only)
Default Value: ""
The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
Store
string
Default Value: "MY"
This is the name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StoreB
byte []
Default Value: "MY"
This is the name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StorePassword
string
Default Value: ""
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
StoreType
CertStoreTypes
Default Value: 0
This is the type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: this store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Subject
string
Default Value: ""
This is the subject of the certificate used for client authentication.
This field will be populated with the full subject of the loaded certificate. When loading a certificate the subject is used to locate the certificate in the store.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
SubjectAltNames
string (read-only)
Default Value: ""
This field contains comma-separated lists of alternative subject names for the certificate.
ThumbprintMD5
string (read-only)
Default Value: ""
This field contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA1
string (read-only)
Default Value: ""
This field contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA256
string (read-only)
Default Value: ""
This field contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
Usage
string
Default Value: ""
This field contains the text description of UsageFlags.
This value will be of one or more of the following strings and will be separated by commas:
- Digital Signatures
- Key Authentication
- Key Encryption
- Data Encryption
- Key Agreement
- Certificate Signing
- Key Signing
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
UsageFlags
int
Default Value: 0
This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:
0x80 | Digital Signatures |
0x40 | Key Authentication (Non-Repudiation) |
0x20 | Key Encryption |
0x10 | Data Encryption |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | Key Signing |
Please see the Usage field for a text representation of UsageFlags.
This functionality currently is not available when the provider is OpenSSL.
Version
string (read-only)
Default Value: ""
This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".
Constructors
public Certificate();
Public Certificate()
Creates a Certificate instance whose properties can be set. This is useful for use with CERTMGR when generating new certificates.
public Certificate(string certificateFile);
Public Certificate(ByVal CertificateFile As String)
Opens CertificateFile and reads out the contents as an X.509 public key.
public Certificate(byte[] certificateData);
Public Certificate(ByVal CertificateData As Byte())
Parses CertificateData as an X.509 public key.
public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String)
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).
public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. ConfigurationString is a newline separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to cstUser, cstMachine, cstPublicKeyFile, and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).
public Certificate(CertStoreTypes certStoreType, string store, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Encoded As Byte())
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.
public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String)
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).
public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or Base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN).
public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Encoded As Byte())
CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a string (binary- or Base64-encoded) containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.
Firewall Type
The firewall the component will connect through.
Remarks
When connecting through a firewall, this type is used to specify different properties of the firewall, such as the firewall Host and the FirewallType.
Fields
AutoDetect
bool
Default Value: False
This field tells the component whether or not to automatically detect and use firewall system settings, if available.
FirewallType
FirewallTypes
Default Value: 0
This field determines the type of firewall to connect through. The applicable values are as follows:
fwNone (0) | No firewall (default setting). |
fwTunnel (1) | Connect through a tunneling proxy. Port is set to 80. |
fwSOCKS4 (2) | Connect through a SOCKS4 Proxy. Port is set to 1080. |
fwSOCKS5 (3) | Connect through a SOCKS5 Proxy. Port is set to 1080. |
fwSOCKS4A (10) | Connect through a SOCKS4A Proxy. Port is set to 1080. |
Host
string
Default Value: ""
This field contains the name or IP address of firewall (optional). If a Host is given, the requested connections will be authenticated through the specified firewall when connecting.
If this field is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this field is set to the corresponding address. If the search is not successful, the component throws an exception.
Password
string
Default Value: ""
This field contains a password if authentication is to be used when connecting through the firewall. If Host is specified, the User and Password fields are used to connect and authenticate to the given firewall. If the authentication fails, the component throws an exception.
Port
int
Default Value: 0
This field contains the transmission control protocol (TCP) port for the firewall Host. See the description of the Host field for details.
Note: This field is set automatically when FirewallType is set to a valid value. See the description of the FirewallType field for details.
User
string
Default Value: ""
This field contains a user name if authentication is to be used connecting through a firewall. If the Host is specified, this field and Password fields are used to connect and authenticate to the given Firewall. If the authentication fails, the component throws an exception.
Constructors
STOMPHeader Type
A STOMP header.
Remarks
This type represents a STOMP header.
Fields
Constructors
public STOMPHeader();
Public STOMPHeader()
public STOMPHeader(string key, string value);
Public STOMPHeader(ByVal Key As String, ByVal Value As String)
STOMPSubscription Type
A STOMP subscription.
Remarks
This type represents a STOMP subscription.
Fields
Destination
string (read-only)
Default Value: ""
The destination on the server that this subscription is associated with.
This field reflects the destination on the server that this subscription is associated with.
Id
string (read-only)
Default Value: ""
This subscription's unique Id.
This field reflects the unique Id of this subscription.
Config Settings (STOMP Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.STOMP Config Settings
Note that the component won't send a message acknowledgment for messages which don't require one, and in such cases any value set to this configuration setting will be ignored.
This configuration setting can only be set while inside the MessageIn event handler, and is reset when the event handler ends.
Keep in mind that, even if this setting is disabled, STOMP servers are not required to pass through duplicate headers when delivering messages (i.e., some server may choose to discard duplicate headers before delivering a message).
Note that changing this setting will only affect messages received in the future.
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
Note that this setting is read-only; to control which STOMP protocol versions the component advertises support for, set the SupportedVersions configuration setting before connecting.
Refer to RequestReceipts for general information about receipts, and refer to Subscribe and MessageIn for more information about message acknowledgments.
Refer to RequestReceipts for general information about receipts.
Refer to RequestReceipts for general information about receipts.
Note that some STOMP servers may choose not to communicate server information, in which case this setting will not be populated.
Note that some STOMP servers may choose not to assign a session Id, in which case this setting will not be populated.
- "1.1,1.2" (default)
- "1.1"
- "1.2"
The highest STOMP protocol version supported by both the component and server will be the one chosen. After connecting, the ProtocolVersion configuration setting can be queried to determine which protocol version was chosen.
Note: This setting can only be changed before connecting.
Note that, in most cases, this setting can be left empty, in which case the component will automatically set the host header in the CONNECT frame to match the value set to RemoteHost.
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
If this entry is set, the component acts as a server. RemoteHost and RemotePort are used to tell the SOCKS firewall in which address and port to listen to. The firewall rules may ignore RemoteHost, and it is recommended that RemoteHost be set to empty string in this case.
RemotePort is the port in which the firewall will listen to. If set to 0, the firewall will select a random port. The binding (address and port) is provided through the ConnectionStatus event.
The connection to the firewall is made by calling the Connect method.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by components that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multi-homed hosts (machines with more than one IP interface) setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.
If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multi-homed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This; setting is useful when trying to connect to services that require a trusted port in the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this config is set to false.
0 | IPv4 Only |
1 | IPv6 Only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
The value is formatted as a list of paths separated by semicolons. The component will check for the existence of each file in the order specified. When a file is found the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this setting has no effect if SSLProvider is set to Platform.
If set to true, the component will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the component is the same.
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When set to 0 (default) the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
When set to 0 (default) the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is only supported in the Java, C#, and C++ editions. In the C++ edition, it is only supported on Windows operating systems.
Please note that this setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList config setting.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_DH_ANON_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_DH_RSA_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_RSA_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_DH_DSS_WITH_AES_128_GCM_SHA256 (Not Recommended)
- TLS_DH_DSS_WITH_AES_256_GCM_SHA384 (Not Recommended)
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols) only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default (the value of this setting is 4032). If you want more granular control over the enabled protocols, you can set this property to the binary 'OR' of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default) |
TLS1.1 | 768 (Hex 300) (Default) |
TLS1 | 192 (Hex C0) (Default) |
SSL3 | 48 (Hex 30) [Platform Only] |
SSL2 | 12 (Hex 0C) [Platform Only] |
SSLEnabledProtocols - TLS 1.3 Notes
By default when TLS 1.3 is enabled the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions which are designed to run on Windows SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is only supported on Windows 11 / Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider) please be aware of the following notes:
- The platform provider is only available on Windows 11 / Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2 the above restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This setting is only applicable when SSLProvider is set to Internal.
If set to True all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
Note: When SSLProvider is set to Internal this value is automatically set to true. This is needed for proper validation when using the internal provider.
When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffice for debugging purposes. When writing to this file the component will only append, it will not overwrite previous values.
Note: This setting is only applicable when SSLProvider is set to Internal.
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g.TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g. TCPServer) this is a per-connection setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown Certificate Authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown Certificate Authority revocation status. |
0x00000800 | Ignore unknown Root revocation status. |
0x00008000 | Allow test Root certificate. |
0x00004000 | Trust test Root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN not-matching server name). |
This functionality is currently not available in Java or when the provider is OpenSSL.
The value of this setting is a newline (CrLf) separated list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp .. d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the component will verify that the server certificate signature algorithm is among the values specified in this setting. If the server certificate signature algorithm is unsupported the component throws an exception.
The format of this value is a comma separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
In order to not restrict the server's certificate signature algorithm, specify an empty string as the value for this setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result only some groups are included by default in this setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used which is not present in this list it will incur an additional round trip and time to generate the key share for that group.
In most cases this setting does not need to be modified. This should only be modified if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for UDP ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Trappable Errors (STOMP Component)
STOMP Errors
600 STOMP protocol error. Refer to the error message for more information. | |
601 Malformed STOMP frame received. Refer to error message for more information. | |
602 Invalid value provided for the SupportedVersions configuration setting. | |
603 Invalid subscription Id provided. Refer to error message for more information. | |
604 Invalid transaction Id provided. Refer to error message for more information. |
TCPClient Errors
100 You cannot change the RemotePort at this time. A connection is in progress. | |
101 You cannot change the RemoteHost (Server) at this time. A connection is in progress. | |
102 The RemoteHost address is invalid (0.0.0.0). | |
104 Already connected. If you want to reconnect, close the current connection first. | |
106 You cannot change the LocalPort at this time. A connection is in progress. | |
107 You cannot change the LocalHost at this time. A connection is in progress. | |
112 You cannot change MaxLineLength at this time. A connection is in progress. | |
116 RemotePort cannot be zero. Please specify a valid service port number. | |
117 You cannot change the UseConnection option while the component is active. | |
135 Operation would block. | |
201 Timeout. | |
211 Action impossible in control's present state. | |
212 Action impossible while not connected. | |
213 Action impossible while listening. | |
301 Timeout. | |
303 Could not open file. | |
434 Unable to convert string to selected CodePage. | |
1105 Already connecting. If you want to reconnect, close the current connection first. | |
1117 You need to connect first. | |
1119 You cannot change the LocalHost at this time. A connection is in progress. | |
1120 Connection dropped by remote host. |
SSL Errors
270 Cannot load specified security library. | |
271 Cannot open certificate store. | |
272 Cannot find specified certificate. | |
273 Cannot acquire security credentials. | |
274 Cannot find certificate chain. | |
275 Cannot verify certificate chain. | |
276 Error during handshake. | |
280 Error verifying certificate. | |
281 Could not find client certificate. | |
282 Could not find server certificate. | |
283 Error encrypting data. | |
284 Error decrypting data. |
TCP/IP Errors
10004 [10004] Interrupted system call. | |
10009 [10009] Bad file number. | |
10013 [10013] Access denied. | |
10014 [10014] Bad address. | |
10022 [10022] Invalid argument. | |
10024 [10024] Too many open files. | |
10035 [10035] Operation would block. | |
10036 [10036] Operation now in progress. | |
10037 [10037] Operation already in progress. | |
10038 [10038] Socket operation on non-socket. | |
10039 [10039] Destination address required. | |
10040 [10040] Message too long. | |
10041 [10041] Protocol wrong type for socket. | |
10042 [10042] Bad protocol option. | |
10043 [10043] Protocol not supported. | |
10044 [10044] Socket type not supported. | |
10045 [10045] Operation not supported on socket. | |
10046 [10046] Protocol family not supported. | |
10047 [10047] Address family not supported by protocol family. | |
10048 [10048] Address already in use. | |
10049 [10049] Can't assign requested address. | |
10050 [10050] Network is down. | |
10051 [10051] Network is unreachable. | |
10052 [10052] Net dropped connection or reset. | |
10053 [10053] Software caused connection abort. | |
10054 [10054] Connection reset by peer. | |
10055 [10055] No buffer space available. | |
10056 [10056] Socket is already connected. | |
10057 [10057] Socket is not connected. | |
10058 [10058] Can't send after socket shutdown. | |
10059 [10059] Too many references, can't splice. | |
10060 [10060] Connection timed out. | |
10061 [10061] Connection refused. | |
10062 [10062] Too many levels of symbolic links. | |
10063 [10063] File name too long. | |
10064 [10064] Host is down. | |
10065 [10065] No route to host. | |
10066 [10066] Directory not empty | |
10067 [10067] Too many processes. | |
10068 [10068] Too many users. | |
10069 [10069] Disc Quota Exceeded. | |
10070 [10070] Stale NFS file handle. | |
10071 [10071] Too many levels of remote in path. | |
10091 [10091] Network subsystem is unavailable. | |
10092 [10092] WINSOCK DLL Version out of range. | |
10093 [10093] Winsock not loaded yet. | |
11001 [11001] Host not found. | |
11002 [11002] Non-authoritative 'Host not found' (try again or check DNS setup). | |
11003 [11003] Non-recoverable errors: FORMERR, REFUSED, NOTIMP. | |
11004 [11004] Valid name, no data record (check DNS setup). |