CertMgr Class

Properties   Methods   Events   Config Settings   Errors  

The CertMgr class is used to create, read, and manage certificates.

Syntax

CertMgr

Remarks

The class methods, such as ListCertificateStores or ListStoreCertificates, are used to list certificate stores and certificates. The corresponding lists are returned through the StoreList and CertList events. Encoded certificates are provided through the events.

You can load a certificate by setting the Cert property of the class. Then you can get information about the certificate through the corresponding fields of the Cert property (described below).

The Subject, SerialNumber, and Issuer fields identify the certificate. The EffectiveDate and ExpirationDate show the time boundaries of the certificate.

PublicKey, PublicKeyAlgorithm, PublicKeyLength, and Version provide information about the certificate keys and the certificate format (version).

UsageFlags specifies the intended usage of the certificate. The Usage field provides a text description of these flags.

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

CertThis is the currently selected certificate.
CertExtensionsThis is a list of extensions used by the currently selected certificate.
CertStoreThis is the certificate store to search for certificates.
CertStorePasswordThis is the password for the certificate store (if any).
CertStoreTypeThis is the type of certificate store for CertStore .
ExportedCertThis is the exported certificate string.
ExportFormatThis is the format to which the certificate is exported.
ExportPrivateKeyThis controls whether to export the private key.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

CheckCRLThis method checks the Certificate Revocation List (CRL) specified by the currently loaded certificate.
CheckOCSPThis method uses Online Certificate Status Protocol (OCSP) to check the status of the currently loaded certificate.
ConfigSets or retrieves a configuration setting.
CreateCertificateThis method creates a new self-signed certificate in the current store.
CreateKeyThis method creates a new keyset associated with the provided name.
DeleteCertificateThis method deletes the currently selected certificate from the store.
DeleteKeyThis method deletes the keyset associated with the provided name.
ExportCertificateThis method exports the currently selected certificate.
GenerateCSRThis method generates a new Certificate Signing Request (CSR) to be sent to a signing authority.
ImportCertificateThis method imports a certificate from a file into the current certificate store.
ImportSignedCSRThis method imports a signed Certificate Signing Request (CSR).
IssueCertificateThis creates a new certificate in the current store and is signed by the selected certificate.
ListCertificateStoresThis lists the certificate stores.
ListKeysThis lists the keysets in a Cryptographic Service Provider (CSP).
ListMachineStoresThis lists the machine certificate stores.
ListStoreCertificatesThis lists the certificates in a store.
ReadCertificateThis loads a certificate from a file.
ReadCSRThis reads a Certificate Signing Request (CSR).
ResetThis resets all certificate properties to their default values.
SaveCertificateThis method saves the currently selected public certificate to a file.
ShowCertificateChainThis shows the certificate chain.
SignCSRThis creates a signed certificate from a Certificate Signing Request (CSR).

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

CertChainThis event shows the certificate chain for the certificate (see the ShowCertificateChain method).
CertListThis event lists the certificates in a store (see the ListStoreCertificates method).
ErrorFired when information is available about errors during data delivery.
KeyListThis lists the keysets in a Cryptographic Service Provider (CSP); see the ListKeys method.
LogThis event fires once for each log message.
StoreListThis lists the system certificate stores (see the ListCertificateStores and ListMachineStores methods).

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

BasicConstraintsThe hex-encoded value of the certificate's Basic Constraints extension.
CertCommentA comment to include in a saved certificate.
CertCustomExtensionCountThe number of records in the CertCustomExtension arrays.
CertCustomExtensionCritical[i]Whether or not the extension is defined as critical.
CertCustomExtensionOID[i]The ASN of the extension at index 'i'.
CertCustomExtensionValue[i]The raw value of the extension at index 'i'.
CertExtendedKeyUsageThe extended key usage of the certificate.
CertKeyLengthThe public key length for created certificates and keys.
CertKeyTypeThe types of keys created for new certificates.
CertPublicKeyAlgorithmThe public key algorithm used when a certificate is created.
CertSignatureAlgorithmThe signature algorithm used when creating certificates.
CertSubjectAltNamesSubject Alternative Names for creating or issuing certificates.
CertThumbprintThe thumbprint of the certificate to be loaded.
CertUsageFlagsSets the flags indicating the usage of the created certificate.
CertValidityOffsetThe number of days until the certificate becomes valid.
CertValidityTimeThe validity period for the certificate.
CreatedKeyThe PKCS8 formatted private and public key pair created after calling CreateKey.
CSPThe Cryptographic Service Provider.
CSRIgnoredExtensionsExtensions to be ignorned when signing a CSR.
CSRKeyThe PKCS8 formatted private key to use when generating a CSR.
EncodeExportedCertWhether the certificate being exported to a string is encoded.
ImportCertActionSpecified the action to take if a matching certificate or a link to a matching certificate already exists.
ImportCertStoreTypeThe type of certificate store being specified for import.
JWKAlgorithmThe JWK algorithm.
JWKExportX5CWhether to export a certificate chain to the x5c parameter.
JWKKeyIdThe JWK key Id.
JWKKeyOpsThe JWK intended key operations list.
JWKUseThe JWK use parameter value.
KeyFormatHow the public and private key are formatted.
KSPThe Key Storage Provider.
LogLevelThe level of detail that is logged.
PFXCertEncryptionAlgorithmCertificate encryption algorithm used when exporting to PFX format.
PFXKeyEncryptionAlgorithmPrivate key encryption algorithm used when exporting to PFX format.
ReplaceKeyWhether or not to replace an existing key when creating a new key.
RequestSubjectAltNamesSubject Alternative Names for a Certificate Signing Request.
TPMMigrationPasswordThe password for the certificate or key.
X509AlgorithmPublic Key Algorithm OID.
X509SignatureAlgorithmSignature Algorithm OID.

Cert Property (CertMgr Class)

This is the currently selected certificate.

Syntax

IPWorksMQCertificate* GetCert();
int SetCert(IPWorksMQCertificate* val);
char* ipworksmq_certmgr_getcerteffectivedate(void* lpObj);
char* ipworksmq_certmgr_getcertexpirationdate(void* lpObj);
char* ipworksmq_certmgr_getcertextendedkeyusage(void* lpObj);
char* ipworksmq_certmgr_getcertfingerprint(void* lpObj);
char* ipworksmq_certmgr_getcertfingerprintsha1(void* lpObj);
char* ipworksmq_certmgr_getcertfingerprintsha256(void* lpObj);
char* ipworksmq_certmgr_getcertissuer(void* lpObj);
char* ipworksmq_certmgr_getcertprivatekey(void* lpObj);
int ipworksmq_certmgr_getcertprivatekeyavailable(void* lpObj);
char* ipworksmq_certmgr_getcertprivatekeycontainer(void* lpObj);
char* ipworksmq_certmgr_getcertpublickey(void* lpObj);
char* ipworksmq_certmgr_getcertpublickeyalgorithm(void* lpObj);
int ipworksmq_certmgr_getcertpublickeylength(void* lpObj);
char* ipworksmq_certmgr_getcertserialnumber(void* lpObj);
char* ipworksmq_certmgr_getcertsignaturealgorithm(void* lpObj);
int ipworksmq_certmgr_getcertstore(void* lpObj, char** lpCertStore, int* lenCertStore);
int ipworksmq_certmgr_setcertstore(void* lpObj, const char* lpCertStore, int lenCertStore);
char* ipworksmq_certmgr_getcertstorepassword(void* lpObj);
int ipworksmq_certmgr_setcertstorepassword(void* lpObj, const char* lpszCertStorePassword);
int ipworksmq_certmgr_getcertstoretype(void* lpObj);
int ipworksmq_certmgr_setcertstoretype(void* lpObj, int iCertStoreType);
char* ipworksmq_certmgr_getcertsubjectaltnames(void* lpObj);
char* ipworksmq_certmgr_getcertthumbprintmd5(void* lpObj);
char* ipworksmq_certmgr_getcertthumbprintsha1(void* lpObj);
char* ipworksmq_certmgr_getcertthumbprintsha256(void* lpObj);
char* ipworksmq_certmgr_getcertusage(void* lpObj);
int ipworksmq_certmgr_getcertusageflags(void* lpObj);
char* ipworksmq_certmgr_getcertversion(void* lpObj);
char* ipworksmq_certmgr_getcertsubject(void* lpObj);
int ipworksmq_certmgr_setcertsubject(void* lpObj, const char* lpszCertSubject);
int ipworksmq_certmgr_getcertencoded(void* lpObj, char** lpCertEncoded, int* lenCertEncoded);
int ipworksmq_certmgr_setcertencoded(void* lpObj, const char* lpCertEncoded, int lenCertEncoded);
QString GetCertEffectiveDate();

QString GetCertExpirationDate();

QString GetCertExtendedKeyUsage();

QString GetCertFingerprint();

QString GetCertFingerprintSHA1();

QString GetCertFingerprintSHA256();

QString GetCertIssuer();

QString GetCertPrivateKey();

bool GetCertPrivateKeyAvailable();

QString GetCertPrivateKeyContainer();

QString GetCertPublicKey();

QString GetCertPublicKeyAlgorithm();

int GetCertPublicKeyLength();

QString GetCertSerialNumber();

QString GetCertSignatureAlgorithm();

QByteArray GetCertStore();
int SetCertStore(QByteArray qbaCertStore); QString GetCertStorePassword();
int SetCertStorePassword(QString qsCertStorePassword); int GetCertStoreType();
int SetCertStoreType(int iCertStoreType); QString GetCertSubjectAltNames(); QString GetCertThumbprintMD5(); QString GetCertThumbprintSHA1(); QString GetCertThumbprintSHA256(); QString GetCertUsage(); int GetCertUsageFlags(); QString GetCertVersion(); QString GetCertSubject();
int SetCertSubject(QString qsCertSubject); QByteArray GetCertEncoded();
int SetCertEncoded(QByteArray qbaCertEncoded);

Remarks

This property is populated when a specified certificate is found or loaded by the class. It is used to specify private or public keys. Set this property to a valid Certificate object to load a certificate and perform different operations, such as DeleteCertificate or ExportCertificate.

Data Type

IPWorksMQCertificate

CertExtensions Property (CertMgr Class)

This is a list of extensions used by the currently selected certificate.

Syntax

IPWorksMQList<IPWorksMQCertExtension>* GetCertExtensions();
int SetCertExtensions(IPWorksMQList<IPWorksMQCertExtension>* val);
int ipworksmq_certmgr_getcertextensioncount(void* lpObj);
int ipworksmq_certmgr_setcertextensioncount(void* lpObj, int iCertExtensionCount);
int ipworksmq_certmgr_getcertextensioncritical(void* lpObj, int certextensionindex);
char* ipworksmq_certmgr_getcertextensionoid(void* lpObj, int certextensionindex);
int ipworksmq_certmgr_getcertextensionvalue(void* lpObj, int certextensionindex, char** lpCertExtensionValue, int* lenCertExtensionValue);
int GetCertExtensionCount();
int SetCertExtensionCount(int iCertExtensionCount); bool GetCertExtensionCritical(int iCertExtensionIndex); QString GetCertExtensionOID(int iCertExtensionIndex); QByteArray GetCertExtensionValue(int iCertExtensionIndex);

Remarks

This property contains a list of extensions used by the currently selected certificate. When Cert is set, the class will read out any CertExtension and populate this list. This list also may be populated by the user before a call to CreateCertificate to add certificate extensions to the certificate to be created.

This property is not available at design time.

Data Type

IPWorksMQCertExtension

CertStore Property (CertMgr Class)

This is the certificate store to search for certificates.

Syntax

ANSI (Cross Platform)
int GetCertStore(char* &lpCertStore, int &lenCertStore);
int SetCertStore(const char* lpCertStore, int lenCertStore); Unicode (Windows) INT GetCertStore(LPSTR &lpCertStore, INT &lenCertStore);
INT SetCertStore(LPCSTR lpCertStore, INT lenCertStore);
int ipworksmq_certmgr_getcertstore(void* lpObj, char** lpCertStore, int* lenCertStore);
int ipworksmq_certmgr_setcertstore(void* lpObj, const char* lpCertStore, int lenCertStore);
QByteArray GetCertStore();
int SetCertStore(QByteArray qbaCertStore);

Default Value

"MY"

Remarks

The CertStoreType property specifies the type of the certificate store specified by CertStore. If the store is password protected, specify the password in CertStorePassword.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

Data Type

Binary String

CertStorePassword Property (CertMgr Class)

This is the password for the certificate store (if any).

Syntax

ANSI (Cross Platform)
char* GetCertStorePassword();
int SetCertStorePassword(const char* lpszCertStorePassword); Unicode (Windows) LPWSTR GetCertStorePassword();
INT SetCertStorePassword(LPCWSTR lpszCertStorePassword);
char* ipworksmq_certmgr_getcertstorepassword(void* lpObj);
int ipworksmq_certmgr_setcertstorepassword(void* lpObj, const char* lpszCertStorePassword);
QString GetCertStorePassword();
int SetCertStorePassword(QString qsCertStorePassword);

Default Value

""

Remarks

The value of this property is used to open the certificate store if the certificate store requires a password.

Data Type

String

CertStoreType Property (CertMgr Class)

This is the type of certificate store for CertStore .

Syntax

ANSI (Cross Platform)
int GetCertStoreType();
int SetCertStoreType(int iCertStoreType); Unicode (Windows) INT GetCertStoreType();
INT SetCertStoreType(INT iCertStoreType);

Possible Values

CST_USER(0), 
CST_MACHINE(1),
CST_PFXFILE(2),
CST_PFXBLOB(3),
CST_JKSFILE(4),
CST_JKSBLOB(5),
CST_PEMKEY_FILE(6),
CST_PEMKEY_BLOB(7),
CST_PUBLIC_KEY_FILE(8),
CST_PUBLIC_KEY_BLOB(9),
CST_SSHPUBLIC_KEY_BLOB(10),
CST_P7BFILE(11),
CST_P7BBLOB(12),
CST_SSHPUBLIC_KEY_FILE(13),
CST_PPKFILE(14),
CST_PPKBLOB(15),
CST_XMLFILE(16),
CST_XMLBLOB(17),
CST_JWKFILE(18),
CST_JWKBLOB(19),
CST_SECURITY_KEY(20),
CST_BCFKSFILE(21),
CST_BCFKSBLOB(22),
CST_PKCS11(23),
CST_AUTO(99)
int ipworksmq_certmgr_getcertstoretype(void* lpObj);
int ipworksmq_certmgr_setcertstoretype(void* lpObj, int iCertStoreType);
int GetCertStoreType();
int SetCertStoreType(int iCertStoreType);

Default Value

0

Remarks

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Data Type

Integer

ExportedCert Property (CertMgr Class)

This is the exported certificate string.

Syntax

ANSI (Cross Platform)
int GetExportedCert(char* &lpExportedCert, int &lenExportedCert);

Unicode (Windows)
INT GetExportedCert(LPSTR &lpExportedCert, INT &lenExportedCert);
int ipworksmq_certmgr_getexportedcert(void* lpObj, char** lpExportedCert, int* lenExportedCert);
QByteArray GetExportedCert();

Default Value

""

Remarks

This property holds the exported certificate if it was not exported to a file.

When calling ExportCertificate if the CertFile parameter is an empty string, the certificate will be exported as a string and available in this property. This allows certificate data to be exported without writing any data to disk.

When ExportFormat is set to PFX or P7B, the EncodeExportedCert setting controls whether the value is binary or Base64 encoded.

This property is read-only and not available at design time.

Data Type

Binary String

ExportFormat Property (CertMgr Class)

This is the format to which the certificate is exported.

Syntax

ANSI (Cross Platform)
char* GetExportFormat();
int SetExportFormat(const char* lpszExportFormat); Unicode (Windows) LPWSTR GetExportFormat();
INT SetExportFormat(LPCWSTR lpszExportFormat);
char* ipworksmq_certmgr_getexportformat(void* lpObj);
int ipworksmq_certmgr_setexportformat(void* lpObj, const char* lpszExportFormat);
QString GetExportFormat();
int SetExportFormat(QString qsExportFormat);

Default Value

"PFX"

Remarks

ExportFormat is applicable when ExportCertificate is called and may be used to specify the output format. The applicability of each format depends on whether ExportPrivateKey is set. Some formats are applicable only when exporting to a private key and some values are applicable only when exporting to a public key.

ExportFormatApplicabilityDescription
"PFX" or "PKCS12" (default) Private Keys A PFX file (PKCS12).
"PEM" Public and Private Keys

A PEM-formatted public certificate (X509/PKCS1/PKCS8), or PEM formatted private key (PKCS1/PKCS8).

When ExportPrivateKey is False the exported certificate will be a PEM formatted X509 public certificate if the certificate being exported includes X509 data. If no X509 information is present, the public key will be exported in PKCS1 public key format for RSA/DSA keys and PKCS8 public key format for ECDSA/EdDSA keys.

When ExportPrivateKey is True the exported certificate will be a PEM-formatted PKCS1 private key for RSA/DSA keys and a PEM-formatted PKCS8 private key for ECDSA/EdDSA keys.

For example, when ExportPrivateKey is False:

-----BEGIN CERTIFICATE-----
MIIBkTCB+6ADAgECAgEBMA0GCSqGSIb3DQEBBQUAMA4xDDAKBgNVBAMTAzEwMDAgFw0wNzAx
...
Pg49SpQ+HcUibIpum2O0hmnySH7BPGfXD8Lu
-----END CERTIFICATE-----
Example when ExportPrivateKey is True:
-----BEGIN RSA PRIVATE KEY-----
MIICWwIBAAKBgQD5/STHUd7YkN1JyoyYnUvCf+Fyx1+ZleBJxvwDcm3yaZ98bvry
...
91y8ydb3mQ9l1hZudo2sj8tHnvEgph0r7B8hMM6Qaw==
-----END RSA PRIVATE KEY-----

"PKCS1" Public and Private KeysA PEM-formatted PKCS1 key file.

For example, when ExportPrivateKey is False:

-----BEGIN RSA PUBLIC KEY-----
MIGJAoGBALAyxV5assz+9v7aHbj93NYN5uGB/1z7kb2Nx4hj02QyRYbcD4htkhK4Qcq2GCsG
...
MxW4+pdeN4oEZ6rbMZt01bvMwNRX2GDEyQBhAgMBAAE=
-----END RSA PUBLIC KEY-----
Example when ExportPrivateKey is True:
-----BEGIN RSA PRIVATE KEY-----
MIICWwIBAAKBgQD5/STHUd7YkN1JyoyYnUvCf+Fyx1+ZleBJxvwDcm3yaZ98bvry
...
91y8ydb3mQ9l1hZudo2sj8tHnvEgph0r7B8hMM6Qaw==
-----END RSA PRIVATE KEY-----

"PKCS8" Public and Private KeysA PEM-formatted PKCS8 key file.

Example when ExportPrivateKey is False:

-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCxdTNtpJQbw90cq6aJEx5vRIBrAiCAB9/F
...
8UdUliXeU8UGYjVcMhGy5oPsVeBXGcPAqF2mjXdBKNnzlSlctOLnYRBS5jwRuNfTQQIDAQAB
-----END PUBLIC KEY-----
Example when ExportPrivateKey is True:
-----BEGIN PRIVATE KEY-----
MIICdQIBADANBgkqhkiG9w0BAQEFAASCAl8wggJbAgEAAoGBAPn9JMdR3tiQ3UnK
...
HSvsHyEwzpBr
-----END PRIVATE KEY-----

"OpenSSH" Public and Private KeysAn OpenSSH public or private key file.

For example, when ExportPrivateKey is False:

ssh-rsa AAAAB3NzaC1y...
Example when ExportPrivateKey is True:
-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAlwAAAAdzc2gtcnNh
...
AwQFBgcICQo=
-----END OPENSSH PRIVATE KEY-----

"PPK" Private KeysA PuTTY private key file.

For example,

PuTTY-User-Key-File-2: ssh-rsa
Encryption: none
Comment: rsa-key-20180822
Public-Lines: 4
AAAAB3NzaC1yc2EAAAADAQABAAAAgQCmz5j5kWUKxfwiv6J0LQ4wN9ekpeORXVaP
...
8pSSWejQ5Q==
Private-Lines: 8
AAAAgH87Sp/YcSw1dKoAZuWb0/2dKkKwMRIYEkS15caRpzAteay6WWX7l1sgBTU7
...
Oa0=
Private-MAC: d53e24f44bde8d1d3844a142fbb1fa7c88ea3585

"SSH2PublicKey"Public KeysAn SSH2 public key.

For example,

---- BEGIN SSH2 PUBLIC KEY ----
AAAAB3NzaC1yc2EAAAADAQABAAAAgQD5/STHUd7YkN1JyoyYnUvCf+Fyx1+ZleBJxvwDcm3y
...
6bVPTODELil1PVWJDlfdwoLZZKY2ACFHzxBqaOlYv1rbd2JIYAuqGca2ow==
---- END SSH2 PUBLIC KEY ----

"SSH2PrivateKey"Private KeysAn SSH2 private key.

For example,

---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----
AAAAB3NzaC1yc2EAAAADAQABAAAAgQD5/STHUd7YkN1JyoyYnUvCf+Fyx1+ZleBJxvwDcm3y
...
6bVPTODELil1PVWJDlfdwoLZZKY2ACFHzxBqaOlYv1rbd2JIYAuqGca2ow==
---- END SSH2 ENCRYPTED PRIVATE KEY ----

"JWK"Private and Public KeysA JSON Web Key (JWK).

For example, when ExportPrivateKey is False:

{
	"kty": "EC",
	"crv": "P-256",
	"x": "M_P_uqzP43FYW-kXWlpEDlX3nPZUr1QaMllAxUnao7w",
	"y": "zRFhp7iCXYIoTgerQ4LjGPTujodlimrwIMk-3enj_1Q"
}
For example, when ExportPrivateKey is True:
{
	"kty": "EC",
	"crv": "P-256",
	"x": "M_P_uqzP43FYW-kXWlpEDlX3nPZUr1QaMllAxUnao7w",
	"y": "zRFhp7iCXYIoTgerQ4LjGPTujodlimrwIMk-3enj_1Q",
	"d": "eFBtl-uaB9Y4b-CIav5IYX4gGRFBvpBmrMOOQ7L-euI"
}

"XML"Private and Public KeysAn XML file holding the key or X509 data.

For example, when ExportPrivateKey is False:

<X509Data>
	<X509Certificate>MIIB...D8Lu</X509Certificate>
</X509Data>
For example, when ExportPrivateKey is True:
<RSAKeyValue>
	<Modulus>+f0k...tqM=</Modulus>
	<Exponent>AQAB</Exponent>
	<P>/cOnF...tGw==</P>
	<Q>/DD5...dGQ==</Q>
	<DP>d75...N0w==</DP>
	<DQ>Cyv...rKQ==</DQ>
	<InverseQ>fsB...Qaw==</InverseQ>
	<D>J7p...YJE=</D>
</RSAKeyValue>

Data Type

String

ExportPrivateKey Property (CertMgr Class)

This controls whether to export the private key.

Syntax

ANSI (Cross Platform)
int GetExportPrivateKey();
int SetExportPrivateKey(int bExportPrivateKey); Unicode (Windows) BOOL GetExportPrivateKey();
INT SetExportPrivateKey(BOOL bExportPrivateKey);
int ipworksmq_certmgr_getexportprivatekey(void* lpObj);
int ipworksmq_certmgr_setexportprivatekey(void* lpObj, int bExportPrivateKey);
bool GetExportPrivateKey();
int SetExportPrivateKey(bool bExportPrivateKey);

Default Value

TRUE

Remarks

This property controls whether the private key is exported when ExportCertificate is called.

If set to True (default), the private key is exported. If set to False, only the public key is exported.

Data Type

Boolean

CheckCRL Method (CertMgr Class)

This method checks the Certificate Revocation List (CRL) specified by the currently loaded certificate.

Syntax

ANSI (Cross Platform)
int CheckCRL();

Unicode (Windows)
INT CheckCRL();
int ipworksmq_certmgr_checkcrl(void* lpObj);
int CheckCRL();

Remarks

This method will check the CRLs specified by the currently loaded Cert.

The class will first obtain the list of CRL URLs from the certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the certificate.

If the certificate has been revoked or any other issues are found during validation, the class fails with an error. To check whether the certificate supports the CRL extension, use the HasCRL configuration setting.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

CheckOCSP Method (CertMgr Class)

This method uses Online Certificate Status Protocol (OCSP) to check the status of the currently loaded certificate.

Syntax

ANSI (Cross Platform)
int CheckOCSP();

Unicode (Windows)
INT CheckOCSP();
int ipworksmq_certmgr_checkocsp(void* lpObj);
int CheckOCSP();

Remarks

This method will use OCSP to check the validity of the currently loaded Cert.

The class will first obtain the OCSP URL from the certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the certificate.

If the certificate has been revoked or any other issues are found during validation, the class fails with an error. To check whether the certificate supports the OCSP extension, use the HasOCSP configuration setting.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

Config Method (CertMgr Class)

Sets or retrieves a configuration setting.

Syntax

ANSI (Cross Platform)
char* Config(const char* lpszConfigurationString);

Unicode (Windows)
LPWSTR Config(LPCWSTR lpszConfigurationString);
char* ipworksmq_certmgr_config(void* lpObj, const char* lpszConfigurationString);
QString Config(const QString& qsConfigurationString);

Remarks

Config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

CreateCertificate Method (CertMgr Class)

This method creates a new self-signed certificate in the current store.

Syntax

ANSI (Cross Platform)
int CreateCertificate(const char* lpszCertSubject, int iSerialNumber);

Unicode (Windows)
INT CreateCertificate(LPCWSTR lpszCertSubject, INT iSerialNumber);
int ipworksmq_certmgr_createcertificate(void* lpObj, const char* lpszCertSubject, int iSerialNumber);
int CreateCertificate(const QString& qsCertSubject, int iSerialNumber);

Remarks

This method creates a new self-signed certificate in the current store, which contains the following:

CertSubject specifies the subject of the new certificate. A new keyset (public/private key pair) is generated and associated with the new certificate.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

SerialNumber specifies the certificate serial number. All certificates signed by the same issuer must have different (unique) serial numbers.

The time validity of the new certificate is determined by the CertValidityTime configuration setting, and the key size by the CertKeyLength configuration setting.

In the Unix edition of the toolkit, the certificate will be created in memory. Call ExportCertificate to export the newly created certificate to a PEM file.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

CreateKey Method (CertMgr Class)

This method creates a new keyset associated with the provided name.

Syntax

ANSI (Cross Platform)
int CreateKey(const char* lpszKeyName);

Unicode (Windows)
INT CreateKey(LPCWSTR lpszKeyName);
int ipworksmq_certmgr_createkey(void* lpObj, const char* lpszKeyName);
int CreateKey(const QString& qsKeyName);

Remarks

This method will create a new keyset (public/private key pair) within the Cryptographic Service Provider (CSP) used by the class. The CSP can be set using the CSP configuration setting.

Note: This functionality is only available in Windows.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

DeleteCertificate Method (CertMgr Class)

This method deletes the currently selected certificate from the store.

Syntax

ANSI (Cross Platform)
int DeleteCertificate();

Unicode (Windows)
INT DeleteCertificate();
int ipworksmq_certmgr_deletecertificate(void* lpObj);
int DeleteCertificate();

Remarks

This method will delete the selected certificate from the store. If the certificate cannot be deleted, an error is returned.

This functionality is currently not available when the provider is OpenSSL.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

DeleteKey Method (CertMgr Class)

This method deletes the keyset associated with the provided name.

Syntax

ANSI (Cross Platform)
int DeleteKey(const char* lpszKeyName);

Unicode (Windows)
INT DeleteKey(LPCWSTR lpszKeyName);
int ipworksmq_certmgr_deletekey(void* lpObj, const char* lpszKeyName);
int DeleteKey(const QString& qsKeyName);

Remarks

This method will delete the keyset (public/private key pair) associated with KeyName from the Cryptographic Service Provider (CSP). The CSP can be set using the CSP configuration setting.

Note: This functionality is only available in Windows.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ExportCertificate Method (CertMgr Class)

This method exports the currently selected certificate.

Syntax

ANSI (Cross Platform)
int ExportCertificate(const char* lpszCertFile, const char* lpszPassword);

Unicode (Windows)
INT ExportCertificate(LPCWSTR lpszCertFile, LPCWSTR lpszPassword);
int ipworksmq_certmgr_exportcertificate(void* lpObj, const char* lpszCertFile, const char* lpszPassword);
int ExportCertificate(const QString& qsCertFile, const QString& qsPassword);

Remarks

This method exports the certificate currently selected by Subject to the file specified by the CertFile parameter in the format specified by ExportFormat. This method may be used effectively to convert between a variety of formats.

The Password parameter specifies a password for the private key when ExportPrivateKey is set to True. Password is not applicable when ExportPrivateKey is set to False.

If CertFile is set to an empty string, the exported certificate will not be written to disk and instead will be held as a string by the ExportedCert property.

ExportFormat is applicable when ExportCertificate is called and may be used to specify the output format. The applicability of each format depends on whether ExportPrivateKey is set. Some formats are applicable only when exporting to a private key and some values are applicable only when exporting to a public key.

ExportFormatApplicabilityDescription
"PFX" or "PKCS12" (default) Private Keys A PFX file (PKCS12).
"PEM" Public and Private Keys

A PEM-formatted public certificate (X509/PKCS1/PKCS8), or PEM formatted private key (PKCS1/PKCS8).

When ExportPrivateKey is False the exported certificate will be a PEM formatted X509 public certificate if the certificate being exported includes X509 data. If no X509 information is present, the public key will be exported in PKCS1 public key format for RSA/DSA keys and PKCS8 public key format for ECDSA/EdDSA keys.

When ExportPrivateKey is True the exported certificate will be a PEM-formatted PKCS1 private key for RSA/DSA keys and a PEM-formatted PKCS8 private key for ECDSA/EdDSA keys.

For example, when ExportPrivateKey is False:

-----BEGIN CERTIFICATE-----
MIIBkTCB+6ADAgECAgEBMA0GCSqGSIb3DQEBBQUAMA4xDDAKBgNVBAMTAzEwMDAgFw0wNzAx
...
Pg49SpQ+HcUibIpum2O0hmnySH7BPGfXD8Lu
-----END CERTIFICATE-----
Example when ExportPrivateKey is True:
-----BEGIN RSA PRIVATE KEY-----
MIICWwIBAAKBgQD5/STHUd7YkN1JyoyYnUvCf+Fyx1+ZleBJxvwDcm3yaZ98bvry
...
91y8ydb3mQ9l1hZudo2sj8tHnvEgph0r7B8hMM6Qaw==
-----END RSA PRIVATE KEY-----

"PKCS1" Public and Private KeysA PEM-formatted PKCS1 key file.

For example, when ExportPrivateKey is False:

-----BEGIN RSA PUBLIC KEY-----
MIGJAoGBALAyxV5assz+9v7aHbj93NYN5uGB/1z7kb2Nx4hj02QyRYbcD4htkhK4Qcq2GCsG
...
MxW4+pdeN4oEZ6rbMZt01bvMwNRX2GDEyQBhAgMBAAE=
-----END RSA PUBLIC KEY-----
Example when ExportPrivateKey is True:
-----BEGIN RSA PRIVATE KEY-----
MIICWwIBAAKBgQD5/STHUd7YkN1JyoyYnUvCf+Fyx1+ZleBJxvwDcm3yaZ98bvry
...
91y8ydb3mQ9l1hZudo2sj8tHnvEgph0r7B8hMM6Qaw==
-----END RSA PRIVATE KEY-----

"PKCS8" Public and Private KeysA PEM-formatted PKCS8 key file.

Example when ExportPrivateKey is False:

-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCxdTNtpJQbw90cq6aJEx5vRIBrAiCAB9/F
...
8UdUliXeU8UGYjVcMhGy5oPsVeBXGcPAqF2mjXdBKNnzlSlctOLnYRBS5jwRuNfTQQIDAQAB
-----END PUBLIC KEY-----
Example when ExportPrivateKey is True:
-----BEGIN PRIVATE KEY-----
MIICdQIBADANBgkqhkiG9w0BAQEFAASCAl8wggJbAgEAAoGBAPn9JMdR3tiQ3UnK
...
HSvsHyEwzpBr
-----END PRIVATE KEY-----

"OpenSSH" Public and Private KeysAn OpenSSH public or private key file.

For example, when ExportPrivateKey is False:

ssh-rsa AAAAB3NzaC1y...
Example when ExportPrivateKey is True:
-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAlwAAAAdzc2gtcnNh
...
AwQFBgcICQo=
-----END OPENSSH PRIVATE KEY-----

"PPK" Private KeysA PuTTY private key file.

For example,

PuTTY-User-Key-File-2: ssh-rsa
Encryption: none
Comment: rsa-key-20180822
Public-Lines: 4
AAAAB3NzaC1yc2EAAAADAQABAAAAgQCmz5j5kWUKxfwiv6J0LQ4wN9ekpeORXVaP
...
8pSSWejQ5Q==
Private-Lines: 8
AAAAgH87Sp/YcSw1dKoAZuWb0/2dKkKwMRIYEkS15caRpzAteay6WWX7l1sgBTU7
...
Oa0=
Private-MAC: d53e24f44bde8d1d3844a142fbb1fa7c88ea3585

"SSH2PublicKey"Public KeysAn SSH2 public key.

For example,

---- BEGIN SSH2 PUBLIC KEY ----
AAAAB3NzaC1yc2EAAAADAQABAAAAgQD5/STHUd7YkN1JyoyYnUvCf+Fyx1+ZleBJxvwDcm3y
...
6bVPTODELil1PVWJDlfdwoLZZKY2ACFHzxBqaOlYv1rbd2JIYAuqGca2ow==
---- END SSH2 PUBLIC KEY ----

"SSH2PrivateKey"Private KeysAn SSH2 private key.

For example,

---- BEGIN SSH2 ENCRYPTED PRIVATE KEY ----
AAAAB3NzaC1yc2EAAAADAQABAAAAgQD5/STHUd7YkN1JyoyYnUvCf+Fyx1+ZleBJxvwDcm3y
...
6bVPTODELil1PVWJDlfdwoLZZKY2ACFHzxBqaOlYv1rbd2JIYAuqGca2ow==
---- END SSH2 ENCRYPTED PRIVATE KEY ----

"JWK"Private and Public KeysA JSON Web Key (JWK).

For example, when ExportPrivateKey is False:

{
	"kty": "EC",
	"crv": "P-256",
	"x": "M_P_uqzP43FYW-kXWlpEDlX3nPZUr1QaMllAxUnao7w",
	"y": "zRFhp7iCXYIoTgerQ4LjGPTujodlimrwIMk-3enj_1Q"
}
For example, when ExportPrivateKey is True:
{
	"kty": "EC",
	"crv": "P-256",
	"x": "M_P_uqzP43FYW-kXWlpEDlX3nPZUr1QaMllAxUnao7w",
	"y": "zRFhp7iCXYIoTgerQ4LjGPTujodlimrwIMk-3enj_1Q",
	"d": "eFBtl-uaB9Y4b-CIav5IYX4gGRFBvpBmrMOOQ7L-euI"
}

"XML"Private and Public KeysAn XML file holding the key or X509 data.

For example, when ExportPrivateKey is False:

<X509Data>
	<X509Certificate>MIIB...D8Lu</X509Certificate>
</X509Data>
For example, when ExportPrivateKey is True:
<RSAKeyValue>
	<Modulus>+f0k...tqM=</Modulus>
	<Exponent>AQAB</Exponent>
	<P>/cOnF...tGw==</P>
	<Q>/DD5...dGQ==</Q>
	<DP>d75...N0w==</DP>
	<DQ>Cyv...rKQ==</DQ>
	<InverseQ>fsB...Qaw==</InverseQ>
	<D>J7p...YJE=</D>
</RSAKeyValue>

ExportCertificate Example:

//Convert from PFX to PPK certmgr.SetCertStoreType(CST_PFXFILE); certmgr.SetCertStore("..\\test.pfx", strlen("..\\test.pfx")); certmgr.SetCertStorePassword("password"); certmgr.SetCertSubject("*"); certmgr.SetExportPrivateKey(true); certmgr.SetExportFormat("PPK"); int ret_code = certmgr.ExportCertificate("..\\test.ppk", "newpassword"); //Export public certificate from PFX certmgr.SetCertStoreType(CST_PFXFILE); certmgr.SetCertStore("..\\test.pfx", strlen("..\\test.pfx")); certmgr.SetCertStorePassword("password"); certmgr.SetCertSubject("*"); certmgr.SetExportPrivateKey(false); certmgr.SetExportFormat("PEM"); ret_code = certmgr.ExportCertificate("..\\exported.cer", ""); //Convert .cer file to SSH2 Public Key certmgr.SetCertStoreType(CST_PUBLIC_KEY_FILE); certmgr.SetCertStore("..\\exported.cer", strlen("..\\exported.cer")); certmgr.SetCertSubject("*"); certmgr.SetExportPrivateKey(false); certmgr.SetExportFormat("SSH2PublicKey"); ret_code = certmgr.ExportCertificate("C:\\ssh2.pub", "");

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

GenerateCSR Method (CertMgr Class)

This method generates a new Certificate Signing Request (CSR) to be sent to a signing authority.

Syntax

ANSI (Cross Platform)
char* GenerateCSR(const char* lpszCertSubject, const char* lpszKeyName);

Unicode (Windows)
LPWSTR GenerateCSR(LPCWSTR lpszCertSubject, LPCWSTR lpszKeyName);
char* ipworksmq_certmgr_generatecsr(void* lpObj, const char* lpszCertSubject, const char* lpszKeyName);
QString GenerateCSR(const QString& qsCertSubject, const QString& qsKeyName);

Remarks

This method will generate a new CSR to be sent to the signing authority. CertSubject specifies the subject of the CSR. KeyName specifies the name of the keyset (public/private key pair) to be used. If the keyset does not already exist in the Cryptographic Service Provider (CSP), the class will automatically generate one. To set the CSP, use the CSP configuration setting.

Note: Remember the name of the keyset that is used when creating a CSR. The keyset must be re-associated with the certificate after the trust authority has signed the CSR.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Note: This functionality is only available in Windows.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

ImportCertificate Method (CertMgr Class)

This method imports a certificate from a file into the current certificate store.

Syntax

ANSI (Cross Platform)
int ImportCertificate(const char* lpszCertFile, const char* lpszPassword, const char* lpszSubject);

Unicode (Windows)
INT ImportCertificate(LPCWSTR lpszCertFile, LPCWSTR lpszPassword, LPCWSTR lpszSubject);
int ipworksmq_certmgr_importcertificate(void* lpObj, const char* lpszCertFile, const char* lpszPassword, const char* lpszSubject);
int ImportCertificate(const QString& qsCertFile, const QString& qsPassword, const QString& qsSubject);

Remarks

This method will import a certificate from a file into the current certificate store.

On Windows platforms, certificates may be imported only to the Windows certificate store. To load a certificate without importing it to a Windows store, set Cert.

Certificate files with or without a private key may be imported. If the file specified by CertFile contains a private key, the private key will be imported along with the public certificate. If the file specified by CertFile contains only a public certificate, only the public certificate will be imported.

The Password parameter specifies the certificate password (if any). When importing a public certificate, set Password to an empty string.

The format of the certificate file being imported must contain valid X509 data to be imported. Not all certificate file formats include X509 data, such as PPK or PKCS8 private keys. If the CertFile is of a format that cannot be imported, the class fails with an error.

Note: On Linux-based operating systems, this method loads the specified certificate without importing into any system location.

Subject is optional. If empty, the first certificate in the store is loaded instead of the matching certificate.

ImportCertificate Example

//Import a PFX certmgr.ImportCertificate("..\\test.pfx", "password", "*"); //Import a public certificate (CER) certmgr.ImportCertificate("..\\test.cer", "", "*");

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ImportSignedCSR Method (CertMgr Class)

This method imports a signed Certificate Signing Request (CSR).

Syntax

ANSI (Cross Platform)
int ImportSignedCSR(const char* lpSignedCSR, int lenSignedCSR, const char* lpszKeyName);

Unicode (Windows)
INT ImportSignedCSR(LPCSTR lpSignedCSR, INT lenSignedCSR, LPCWSTR lpszKeyName);
int ipworksmq_certmgr_importsignedcsr(void* lpObj, const char* lpSignedCSR, int lenSignedCSR, const char* lpszKeyName);
int ImportSignedCSR(QByteArray qbaSignedCSR, const QString& qsKeyName);

Remarks

This method will import a signed CSR. SignedCSR specifies a certificate that has been signed by a trusted authority. KeyName is the name of the keyset (public/private key pair) that was used to create the original CSR.

Note: This functionality is only available in Windows.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

IssueCertificate Method (CertMgr Class)

This creates a new certificate in the current store and is signed by the selected certificate.

Syntax

ANSI (Cross Platform)
int IssueCertificate(const char* lpszCertSubject, int iSerialNumber);

Unicode (Windows)
INT IssueCertificate(LPCWSTR lpszCertSubject, INT iSerialNumber);
int ipworksmq_certmgr_issuecertificate(void* lpObj, const char* lpszCertSubject, int iSerialNumber);
int IssueCertificate(const QString& qsCertSubject, int iSerialNumber);

Remarks

This method creates a new certificate in the current store and is signed by the selected certificate. CertSubject specifies the subject of the new certificate. A new keyset (public/private key pair) is generated and associated with the new certificate.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

SerialNumber specifies the certificate serial number. All certificates signed by the same issuer must have different (unique) serial numbers.

The current certificate selected by the class will be used as the issuing certificate.

If no certificate has been selected in the current CertStore before calling this method, or if the selected certificate does not have an associated private key, the method fails with an error.

The time validity of the new certificate is determined by the CertValidityTime configuration setting, and the key size by the CertKeyLength configuration setting.

Note: This functionality is only available in Windows.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ListCertificateStores Method (CertMgr Class)

This lists the certificate stores.

Syntax

ANSI (Cross Platform)
char* ListCertificateStores();

Unicode (Windows)
LPWSTR ListCertificateStores();
char* ipworksmq_certmgr_listcertificatestores(void* lpObj);
QString ListCertificateStores();

Remarks

This method lists the system certificate stores for the current user account. The results are provided through the StoreList event.

The same information is also returned upon method completion as a set of lines and is given one per certificate store name.

Note: This functionality is only available in Windows.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

ListKeys Method (CertMgr Class)

This lists the keysets in a Cryptographic Service Provider (CSP).

Syntax

ANSI (Cross Platform)
char* ListKeys();

Unicode (Windows)
LPWSTR ListKeys();
char* ipworksmq_certmgr_listkeys(void* lpObj);
QString ListKeys();

Remarks

This method lists the keys (public/private key pairs) in a CSP. The results are provided through the KeyList event.

The same information is also returned upon method completion as a set of lines and is given one per key, with each line containing the following information separated by Tab characters: KeyContainer, KeyType, AlgId, and KeyLen.

Note: This functionality is only available in Windows.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

ListMachineStores Method (CertMgr Class)

This lists the machine certificate stores.

Syntax

ANSI (Cross Platform)
char* ListMachineStores();

Unicode (Windows)
LPWSTR ListMachineStores();
char* ipworksmq_certmgr_listmachinestores(void* lpObj);
QString ListMachineStores();

Remarks

This method behaves the same as the ListCertificateStores method, but it lists the certificate stores in the machine account (under HKEY_LOCAL_MACHINE in the registry).

Note: This functionality is only available in Windows.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

ListStoreCertificates Method (CertMgr Class)

This lists the certificates in a store.

Syntax

ANSI (Cross Platform)
char* ListStoreCertificates();

Unicode (Windows)
LPWSTR ListStoreCertificates();
char* ipworksmq_certmgr_liststorecertificates(void* lpObj);
QString ListStoreCertificates();

Remarks

This method lists the certificates in a store. The results are provided through the CertList event.

The same information is also returned upon method completion as a set of lines and is given one per certificate, with each line containing the following information separated by Tab characters: CertSubject, CertIssuer, CertSerialNumber, and HasPrivateKey (as "1" or "0").

In the Unix edition of the toolkit, this is available only when a PFX file is loaded.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

ReadCertificate Method (CertMgr Class)

This loads a certificate from a file.

Syntax

ANSI (Cross Platform)
int ReadCertificate(const char* lpszFileName);

Unicode (Windows)
INT ReadCertificate(LPCWSTR lpszFileName);
int ipworksmq_certmgr_readcertificate(void* lpObj, const char* lpszFileName);
int ReadCertificate(const QString& qsFileName);

Remarks

Note: This method is present for backward compatibility. It is recommended to specify the Cert property to load a certificate.

This method will load a certificate from a file. The file contents can be encoded in Base64 PEM or ASN DER format.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ReadCSR Method (CertMgr Class)

This reads a Certificate Signing Request (CSR).

Syntax

ANSI (Cross Platform)
char* ReadCSR(const char* lpszCSR);

Unicode (Windows)
LPWSTR ReadCSR(LPCWSTR lpszCSR);
char* ipworksmq_certmgr_readcsr(void* lpObj, const char* lpszCSR);
QString ReadCSR(const QString& qsCSR);

Remarks

This method reads a CSR and returns a string holding information about the CSR. The Cert property is also populated with relevant information about the CSR, including the following:

The method accepts the CSR parameter as either a Base64-encoded string PEM or a path to a file.

The return value will be in the following format:

Certificate Request:
    Data:
        Version: 0 (0x0)
        Subject: C=AU, S=Some-State, O=Internet Widgits Pty Ltd
        Subject Public Key Info:
            Public Key Algorithm: X957_DSA (1.2.840.10040.4.1)
                Public-Key: (0 bit)
                pub:
                    02:82:01:00:66:70:68:60:08:63:bc:ff:26:62:77:74:
                    f6:b8:a8:11:f4:2c:5d:a1:79:b9:8e:ea:30:2e:6b:5a:
                    1b:35:39:24:91:1b:c1:ba:49:a0:c5:af:47:6e:73:0a:
                    f3:f6:6b:99:94:21:32:e5:24:b3:a8:a4:85:93:84:26:
                    e8:5c:4a:5d:2e:5e:82:df:ab:cc:e5:8d:51:ac:45:c2:
                    09:e5:21:f1:ce:c9:a0:3d:1d:7a:ab:fa:dd:d6:56:a8:
                    b2:61:26:8e:27:83:36:8a:0c:9b:cb:61:1a:b5:63:95:
                    ef:a5:bd:f2:8e:a7:fc:ca:d2:81:87:a5:6a:88:03:2e:
                    ca:fb:24:fa:d0:df:8a:2e:a9:e0:31:fc:57:e1:02:ca:
                    ee:99:01:d2:a5:33:34:47:92:b3:8b:31:f5:f1:1d:bf:
                    eb:07:70:71:6f:d1:c0:4c:0a:9d:99:af:ae:7e:bc:85:
                    e4:d2:22:1c:38:4b:60:e8:31:4d:f7:10:06:10:03:55:
                    f5:af:ba:a9:53:a5:9b:ae:d1:f8:38:34:80:e4:1c:9e:
                    06:8d:cc:39:3e:b2:e9:32:82:85:d2:d0:ed:b2:8e:d6:
                    6f:96:87:08:62:cc:9e:d3:75:76:b5:85:31:c6:a4:94:
                    59:15:ec:de:70:5a:34:2c:ff:27:ad:fc:14:01:e6:39:
                    8a:c9:91:3e:
                P:
                    00:dc:a6:15:cc:1a:e1:44:16:dc:a8:68:a4:18:9a:ab:
                    bf:5d:bf:b7:d1:5e:38:5f:b6:0e:21:ef:df:83:6a:5c:
                    31:f0:c9:07:3c:13:2c:9c:32:d0:89:76:2b:80:ad:3f:
                    6b:5d:5a:1d:69:31:f5:80:d5:65:ba:b5:28:a3:38:ba:
                    93:25:c4:fc:93:99:a2:00:5d:5e:c6:1b:f2:63:f0:24:
                    72:52:b4:49:97:19:93:fe:47:bf:9e:2e:54:d1:8a:b9:
                    09:8d:54:e8:de:31:e8:0d:21:b0:81:b2:f5:bd:38:3c:
                    15:02:d6:c1:aa:ab:17:8f:a8:f8:1f:1b:34:09:85:75:
                    3d:6e:28:2d:72:af:47:fd:ae:c4:f3:78:53:d7:07:a7:
                    c4:72:35:2d:6b:9e:42:08:1d:46:c9:38:d2:53:27:63:
                    a2:1d:be:11:9f:dd:9d:5b:e4:ad:fa:71:30:61:84:60:
                    a0:bf:bd:3a:51:b4:b5:1e:48:26:36:66:9e:52:f9:70:
                    35:e3:38:53:2e:90:ed:9f:0f:9d:67:b9:57:dd:53:e6:
                    ca:92:58:40:6d:15:e4:ae:2e:16:74:33:ed:48:90:15:
                    30:b7:fd:47:58:91:d5:c5:e2:3b:1f:1d:3b:a7:59:40:
                    2e:22:1a:9a:89:1b:31:a2:6f:cf:4c:a1:3b:93:ed:8a:
                    11:
                Q:
                    00:e3:ae:12:04:80:be:0f:d4:78:ef:02:27:26:b3:64:
                    6d:2b:e0:c9:da:15:00:a9:9c:45:6d:e6:44:ef:dd:75:
                    71:
                G:
                    18:fb:52:54:fe:bc:54:9e:17:a9:51:a1:e0:b9:6a:ab:
                    48:0e:06:60:f3:cd:fd:3c:14:9a:a0:35:d1:33:d4:d8:
                    b4:ee:ce:0b:5c:c7:60:24:e8:39:17:d8:75:13:90:44:
                    f5:f6:ef:50:cd:b4:af:66:90:f7:00:13:66:2f:ea:e2:
                    29:39:cd:a4:16:20:df:00:fd:53:6d:02:8b:4f:09:a5:
                    7f:72:7c:28:c8:70:2a:85:49:a1:65:36:66:91:52:e7:
                    14:b1:b8:b9:79:39:a6:d5:f8:b9:cd:ce:af:2d:88:66:
                    b5:d9:bb:9e:60:c8:9e:82:b4:3f:ff:23:37:4b:20:e4:
                    88:b0:d4:6e:b7:b5:8c:e6:98:cb:88:c2:6e:10:46:af:
                    44:0f:53:22:c2:fb:80:d3:30:05:c0:a6:4b:f8:e0:08:
                    3e:69:b6:17:b1:7d:2f:8f:07:66:9c:e5:94:3f:fc:ea:
                    f9:6c:9d:49:7c:91:f3:5a:92:b4:a7:b9:dc:42:7d:1a:
                    b0:99:ad:6d:b8:d9:03:6e:40:13:1c:3e:e2:80:f5:a1:
                    da:75:49:29:be:36:ad:78:74:46:0d:00:e9:6d:bf:8c:
                    65:50:4c:ad:ba:a7:1c:ac:5a:13:9e:d6:6a:3a:9f:cb:
                    1f:7d:5d:e2:3e:79:22:c2:56:c8:70:74:53:9a:4e:6c:
        Attributes:

    Signature Algorithm: 2.16.840.1.101.3.4.3.2 (2.16.840.1.101.3.4.3.2)
        00:30:44:02:20:42:00:86:14:2d:70:71:1b:77:b4:f0:
        ae:32:76:7b:1d:71:98:a2:70:69:4c:a9:e6:c1:9b:ad:
        df:af:a3:30:10:02:20:12:8f:ed:0b:1e:d5:f6:84:24:
        a9:fe:bc:45:75:eb:02:62:13:07:2c:ae:3f:ce:f3:da:
        95:25:47:97:bf:a6:9e:

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

Reset Method (CertMgr Class)

This resets all certificate properties to their default values.

Syntax

ANSI (Cross Platform)
int Reset();

Unicode (Windows)
INT Reset();
int ipworksmq_certmgr_reset(void* lpObj);
int Reset();

Remarks

This method will reset all certificate properties to their default values. If a certificate and a private key are selected or a certificate store is opened, both are released upon calling this method.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

SaveCertificate Method (CertMgr Class)

This method saves the currently selected public certificate to a file.

Syntax

ANSI (Cross Platform)
int SaveCertificate(const char* lpszFileName);

Unicode (Windows)
INT SaveCertificate(LPCWSTR lpszFileName);
int ipworksmq_certmgr_savecertificate(void* lpObj, const char* lpszFileName);
int SaveCertificate(const QString& qsFileName);

Remarks

Note: This method is present for backward compatibility. It is recommended to use ExportCertificate to export both public and private certificates and keys.

This method saves the public certificate of the currently selected certificate in Base64 PEM format to the location specified by the FileName parameter.

If the destination file exists, it is overwritten.

Error Handling (C++)

This method returns a result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message. (Note: This method's result code can also be obtained by calling the GetLastErrorCode() method after it returns.)

ShowCertificateChain Method (CertMgr Class)

This shows the certificate chain.

Syntax

ANSI (Cross Platform)
char* ShowCertificateChain();

Unicode (Windows)
LPWSTR ShowCertificateChain();
char* ipworksmq_certmgr_showcertificatechain(void* lpObj);
QString ShowCertificateChain();

Remarks

This method shows the certificate chain for the certificate. The results are provided through the CertChain event.

The same information is also returned upon method completion as a set of lines and is given one per key, with each line containing the following information separated by Tab characters: CertSubject, CertIssuer, CertSerialNumber, TrustStatus, and TrustInfo.

Note: This functionality is only available in Windows.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

SignCSR Method (CertMgr Class)

This creates a signed certificate from a Certificate Signing Request (CSR).

Syntax

ANSI (Cross Platform)
char* SignCSR(const char* lpCSR, int lenCSR, int iSerialNumber);

Unicode (Windows)
LPWSTR SignCSR(LPCSTR lpCSR, INT lenCSR, INT iSerialNumber);
char* ipworksmq_certmgr_signcsr(void* lpObj, const char* lpCSR, int lenCSR, int iSerialNumber);
QString SignCSR(QByteArray qbaCSR, int iSerialNumber);

Remarks

This method will create a signed certificate from a CSR. CSR specifies the CSR to be signed.

SerialNumber specifies the certificate serial number. All certificates signed by the same issuer must have different (unique) serial numbers.

The time validity of the new certificate is determined by the CertValidityTime configuration setting, and the key size is determined by the CertKeyLength configuration setting.

Note: This functionality is only available in Windows.

Error Handling (C++)

This method returns a String value; after it returns, call the GetLastErrorCode() method to obtain its result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

CertChain Event (CertMgr Class)

This event shows the certificate chain for the certificate (see the ShowCertificateChain method).

Syntax

ANSI (Cross Platform)
virtual int FireCertChain(CertMgrCertChainEventParams *e);
typedef struct {
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *CertSerialNumber;
int TrustStatus;
int TrustInfo; int reserved; } CertMgrCertChainEventParams;
Unicode (Windows) virtual INT FireCertChain(CertMgrCertChainEventParams *e);
typedef struct {
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR CertSerialNumber;
INT TrustStatus;
INT TrustInfo; INT reserved; } CertMgrCertChainEventParams;
#define EID_CERTMGR_CERTCHAIN 1

virtual INT IPWORKSMQ_CALL FireCertChain(LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszCertSerialNumber, INT &iTrustStatus, INT &iTrustInfo);
class CertMgrCertChainEventParams {
public:
  const QByteArray &CertEncoded();

  const QString &CertSubject();

  const QString &CertIssuer();

  const QString &CertSerialNumber();

  int TrustStatus();

  int TrustInfo();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void CertChain(CertMgrCertChainEventParams *e);
// Or, subclass CertMgr and override this emitter function. virtual int FireCertChain(CertMgrCertChainEventParams *e) {...}

Remarks

This event is fired for every certificate in the certificate chain of the certificate assigned to the class.

The TrustStatus parameter contains information about the trust status of the entire certificate chain. A value of 0 signifies that the security subsystem has verified the certificate. Other values are combinations of one or more of the following flags:

0x00000001This certificate or one of the certificates in the certificate chain is not time valid.
0x00000002Certificates in the chain are not properly time nested.
0x00000004Trust for this certificate or one of the certificates in the certificate chain has been revoked.
0x00000008This certificate or one of the certificates in the certificate chain does not have a valid signature.
0x00000010The certificate or the certificate chain is not valid for its proposed usage.
0x00000020The certificate or certificate chain is based on an untrusted root.
0x00000040The revocation status of the certificate or one of the certificates in the certificate chain is unknown.
0x00000080One of the certificates in the chain was issued by a certification authority that the original certificate had certified.
0x00010000The certificate chain is not complete.
0x00020000A certificate trust list (CTL) used to create this chain was not time valid.
0x00040000A CTL used to create this chain did not have a valid signature.
0x00080000A CTL used to create this chain is not valid for this usage.

The TrustInfo parameter contains additional information about the status of the entire certificate chain. It is a combination of one or more of the following flags:

0x00000001An exact match issuer certificate has been found for this certificate.
0x00000002A key match issuer certificate has been found for this certificate.
0x00000004A name match issuer certificate has been found for this certificate.
0x00000008This certificate is self-signed.
0x00010000The certificate chain created is a complex chain.

The CertSubject and CertIssuer parameters contain the distinguished names of the certificate owner and issuer, respectively.

CertList Event (CertMgr Class)

This event lists the certificates in a store (see the ListStoreCertificates method).

Syntax

ANSI (Cross Platform)
virtual int FireCertList(CertMgrCertListEventParams *e);
typedef struct {
const char *CertEncoded; int lenCertEncoded;
const char *CertSubject;
const char *CertIssuer;
const char *CertSerialNumber;
int HasPrivateKey; int reserved; } CertMgrCertListEventParams;
Unicode (Windows) virtual INT FireCertList(CertMgrCertListEventParams *e);
typedef struct {
LPCSTR CertEncoded; INT lenCertEncoded;
LPCWSTR CertSubject;
LPCWSTR CertIssuer;
LPCWSTR CertSerialNumber;
BOOL HasPrivateKey; INT reserved; } CertMgrCertListEventParams;
#define EID_CERTMGR_CERTLIST 2

virtual INT IPWORKSMQ_CALL FireCertList(LPSTR &lpCertEncoded, INT &lenCertEncoded, LPSTR &lpszCertSubject, LPSTR &lpszCertIssuer, LPSTR &lpszCertSerialNumber, BOOL &bHasPrivateKey);
class CertMgrCertListEventParams {
public:
  const QByteArray &CertEncoded();

  const QString &CertSubject();

  const QString &CertIssuer();

  const QString &CertSerialNumber();

  bool HasPrivateKey();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void CertList(CertMgrCertListEventParams *e);
// Or, subclass CertMgr and override this emitter function. virtual int FireCertList(CertMgrCertListEventParams *e) {...}

Remarks

The CertSubject and CertIssuer parameters contain distinguished names of the certificate owner and issuer, respectively. The HasPrivateKey flag shows whether the private key for the certificate is available in the system.

The StoreList event and the ListCertificateStores and ListMachineStores methods are used to list the certificate stores in the system.

Error Event (CertMgr Class)

Fired when information is available about errors during data delivery.

Syntax

ANSI (Cross Platform)
virtual int FireError(CertMgrErrorEventParams *e);
typedef struct {
int ErrorCode;
const char *Description; int reserved; } CertMgrErrorEventParams;
Unicode (Windows) virtual INT FireError(CertMgrErrorEventParams *e);
typedef struct {
INT ErrorCode;
LPCWSTR Description; INT reserved; } CertMgrErrorEventParams;
#define EID_CERTMGR_ERROR 3

virtual INT IPWORKSMQ_CALL FireError(INT &iErrorCode, LPSTR &lpszDescription);
class CertMgrErrorEventParams {
public:
  int ErrorCode();

  const QString &Description();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Error(CertMgrErrorEventParams *e);
// Or, subclass CertMgr and override this emitter function. virtual int FireError(CertMgrErrorEventParams *e) {...}

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

KeyList Event (CertMgr Class)

This lists the keysets in a Cryptographic Service Provider (CSP); see the ListKeys method.

Syntax

ANSI (Cross Platform)
virtual int FireKeyList(CertMgrKeyListEventParams *e);
typedef struct {
const char *KeyContainer;
int KeyType;
const char *AlgId;
int KeyLen; int reserved; } CertMgrKeyListEventParams;
Unicode (Windows) virtual INT FireKeyList(CertMgrKeyListEventParams *e);
typedef struct {
LPCWSTR KeyContainer;
INT KeyType;
LPCWSTR AlgId;
INT KeyLen; INT reserved; } CertMgrKeyListEventParams;
#define EID_CERTMGR_KEYLIST 4

virtual INT IPWORKSMQ_CALL FireKeyList(LPSTR &lpszKeyContainer, INT &iKeyType, LPSTR &lpszAlgId, INT &iKeyLen);
class CertMgrKeyListEventParams {
public:
  const QString &KeyContainer();

  int KeyType();

  const QString &AlgId();

  int KeyLen();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void KeyList(CertMgrKeyListEventParams *e);
// Or, subclass CertMgr and override this emitter function. virtual int FireKeyList(CertMgrKeyListEventParams *e) {...}

Remarks

The KeyContainer parameter is the name used to identify the keyset (public/private key pair) when it was first created.

KeyType shows the key type: 1 for key exchange (encryption) keys, and 2 for digital signature keys.

KeyLen shows the length of the public key (in bits).

Log Event (CertMgr Class)

This event fires once for each log message.

Syntax

ANSI (Cross Platform)
virtual int FireLog(CertMgrLogEventParams *e);
typedef struct {
int LogLevel;
const char *Message;
const char *LogType; int reserved; } CertMgrLogEventParams;
Unicode (Windows) virtual INT FireLog(CertMgrLogEventParams *e);
typedef struct {
INT LogLevel;
LPCWSTR Message;
LPCWSTR LogType; INT reserved; } CertMgrLogEventParams;
#define EID_CERTMGR_LOG 5

virtual INT IPWORKSMQ_CALL FireLog(INT &iLogLevel, LPSTR &lpszMessage, LPSTR &lpszLogType);
class CertMgrLogEventParams {
public:
  int LogLevel();

  const QString &Message();

  const QString &LogType();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void Log(CertMgrLogEventParams *e);
// Or, subclass CertMgr and override this emitter function. virtual int FireLog(CertMgrLogEventParams *e) {...}

Remarks

This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.

LogLevel indicates the level of message. Possible values are as follows:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

Message is the log entry.

LogType identifies the type of log entry.

StoreList Event (CertMgr Class)

This lists the system certificate stores (see the ListCertificateStores and ListMachineStores methods).

Syntax

ANSI (Cross Platform)
virtual int FireStoreList(CertMgrStoreListEventParams *e);
typedef struct {
const char *CertStore; int reserved; } CertMgrStoreListEventParams;
Unicode (Windows) virtual INT FireStoreList(CertMgrStoreListEventParams *e);
typedef struct {
LPCWSTR CertStore; INT reserved; } CertMgrStoreListEventParams;
#define EID_CERTMGR_STORELIST 6

virtual INT IPWORKSMQ_CALL FireStoreList(LPSTR &lpszCertStore);
class CertMgrStoreListEventParams {
public:
  const QString &CertStore();

  int EventRetVal();
  void SetEventRetVal(int iRetVal);
};
// To handle, connect one or more slots to this signal. void StoreList(CertMgrStoreListEventParams *e);
// Or, subclass CertMgr and override this emitter function. virtual int FireStoreList(CertMgrStoreListEventParams *e) {...}

Remarks

The CertStore parameter contains the name of the certificate store being listed.

The CertList event and the ListStoreCertificates method are used to list the certificates in the store.

CertExtension Type

This represents an extension for a certificate.

Syntax

IPWorksMQCertExtension (declared in ipworksmq.h)

Remarks

A CertExtension represents an extension that adds to or modifies an X509 Certificate. Certificate extensions are defined by their ASN.1 Object-Identifier (OID). The Value field contains the raw data of the extension, which is usually ASN.1 encoded.

The following fields are available:

Fields

Critical
int (read-only)

Default Value: FALSE

This field specifies whether or not the extension is defined as critical.

OID
char* (read-only)

Default Value: ""

This field contains the ASN.1 Object-Identifier (OID) that defines this certificate extension.

Value
char* (read-only)

Default Value: ""

This field contains the raw value of the certificate extension. This value is encoded according to the extension's ASN.1 specification and should contain everything following the OID. The following example is provided for clarity.

The example will

  • Add a sequence of basicConstraints indicating the holder of this certificate may not act as a CA.
  • Add a sequence of cRLDistributionPoints showing where to get CRLs.
Certmgr mgr = new Certmgr(); mgr.Cert = new Certificate(CertStoreTypes.cstPFXFile, @"C:\signingcert.pfx", "password", "*"); mgr.CertExtensions.Clear(); mgr.Config("CertUsageFlags=0xA0"); //Key Encipherment and Digital Signature mgr.Config("CertExtendedKeyUsage=1.3.6.1.5.5.7.3.1,1.3.6.1.5.5.7.3.2"); //Server and Client authentication (respectively) mgr.Config("CertValidityTime=10000"); Netcode nc = new Netcode(); nc.Format = NetcodeFormats.fmtHex; // Set basicConstraints to be an end-entity. // Below is the hex-encoded value broken down. // 30 // Tag = sequence // 03 // Length // 01 // Tag = boolean // 01 // Length // 00 // False (not a CA) // Convert hex string to byte[] nc.EncodedData = "3003010100"; nc.Decode(); string oid = "2.5.29.19"; // basicConstraints byte[] value = nc.DecodedDataB; bool critical = false; CertExtension basicConstraints = new CertExtension(oid, value, critical); mgr.CertExtensions.Add(basicConstraints); // Add one point: http://www.nsoftware.com/dummy/MyCA.crl // Below is the hex-encoded value broken down. // 30 // Tag = sequence // 2F // Length // 30 // Tag = DistributionPoint // 2D // Length // A0 // Tag = DistributionPointName // 2B // Length // A0 // Tag = GeneralNames // 29 // Length // 86 // Tag = GeneralName // 27 // Length // 687474703A2F2F7777772E6E736F6674776172652E636F6D2F64756D6D792F4D7943412E63726C // URL // Convert hex string to byte[] nc.EncodedData = "302F302DA02BA0298627687474703A2F2F7777772E6E736F6674776172652E636F6D2F64756D6D792F4D7943412E63726C"; nc.Decode(); oid = "2.5.29.31"; // cRLDistributionPoints value = nc.DecodedDataB; critical = false; CertExtension crlDistributionPoints = new CertExtension(oid, value, critical); mgr.CertExtensions.Add(crlDistributionPoints); mgr.IssueCertificate("CN=www.petsbymatilda.com", 123); Console.WriteLine(mgr.Cert.Encoded);

Constructors

CertExtension(const char* lpszOID, const char* lpValue, int lenValue, int bCritical)

Certificate Type

This is the digital certificate being used.

Syntax

IPWorksMQCertificate (declared in ipworksmq.h)

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

The following fields are available:

Fields

EffectiveDate
char* (read-only)

Default Value: ""

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

ExpirationDate
char* (read-only)

Default Value: ""

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
char* (read-only)

Default Value: ""

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
char* (read-only)

Default Value: ""

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
char* (read-only)

Default Value: ""

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
char* (read-only)

Default Value: ""

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
char* (read-only)

Default Value: ""

The issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

PrivateKey
char* (read-only)

Default Value: ""

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
int (read-only)

Default Value: FALSE

Whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
char* (read-only)

Default Value: ""

The name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
char* (read-only)

Default Value: ""

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
char* (read-only)

Default Value: ""

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default Value: 0

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
char* (read-only)

Default Value: ""

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
char* (read-only)

Default Value: ""

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
char*

Default Value: "MY"

The name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password-protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

StorePassword
char*

Default Value: ""

If the type of certificate store requires a password, this field is used to specify the password needed to open the certificate store.

StoreType
int

Default Value: 0

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

SubjectAltNames
char* (read-only)

Default Value: ""

Comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
char* (read-only)

Default Value: ""

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
char* (read-only)

Default Value: ""

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
char* (read-only)

Default Value: ""

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
char* (read-only)

Default Value: ""

The text description of UsageFlags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int (read-only)

Default Value: 0

The flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
char* (read-only)

Default Value: ""

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Subject
char*

Default Value: ""

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the field is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

Encoded
char*

Default Value: ""

The certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

Constructors

Certificate()

Creates a instance whose properties can be set. This is useful for use with when generating new certificates.

Certificate(const char* lpEncoded, int lenEncoded)

Parses Encoded as an X.509 public key.

Certificate(int iStoreType, const char* lpStore, int lenStore, const char* lpszStorePassword, const char* lpszSubject)

StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.

After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.

IPWorksMQList Type

Syntax

IPWorksMQList<T> (declared in ipworksmq.h)

Remarks

IPWorksMQList is a generic class that is used to hold a collection of objects of type T, where T is one of the custom types supported by the CertMgr class.

Methods

GetCount This method returns the current size of the collection.

int GetCount() {}

SetCount This method sets the size of the collection. This method returns 0 if setting the size was successful; or -1 if the collection is ReadOnly. When adding additional objects to a collection call this method to specify the new size. Increasing the size of the collection preserves existing objects in the collection.

int SetCount(int count) {}

Get This method gets the item at the specified position. The index parameter specifies the index of the item in the collection. This method returns NULL if an invalid index is specified.

T* Get(int index) {}

Set This method sets the item at the specified position. The index parameter specifies the index of the item in the collection that is being set. This method returns -1 if an invalid index is specified. Note: Objects created using the new operator must be freed using the delete operator; they will not be automatically freed by the class.

T* Set(int index, T* value) {}

Config Settings (CertMgr Class)

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the Config method.

CertMgr Config Settings

BasicConstraints:   The hex-encoded value of the certificate's Basic Constraints extension.

This setting specifies the value of this certificate's Basic Constraints extension (as a hex-encoded string). This value is encoded according to the extension's ASN.1 specification. Setting this configuration setting is an alternative to creating a CertExtension object, setting its Value field, and adding the object to CertExtensions. CertMgr certmgr = new CertMgr(); certmgr.Cert = new Certificate(); certmgr.CertStoreType = CertStoreTypes.cstUser; certmgr.CertStore = "MY"; certmgr.Config("BasicConstraints=30030101FF"); certmgr.CreateCertificate(mySubject, 23);

CertComment:   A comment to include in a saved certificate.

This settings specifies the certificate comment when calling ExportCertificate. This setting is applicable only when ExportFormat is set to one of the following values:

When ExportFormat is set to SSH2PublicKey, the value of this setting must be the full header (e.g., Comment: My Comment).
CertCustomExtensionCount:   The number of records in the CertCustomExtension arrays.

This property controls the size of the following arrays:

The array indices start at 0 and end at CertExtensionCount-1.

CertCustomExtensionCritical[i]:   Whether or not the extension is defined as critical.

Whether or not the certificate extension at index "i" is defined as critical.

Valid array indices are from 0 to CertCustomExtensionCount - 1.

CertCustomExtensionOID[i]:   The ASN of the extension at index 'i'.

The ASN.1 object identifier (OID) that defines the certificate extension at index 'i'.

Valid array indices are from 0 to CertCustomExtensionCount - 1.

CertCustomExtensionValue[i]:   The raw value of the extension at index 'i'.

The raw value of this certificate extension (as a byte string). This value is encoded according to the extension's ASN.1 specification.

Valid array indices are from 0 to CertCustomExtensionCount - 1.

CertExtendedKeyUsage:   The extended key usage of the certificate.

This setting specifies the extended key usage flags of the certificate created by calling CreateCertificate or IssueCertificate. If specified, the value is a comma-separated list of OIDs. Common OIDs are as follows:

1.3.6.1.5.5.7.3.1 Server Authentication
1.3.6.1.5.5.7.3.2 Client Authentication
1.3.6.1.5.5.7.3.3 Code Signing
1.3.6.1.5.5.7.3.4 Secure Email
1.3.6.1.5.5.7.3.8 Time Stamping
1.3.6.1.5.5.7.3.9 OCSP Signing

For instance, the following value specified the extended key usage for Server Authentication, Client Authentication, and Code Signing: 1.3.6.1.5.5.7.3.1, 1.3.6.1.5.5.7.3.2, and 1.3.6.1.5.5.7.3.3

CertKeyLength:   The public key length for created certificates and keys.

When CreateCertificate creates a new certificate and associated key, or when CreateKey creates a key, this setting determines the length of the new public key (in bits). The default value is 2048.

CertKeyType:   The types of keys created for new certificates.

When CreateCertificate creates a new certificate and associated key, or when CreateKey creates a key, this setting determines the type of key generated: 1 for key exchange (encryption) keys, and 2 for digital signature keys. The default value is 1.

CertPublicKeyAlgorithm:   The public key algorithm used when a certificate is created.

When CreateCertificate creates a new certificate and associated key, this setting determines the public key algorithm of the generated keys. Following are the valid values:

  • RSA (default)
  • DSA
  • ECDSA_P256
  • ECDSA_P384
  • ECDSA_P521
  • ECDSA_Secp256k1
  • ECDSA_Secp224k1
  • ECDSA_Secp192k1
  • ECDSA_Secp160k1
  • ECDSA_BRAINPOOLP160R1
  • ECDSA_BRAINPOOLP192R1
  • ECDSA_BRAINPOOLP224R1
  • ECDSA_BRAINPOOLP256R1
  • ECDSA_BRAINPOOLP320R1
  • ECDSA_BRAINPOOLP384R1
  • ECDSA_BRAINPOOLP512R1
  • ECDSA_BRAINPOOLP160T1
  • ECDSA_BRAINPOOLP192T1
  • ECDSA_BRAINPOOLP224T1
  • ECDSA_BRAINPOOLP256T1
  • ECDSA_BRAINPOOLP320T1
  • ECDSA_BRAINPOOLP384T1
  • ECDSA_BRAINPOOLP512T1
  • Ed25519
  • Ed448

CertSignatureAlgorithm:   The signature algorithm used when creating certificates.

When CreateCertificate or IssueCertificate creates a new certificate, the signature algorithm used is specified by this setting. Following are the possible values:

  • MD2
  • MD5
  • SHA1
  • SHA256 (default)
  • SHA384
  • SHA512

CertSubjectAltNames:   Subject Alternative Names for creating or issuing certificates.

This allows the Subject Alternative Names extension to be specified when creating or issuing a certificate via CreateCertificate or IssueCertificate. This setting only supports email, DNS, URI, and IPv4 addresses. Separate alternative names should be separated by commas. For example:

string altNames = "email:copy,dns:domain.com,dns.1:other.domain.com,uri:http://www.domain.com,ip:192.168.1.102"

CertThumbprint:   The thumbprint of the certificate to be loaded.

This setting specifies the thumbprint of the certificate to be loaded. If specified, the supplied thumbprint will be used when identifying the certificate that should be loaded.

This configuration setting is not supported in the C# and Java editions, which already support loading by thumbprint via the Certificate type constructors. This setting is only supported on Windows operating systems. CertMgr cert; cert.Config("CertThumbprint=967adafd7add8f72ee4894ede866d6745970f82f"); cert.SetCertStore("MY", 2); cert.SetCertStoreType(CST_USER); cert.SetCertStorePassword(""); cert.SetCertSubject("TestCert");

CertUsageFlags:   Sets the flags indicating the usage of the created certificate.

This setting specifies the usage flags of the certificate created by calling CreateCertificate or IssueCertificate. If specified, the value is the binary OR of one or more of the supported values. For instance, a value of 12 or 0xC is the binary OR of the Certificate Signing and Key Agreement usage flags. The following flags are supported:

0x80 Digital Signature
0x40 Non-Repudiation
0x20 Key Encipherment
0x10 Data Encipherment
0x08 Key Agreement
0x04 Certificate Signing
0x02 CRL Signing
0x01 Encipher Only
CertValidityOffset:   The number of days until the certificate becomes valid.

This configuration setting can be used to change when a newly created certificate becomes valid. By default, the certificate is valid as soon as it is created. Set CertValidityOffset to the number of days that this starting period should be offset from the current day. This setting also accepts negative values for back-dating the validity of a certificate. The default value is 0.

CertValidityTime:   The validity period for the certificate.

This configuration setting determines the duration in days that a newly created certificate remains valid. The certificate becomes valid as soon as it is created, unless CertValidityOffset is set. The duration is not changed if CertValidityOffset is set; the certificate will still expire CertValidityTime days after the validity period begins. The default value is 365 days.

CreatedKey:   The PKCS8 formatted private and public key pair created after calling CreateKey.

This setting returns the PKCS8 formatted private and public key pair of the key created when CreateKey is called. This is useful in scenarios where exporting the key for use in another environment is required.

CSP:   The Cryptographic Service Provider.

The name of the Cryptographic Service Provider used to provide access to certificate signing operations.

CSRIgnoredExtensions:   Extensions to be ignorned when signing a CSR.

Set this configuration setting to a comma separated list of OID's of any extensions already present in the CSR that should be ignored when the CSR is signed.

For example if the SAN's in a CSR should be ignored the below code would work: CertMgr1->Config("CSRIgnoredExtensions=2.5.29.17");

CSRKey:   The PKCS8 formatted private key to use when generating a CSR.

This setting optionally specifies a PKCS8 formatted private key to use when calling GenerateCSR. When set, the keyName parameter of GenerateCSR is ignored and the key specified by this setting is used instead.

EncodeExportedCert:   Whether the certificate being exported to a string is encoded.

This setting controls whether the certificate exported as a string when ExportCertificate is called is encoded. If ExportFormat is set to PFX or P7B before calling ExportCertificate the exported certificate may be binary (EncodeExportedCert is False), or base64 encoded (EncodeExportedCert is True) to allow easier handling of the certificate data.

The default value is False.

ImportCertAction:   Specified the action to take if a matching certificate or a link to a matching certificate already exists.

When calling ImportCertificate if a matching certificate or a link to a matching certificate already exists in the Windows certificate store this setting governs what action will be taken. Possible values are:

1CERT_STORE_ADD_NEW - Imports a certificate only if no existing certificate is present.
2CERT_STORE_ADD_USE_EXISTING - If an existing certificate is found, it is not replaced.
3 (default)CERT_STORE_ADD_REPLACE_EXISTING - If an existing certificate is found it is replaced.
4CERT_STORE_ADD_ALWAYS - No checks are performed and a new certificate is always added to the store. This can result in duplicates.
5CERT_STORE_ADD_REPLACE_EXISTING_INHERIT_PROPERTIES - If an existing certificate is found it is replaced, and the new certificate inherits properties from the certificate it replaces.
6CERT_STORE_ADD_NEWER - Imports a certificate only if the certificate is newer than an existing matching certificate.
7CERT_STORE_ADD_NEWER_INHERIT_PROPERTIES - Imports a certificate only if the certificate is newer than an existing matching certificate, and inherits the properties of old certificate it replaces.
ImportCertStoreType:   The type of certificate store being specified for import.

When calling ImportCertificate, this setting controls the type of the certificate being specified in the first parameter.

This config can take one of the following values:

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
99 (cstAuto - default)The certificate type is automatically determined from the input.
Note that this functionality is currently for Windows platforms only.

JWKAlgorithm:   The JWK algorithm.

This setting specifies the JWK algorithm. It can be set before calling ExportCertificate (if ExportFormat is set to JWK) to control the key algorithm used to create the JWK. This setting will also be populated after loading a JWK file.

Valid values are:

  • (empty string)
  • HS256
  • HS384
  • HS512
  • RS256
  • RS384
  • RS512
  • EC256
  • EC384
  • EC512
  • EC256K

JWKExportX5C:   Whether to export a certificate chain to the x5c parameter.

When set to true, the component will attempt to build the X.509 certificate chain for the certificate currently selected by Subject. If successful, the x5c parameter will be added to the JWK. It can be set before calling ExportCertificate (if ExportFormat is set to JWK).

The default value is False.

JWKKeyId:   The JWK key Id.

This setting specifies the JWK key Id. It can be set before calling ExportCertificate (if ExportFormat is set to JWK). This setting will also be populated after loading a JWK file.

JWKKeyOps:   The JWK intended key operations list.

This setting specifies the intended key operations for the JWK. It can be set before calling ExportCertificate (if ExportFormat is set to JWK). This setting will also be populated after loading a JWK file.

This setting format is a JSON array. Examples: ["sign","verify"] or ["encrypt"].

JWKUse:   The JWK use parameter value.

This setting specifies the intended usage of the key. It can be set before calling ExportCertificate (if ExportFormat is set to JWK). This setting will also be populated after loading a JWK file.

Valid values are enc and sig.

KeyFormat:   How the public and private key are formatted.

This setting controls the format of PublicKey and PrivateKey. By default these fields hold PEM formatted public and private key data. When set to 1 (XML) the keys are stored in a XML format. This only affects the values returned by the class; the actual keys remain the same regardless of this setting. Possible values are:

  • 0 (PEM - default)
  • 1 (XML)
The default value is 0 (PEM).

KSP:   The Key Storage Provider.

The name of the Key Storage Provider used to store and create keys. By default, the value is Microsoft Software Key Storage Provider. To use the Trusted Platform Module (TPM), set this value to Microsoft Platform Crypto Provider.

LogLevel:   The level of detail that is logged.

This setting controls the level of detail that is logged through the Log event. Possible values are:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data are logged.
3 (Debug) Debug data are logged.

PFXCertEncryptionAlgorithm:   Certificate encryption algorithm used when exporting to PFX format.

This setting specifies the algorithm used to encrypt the certificate when calling ExportCertificate, and is applicable only when ExportFormat is set to PFX or PKCS12.

This setting takes one of the following values (either the OID or friendly name can be used):

2.16.840.1.101.3.4.1.42 PBES2-AES-256-CBC (default)
2.16.840.1.101.3.4.1.2 PBES2-AES-128-CBC
1.2.840.113549.3.7 PBES2-DES-EDE3-CBC
1.2.840.113549.1.12.1.1 PBES1-RC4-128
1.2.840.113549.1.12.1.2 PBES1-RC4-40
1.2.840.113549.1.12.1.3 PBES1-3-KeyTripleDES-CBC
1.2.840.113549.1.12.1.4 PBES1-2-KeyTripleDES-CBC
1.2.840.113549.1.12.1.5 PBES1-RC2-128-CBC
1.2.840.113549.1.12.1.6 PBES1-RC2-40-CBC

PFXKeyEncryptionAlgorithm:   Private key encryption algorithm used when exporting to PFX format.

This setting specifies the algorithm used to encrypt the private key when calling ExportCertificate, and is applicable only when ExportFormat is set to PFX or PKCS12.

This setting takes one of the following values (either the OID or friendly name can be used):

2.16.840.1.101.3.4.1.42 PBES2-AES-256-CBC (default)
2.16.840.1.101.3.4.1.2 PBES2-AES-128-CBC
1.2.840.113549.3.7 PBES2-DES-EDE3-CBC
1.2.840.113549.1.12.1.1 PBES1-RC4-128
1.2.840.113549.1.12.1.2 PBES1-RC4-40
1.2.840.113549.1.12.1.3 PBES1-3-KeyTripleDES-CBC
1.2.840.113549.1.12.1.4 PBES1-2-KeyTripleDES-CBC
1.2.840.113549.1.12.1.5 PBES1-RC2-128-CBC
1.2.840.113549.1.12.1.6 PBES1-RC2-40-CBC

ReplaceKey:   Whether or not to replace an existing key when creating a new key.

If this is false (default), the component will throw an error if a duplicate key exists while generating a new keyset using CreateKey. If set to true, the component will replace a key if it already exists when generating new keys.

RequestSubjectAltNames:   Subject Alternative Names for a Certificate Signing Request.

This allows Subject Alternative Names to be added to a Certificate Signing request. The setting only supports email, DNS, URI, and IPv4 addresses. Separate alternative names should be separated by commas. For example:

string altNames = "email:copy,dns:domain.com,dns.1:other.domain.com,uri:http://www.domain.com,ip:192.168.1.102"

TPMMigrationPassword:   The password for the certificate or key.

This setting must be set before calling CreateKey, CreateCertificate, and ImportCertificate methods. The default value is an empty string. If this config is set, the private key in TPM can be exported via the ExportCertificate method with the correct password later. If the config is not set, the private key in TPM can never be exported from TPM. Below is a brief code example of how to use this configuration setting for importing and exporting certificates. // Initialize CertMgr component Certmgr certmgr = new Certmgr(); certmgr.Config("UseInternalSecurityAPI=false"); // Specify TPM integration parameters certmgr.CertStoreType = CertStoreTypes.cstUser; certmgr.CertStore = "MY"; certmgr.Config("KSP=Microsoft Platform Crypto Provider"); // Import a certificate into the TPM certmgr.ImportCertificate("path/to/certificate.pem", "password", "subject"); // Initialize CertMgr component Certmgr certmgr = new Certmgr(); certmgr.Config("UseInternalSecurityAPI=false"); // Specify TPM integration parameters certmgr.CertStoreType = CertStoreTypes.cstUser; certmgr.CertStore = "MY"; certmgr.Config("KSP=Microsoft Platform Crypto Provider"); certmgr.Config("TPMMigrationPassword=password"); certmgr.ExportPrivateKey = true; // Create a certificate object certmgr.Cert = new Certificate(CertStoreTypes.cstUser, "MY", "", rsaSubject); // Export the certificate certmgr.ExportCertificate("../path/to/cert", "password");

X509Algorithm:   Public Key Algorithm OID.

This setting exposes the Public Key Algorithm object identifier (OID) value for the currently loaded Cert.

X509SignatureAlgorithm:   Signature Algorithm OID.

This setting exposes the Signature Algorithm object identifier (OID) value for the currently loaded Cert.

Trappable Errors (CertMgr Class)

Error Handling (C++)

Call the GetLastErrorCode() method to obtain the last called method's result code; 0 indicates success, while a non-zero error code indicates that this method encountered an error during its execution. Known error codes are listed below. If an error occurs, the GetLastError() method can be called to retrieve the associated error message.

CertMgr Errors

143   Busy executing current method.
144   No certificate selected.
221   Cannot acquire CSP.
222   Cannot generate key.
270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
274   Cannot get certificate chain.
275   Cannot verify certificate chain.
279   Error enumerating certificate stores.
280   The certificate could not be decoded.
281   Cannot find security provider.
282   Cannot add certificate to store.
283   The certificate could not be encoded.
285   Cannot create certificate signing request.
286   Cannot acquire Issuer private key.
287   Cannot delete certificate.
288   Cannot export certificate.