AMQPClassic Class
Properties Methods Events Config Settings Errors
An easy-to-use AMQP 0.9.1 client implementation, with support for RabbitMQ extensions.
Syntax
class ipworksmq.AMQPClassic
Remarks
The AMQPClassic class provides an easy-to-use AMQP 0.9.1 client implementation, and it also supports certain RabbitMQ extensions to the AMQP 0.9.1 specification. The class supports both plaintext and TLS-enabled connections over TCP.
Connecting
The AMQP 0.9.1 transport protocol has two layers: an overall connection between the client and server, and one or more channels running over that connection.
The class implements both layers, so the first step is to initiate the overall connection. Set the auth_scheme, user, password, ssl_enabled, and virtual_host properties if necessary, then call the connect_to method, passing it the server's hostname and port number. (If the server in question is not running RabbitMQ, disabling the RabbitMQCompatible configuration setting before connecting is also recommended.)
The next step is to create at least one channel, which can be accomplished by using the create_channel method. The class allows creating any number of channels, up to the limit specified by the MaxChannelCount configuration setting.
Connecting and Creating a Channel
// The examples in this documentation use a RabbitMQ server, which requires SASL Plain auth.
amqpc1.AuthScheme = AmqpclassicAuthSchemes.smSASLPlain;
amqpc1.User = "guest";
amqpc1.Password = "guest";
amqpc1.SSLEnabled = true;
amqpc1.ConnectTo("amqpclassic.test-server.com", 5671);
amqpc1.CreateChannel("channel");
Once the class has connected to the server, and one or more channels have been opened, the class can begin manipulating exchanges and queues, publishing messages, and creating consumers.
Note that most AMQP 0.9.1 operations can themselves vary in their complexity. The examples below are intentionally simple for the sake of clarity and brevity, but links are provided for many other parts of the class's API where more detail can be found.
Declaring Exchanges
The declare_exchange method is used to declare (i.e., create, or verify the existence of) exchanges on the server. While all AMQP servers provide a default, direct-type exchange that all queues are bound to automatically (using their name as the routing key), more complex use-cases will often require creating additional exchanges of varying types.
Declaring an Exchange
// Declare a direct-type exchange.
amqpc1.DeclareExchange("channel", "MyExchange", "direct", false, false, false, false);
Exchanges can also be deleted using the delete_exchange method.
Declaring Queues
The declare_queue method is used to declare (i.e., create, or verify the existence of) queues on the server. Unlike with exchanges, the server does not provide any queues by default, so declaring a queue is always necessary (unless one has already been created by another client, or configured ahead-of-time on the server itself).
Declaring a Queue
// Declare a queue.
amqpc1.DeclareQueue("channel", "MyQueue", false, false, false, false, false);
Queues may also be deleted or purged using the delete_queue and purge_queue methods.
Binding Queues to Exchanges
The bind_queue method is used to bind a queue to an exchange. Exchanges use the information held by their queue bindings to determine which messages to forward to which queues.
Note that all AMQP 0.9.1 servers automatically bind all queues to their default exchange (which is always a direct exchange with no name) using each queue's name as the binding's routing key. This makes it easy to send a message to a specific queue without having to declare bindings; just call publish_message, pass empty string for ExchangeName, and the name of the desired queue for RoutingKey.
Binding a Queue to an Exchange
// Bind a queue to an exchange. Messages will only be delivered to the queue if their routing key is "MyRoutingKey".
amqpc1.BindQueue("channel", "MyQueue", "MyExchange", "MyRoutingKey", false);
Queues can also be unbound from exchanges using the unbind_queue method.
Publishing Messages
To publish a message, populate the message property's properties, and then call the publish_message method.
Publishing a Message
amqpc1.Message.Body = "Hello, world!";
// Publish a message to the server's default (no-name) exchange, using the name of a specific queue as the routing key.
amqpc1.PublishMessage("channel", "", "MyQueue", false, false);
// Publish a message to the "MyExchange" exchange, using the routing key "MyRoutingKey".
amqpc1.PublishMessage("channel", "MyExchange", "MyRoutingKey", false, false);
Note that outgoing messages may be handled differently by the server if the channel they are sent over is in transaction or (for RabbitMQ only) "publish confirmations" mode. Refer to the enable_transaction_mode and enable_publish_confirms methods for more information.
Receiving Messages
There are two possible ways for the class to receive a message:
- Messages can be asynchronously pushed to the class from the server. At any point in time, the server may push a message to the class from a queue that the consume method has been used to attach a consumer to.
- Messages can be synchronously pulled from the server by the class. The retrieve_message method is used to attempt to pull (or "retrieve") messages from a specific queue.
Regardless of how they are received, all incoming messages cause the received_message property's properties to be populated and the on_message_in event to fire.
Receiving a Message
// MessageIn event handler.
amqpc1.OnMessageIn += (s, e) => {
if (e.MessageCount == -1) {
// The server pushed a message to us asynchronously due to a consumer we created.
Console.WriteLine("The server pushed this message to us via consumer '" + e.ConsumerTag + "':");
Console.WriteLine(amqpc1.ReceivedMessage.Body);
} else if (e.DeliveryTag > 0) {
// We pulled a message from a queue with the RetrieveMessage() method.
Console.WriteLine("Message successfully pulled:");
Console.WriteLine(amqpc1.ReceivedMessage.Body);
Console.WriteLine(e.MessageCount + " messages are still available to pull.");
} else {
// We tried to pull a message, but there were none available to pull.
Console.WriteLine("No messages available to pull.");
}
};
// Attach a consumer to "MyQueue".
amqpc1.Consume("channel", "MyQueue", "consumerTag", false, true, false, false);
// Or, try to retrieve a message from "MyQueue".
amqpc1.RetrieveMessage("channel", "MyQueue", true);
Note that the on_message_in event always fires if retrieve_message is called successfully, even if there were no messages available to retrieve; refer to on_message_in for more information.
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
argument_count | The number of records in the Argument arrays. |
argument_name | The table property's name. |
argument_value | The table property's value. |
argument_value_type | The table property's value type. |
auth_scheme | The authentication scheme to use when connecting. |
channel_count | The number of records in the Channel arrays. |
channel_accept | Whether the channel is currently accepting new messages from the server. |
channel_mode | What mode the channel is operating in. |
channel_name | The name of the channel. |
channel_ready_to_send | Whether the channel is ready to send a message. |
client_property_count | The number of records in the ClientProperty arrays. |
client_property_name | The table property's name. |
client_property_value | The table property's value. |
client_property_value_type | The table property's value type. |
connected | This property indicates whether the class is connected. |
firewall_auto_detect | Whether to automatically detect and use firewall system settings, if available. |
firewall_type | The type of firewall to connect through. |
firewall_host | The name or IP address of the firewall (optional). |
firewall_password | A password if authentication is to be used when connecting through the firewall. |
firewall_port | The Transmission Control Protocol (TCP) port for the firewall Host . |
firewall_user | A username if authentication is to be used when connecting through a firewall. |
heartbeat | The heartbeat timeout value. |
incoming_message_count | The number of records in the IncomingMessage arrays. |
incoming_message_app_id | The Id of the application that created the message. |
incoming_message_body | The message body. |
incoming_message_channel_name | The name of the channel the message is associated with. |
incoming_message_content_encoding | The content encoding of the message's body. |
incoming_message_content_type | The content type (MIME type) of the message's body. |
incoming_message_correlation_id | The correlation Id of the message. |
incoming_message_delivery_mode | The delivery mode of the message. |
incoming_message_expiration | The time-to-live value for this message. |
incoming_message_headers | Headers associated with the message. |
incoming_message_id | The unique Id of the message. |
incoming_message_priority | The priority of the message. |
incoming_message_reply_to | The address to send replies to for the message. |
incoming_message_timestamp | The message's timestamp. |
incoming_message_type | The message's type. |
incoming_message_user_id | The identity of the user responsible for producing the message. |
local_host | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
local_port | The TCP port in the local host where the class binds. |
message_app_id | The Id of the application that created the message. |
message_body | The message body. |
message_channel_name | The name of the channel the message is associated with. |
message_content_encoding | The content encoding of the message's body. |
message_content_type | The content type (MIME type) of the message's body. |
message_correlation_id | The correlation Id of the message. |
message_delivery_mode | The delivery mode of the message. |
message_expiration | The time-to-live value for this message. |
message_headers | Headers associated with the message. |
message_id | The unique Id of the message. |
message_priority | The priority of the message. |
message_reply_to | The address to send replies to for the message. |
message_timestamp | The message's timestamp. |
message_type | The message's type. |
message_user_id | The identity of the user responsible for producing the message. |
outgoing_message_count | The number of records in the OutgoingMessage arrays. |
outgoing_message_app_id | The Id of the application that created the message. |
outgoing_message_body | The message body. |
outgoing_message_channel_name | The name of the channel the message is associated with. |
outgoing_message_content_encoding | The content encoding of the message's body. |
outgoing_message_content_type | The content type (MIME type) of the message's body. |
outgoing_message_correlation_id | The correlation Id of the message. |
outgoing_message_delivery_mode | The delivery mode of the message. |
outgoing_message_expiration | The time-to-live value for this message. |
outgoing_message_headers | Headers associated with the message. |
outgoing_message_id | The unique Id of the message. |
outgoing_message_priority | The priority of the message. |
outgoing_message_reply_to | The address to send replies to for the message. |
outgoing_message_timestamp | The message's timestamp. |
outgoing_message_type | The message's type. |
outgoing_message_user_id | The identity of the user responsible for producing the message. |
password | A password to use for SASL authentication. |
queue_message_count | The message count returned by various queue operations. |
received_message_app_id | The Id of the application that created the message. |
received_message_body | The message body. |
received_message_channel_name | The name of the channel the message is associated with. |
received_message_content_encoding | The content encoding of the message's body. |
received_message_content_type | The content type (MIME type) of the message's body. |
received_message_correlation_id | The correlation Id of the message. |
received_message_delivery_mode | The delivery mode of the message. |
received_message_expiration | The time-to-live value for this message. |
received_message_headers | Headers associated with the message. |
received_message_id | The unique Id of the message. |
received_message_priority | The priority of the message. |
received_message_reply_to | The address to send replies to for the message. |
received_message_timestamp | The message's timestamp. |
received_message_type | The message's type. |
received_message_user_id | The identity of the user responsible for producing the message. |
remote_host | This property includes the address of the remote host. Domain names are resolved to IP addresses. |
remote_port | The port of the AQMP server (default is 5672). The default port for SSL is 5671. |
server_property_count | The number of records in the ServerProperty arrays. |
server_property_name | The table property's name. |
server_property_value | The table property's value. |
server_property_value_type | The table property's value type. |
ssl_accept_server_cert_effective_date | The date on which this certificate becomes valid. |
ssl_accept_server_cert_expiration_date | The date on which the certificate expires. |
ssl_accept_server_cert_extended_key_usage | A comma-delimited list of extended key usage identifiers. |
ssl_accept_server_cert_fingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
ssl_accept_server_cert_fingerprint_sha1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
ssl_accept_server_cert_fingerprint_sha256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
ssl_accept_server_cert_issuer | The issuer of the certificate. |
ssl_accept_server_cert_private_key | The private key of the certificate (if available). |
ssl_accept_server_cert_private_key_available | Whether a PrivateKey is available for the selected certificate. |
ssl_accept_server_cert_private_key_container | The name of the PrivateKey container for the certificate (if available). |
ssl_accept_server_cert_public_key | The public key of the certificate. |
ssl_accept_server_cert_public_key_algorithm | The textual description of the certificate's public key algorithm. |
ssl_accept_server_cert_public_key_length | The length of the certificate's public key (in bits). |
ssl_accept_server_cert_serial_number | The serial number of the certificate encoded as a string. |
ssl_accept_server_cert_signature_algorithm | The text description of the certificate's signature algorithm. |
ssl_accept_server_cert_store | The name of the certificate store for the client certificate. |
ssl_accept_server_cert_store_password | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
ssl_accept_server_cert_store_type | The type of certificate store for this certificate. |
ssl_accept_server_cert_subject_alt_names | Comma-separated lists of alternative subject names for the certificate. |
ssl_accept_server_cert_thumbprint_md5 | The MD5 hash of the certificate. |
ssl_accept_server_cert_thumbprint_sha1 | The SHA-1 hash of the certificate. |
ssl_accept_server_cert_thumbprint_sha256 | The SHA-256 hash of the certificate. |
ssl_accept_server_cert_usage | The text description of UsageFlags . |
ssl_accept_server_cert_usage_flags | The flags that show intended use for the certificate. |
ssl_accept_server_cert_version | The certificate's version number. |
ssl_accept_server_cert_subject | The subject of the certificate used for client authentication. |
ssl_accept_server_cert_encoded | The certificate (PEM/Base64 encoded). |
ssl_cert_effective_date | The date on which this certificate becomes valid. |
ssl_cert_expiration_date | The date on which the certificate expires. |
ssl_cert_extended_key_usage | A comma-delimited list of extended key usage identifiers. |
ssl_cert_fingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
ssl_cert_fingerprint_sha1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
ssl_cert_fingerprint_sha256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
ssl_cert_issuer | The issuer of the certificate. |
ssl_cert_private_key | The private key of the certificate (if available). |
ssl_cert_private_key_available | Whether a PrivateKey is available for the selected certificate. |
ssl_cert_private_key_container | The name of the PrivateKey container for the certificate (if available). |
ssl_cert_public_key | The public key of the certificate. |
ssl_cert_public_key_algorithm | The textual description of the certificate's public key algorithm. |
ssl_cert_public_key_length | The length of the certificate's public key (in bits). |
ssl_cert_serial_number | The serial number of the certificate encoded as a string. |
ssl_cert_signature_algorithm | The text description of the certificate's signature algorithm. |
ssl_cert_store | The name of the certificate store for the client certificate. |
ssl_cert_store_password | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
ssl_cert_store_type | The type of certificate store for this certificate. |
ssl_cert_subject_alt_names | Comma-separated lists of alternative subject names for the certificate. |
ssl_cert_thumbprint_md5 | The MD5 hash of the certificate. |
ssl_cert_thumbprint_sha1 | The SHA-1 hash of the certificate. |
ssl_cert_thumbprint_sha256 | The SHA-256 hash of the certificate. |
ssl_cert_usage | The text description of UsageFlags . |
ssl_cert_usage_flags | The flags that show intended use for the certificate. |
ssl_cert_version | The certificate's version number. |
ssl_cert_subject | The subject of the certificate used for client authentication. |
ssl_cert_encoded | The certificate (PEM/Base64 encoded). |
ssl_enabled | This property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled. |
ssl_provider | The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use. |
ssl_server_cert_effective_date | The date on which this certificate becomes valid. |
ssl_server_cert_expiration_date | The date on which the certificate expires. |
ssl_server_cert_extended_key_usage | A comma-delimited list of extended key usage identifiers. |
ssl_server_cert_fingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
ssl_server_cert_fingerprint_sha1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
ssl_server_cert_fingerprint_sha256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
ssl_server_cert_issuer | The issuer of the certificate. |
ssl_server_cert_private_key | The private key of the certificate (if available). |
ssl_server_cert_private_key_available | Whether a PrivateKey is available for the selected certificate. |
ssl_server_cert_private_key_container | The name of the PrivateKey container for the certificate (if available). |
ssl_server_cert_public_key | The public key of the certificate. |
ssl_server_cert_public_key_algorithm | The textual description of the certificate's public key algorithm. |
ssl_server_cert_public_key_length | The length of the certificate's public key (in bits). |
ssl_server_cert_serial_number | The serial number of the certificate encoded as a string. |
ssl_server_cert_signature_algorithm | The text description of the certificate's signature algorithm. |
ssl_server_cert_store | The name of the certificate store for the client certificate. |
ssl_server_cert_store_password | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
ssl_server_cert_store_type | The type of certificate store for this certificate. |
ssl_server_cert_subject_alt_names | Comma-separated lists of alternative subject names for the certificate. |
ssl_server_cert_thumbprint_md5 | The MD5 hash of the certificate. |
ssl_server_cert_thumbprint_sha1 | The SHA-1 hash of the certificate. |
ssl_server_cert_thumbprint_sha256 | The SHA-256 hash of the certificate. |
ssl_server_cert_usage | The text description of UsageFlags . |
ssl_server_cert_usage_flags | The flags that show intended use for the certificate. |
ssl_server_cert_version | The certificate's version number. |
ssl_server_cert_subject | The subject of the certificate used for client authentication. |
ssl_server_cert_encoded | The certificate (PEM/Base64 encoded). |
timeout | This property includes the timeout for the class. |
user | A username to use for SASL authentication. |
virtual_host | The virtual host to connect to. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
bind_queue | Binds a queue to an exchange. |
cancel_consume | Cancels an existing consumer. |
close_channel | Closes a channel. |
commit_transaction | Commits the current transaction for a channel. |
config | Sets or retrieves a configuration setting. |
connect | This method connects to a remote host. |
connect_to | This method connects to a remote host. |
consume | Starts a new consumer for a given queue. |
create_channel | Creates a new channel. |
declare_exchange | Verifies that an exchange exists, potentially creating it if necessary. |
declare_queue | Verifies that a queue exists, potentially creating it if necessary. |
delete_exchange | Deletes an exchange. |
delete_queue | Deletes a queue. |
disconnect | This method disconnects from the remote host. |
do_events | This method processes events from the internal message queue. |
enable_publish_confirms | Enables publish confirmations mode for a channel. |
enable_transaction_mode | Enables transaction mode for a channel. |
interrupt | Interrupt the current action and disconnects from the remote host. |
publish_message | Publishes a message. |
purge_queue | Purges all messages from a queue. |
recover | Request that the server redeliver all messages on a given channel that have not been acknowledged. |
reset | This method will reset the class. |
reset_message | Resets the Message properties. |
retrieve_message | Attempts to retrieve a message from a given queue. |
rollback_transaction | Rolls back the current transaction for a channel. |
set_channel_accept | Disables or enables message acceptance for a given channel. |
set_qo_s | Requests a specific quality of service (QoS). |
unbind_queue | Removes a previously-created queue binding. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
on_channel_ready_to_send | Fires when a channel is ready to send messages. |
on_connected | Fired immediately after a connection completes (or fails). |
on_connection_status | Fired to indicate changes in the connection state. |
on_disconnected | Fired when a connection is closed. |
on_error | Fired when information is available about errors during data delivery. |
on_log | Fires once for each log message. |
on_message_in | Fires when a message is received; as well as when an attempt is made to fetch a message from a currently empty queue. |
on_message_out | Fires when a message is published. |
on_message_returned | Fires if a previously published message is returned by the server due to it being undeliverable. |
on_ssl_server_authentication | Fired after the server presents its certificate to the client. |
on_ssl_status | Fired when secure connection progress messages are available. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
AuthorizationIdentity | The value to use as the authorization identity when SASL authentication is used. |
ConsumerTag | The consumer tag associated with the most recently created consumer. |
Locale | The desired message locale to use. |
Locales | The message locales supported by the server. |
LogLevel | The level of detail that is logged. |
MaxChannelCount | The maximum number of channels. |
MaxFrameSize | The maximum frame size. |
Mechanisms | The authentication mechanisms supported by the server. |
NackMultiple | Whether negative acknowledgments should be cumulative or not. |
ProtocolVersion | The AMQP protocol version to conform to. |
QueueConsumerCount | The consumer count associated with the most recently created (or verified) queue. |
QueueName | The queue name associated with the most recently created (or verified) queue. |
RabbitMQCompatible | Whether to operate in a mode compatible with RabbitMQ. |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the class whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the class binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACertFilePaths | The paths to CA certificate files on Unix/Linux. |
SSLCACerts | A newline separated list of CA certificates to be included when performing an SSL handshake. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLClientCACerts | A newline separated list of CA certificates to use during SSL client certificate validation. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificates to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
argument_count Property
The number of records in the Argument arrays.
Syntax
def get_argument_count() -> int: ... def set_argument_count(value: int) -> None: ...
argument_count = property(get_argument_count, set_argument_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at argument_count - 1.
argument_name Property
The table property's name.
Syntax
def get_argument_name(argument_index: int) -> str: ... def set_argument_name(argument_index: int, value: str) -> None: ...
Default Value
""
Remarks
The table field's name.
This property specifies the table field's name. The name must be an ASCII string that:
- Starts with an ASCII letter, $, or $ character.
- Only contains ASCII letters, digits, underscores, $, and $ characters.
- Is unique among all sibling table field argument_names.
- Is no longer than 128 characters.
The argument_index parameter specifies the index of the item in the array. The size of the array is controlled by the argument_count property.
argument_value Property
The table property's value.
Syntax
def get_argument_value(argument_index: int) -> str: ... def set_argument_value(argument_index: int, value: str) -> None: ...
Default Value
""
Remarks
The table field's value.
This property specifies the table field's value.
The argument_index parameter specifies the index of the item in the array. The size of the array is controlled by the argument_count property.
argument_value_type Property
The table property's value type.
Syntax
def get_argument_value_type(argument_index: int) -> int: ... def set_argument_value_type(argument_index: int, value: int) -> None: ...
Default Value
17
Remarks
The table field's value type.
This property specifies the table field's value type (and thus, the format of the data in the argument_value property). Acceptable value types are:
Value Type | JSON Value Type | Description | Value Format |
fvtBoolean (0) | boolean | Boolean | "True" or "False" |
fvtByte (1) | byte | Byte | -128 to 127 |
fvtUbyte (2) | ubyte | Unsigned byte | 0 to 255 |
fvtShort (3) | short | Short | -32768 to 32767 |
fvtUshort (4) | ushort | Unsigned short | 0 to 65535 |
fvtInt (5) | int | Integer | -2147483648 to 2147483647 |
fvtUint (6) | uint | Unsigned integer | 0 to 4294967295 |
fvtLong (7) | long | Long | -9223372036854775808 to 9223372036854775807 |
fvtUlong (8) | ulong | Unsigned long | 0 to 18446744073709551615 |
fvtFloat (9) | float | Float | IEEE 754 32-bit floating point number |
fvtDouble (10) | double | Double | IEEE 754 64-bit floating point number |
fvtDecimal (11) | decimal | Decimal | Hex-encoded byte string |
fvtSstring (12) | sstring | Short string | UTF-8 string data, limited to 255 bytes; may not contain null bytes (\0) |
fvtString (13) | string | String | String data |
fvtArray (14) | array | Array | JSON array of type-value pairs |
fvtTimestamp (15) | timestamp | Timestamp | Number of milliseconds since the Unix epoch (January 1, 1970 00:00:00 UTC) |
fvtTable (16) | table | Table | JSON object containing name-type-value tuples |
fvtNull (17 - default) | null | Null | N/A (argument_value is ignored) |
Note: The fvtUlong (8) and fvtSstring (12) value types are not supported when the RabbitMQCompatible configuration setting is enabled.
For the fvtArray (14) value type, the argument_value should be specified as a JSON array of type-value pairs; for example:
[ { "type": "int", "value": 23 }, { "type": "int", "value": -52 }, { "type": "int", "value": 153325 } ]
For the fvtTable (16) value type, the argument_value should be specified as a JSON object containing name-type-value tuples; for example:
{ { "name": "Test1", "type": "long", "value": 12345678901234 }, { "name": "Test2", "type": "boolean", "value": "false" }, { "name": "Test3", "type": "string", "value": "This is a test." } }
Notes regarding fvtArray (14) and fvtTable (16) type argument_values:
- All "type" fields in the JSON content must be set to one of the value types in the table above.
- For fvtTable (16) type argument_values, all "name" fields must adhere to the rules described by the argument_key documentation.
- Nesting and mixing multiple levels of arrays and tables in the JSON is allowed.
The argument_index parameter specifies the index of the item in the array. The size of the array is controlled by the argument_count property.
auth_scheme Property
The authentication scheme to use when connecting.
Syntax
def get_auth_scheme() -> int: ... def set_auth_scheme(value: int) -> None: ...
auth_scheme = property(get_auth_scheme, set_auth_scheme)
Default Value
2
Remarks
This property controls what authentication scheme the class should use when connecting to the remote host.
Valid values are:
- smNone (0)
- smSASLAnonymous (1)
- smSASLPlain (2) - Default
- smSASLExternal (3)
channel_count Property
The number of records in the Channel arrays.
Syntax
def get_channel_count() -> int: ...
channel_count = property(get_channel_count, None)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at channel_count - 1.
This property is read-only.
channel_accept Property
Whether the channel is currently accepting new messages from the server.
Syntax
def get_channel_accept(channel_index: int) -> bool: ...
Default Value
TRUE
Remarks
Whether the channel is currently accepting new messages from the server.
This property reflects whether the channel is currently accepting new messages from the server. When the channel is created, this property is True by default.
The set_channel_accept method can be used to disable and re-enable message acceptance at any time; refer to that method for more information.
The channel_index parameter specifies the index of the item in the array. The size of the array is controlled by the channel_count property.
This property is read-only.
channel_mode Property
What mode the channel is operating in.
Syntax
def get_channel_mode(channel_index: int) -> int: ...
Default Value
0
Remarks
What mode the channel is operating in.
This property reflects what mode the channel is operating in. Possible values are:
- cmtNormal (0 - default): Normal mode.
- cmtTransactional (1): Transaction mode.
- cmtPublishConfirms (2): Publish confirmations mode.
All channels are in normal mode when they are created; there's nothing special about a channel in normal mode.
Channels can be put in transaction mode using the enable_transaction_mode method. While a channel is in transaction mode, all messages published and acknowledgements sent over it will be part of a transaction, and the server will wait to process them until the transaction is either committed or rolled back.
Channels can be put in publish confirmations mode using the enable_publish_confirms method. While a channel is in publish confirmations mode, the server will acknowledge each message published by the class. The class will wait to fire the on_message_out event until it receives this acknowledgment. (Note that this mode is only available when the RabbitMQCompatible configuration setting is enabled.)
Note: Switching a channel to transaction or publish confirmations mode is a permanent action; the channel will then remain in that mode for the remainder of its lifetime.
The channel_index parameter specifies the index of the item in the array. The size of the array is controlled by the channel_count property.
This property is read-only.
channel_name Property
The name of the channel.
Syntax
def get_channel_name(channel_index: int) -> str: ...
Default Value
""
Remarks
The name of the channel.
This property reflects the name of the channel.
The channel_index parameter specifies the index of the item in the array. The size of the array is controlled by the channel_count property.
This property is read-only.
channel_ready_to_send Property
Whether the channel is ready to send a message.
Syntax
def get_channel_ready_to_send(channel_index: int) -> bool: ...
Default Value
TRUE
Remarks
Whether the channel is ready to send a message.
This property reflects whether the channel is currently ready to send a message or not.
The channel_index parameter specifies the index of the item in the array. The size of the array is controlled by the channel_count property.
This property is read-only.
client_property_count Property
The number of records in the ClientProperty arrays.
Syntax
def get_client_property_count() -> int: ... def set_client_property_count(value: int) -> None: ...
client_property_count = property(get_client_property_count, set_client_property_count)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at client_property_count - 1.
client_property_name Property
The table property's name.
Syntax
def get_client_property_name(client_property_index: int) -> str: ... def set_client_property_name(client_property_index: int, value: str) -> None: ...
Default Value
""
Remarks
The table field's name.
This property specifies the table field's name. The name must be an ASCII string that:
- Starts with an ASCII letter, $, or $ character.
- Only contains ASCII letters, digits, underscores, $, and $ characters.
- Is unique among all sibling table field client_property_names.
- Is no longer than 128 characters.
The client_property_index parameter specifies the index of the item in the array. The size of the array is controlled by the client_property_count property.
client_property_value Property
The table property's value.
Syntax
def get_client_property_value(client_property_index: int) -> str: ... def set_client_property_value(client_property_index: int, value: str) -> None: ...
Default Value
""
Remarks
The table field's value.
This property specifies the table field's value.
The client_property_index parameter specifies the index of the item in the array. The size of the array is controlled by the client_property_count property.
client_property_value_type Property
The table property's value type.
Syntax
def get_client_property_value_type(client_property_index: int) -> int: ... def set_client_property_value_type(client_property_index: int, value: int) -> None: ...
Default Value
17
Remarks
The table field's value type.
This property specifies the table field's value type (and thus, the format of the data in the client_property_value property). Acceptable value types are:
Value Type | JSON Value Type | Description | Value Format |
fvtBoolean (0) | boolean | Boolean | "True" or "False" |
fvtByte (1) | byte | Byte | -128 to 127 |
fvtUbyte (2) | ubyte | Unsigned byte | 0 to 255 |
fvtShort (3) | short | Short | -32768 to 32767 |
fvtUshort (4) | ushort | Unsigned short | 0 to 65535 |
fvtInt (5) | int | Integer | -2147483648 to 2147483647 |
fvtUint (6) | uint | Unsigned integer | 0 to 4294967295 |
fvtLong (7) | long | Long | -9223372036854775808 to 9223372036854775807 |
fvtUlong (8) | ulong | Unsigned long | 0 to 18446744073709551615 |
fvtFloat (9) | float | Float | IEEE 754 32-bit floating point number |
fvtDouble (10) | double | Double | IEEE 754 64-bit floating point number |
fvtDecimal (11) | decimal | Decimal | Hex-encoded byte string |
fvtSstring (12) | sstring | Short string | UTF-8 string data, limited to 255 bytes; may not contain null bytes (\0) |
fvtString (13) | string | String | String data |
fvtArray (14) | array | Array | JSON array of type-value pairs |
fvtTimestamp (15) | timestamp | Timestamp | Number of milliseconds since the Unix epoch (January 1, 1970 00:00:00 UTC) |
fvtTable (16) | table | Table | JSON object containing name-type-value tuples |
fvtNull (17 - default) | null | Null | N/A (client_property_value is ignored) |
Note: The fvtUlong (8) and fvtSstring (12) value types are not supported when the RabbitMQCompatible configuration setting is enabled.
For the fvtArray (14) value type, the client_property_value should be specified as a JSON array of type-value pairs; for example:
[ { "type": "int", "value": 23 }, { "type": "int", "value": -52 }, { "type": "int", "value": 153325 } ]
For the fvtTable (16) value type, the client_property_value should be specified as a JSON object containing name-type-value tuples; for example:
{ { "name": "Test1", "type": "long", "value": 12345678901234 }, { "name": "Test2", "type": "boolean", "value": "false" }, { "name": "Test3", "type": "string", "value": "This is a test." } }
Notes regarding fvtArray (14) and fvtTable (16) type client_property_values:
- All "type" fields in the JSON content must be set to one of the value types in the table above.
- For fvtTable (16) type client_property_values, all "name" fields must adhere to the rules described by the client_property_key documentation.
- Nesting and mixing multiple levels of arrays and tables in the JSON is allowed.
The client_property_index parameter specifies the index of the item in the array. The size of the array is controlled by the client_property_count property.
connected Property
This property indicates whether the class is connected.
Syntax
def get_connected() -> bool: ...
connected = property(get_connected, None)
Default Value
FALSE
Remarks
This property indicates whether the class is connected to the remote host. Use the connect and disconnect methods to manage the connection.
This property is read-only.
firewall_auto_detect Property
Whether to automatically detect and use firewall system settings, if available.
Syntax
def get_firewall_auto_detect() -> bool: ... def set_firewall_auto_detect(value: bool) -> None: ...
firewall_auto_detect = property(get_firewall_auto_detect, set_firewall_auto_detect)
Default Value
FALSE
Remarks
Whether to automatically detect and use firewall system settings, if available.
firewall_type Property
The type of firewall to connect through.
Syntax
def get_firewall_type() -> int: ... def set_firewall_type(value: int) -> None: ...
firewall_type = property(get_firewall_type, set_firewall_type)
Default Value
0
Remarks
The type of firewall to connect through. The applicable values are as follows:
fwNone (0) | No firewall (default setting). |
fwTunnel (1) | Connect through a tunneling proxy. firewall_port is set to 80. |
fwSOCKS4 (2) | Connect through a SOCKS4 Proxy. firewall_port is set to 1080. |
fwSOCKS5 (3) | Connect through a SOCKS5 Proxy. firewall_port is set to 1080. |
fwSOCKS4A (10) | Connect through a SOCKS4A Proxy. firewall_port is set to 1080. |
firewall_host Property
The name or IP address of the firewall (optional).
Syntax
def get_firewall_host() -> str: ... def set_firewall_host(value: str) -> None: ...
firewall_host = property(get_firewall_host, set_firewall_host)
Default Value
""
Remarks
The name or IP address of the firewall (optional). If a firewall_host is given, the requested connections will be authenticated through the specified firewall when connecting.
If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.
firewall_password Property
A password if authentication is to be used when connecting through the firewall.
Syntax
def get_firewall_password() -> str: ... def set_firewall_password(value: str) -> None: ...
firewall_password = property(get_firewall_password, set_firewall_password)
Default Value
""
Remarks
A password if authentication is to be used when connecting through the firewall. If firewall_host is specified, the firewall_user and firewall_password properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.
firewall_port Property
The Transmission Control Protocol (TCP) port for the firewall Host .
Syntax
def get_firewall_port() -> int: ... def set_firewall_port(value: int) -> None: ...
firewall_port = property(get_firewall_port, set_firewall_port)
Default Value
0
Remarks
The Transmission Control Protocol (TCP) port for the firewall firewall_host. See the description of the firewall_host property for details.
Note: This property is set automatically when firewall_type is set to a valid value. See the description of the firewall_type property for details.
firewall_user Property
A username if authentication is to be used when connecting through a firewall.
Syntax
def get_firewall_user() -> str: ... def set_firewall_user(value: str) -> None: ...
firewall_user = property(get_firewall_user, set_firewall_user)
Default Value
""
Remarks
A username if authentication is to be used when connecting through a firewall. If firewall_host is specified, this property and the firewall_password property are used to connect and authenticate to the given Firewall. If the authentication fails, the class fails with an error.
heartbeat Property
The heartbeat timeout value.
Syntax
def get_heartbeat() -> int: ... def set_heartbeat(value: int) -> None: ...
heartbeat = property(get_heartbeat, set_heartbeat)
Default Value
0
Remarks
This property specifies the heartbeat timeout value, in seconds. Heartbeats are disabled if set to 0 (default).
Before connecting, this property can be set to indicate the desired heartbeat timeout value. During the connection process, the class and the server will compare their desired heartbeat values and choose the lower one.
Once connected, this property will reflect the agreed-upon heartbeat value. While the connection is idle, heartbeats are sent by both the class and the server approximately once every (heartbeat / 2) seconds. If either side has not received a heartbeat (or other transmission) for ~heartbeat seconds, it will consider the other side unreachable and close the connection.
This setting cannot be changed while connected.
incoming_message_count Property
The number of records in the IncomingMessage arrays.
Syntax
def get_incoming_message_count() -> int: ...
incoming_message_count = property(get_incoming_message_count, None)
Default Value
0
Remarks
This property controls the size of the following arrays:
- incoming_message_app_id
- incoming_message_body
- incoming_message_channel_name
- incoming_message_content_encoding
- incoming_message_content_type
- incoming_message_correlation_id
- incoming_message_delivery_mode
- incoming_message_expiration
- incoming_message_headers
- incoming_message_id
- incoming_message_priority
- incoming_message_reply_to
- incoming_message_timestamp
- incoming_message_type
- incoming_message_user_id
The array indices start at 0 and end at incoming_message_count - 1.
This property is read-only.
incoming_message_app_id Property
The Id of the application that created the message.
Syntax
def get_incoming_message_app_id(incoming_message_index: int) -> str: ...
Default Value
""
Remarks
The Id of the application that created the message.
This property holds the Id of the application that created the message. It may be empty if the message does not have an application Id set.
This value must be specified as a string no longer than 255 characters.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_body Property
The message body.
Syntax
def get_incoming_message_body(incoming_message_index: int) -> bytes: ...
Default Value
""
Remarks
The message body.
This property holds the body of the message. It may be empty.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_channel_name Property
The name of the channel the message is associated with.
Syntax
def get_incoming_message_channel_name(incoming_message_index: int) -> str: ...
Default Value
""
Remarks
The name of the channel the message is associated with.
This property reflects the name of the channel which the message is associated with; it is populated automatically by the class.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_content_encoding Property
The content encoding of the message's body.
Syntax
def get_incoming_message_content_encoding(incoming_message_index: int) -> str: ...
Default Value
""
Remarks
The content encoding of the message's body.
This property holds the content encoding of the message's body. It may be empty if the message does not have a content encoding set.
This value must be specified as a string no longer than 255 characters.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_content_type Property
The content type (MIME type) of the message's body.
Syntax
def get_incoming_message_content_type(incoming_message_index: int) -> str: ...
Default Value
""
Remarks
The content type (MIME type) of the message's body.
This property holds the content type (MIME type) of the message's body. It may be empty if the message does not have a content type set.
This value must be specified as a string no longer than 255 characters.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_correlation_id Property
The correlation Id of the message.
Syntax
def get_incoming_message_correlation_id(incoming_message_index: int) -> str: ...
Default Value
""
Remarks
The correlation Id of the message.
This property holds the correlation Id of the message. It may be empty if the message does not have a correlation Id set.
This value must be specified as a string no longer than 255 characters.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_delivery_mode Property
The delivery mode of the message.
Syntax
def get_incoming_message_delivery_mode(incoming_message_index: int) -> int: ...
Default Value
0
Remarks
The delivery mode of the message.
This property holds the delivery mode of the message; possible values are:
- 0: Unspecified.
- 1: Non-persistent; the message may be lost if the server encounters an error.
- 2: Persistent; the message will not be lost, even in case of server errors.
The default is 0, which indicates that the message does not have an explicit delivery mode set.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_expiration Property
The time-to-live value for this message.
Syntax
def get_incoming_message_expiration(incoming_message_index: int) -> str: ...
Default Value
""
Remarks
The time-to-live value for this message.
This property specifies the time-to-live (TTL) value, in milliseconds, for this message. It may be -1 if this message does not have a TTL.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_headers Property
Headers associated with the message.
Syntax
def get_incoming_message_headers(incoming_message_index: int) -> str: ...
Default Value
""
Remarks
Headers associated with the message.
This property holds additional Headers associated with the message. It may be empty if the message does not have any headers set.
This property must be specified as a JSON object containing name-type-value tuples; for example:
[ { "name": "Header1", "type": "long", "value": 12345678901234 }, { "name": "Header2", "type": "boolean", "value": "false" }, { "name": "Header3", "type": "string", "value": "This is a test." } ]
All "name" values must be ASCII strings that:
- Start with an ASCII letter, $, or $ character.
- Only contain ASCII letters, digits, underscores, $, and $ characters.
- Are unique among their siblings.
- Are no longer than 128 characters.
The following table describes all valid "type" values, and how to format the "value" field for each:
JSON Value Type | Description | Value Format |
boolean | Boolean | "True" or "False" |
byte | Byte | -128 to 127 |
ubyte | Unsigned byte | 0 to 255 |
short | Short | -32768 to 32767 |
ushort | Unsigned short | 0 to 65535 |
int | Integer | -2147483648 to 2147483647 |
uint | Unsigned integer | 0 to 4294967295 |
long | Long | -9223372036854775808 to 9223372036854775807 |
ulong | Unsigned long | 0 to 18446744073709551615 |
float | Float | IEEE 754 32-bit floating point number |
double | Double | IEEE 754 64-bit floating point number |
decimal | Decimal | Hex-encoded byte string |
sstring | Short string | UTF-8 string data, limited to 255 bytes; may not contain null bytes (\0) |
string | String | String data |
array | Array | JSON array of type-value pairs |
timestamp | Timestamp | Number of milliseconds since the Unix epoch (January 1, 1970 00:00:00 UTC) |
table | Table | JSON object containing name-type-value tuples |
null | Null | N/A (incoming_message_value is ignored) |
Note: The ulong and sstring value types are not supported when the RabbitMQCompatible configuration setting is enabled.
Headers of the table type should be specified in the same manner as shown above, while headers of the array type should be specified as a JSON array of type-value pairs; for example:
[ { "type": "int", "value": 23 }, { "type": "int", "value": -52 }, { "type": "int", "value": 153325 } ]
Nesting and mixing multiple levels of arrays and tables is allowed.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_id Property
The unique Id of the message.
Syntax
def get_incoming_message_id(incoming_message_index: int) -> str: ...
Default Value
""
Remarks
The unique Id of the message.
This property holds the unique Id of the message. It may be empty if the message does not have a unique Id.
This value must be specified as a string no longer than 255 characters.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_priority Property
The priority of the message.
Syntax
def get_incoming_message_priority(incoming_message_index: int) -> int: ...
Default Value
0
Remarks
The priority of the message.
This property holds the priority of the message. Valid priority values are 0-9; any other value causes the message to have unspecified priority when sent.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_reply_to Property
The address to send replies to for the message.
Syntax
def get_incoming_message_reply_to(incoming_message_index: int) -> str: ...
Default Value
""
Remarks
The address to send replies to for the message.
This property specifies the address to send replies to for the message. It may be empty if the message does not have a specific reply-to address set.
This value must be specified as a string no longer than 255 characters.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_timestamp Property
The message's timestamp.
Syntax
def get_incoming_message_timestamp(incoming_message_index: int) -> int: ...
Default Value
0
Remarks
The message's timestamp.
This property holds the timestamp of the message, specified as milliseconds since the Unix epoch (January 1, 1970 00:00:00 UTC). It may be less than or equal to 0 (default) if the message does not have a timestamp set.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_type Property
The message's type.
Syntax
def get_incoming_message_type(incoming_message_index: int) -> str: ...
Default Value
""
Remarks
The message's type.
This property holds the type of the message. It may be empty if the message does not have a type set.
This value must be specified as a string no longer than 255 characters.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
incoming_message_user_id Property
The identity of the user responsible for producing the message.
Syntax
def get_incoming_message_user_id(incoming_message_index: int) -> str: ...
Default Value
""
Remarks
The identity of the user responsible for producing the message.
This property specifies the identity of the user responsible for producing the message. It may be empty if no specific user was responsible for creating the message.
A message's user Id may be used for verification or authentication by the server and/or the final consumer.
This value must be specified as a string no longer than 255 characters.
The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.
This property is read-only.
local_host Property
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
def get_local_host() -> str: ... def set_local_host(value: str) -> None: ...
local_host = property(get_local_host, set_local_host)
Default Value
""
Remarks
This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.
If the class is connected, the local_host property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Note: local_host is not persistent. You must always set it in code, and never in the property window.
local_port Property
The TCP port in the local host where the class binds.
Syntax
def get_local_port() -> int: ... def set_local_port(value: int) -> None: ...
local_port = property(get_local_port, set_local_port)
Default Value
0
Remarks
This property must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.
Setting this property to 0 (default) enables the system to choose an open port at random. The chosen port will be returned by the local_port property after the connection is established.
local_port cannot be changed once a connection is made. Any attempt to set this property when a connection is active will generate an error.
This property is useful when trying to connect to services that require a trusted port on the client side.
message_app_id Property
The Id of the application that created the message.
Syntax
def get_message_app_id() -> str: ... def set_message_app_id(value: str) -> None: ...
message_app_id = property(get_message_app_id, set_message_app_id)
Default Value
""
Remarks
The Id of the application that created the message.
This property holds the Id of the application that created the message. It may be empty if the message does not have an application Id set.
This value must be specified as a string no longer than 255 characters.
message_body Property
The message body.
Syntax
def get_message_body() -> bytes: ... def set_message_body(value: bytes) -> None: ...
message_body = property(get_message_body, set_message_body)
Default Value
""
Remarks
The message body.
This property holds the body of the message. It may be empty.
message_channel_name Property
The name of the channel the message is associated with.
Syntax
def get_message_channel_name() -> str: ...
message_channel_name = property(get_message_channel_name, None)
Default Value
""
Remarks
The name of the channel the message is associated with.
This property reflects the name of the channel which the message is associated with; it is populated automatically by the class.
This property is read-only.
message_content_encoding Property
The content encoding of the message's body.
Syntax
def get_message_content_encoding() -> str: ... def set_message_content_encoding(value: str) -> None: ...
message_content_encoding = property(get_message_content_encoding, set_message_content_encoding)
Default Value
""
Remarks
The content encoding of the message's body.
This property holds the content encoding of the message's body. It may be empty if the message does not have a content encoding set.
This value must be specified as a string no longer than 255 characters.
message_content_type Property
The content type (MIME type) of the message's body.
Syntax
def get_message_content_type() -> str: ... def set_message_content_type(value: str) -> None: ...
message_content_type = property(get_message_content_type, set_message_content_type)
Default Value
""
Remarks
The content type (MIME type) of the message's body.
This property holds the content type (MIME type) of the message's body. It may be empty if the message does not have a content type set.
This value must be specified as a string no longer than 255 characters.
message_correlation_id Property
The correlation Id of the message.
Syntax
def get_message_correlation_id() -> str: ... def set_message_correlation_id(value: str) -> None: ...
message_correlation_id = property(get_message_correlation_id, set_message_correlation_id)
Default Value
""
Remarks
The correlation Id of the message.
This property holds the correlation Id of the message. It may be empty if the message does not have a correlation Id set.
This value must be specified as a string no longer than 255 characters.
message_delivery_mode Property
The delivery mode of the message.
Syntax
def get_message_delivery_mode() -> int: ... def set_message_delivery_mode(value: int) -> None: ...
message_delivery_mode = property(get_message_delivery_mode, set_message_delivery_mode)
Default Value
0
Remarks
The delivery mode of the message.
This property holds the delivery mode of the message; possible values are:
- 0: Unspecified.
- 1: Non-persistent; the message may be lost if the server encounters an error.
- 2: Persistent; the message will not be lost, even in case of server errors.
The default is 0, which indicates that the message does not have an explicit delivery mode set.
message_expiration Property
The time-to-live value for this message.
Syntax
def get_message_expiration() -> str: ... def set_message_expiration(value: str) -> None: ...
message_expiration = property(get_message_expiration, set_message_expiration)
Default Value
""
Remarks
The time-to-live value for this message.
This property specifies the time-to-live (TTL) value, in milliseconds, for this message. It may be -1 if this message does not have a TTL.
message_headers Property
Headers associated with the message.
Syntax
def get_message_headers() -> str: ... def set_message_headers(value: str) -> None: ...
message_headers = property(get_message_headers, set_message_headers)
Default Value
""
Remarks
Headers associated with the message.
This property holds additional Headers associated with the message. It may be empty if the message does not have any headers set.
This property must be specified as a JSON object containing name-type-value tuples; for example:
[ { "name": "Header1", "type": "long", "value": 12345678901234 }, { "name": "Header2", "type": "boolean", "value": "false" }, { "name": "Header3", "type": "string", "value": "This is a test." } ]
All "name" values must be ASCII strings that:
- Start with an ASCII letter, $, or $ character.
- Only contain ASCII letters, digits, underscores, $, and $ characters.
- Are unique among their siblings.
- Are no longer than 128 characters.
The following table describes all valid "type" values, and how to format the "value" field for each:
JSON Value Type | Description | Value Format |
boolean | Boolean | "True" or "False" |
byte | Byte | -128 to 127 |
ubyte | Unsigned byte | 0 to 255 |
short | Short | -32768 to 32767 |
ushort | Unsigned short | 0 to 65535 |
int | Integer | -2147483648 to 2147483647 |
uint | Unsigned integer | 0 to 4294967295 |
long | Long | -9223372036854775808 to 9223372036854775807 |
ulong | Unsigned long | 0 to 18446744073709551615 |
float | Float | IEEE 754 32-bit floating point number |
double | Double | IEEE 754 64-bit floating point number |
decimal | Decimal | Hex-encoded byte string |
sstring | Short string | UTF-8 string data, limited to 255 bytes; may not contain null bytes (\0) |
string | String | String data |
array | Array | JSON array of type-value pairs |
timestamp | Timestamp | Number of milliseconds since the Unix epoch (January 1, 1970 00:00:00 UTC) |
table | Table | JSON object containing name-type-value tuples |
null | Null | N/A (message_value is ignored) |
Note: The ulong and sstring value types are not supported when the RabbitMQCompatible configuration setting is enabled.
Headers of the table type should be specified in the same manner as shown above, while headers of the array type should be specified as a JSON array of type-value pairs; for example:
[ { "type": "int", "value": 23 }, { "type": "int", "value": -52 }, { "type": "int", "value": 153325 } ]
Nesting and mixing multiple levels of arrays and tables is allowed.
message_id Property
The unique Id of the message.
Syntax
def get_message_id() -> str: ... def set_message_id(value: str) -> None: ...
message_id = property(get_message_id, set_message_id)
Default Value
""
Remarks
The unique Id of the message.
This property holds the unique Id of the message. It may be empty if the message does not have a unique Id.
This value must be specified as a string no longer than 255 characters.
message_priority Property
The priority of the message.
Syntax
def get_message_priority() -> int: ... def set_message_priority(value: int) -> None: ...
message_priority = property(get_message_priority, set_message_priority)
Default Value
0
Remarks
The priority of the message.
This property holds the priority of the message. Valid priority values are 0-9; any other value causes the message to have unspecified priority when sent.
message_reply_to Property
The address to send replies to for the message.
Syntax
def get_message_reply_to() -> str: ... def set_message_reply_to(value: str) -> None: ...
message_reply_to = property(get_message_reply_to, set_message_reply_to)
Default Value
""
Remarks
The address to send replies to for the message.
This property specifies the address to send replies to for the message. It may be empty if the message does not have a specific reply-to address set.
This value must be specified as a string no longer than 255 characters.
message_timestamp Property
The message's timestamp.
Syntax
def get_message_timestamp() -> int: ... def set_message_timestamp(value: int) -> None: ...
message_timestamp = property(get_message_timestamp, set_message_timestamp)
Default Value
0
Remarks
The message's timestamp.
This property holds the timestamp of the message, specified as milliseconds since the Unix epoch (January 1, 1970 00:00:00 UTC). It may be less than or equal to 0 (default) if the message does not have a timestamp set.
message_type Property
The message's type.
Syntax
def get_message_type() -> str: ... def set_message_type(value: str) -> None: ...
message_type = property(get_message_type, set_message_type)
Default Value
""
Remarks
The message's type.
This property holds the type of the message. It may be empty if the message does not have a type set.
This value must be specified as a string no longer than 255 characters.
message_user_id Property
The identity of the user responsible for producing the message.
Syntax
def get_message_user_id() -> str: ... def set_message_user_id(value: str) -> None: ...
message_user_id = property(get_message_user_id, set_message_user_id)
Default Value
""
Remarks
The identity of the user responsible for producing the message.
This property specifies the identity of the user responsible for producing the message. It may be empty if no specific user was responsible for creating the message.
A message's user Id may be used for verification or authentication by the server and/or the final consumer.
This value must be specified as a string no longer than 255 characters.
outgoing_message_count Property
The number of records in the OutgoingMessage arrays.
Syntax
def get_outgoing_message_count() -> int: ...
outgoing_message_count = property(get_outgoing_message_count, None)
Default Value
0
Remarks
This property controls the size of the following arrays:
- outgoing_message_app_id
- outgoing_message_body
- outgoing_message_channel_name
- outgoing_message_content_encoding
- outgoing_message_content_type
- outgoing_message_correlation_id
- outgoing_message_delivery_mode
- outgoing_message_expiration
- outgoing_message_headers
- outgoing_message_id
- outgoing_message_priority
- outgoing_message_reply_to
- outgoing_message_timestamp
- outgoing_message_type
- outgoing_message_user_id
The array indices start at 0 and end at outgoing_message_count - 1.
This property is read-only.
outgoing_message_app_id Property
The Id of the application that created the message.
Syntax
def get_outgoing_message_app_id(outgoing_message_index: int) -> str: ...
Default Value
""
Remarks
The Id of the application that created the message.
This property holds the Id of the application that created the message. It may be empty if the message does not have an application Id set.
This value must be specified as a string no longer than 255 characters.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_body Property
The message body.
Syntax
def get_outgoing_message_body(outgoing_message_index: int) -> bytes: ...
Default Value
""
Remarks
The message body.
This property holds the body of the message. It may be empty.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_channel_name Property
The name of the channel the message is associated with.
Syntax
def get_outgoing_message_channel_name(outgoing_message_index: int) -> str: ...
Default Value
""
Remarks
The name of the channel the message is associated with.
This property reflects the name of the channel which the message is associated with; it is populated automatically by the class.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_content_encoding Property
The content encoding of the message's body.
Syntax
def get_outgoing_message_content_encoding(outgoing_message_index: int) -> str: ...
Default Value
""
Remarks
The content encoding of the message's body.
This property holds the content encoding of the message's body. It may be empty if the message does not have a content encoding set.
This value must be specified as a string no longer than 255 characters.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_content_type Property
The content type (MIME type) of the message's body.
Syntax
def get_outgoing_message_content_type(outgoing_message_index: int) -> str: ...
Default Value
""
Remarks
The content type (MIME type) of the message's body.
This property holds the content type (MIME type) of the message's body. It may be empty if the message does not have a content type set.
This value must be specified as a string no longer than 255 characters.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_correlation_id Property
The correlation Id of the message.
Syntax
def get_outgoing_message_correlation_id(outgoing_message_index: int) -> str: ...
Default Value
""
Remarks
The correlation Id of the message.
This property holds the correlation Id of the message. It may be empty if the message does not have a correlation Id set.
This value must be specified as a string no longer than 255 characters.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_delivery_mode Property
The delivery mode of the message.
Syntax
def get_outgoing_message_delivery_mode(outgoing_message_index: int) -> int: ...
Default Value
0
Remarks
The delivery mode of the message.
This property holds the delivery mode of the message; possible values are:
- 0: Unspecified.
- 1: Non-persistent; the message may be lost if the server encounters an error.
- 2: Persistent; the message will not be lost, even in case of server errors.
The default is 0, which indicates that the message does not have an explicit delivery mode set.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_expiration Property
The time-to-live value for this message.
Syntax
def get_outgoing_message_expiration(outgoing_message_index: int) -> str: ...
Default Value
""
Remarks
The time-to-live value for this message.
This property specifies the time-to-live (TTL) value, in milliseconds, for this message. It may be -1 if this message does not have a TTL.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_headers Property
Headers associated with the message.
Syntax
def get_outgoing_message_headers(outgoing_message_index: int) -> str: ...
Default Value
""
Remarks
Headers associated with the message.
This property holds additional Headers associated with the message. It may be empty if the message does not have any headers set.
This property must be specified as a JSON object containing name-type-value tuples; for example:
[ { "name": "Header1", "type": "long", "value": 12345678901234 }, { "name": "Header2", "type": "boolean", "value": "false" }, { "name": "Header3", "type": "string", "value": "This is a test." } ]
All "name" values must be ASCII strings that:
- Start with an ASCII letter, $, or $ character.
- Only contain ASCII letters, digits, underscores, $, and $ characters.
- Are unique among their siblings.
- Are no longer than 128 characters.
The following table describes all valid "type" values, and how to format the "value" field for each:
JSON Value Type | Description | Value Format |
boolean | Boolean | "True" or "False" |
byte | Byte | -128 to 127 |
ubyte | Unsigned byte | 0 to 255 |
short | Short | -32768 to 32767 |
ushort | Unsigned short | 0 to 65535 |
int | Integer | -2147483648 to 2147483647 |
uint | Unsigned integer | 0 to 4294967295 |
long | Long | -9223372036854775808 to 9223372036854775807 |
ulong | Unsigned long | 0 to 18446744073709551615 |
float | Float | IEEE 754 32-bit floating point number |
double | Double | IEEE 754 64-bit floating point number |
decimal | Decimal | Hex-encoded byte string |
sstring | Short string | UTF-8 string data, limited to 255 bytes; may not contain null bytes (\0) |
string | String | String data |
array | Array | JSON array of type-value pairs |
timestamp | Timestamp | Number of milliseconds since the Unix epoch (January 1, 1970 00:00:00 UTC) |
table | Table | JSON object containing name-type-value tuples |
null | Null | N/A (outgoing_message_value is ignored) |
Note: The ulong and sstring value types are not supported when the RabbitMQCompatible configuration setting is enabled.
Headers of the table type should be specified in the same manner as shown above, while headers of the array type should be specified as a JSON array of type-value pairs; for example:
[ { "type": "int", "value": 23 }, { "type": "int", "value": -52 }, { "type": "int", "value": 153325 } ]
Nesting and mixing multiple levels of arrays and tables is allowed.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_id Property
The unique Id of the message.
Syntax
def get_outgoing_message_id(outgoing_message_index: int) -> str: ...
Default Value
""
Remarks
The unique Id of the message.
This property holds the unique Id of the message. It may be empty if the message does not have a unique Id.
This value must be specified as a string no longer than 255 characters.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_priority Property
The priority of the message.
Syntax
def get_outgoing_message_priority(outgoing_message_index: int) -> int: ...
Default Value
0
Remarks
The priority of the message.
This property holds the priority of the message. Valid priority values are 0-9; any other value causes the message to have unspecified priority when sent.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_reply_to Property
The address to send replies to for the message.
Syntax
def get_outgoing_message_reply_to(outgoing_message_index: int) -> str: ...
Default Value
""
Remarks
The address to send replies to for the message.
This property specifies the address to send replies to for the message. It may be empty if the message does not have a specific reply-to address set.
This value must be specified as a string no longer than 255 characters.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_timestamp Property
The message's timestamp.
Syntax
def get_outgoing_message_timestamp(outgoing_message_index: int) -> int: ...
Default Value
0
Remarks
The message's timestamp.
This property holds the timestamp of the message, specified as milliseconds since the Unix epoch (January 1, 1970 00:00:00 UTC). It may be less than or equal to 0 (default) if the message does not have a timestamp set.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_type Property
The message's type.
Syntax
def get_outgoing_message_type(outgoing_message_index: int) -> str: ...
Default Value
""
Remarks
The message's type.
This property holds the type of the message. It may be empty if the message does not have a type set.
This value must be specified as a string no longer than 255 characters.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
outgoing_message_user_id Property
The identity of the user responsible for producing the message.
Syntax
def get_outgoing_message_user_id(outgoing_message_index: int) -> str: ...
Default Value
""
Remarks
The identity of the user responsible for producing the message.
This property specifies the identity of the user responsible for producing the message. It may be empty if no specific user was responsible for creating the message.
A message's user Id may be used for verification or authentication by the server and/or the final consumer.
This value must be specified as a string no longer than 255 characters.
The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.
This property is read-only.
password Property
A password to use for SASL authentication.
Syntax
def get_password() -> str: ... def set_password(value: str) -> None: ...
password = property(get_password, set_password)
Default Value
""
Remarks
This property contains a password to use for SASL authentication.
queue_message_count Property
The message count returned by various queue operations.
Syntax
def get_queue_message_count() -> int: ...
queue_message_count = property(get_queue_message_count, None)
Default Value
0
Remarks
This property is populated with a message count after calling certain queue-related methods.
After calling... | This property will reflect... |
declare_queue | The number of messages currently in the queue. |
purge_queue | The number of messages purged from the queue. |
delete_queue | THe number of messages deleted along with the queue. |
This property is read-only.
received_message_app_id Property
The Id of the application that created the message.
Syntax
def get_received_message_app_id() -> str: ...
received_message_app_id = property(get_received_message_app_id, None)
Default Value
""
Remarks
The Id of the application that created the message.
This property holds the Id of the application that created the message. It may be empty if the message does not have an application Id set.
This value must be specified as a string no longer than 255 characters.
This property is read-only.
received_message_body Property
The message body.
Syntax
def get_received_message_body() -> bytes: ...
received_message_body = property(get_received_message_body, None)
Default Value
""
Remarks
The message body.
This property holds the body of the message. It may be empty.
This property is read-only.
received_message_channel_name Property
The name of the channel the message is associated with.
Syntax
def get_received_message_channel_name() -> str: ...
received_message_channel_name = property(get_received_message_channel_name, None)
Default Value
""
Remarks
The name of the channel the message is associated with.
This property reflects the name of the channel which the message is associated with; it is populated automatically by the class.
This property is read-only.
received_message_content_encoding Property
The content encoding of the message's body.
Syntax
def get_received_message_content_encoding() -> str: ...
received_message_content_encoding = property(get_received_message_content_encoding, None)
Default Value
""
Remarks
The content encoding of the message's body.
This property holds the content encoding of the message's body. It may be empty if the message does not have a content encoding set.
This value must be specified as a string no longer than 255 characters.
This property is read-only.
received_message_content_type Property
The content type (MIME type) of the message's body.
Syntax
def get_received_message_content_type() -> str: ...
received_message_content_type = property(get_received_message_content_type, None)
Default Value
""
Remarks
The content type (MIME type) of the message's body.
This property holds the content type (MIME type) of the message's body. It may be empty if the message does not have a content type set.
This value must be specified as a string no longer than 255 characters.
This property is read-only.
received_message_correlation_id Property
The correlation Id of the message.
Syntax
def get_received_message_correlation_id() -> str: ...
received_message_correlation_id = property(get_received_message_correlation_id, None)
Default Value
""
Remarks
The correlation Id of the message.
This property holds the correlation Id of the message. It may be empty if the message does not have a correlation Id set.
This value must be specified as a string no longer than 255 characters.
This property is read-only.
received_message_delivery_mode Property
The delivery mode of the message.
Syntax
def get_received_message_delivery_mode() -> int: ...
received_message_delivery_mode = property(get_received_message_delivery_mode, None)
Default Value
0
Remarks
The delivery mode of the message.
This property holds the delivery mode of the message; possible values are:
- 0: Unspecified.
- 1: Non-persistent; the message may be lost if the server encounters an error.
- 2: Persistent; the message will not be lost, even in case of server errors.
The default is 0, which indicates that the message does not have an explicit delivery mode set.
This property is read-only.
received_message_expiration Property
The time-to-live value for this message.
Syntax
def get_received_message_expiration() -> str: ...
received_message_expiration = property(get_received_message_expiration, None)
Default Value
""
Remarks
The time-to-live value for this message.
This property specifies the time-to-live (TTL) value, in milliseconds, for this message. It may be -1 if this message does not have a TTL.
This property is read-only.
received_message_headers Property
Headers associated with the message.
Syntax
def get_received_message_headers() -> str: ...
received_message_headers = property(get_received_message_headers, None)
Default Value
""
Remarks
Headers associated with the message.
This property holds additional Headers associated with the message. It may be empty if the message does not have any headers set.
This property must be specified as a JSON object containing name-type-value tuples; for example:
[ { "name": "Header1", "type": "long", "value": 12345678901234 }, { "name": "Header2", "type": "boolean", "value": "false" }, { "name": "Header3", "type": "string", "value": "This is a test." } ]
All "name" values must be ASCII strings that:
- Start with an ASCII letter, $, or $ character.
- Only contain ASCII letters, digits, underscores, $, and $ characters.
- Are unique among their siblings.
- Are no longer than 128 characters.
The following table describes all valid "type" values, and how to format the "value" field for each:
JSON Value Type | Description | Value Format |
boolean | Boolean | "True" or "False" |
byte | Byte | -128 to 127 |
ubyte | Unsigned byte | 0 to 255 |
short | Short | -32768 to 32767 |
ushort | Unsigned short | 0 to 65535 |
int | Integer | -2147483648 to 2147483647 |
uint | Unsigned integer | 0 to 4294967295 |
long | Long | -9223372036854775808 to 9223372036854775807 |
ulong | Unsigned long | 0 to 18446744073709551615 |
float | Float | IEEE 754 32-bit floating point number |
double | Double | IEEE 754 64-bit floating point number |
decimal | Decimal | Hex-encoded byte string |
sstring | Short string | UTF-8 string data, limited to 255 bytes; may not contain null bytes (\0) |
string | String | String data |
array | Array | JSON array of type-value pairs |
timestamp | Timestamp | Number of milliseconds since the Unix epoch (January 1, 1970 00:00:00 UTC) |
table | Table | JSON object containing name-type-value tuples |
null | Null | N/A (received_message_value is ignored) |
Note: The ulong and sstring value types are not supported when the RabbitMQCompatible configuration setting is enabled.
Headers of the table type should be specified in the same manner as shown above, while headers of the array type should be specified as a JSON array of type-value pairs; for example:
[ { "type": "int", "value": 23 }, { "type": "int", "value": -52 }, { "type": "int", "value": 153325 } ]
Nesting and mixing multiple levels of arrays and tables is allowed.
This property is read-only.
received_message_id Property
The unique Id of the message.
Syntax
def get_received_message_id() -> str: ...
received_message_id = property(get_received_message_id, None)
Default Value
""
Remarks
The unique Id of the message.
This property holds the unique Id of the message. It may be empty if the message does not have a unique Id.
This value must be specified as a string no longer than 255 characters.
This property is read-only.
received_message_priority Property
The priority of the message.
Syntax
def get_received_message_priority() -> int: ...
received_message_priority = property(get_received_message_priority, None)
Default Value
0
Remarks
The priority of the message.
This property holds the priority of the message. Valid priority values are 0-9; any other value causes the message to have unspecified priority when sent.
This property is read-only.
received_message_reply_to Property
The address to send replies to for the message.
Syntax
def get_received_message_reply_to() -> str: ...
received_message_reply_to = property(get_received_message_reply_to, None)
Default Value
""
Remarks
The address to send replies to for the message.
This property specifies the address to send replies to for the message. It may be empty if the message does not have a specific reply-to address set.
This value must be specified as a string no longer than 255 characters.
This property is read-only.
received_message_timestamp Property
The message's timestamp.
Syntax
def get_received_message_timestamp() -> int: ...
received_message_timestamp = property(get_received_message_timestamp, None)
Default Value
0
Remarks
The message's timestamp.
This property holds the timestamp of the message, specified as milliseconds since the Unix epoch (January 1, 1970 00:00:00 UTC). It may be less than or equal to 0 (default) if the message does not have a timestamp set.
This property is read-only.
received_message_type Property
The message's type.
Syntax
def get_received_message_type() -> str: ...
received_message_type = property(get_received_message_type, None)
Default Value
""
Remarks
The message's type.
This property holds the type of the message. It may be empty if the message does not have a type set.
This value must be specified as a string no longer than 255 characters.
This property is read-only.
received_message_user_id Property
The identity of the user responsible for producing the message.
Syntax
def get_received_message_user_id() -> str: ...
received_message_user_id = property(get_received_message_user_id, None)
Default Value
""
Remarks
The identity of the user responsible for producing the message.
This property specifies the identity of the user responsible for producing the message. It may be empty if no specific user was responsible for creating the message.
A message's user Id may be used for verification or authentication by the server and/or the final consumer.
This value must be specified as a string no longer than 255 characters.
This property is read-only.
remote_host Property
This property includes the address of the remote host. Domain names are resolved to IP addresses.
Syntax
def get_remote_host() -> str: ... def set_remote_host(value: str) -> None: ...
remote_host = property(get_remote_host, set_remote_host)
Default Value
""
Remarks
This property specifies the IP address (IP number in dotted internet format) or the domain name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.
If this property is set to a domain name, a DNS request is initiated, and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.
If the class is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.
Example. Connecting:
TCPClientControl.RemoteHost = "MyHostNameOrIP"
TCPClientControl.RemotePort = 777
TCPClientControl.Connected = true
remote_port Property
The port of the AQMP server (default is 5672). The default port for SSL is 5671.
Syntax
def get_remote_port() -> int: ... def set_remote_port(value: int) -> None: ...
remote_port = property(get_remote_port, set_remote_port)
Default Value
5672
Remarks
This property specifies a service port on the remote host to connect to.
A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.
server_property_count Property
The number of records in the ServerProperty arrays.
Syntax
def get_server_property_count() -> int: ...
server_property_count = property(get_server_property_count, None)
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at server_property_count - 1.
This property is read-only.
server_property_name Property
The table property's name.
Syntax
def get_server_property_name(server_property_index: int) -> str: ...
Default Value
""
Remarks
The table field's name.
This property specifies the table field's name. The name must be an ASCII string that:
- Starts with an ASCII letter, $, or $ character.
- Only contains ASCII letters, digits, underscores, $, and $ characters.
- Is unique among all sibling table field server_property_names.
- Is no longer than 128 characters.
The server_property_index parameter specifies the index of the item in the array. The size of the array is controlled by the server_property_count property.
This property is read-only.
server_property_value Property
The table property's value.
Syntax
def get_server_property_value(server_property_index: int) -> str: ...
Default Value
""
Remarks
The table field's value.
This property specifies the table field's value.
The server_property_index parameter specifies the index of the item in the array. The size of the array is controlled by the server_property_count property.
This property is read-only.
server_property_value_type Property
The table property's value type.
Syntax
def get_server_property_value_type(server_property_index: int) -> int: ...
Default Value
17
Remarks
The table field's value type.
This property specifies the table field's value type (and thus, the format of the data in the server_property_value property). Acceptable value types are:
Value Type | JSON Value Type | Description | Value Format |
fvtBoolean (0) | boolean | Boolean | "True" or "False" |
fvtByte (1) | byte | Byte | -128 to 127 |
fvtUbyte (2) | ubyte | Unsigned byte | 0 to 255 |
fvtShort (3) | short | Short | -32768 to 32767 |
fvtUshort (4) | ushort | Unsigned short | 0 to 65535 |
fvtInt (5) | int | Integer | -2147483648 to 2147483647 |
fvtUint (6) | uint | Unsigned integer | 0 to 4294967295 |
fvtLong (7) | long | Long | -9223372036854775808 to 9223372036854775807 |
fvtUlong (8) | ulong | Unsigned long | 0 to 18446744073709551615 |
fvtFloat (9) | float | Float | IEEE 754 32-bit floating point number |
fvtDouble (10) | double | Double | IEEE 754 64-bit floating point number |
fvtDecimal (11) | decimal | Decimal | Hex-encoded byte string |
fvtSstring (12) | sstring | Short string | UTF-8 string data, limited to 255 bytes; may not contain null bytes (\0) |
fvtString (13) | string | String | String data |
fvtArray (14) | array | Array | JSON array of type-value pairs |
fvtTimestamp (15) | timestamp | Timestamp | Number of milliseconds since the Unix epoch (January 1, 1970 00:00:00 UTC) |
fvtTable (16) | table | Table | JSON object containing name-type-value tuples |
fvtNull (17 - default) | null | Null | N/A (server_property_value is ignored) |
Note: The fvtUlong (8) and fvtSstring (12) value types are not supported when the RabbitMQCompatible configuration setting is enabled.
For the fvtArray (14) value type, the server_property_value should be specified as a JSON array of type-value pairs; for example:
[ { "type": "int", "value": 23 }, { "type": "int", "value": -52 }, { "type": "int", "value": 153325 } ]
For the fvtTable (16) value type, the server_property_value should be specified as a JSON object containing name-type-value tuples; for example:
{ { "name": "Test1", "type": "long", "value": 12345678901234 }, { "name": "Test2", "type": "boolean", "value": "false" }, { "name": "Test3", "type": "string", "value": "This is a test." } }
Notes regarding fvtArray (14) and fvtTable (16) type server_property_values:
- All "type" fields in the JSON content must be set to one of the value types in the table above.
- For fvtTable (16) type server_property_values, all "name" fields must adhere to the rules described by the server_property_key documentation.
- Nesting and mixing multiple levels of arrays and tables in the JSON is allowed.
The server_property_index parameter specifies the index of the item in the array. The size of the array is controlled by the server_property_count property.
This property is read-only.
ssl_accept_server_cert_effective_date Property
The date on which this certificate becomes valid.
Syntax
def get_ssl_accept_server_cert_effective_date() -> str: ...
ssl_accept_server_cert_effective_date = property(get_ssl_accept_server_cert_effective_date, None)
Default Value
""
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
ssl_accept_server_cert_expiration_date Property
The date on which the certificate expires.
Syntax
def get_ssl_accept_server_cert_expiration_date() -> str: ...
ssl_accept_server_cert_expiration_date = property(get_ssl_accept_server_cert_expiration_date, None)
Default Value
""
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
ssl_accept_server_cert_extended_key_usage Property
A comma-delimited list of extended key usage identifiers.
Syntax
def get_ssl_accept_server_cert_extended_key_usage() -> str: ...
ssl_accept_server_cert_extended_key_usage = property(get_ssl_accept_server_cert_extended_key_usage, None)
Default Value
""
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
ssl_accept_server_cert_fingerprint Property
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
def get_ssl_accept_server_cert_fingerprint() -> str: ...
ssl_accept_server_cert_fingerprint = property(get_ssl_accept_server_cert_fingerprint, None)
Default Value
""
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
ssl_accept_server_cert_fingerprint_sha1 Property
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
def get_ssl_accept_server_cert_fingerprint_sha1() -> str: ...
ssl_accept_server_cert_fingerprint_sha1 = property(get_ssl_accept_server_cert_fingerprint_sha1, None)
Default Value
""
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
ssl_accept_server_cert_fingerprint_sha256 Property
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
def get_ssl_accept_server_cert_fingerprint_sha256() -> str: ...
ssl_accept_server_cert_fingerprint_sha256 = property(get_ssl_accept_server_cert_fingerprint_sha256, None)
Default Value
""
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
ssl_accept_server_cert_issuer Property
The issuer of the certificate.
Syntax
def get_ssl_accept_server_cert_issuer() -> str: ...
ssl_accept_server_cert_issuer = property(get_ssl_accept_server_cert_issuer, None)
Default Value
""
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
ssl_accept_server_cert_private_key Property
The private key of the certificate (if available).
Syntax
def get_ssl_accept_server_cert_private_key() -> str: ...
ssl_accept_server_cert_private_key = property(get_ssl_accept_server_cert_private_key, None)
Default Value
""
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The ssl_accept_server_cert_private_key may be available but not exportable. In this case, ssl_accept_server_cert_private_key returns an empty string.
This property is read-only.
ssl_accept_server_cert_private_key_available Property
Whether a PrivateKey is available for the selected certificate.
Syntax
def get_ssl_accept_server_cert_private_key_available() -> bool: ...
ssl_accept_server_cert_private_key_available = property(get_ssl_accept_server_cert_private_key_available, None)
Default Value
FALSE
Remarks
Whether a ssl_accept_server_cert_private_key is available for the selected certificate. If ssl_accept_server_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
ssl_accept_server_cert_private_key_container Property
The name of the PrivateKey container for the certificate (if available).
Syntax
def get_ssl_accept_server_cert_private_key_container() -> str: ...
ssl_accept_server_cert_private_key_container = property(get_ssl_accept_server_cert_private_key_container, None)
Default Value
""
Remarks
The name of the ssl_accept_server_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
ssl_accept_server_cert_public_key Property
The public key of the certificate.
Syntax
def get_ssl_accept_server_cert_public_key() -> str: ...
ssl_accept_server_cert_public_key = property(get_ssl_accept_server_cert_public_key, None)
Default Value
""
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
ssl_accept_server_cert_public_key_algorithm Property
The textual description of the certificate's public key algorithm.
Syntax
def get_ssl_accept_server_cert_public_key_algorithm() -> str: ...
ssl_accept_server_cert_public_key_algorithm = property(get_ssl_accept_server_cert_public_key_algorithm, None)
Default Value
""
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
ssl_accept_server_cert_public_key_length Property
The length of the certificate's public key (in bits).
Syntax
def get_ssl_accept_server_cert_public_key_length() -> int: ...
ssl_accept_server_cert_public_key_length = property(get_ssl_accept_server_cert_public_key_length, None)
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
ssl_accept_server_cert_serial_number Property
The serial number of the certificate encoded as a string.
Syntax
def get_ssl_accept_server_cert_serial_number() -> str: ...
ssl_accept_server_cert_serial_number = property(get_ssl_accept_server_cert_serial_number, None)
Default Value
""
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
ssl_accept_server_cert_signature_algorithm Property
The text description of the certificate's signature algorithm.
Syntax
def get_ssl_accept_server_cert_signature_algorithm() -> str: ...
ssl_accept_server_cert_signature_algorithm = property(get_ssl_accept_server_cert_signature_algorithm, None)
Default Value
""
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
ssl_accept_server_cert_store Property
The name of the certificate store for the client certificate.
Syntax
def get_ssl_accept_server_cert_store() -> bytes: ... def set_ssl_accept_server_cert_store(value: bytes) -> None: ...
ssl_accept_server_cert_store = property(get_ssl_accept_server_cert_store, set_ssl_accept_server_cert_store)
Default Value
"MY"
Remarks
The name of the certificate store for the client certificate.
The ssl_accept_server_cert_store_type property denotes the type of the certificate store specified by ssl_accept_server_cert_store. If the store is password-protected, specify the password in ssl_accept_server_cert_store_password.
ssl_accept_server_cert_store is used in conjunction with the ssl_accept_server_cert_subject property to specify client certificates. If ssl_accept_server_cert_store has a value, and ssl_accept_server_cert_subject or ssl_accept_server_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_accept_server_cert_subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
ssl_accept_server_cert_store_password Property
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
def get_ssl_accept_server_cert_store_password() -> str: ... def set_ssl_accept_server_cert_store_password(value: str) -> None: ...
ssl_accept_server_cert_store_password = property(get_ssl_accept_server_cert_store_password, set_ssl_accept_server_cert_store_password)
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_accept_server_cert_store_type Property
The type of certificate store for this certificate.
Syntax
def get_ssl_accept_server_cert_store_type() -> int: ... def set_ssl_accept_server_cert_store_type(value: int) -> None: ...
ssl_accept_server_cert_store_type = property(get_ssl_accept_server_cert_store_type, set_ssl_accept_server_cert_store_type)
Default Value
0
Remarks
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the ssl_accept_server_cert_store and set ssl_accept_server_cert_store_password to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
ssl_accept_server_cert_subject_alt_names Property
Comma-separated lists of alternative subject names for the certificate.
Syntax
def get_ssl_accept_server_cert_subject_alt_names() -> str: ...
ssl_accept_server_cert_subject_alt_names = property(get_ssl_accept_server_cert_subject_alt_names, None)
Default Value
""
Remarks
Comma-separated lists of alternative subject names for the certificate.
This property is read-only.
ssl_accept_server_cert_thumbprint_md5 Property
The MD5 hash of the certificate.
Syntax
def get_ssl_accept_server_cert_thumbprint_md5() -> str: ...
ssl_accept_server_cert_thumbprint_md5 = property(get_ssl_accept_server_cert_thumbprint_md5, None)
Default Value
""
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_accept_server_cert_thumbprint_sha1 Property
The SHA-1 hash of the certificate.
Syntax
def get_ssl_accept_server_cert_thumbprint_sha1() -> str: ...
ssl_accept_server_cert_thumbprint_sha1 = property(get_ssl_accept_server_cert_thumbprint_sha1, None)
Default Value
""
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_accept_server_cert_thumbprint_sha256 Property
The SHA-256 hash of the certificate.
Syntax
def get_ssl_accept_server_cert_thumbprint_sha256() -> str: ...
ssl_accept_server_cert_thumbprint_sha256 = property(get_ssl_accept_server_cert_thumbprint_sha256, None)
Default Value
""
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_accept_server_cert_usage Property
The text description of UsageFlags .
Syntax
def get_ssl_accept_server_cert_usage() -> str: ...
ssl_accept_server_cert_usage = property(get_ssl_accept_server_cert_usage, None)
Default Value
""
Remarks
The text description of ssl_accept_server_cert_usage_flags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
ssl_accept_server_cert_usage_flags Property
The flags that show intended use for the certificate.
Syntax
def get_ssl_accept_server_cert_usage_flags() -> int: ...
ssl_accept_server_cert_usage_flags = property(get_ssl_accept_server_cert_usage_flags, None)
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of ssl_accept_server_cert_usage_flags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the ssl_accept_server_cert_usage property for a text representation of ssl_accept_server_cert_usage_flags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
ssl_accept_server_cert_version Property
The certificate's version number.
Syntax
def get_ssl_accept_server_cert_version() -> str: ...
ssl_accept_server_cert_version = property(get_ssl_accept_server_cert_version, None)
Default Value
""
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
ssl_accept_server_cert_subject Property
The subject of the certificate used for client authentication.
Syntax
def get_ssl_accept_server_cert_subject() -> str: ... def set_ssl_accept_server_cert_subject(value: str) -> None: ...
ssl_accept_server_cert_subject = property(get_ssl_accept_server_cert_subject, set_ssl_accept_server_cert_subject)
Default Value
""
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
ssl_accept_server_cert_encoded Property
The certificate (PEM/Base64 encoded).
Syntax
def get_ssl_accept_server_cert_encoded() -> bytes: ... def set_ssl_accept_server_cert_encoded(value: bytes) -> None: ...
ssl_accept_server_cert_encoded = property(get_ssl_accept_server_cert_encoded, set_ssl_accept_server_cert_encoded)
Default Value
""
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_accept_server_cert_store and ssl_accept_server_cert_subject properties also may be used to specify a certificate.
When ssl_accept_server_cert_encoded is set, a search is initiated in the current ssl_accept_server_cert_store for the private key of the certificate. If the key is found, ssl_accept_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_accept_server_cert_subject is set to an empty string.
ssl_cert_effective_date Property
The date on which this certificate becomes valid.
Syntax
def get_ssl_cert_effective_date() -> str: ...
ssl_cert_effective_date = property(get_ssl_cert_effective_date, None)
Default Value
""
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
ssl_cert_expiration_date Property
The date on which the certificate expires.
Syntax
def get_ssl_cert_expiration_date() -> str: ...
ssl_cert_expiration_date = property(get_ssl_cert_expiration_date, None)
Default Value
""
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
ssl_cert_extended_key_usage Property
A comma-delimited list of extended key usage identifiers.
Syntax
def get_ssl_cert_extended_key_usage() -> str: ...
ssl_cert_extended_key_usage = property(get_ssl_cert_extended_key_usage, None)
Default Value
""
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
ssl_cert_fingerprint Property
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
def get_ssl_cert_fingerprint() -> str: ...
ssl_cert_fingerprint = property(get_ssl_cert_fingerprint, None)
Default Value
""
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
ssl_cert_fingerprint_sha1 Property
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
def get_ssl_cert_fingerprint_sha1() -> str: ...
ssl_cert_fingerprint_sha1 = property(get_ssl_cert_fingerprint_sha1, None)
Default Value
""
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
ssl_cert_fingerprint_sha256 Property
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
def get_ssl_cert_fingerprint_sha256() -> str: ...
ssl_cert_fingerprint_sha256 = property(get_ssl_cert_fingerprint_sha256, None)
Default Value
""
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
ssl_cert_issuer Property
The issuer of the certificate.
Syntax
def get_ssl_cert_issuer() -> str: ...
ssl_cert_issuer = property(get_ssl_cert_issuer, None)
Default Value
""
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
ssl_cert_private_key Property
The private key of the certificate (if available).
Syntax
def get_ssl_cert_private_key() -> str: ...
ssl_cert_private_key = property(get_ssl_cert_private_key, None)
Default Value
""
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The ssl_cert_private_key may be available but not exportable. In this case, ssl_cert_private_key returns an empty string.
This property is read-only.
ssl_cert_private_key_available Property
Whether a PrivateKey is available for the selected certificate.
Syntax
def get_ssl_cert_private_key_available() -> bool: ...
ssl_cert_private_key_available = property(get_ssl_cert_private_key_available, None)
Default Value
FALSE
Remarks
Whether a ssl_cert_private_key is available for the selected certificate. If ssl_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
ssl_cert_private_key_container Property
The name of the PrivateKey container for the certificate (if available).
Syntax
def get_ssl_cert_private_key_container() -> str: ...
ssl_cert_private_key_container = property(get_ssl_cert_private_key_container, None)
Default Value
""
Remarks
The name of the ssl_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
ssl_cert_public_key Property
The public key of the certificate.
Syntax
def get_ssl_cert_public_key() -> str: ...
ssl_cert_public_key = property(get_ssl_cert_public_key, None)
Default Value
""
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
ssl_cert_public_key_algorithm Property
The textual description of the certificate's public key algorithm.
Syntax
def get_ssl_cert_public_key_algorithm() -> str: ...
ssl_cert_public_key_algorithm = property(get_ssl_cert_public_key_algorithm, None)
Default Value
""
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
ssl_cert_public_key_length Property
The length of the certificate's public key (in bits).
Syntax
def get_ssl_cert_public_key_length() -> int: ...
ssl_cert_public_key_length = property(get_ssl_cert_public_key_length, None)
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
ssl_cert_serial_number Property
The serial number of the certificate encoded as a string.
Syntax
def get_ssl_cert_serial_number() -> str: ...
ssl_cert_serial_number = property(get_ssl_cert_serial_number, None)
Default Value
""
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
ssl_cert_signature_algorithm Property
The text description of the certificate's signature algorithm.
Syntax
def get_ssl_cert_signature_algorithm() -> str: ...
ssl_cert_signature_algorithm = property(get_ssl_cert_signature_algorithm, None)
Default Value
""
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
ssl_cert_store Property
The name of the certificate store for the client certificate.
Syntax
def get_ssl_cert_store() -> bytes: ... def set_ssl_cert_store(value: bytes) -> None: ...
ssl_cert_store = property(get_ssl_cert_store, set_ssl_cert_store)
Default Value
"MY"
Remarks
The name of the certificate store for the client certificate.
The ssl_cert_store_type property denotes the type of the certificate store specified by ssl_cert_store. If the store is password-protected, specify the password in ssl_cert_store_password.
ssl_cert_store is used in conjunction with the ssl_cert_subject property to specify client certificates. If ssl_cert_store has a value, and ssl_cert_subject or ssl_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_cert_subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
ssl_cert_store_password Property
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
def get_ssl_cert_store_password() -> str: ... def set_ssl_cert_store_password(value: str) -> None: ...
ssl_cert_store_password = property(get_ssl_cert_store_password, set_ssl_cert_store_password)
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_cert_store_type Property
The type of certificate store for this certificate.
Syntax
def get_ssl_cert_store_type() -> int: ... def set_ssl_cert_store_type(value: int) -> None: ...
ssl_cert_store_type = property(get_ssl_cert_store_type, set_ssl_cert_store_type)
Default Value
0
Remarks
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the ssl_cert_store and set ssl_cert_store_password to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
ssl_cert_subject_alt_names Property
Comma-separated lists of alternative subject names for the certificate.
Syntax
def get_ssl_cert_subject_alt_names() -> str: ...
ssl_cert_subject_alt_names = property(get_ssl_cert_subject_alt_names, None)
Default Value
""
Remarks
Comma-separated lists of alternative subject names for the certificate.
This property is read-only.
ssl_cert_thumbprint_md5 Property
The MD5 hash of the certificate.
Syntax
def get_ssl_cert_thumbprint_md5() -> str: ...
ssl_cert_thumbprint_md5 = property(get_ssl_cert_thumbprint_md5, None)
Default Value
""
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_cert_thumbprint_sha1 Property
The SHA-1 hash of the certificate.
Syntax
def get_ssl_cert_thumbprint_sha1() -> str: ...
ssl_cert_thumbprint_sha1 = property(get_ssl_cert_thumbprint_sha1, None)
Default Value
""
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_cert_thumbprint_sha256 Property
The SHA-256 hash of the certificate.
Syntax
def get_ssl_cert_thumbprint_sha256() -> str: ...
ssl_cert_thumbprint_sha256 = property(get_ssl_cert_thumbprint_sha256, None)
Default Value
""
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_cert_usage Property
The text description of UsageFlags .
Syntax
def get_ssl_cert_usage() -> str: ...
ssl_cert_usage = property(get_ssl_cert_usage, None)
Default Value
""
Remarks
The text description of ssl_cert_usage_flags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
ssl_cert_usage_flags Property
The flags that show intended use for the certificate.
Syntax
def get_ssl_cert_usage_flags() -> int: ...
ssl_cert_usage_flags = property(get_ssl_cert_usage_flags, None)
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of ssl_cert_usage_flags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the ssl_cert_usage property for a text representation of ssl_cert_usage_flags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
ssl_cert_version Property
The certificate's version number.
Syntax
def get_ssl_cert_version() -> str: ...
ssl_cert_version = property(get_ssl_cert_version, None)
Default Value
""
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
ssl_cert_subject Property
The subject of the certificate used for client authentication.
Syntax
def get_ssl_cert_subject() -> str: ... def set_ssl_cert_subject(value: str) -> None: ...
ssl_cert_subject = property(get_ssl_cert_subject, set_ssl_cert_subject)
Default Value
""
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
ssl_cert_encoded Property
The certificate (PEM/Base64 encoded).
Syntax
def get_ssl_cert_encoded() -> bytes: ... def set_ssl_cert_encoded(value: bytes) -> None: ...
ssl_cert_encoded = property(get_ssl_cert_encoded, set_ssl_cert_encoded)
Default Value
""
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_cert_store and ssl_cert_subject properties also may be used to specify a certificate.
When ssl_cert_encoded is set, a search is initiated in the current ssl_cert_store for the private key of the certificate. If the key is found, ssl_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_cert_subject is set to an empty string.
ssl_enabled Property
This property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled.
Syntax
def get_ssl_enabled() -> bool: ... def set_ssl_enabled(value: bool) -> None: ...
ssl_enabled = property(get_ssl_enabled, set_ssl_enabled)
Default Value
FALSE
Remarks
This property specifies whether TLS/SSL is enabled in the class. When False (default), the class operates in plaintext mode. When True, TLS/SSL is enabled.
TLS/SSL may also be enabled by setting ssl_start_mode. Setting ssl_start_mode will automatically update this property value.
If the default port (5672) is selected when SSLEnabled is set to true, the port will automatically be changed to the default port for AMQP with SSL (5671). Likewise, if port 5671 is selected when SSLEnabled is set to false, the port will automatically be changed to the default port. If the port has been set to any value other than the default values, it will remain the same when the value of SSLEnabled changes.
ssl_provider Property
The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
Syntax
def get_ssl_provider() -> int: ... def set_ssl_provider(value: int) -> None: ...
ssl_provider = property(get_ssl_provider, set_ssl_provider)
Default Value
0
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are as follows:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.
When Automatic is selected, on Windows, the class will use the platform implementation. On Linux/macOS, the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used on all platforms.
ssl_server_cert_effective_date Property
The date on which this certificate becomes valid.
Syntax
def get_ssl_server_cert_effective_date() -> str: ...
ssl_server_cert_effective_date = property(get_ssl_server_cert_effective_date, None)
Default Value
""
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
ssl_server_cert_expiration_date Property
The date on which the certificate expires.
Syntax
def get_ssl_server_cert_expiration_date() -> str: ...
ssl_server_cert_expiration_date = property(get_ssl_server_cert_expiration_date, None)
Default Value
""
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
ssl_server_cert_extended_key_usage Property
A comma-delimited list of extended key usage identifiers.
Syntax
def get_ssl_server_cert_extended_key_usage() -> str: ...
ssl_server_cert_extended_key_usage = property(get_ssl_server_cert_extended_key_usage, None)
Default Value
""
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
ssl_server_cert_fingerprint Property
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
def get_ssl_server_cert_fingerprint() -> str: ...
ssl_server_cert_fingerprint = property(get_ssl_server_cert_fingerprint, None)
Default Value
""
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
ssl_server_cert_fingerprint_sha1 Property
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
def get_ssl_server_cert_fingerprint_sha1() -> str: ...
ssl_server_cert_fingerprint_sha1 = property(get_ssl_server_cert_fingerprint_sha1, None)
Default Value
""
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
ssl_server_cert_fingerprint_sha256 Property
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
def get_ssl_server_cert_fingerprint_sha256() -> str: ...
ssl_server_cert_fingerprint_sha256 = property(get_ssl_server_cert_fingerprint_sha256, None)
Default Value
""
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
ssl_server_cert_issuer Property
The issuer of the certificate.
Syntax
def get_ssl_server_cert_issuer() -> str: ...
ssl_server_cert_issuer = property(get_ssl_server_cert_issuer, None)
Default Value
""
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
ssl_server_cert_private_key Property
The private key of the certificate (if available).
Syntax
def get_ssl_server_cert_private_key() -> str: ...
ssl_server_cert_private_key = property(get_ssl_server_cert_private_key, None)
Default Value
""
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The ssl_server_cert_private_key may be available but not exportable. In this case, ssl_server_cert_private_key returns an empty string.
This property is read-only.
ssl_server_cert_private_key_available Property
Whether a PrivateKey is available for the selected certificate.
Syntax
def get_ssl_server_cert_private_key_available() -> bool: ...
ssl_server_cert_private_key_available = property(get_ssl_server_cert_private_key_available, None)
Default Value
FALSE
Remarks
Whether a ssl_server_cert_private_key is available for the selected certificate. If ssl_server_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
ssl_server_cert_private_key_container Property
The name of the PrivateKey container for the certificate (if available).
Syntax
def get_ssl_server_cert_private_key_container() -> str: ...
ssl_server_cert_private_key_container = property(get_ssl_server_cert_private_key_container, None)
Default Value
""
Remarks
The name of the ssl_server_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
ssl_server_cert_public_key Property
The public key of the certificate.
Syntax
def get_ssl_server_cert_public_key() -> str: ...
ssl_server_cert_public_key = property(get_ssl_server_cert_public_key, None)
Default Value
""
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
ssl_server_cert_public_key_algorithm Property
The textual description of the certificate's public key algorithm.
Syntax
def get_ssl_server_cert_public_key_algorithm() -> str: ...
ssl_server_cert_public_key_algorithm = property(get_ssl_server_cert_public_key_algorithm, None)
Default Value
""
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
ssl_server_cert_public_key_length Property
The length of the certificate's public key (in bits).
Syntax
def get_ssl_server_cert_public_key_length() -> int: ...
ssl_server_cert_public_key_length = property(get_ssl_server_cert_public_key_length, None)
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
ssl_server_cert_serial_number Property
The serial number of the certificate encoded as a string.
Syntax
def get_ssl_server_cert_serial_number() -> str: ...
ssl_server_cert_serial_number = property(get_ssl_server_cert_serial_number, None)
Default Value
""
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
ssl_server_cert_signature_algorithm Property
The text description of the certificate's signature algorithm.
Syntax
def get_ssl_server_cert_signature_algorithm() -> str: ...
ssl_server_cert_signature_algorithm = property(get_ssl_server_cert_signature_algorithm, None)
Default Value
""
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
ssl_server_cert_store Property
The name of the certificate store for the client certificate.
Syntax
def get_ssl_server_cert_store() -> bytes: ...
ssl_server_cert_store = property(get_ssl_server_cert_store, None)
Default Value
"MY"
Remarks
The name of the certificate store for the client certificate.
The ssl_server_cert_store_type property denotes the type of the certificate store specified by ssl_server_cert_store. If the store is password-protected, specify the password in ssl_server_cert_store_password.
ssl_server_cert_store is used in conjunction with the ssl_server_cert_subject property to specify client certificates. If ssl_server_cert_store has a value, and ssl_server_cert_subject or ssl_server_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_server_cert_subject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
This property is read-only.
ssl_server_cert_store_password Property
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
def get_ssl_server_cert_store_password() -> str: ...
ssl_server_cert_store_password = property(get_ssl_server_cert_store_password, None)
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
This property is read-only.
ssl_server_cert_store_type Property
The type of certificate store for this certificate.
Syntax
def get_ssl_server_cert_store_type() -> int: ...
ssl_server_cert_store_type = property(get_ssl_server_cert_store_type, None)
Default Value
0
Remarks
The type of certificate store for this certificate.
The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the ssl_server_cert_store and set ssl_server_cert_store_password to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
This property is read-only.
ssl_server_cert_subject_alt_names Property
Comma-separated lists of alternative subject names for the certificate.
Syntax
def get_ssl_server_cert_subject_alt_names() -> str: ...
ssl_server_cert_subject_alt_names = property(get_ssl_server_cert_subject_alt_names, None)
Default Value
""
Remarks
Comma-separated lists of alternative subject names for the certificate.
This property is read-only.
ssl_server_cert_thumbprint_md5 Property
The MD5 hash of the certificate.
Syntax
def get_ssl_server_cert_thumbprint_md5() -> str: ...
ssl_server_cert_thumbprint_md5 = property(get_ssl_server_cert_thumbprint_md5, None)
Default Value
""
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_server_cert_thumbprint_sha1 Property
The SHA-1 hash of the certificate.
Syntax
def get_ssl_server_cert_thumbprint_sha1() -> str: ...
ssl_server_cert_thumbprint_sha1 = property(get_ssl_server_cert_thumbprint_sha1, None)
Default Value
""
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_server_cert_thumbprint_sha256 Property
The SHA-256 hash of the certificate.
Syntax
def get_ssl_server_cert_thumbprint_sha256() -> str: ...
ssl_server_cert_thumbprint_sha256 = property(get_ssl_server_cert_thumbprint_sha256, None)
Default Value
""
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
ssl_server_cert_usage Property
The text description of UsageFlags .
Syntax
def get_ssl_server_cert_usage() -> str: ...
ssl_server_cert_usage = property(get_ssl_server_cert_usage, None)
Default Value
""
Remarks
The text description of ssl_server_cert_usage_flags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
ssl_server_cert_usage_flags Property
The flags that show intended use for the certificate.
Syntax
def get_ssl_server_cert_usage_flags() -> int: ...
ssl_server_cert_usage_flags = property(get_ssl_server_cert_usage_flags, None)
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of ssl_server_cert_usage_flags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the ssl_server_cert_usage property for a text representation of ssl_server_cert_usage_flags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
ssl_server_cert_version Property
The certificate's version number.
Syntax
def get_ssl_server_cert_version() -> str: ...
ssl_server_cert_version = property(get_ssl_server_cert_version, None)
Default Value
""
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
ssl_server_cert_subject Property
The subject of the certificate used for client authentication.
Syntax
def get_ssl_server_cert_subject() -> str: ...
ssl_server_cert_subject = property(get_ssl_server_cert_subject, None)
Default Value
""
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
This property is read-only.
ssl_server_cert_encoded Property
The certificate (PEM/Base64 encoded).
Syntax
def get_ssl_server_cert_encoded() -> bytes: ...
ssl_server_cert_encoded = property(get_ssl_server_cert_encoded, None)
Default Value
""
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_server_cert_store and ssl_server_cert_subject properties also may be used to specify a certificate.
When ssl_server_cert_encoded is set, a search is initiated in the current ssl_server_cert_store for the private key of the certificate. If the key is found, ssl_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_server_cert_subject is set to an empty string.
This property is read-only.
timeout Property
This property includes the timeout for the class.
Syntax
def get_timeout() -> int: ... def set_timeout(value: int) -> None: ...
timeout = property(get_timeout, set_timeout)
Default Value
60
Remarks
If the timeout property is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.
If timeout is set to a positive value, data is sent in a blocking manner and the class will wait for the operation to complete before returning control. The class will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of timeout seconds.
The class will use do_events to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.
If timeout expires, and the operation is not yet complete, the class fails with an error.
Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by timeout seconds when any amount of data is successfully sent or received.
The default value for the timeout property is 60 seconds.
user Property
A username to use for SASL authentication.
Syntax
def get_user() -> str: ... def set_user(value: str) -> None: ...
user = property(get_user, set_user)
Default Value
""
Remarks
This property contains a username to use for SASL authentication.
virtual_host Property
The virtual host to connect to.
Syntax
def get_virtual_host() -> str: ... def set_virtual_host(value: str) -> None: ...
virtual_host = property(get_virtual_host, set_virtual_host)
Default Value
"/"
Remarks
This property specifies the virtual host to connect to on the server, and is set to / by default.
Note that the configuration of the server defines what virtual hosts are available.
This setting cannot be changed while connected.
bind_queue Method
Binds a queue to an exchange.
Syntax
def bind_queue(channel_name: str, queue_name: str, exchange_name: str, routing_key: str, no_wait: bool) -> None: ...
Remarks
This method is used to bind the queue named QueueName to the exchange named ExchangeName. Exchanges use bindings to determine which queues to route messages to.
Multiple bindings between the same queue and exchange with different RoutingKeys and/or arguments are allowed; requests that would create a duplicate binding are ignored. No queue will ever receive duplicate copies of any message, regardless of what bindings are present on the server.
Note that all AMQP 0.9.1 servers automatically bind all queues to their default exchange (which is always a direct exchange with no name) using each queue's name as the binding's routing key. This makes it easy to send a message to a specific queue without having to declare bindings; just call publish_message, pass empty string for ExchangeName, and the name of the desired queue for RoutingKey.
ChannelName controls what channel the class will send the request over. While any channel can technically be used, keep in mind that the server will close it if a channel error occurs. For this reason, it is good practice to make requests such as this one using a channel that is not involved in message publishing or consumption.
QueueName must be a non-empty string consisting only of letters, digits, hyphens, underscores, periods, and colons. It must be no longer than 255 characters.
The server's default exchange may be specified by passing empty string for ExchangeName. Otherwise, ExchangeName must be a non-empty string consisting only of letters, digits, hyphens, underscores, periods, and colons. It must be no longer than 255 characters.
The RoutingKey parameter specifies the binding's routing key. Exchanges that use routing-key-based logic make some sort of comparison between the routing keys of incoming messages and this value to decide which messages should be forwarded to the specified queue. Examples of exchange types which use routing keys include:
- direct exchanges, which compare (for equality) the routing keys of incoming messages to the routing keys of each queue bound to them.
- topic exchanges, which match the routing keys of incoming messages against the routing pattern of each queue bound to them.
Not all exchange types make use of routing keys, in which case empty string can be passed for the RoutingKey parameter. Examples of exchange types which don't use routing keys include:
- fanout exchanges simply forward incoming messages to all queues bound to them, unconditionally.
- header exchanges only forward messages that include certain headers. When binding a queue to a header exchange, add items to the arguments collection to describe the headers that eligible messages must have, and whether they must have any or all of those headers.
Note that the format of the RoutingKey parameter and/or the content of the arguments collection may differ slightly between server implementations. Refer to your server's documentation to determine what it expects to receive for each exchange type that it supports.
The NoWait parameter, if True, will cause the server to execute the request asynchronously. For asynchronous request handling, the server only sends back a response in case of an error.
An exception is thrown if no channel with the given ChannelName exists, or if the server returns an error because:
- No queue with the given QueueName exists.
- No exchange with the given ExchangeName exists.
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
Binding a Queue to an Exchange
// Bind a queue to an exchange. Messages will only be delivered to the queue if their routing key is "MyRoutingKey".
amqpc1.BindQueue("channel", "MyQueue", "MyExchange", "MyRoutingKey", false);
cancel_consume Method
Cancels an existing consumer.
Syntax
def cancel_consume(channel_name: str, consumer_tag: str, no_wait: bool) -> None: ...
Remarks
This method requests that the server cancel the consumer identified by the given ConsumerTag on the channel specified by ChannelName.
The NoWait parameter, if True, will cause the server to execute the request asynchronously. For asynchronous request handling, the server only sends back a response in case of an error.
An exception is thrown if no channel with the given ChannelName exists, or if the server returns an error because no consumer with the given ConsumerTag exists.
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
close_channel Method
Closes a channel.
Syntax
def close_channel(channel_name: str) -> None: ...
Remarks
This method closes the channel named ChannelName and removes it from the channels properties.
If no channel with the given ChannelName exists, an exception will be thrown.
commit_transaction Method
Commits the current transaction for a channel.
Syntax
def commit_transaction(channel_name: str) -> None: ...
Remarks
This method commits the current transaction for the channel with the given ChannelName. A new transaction is started immediately after the current one is committed.
Refer to enable_transaction_mode for more information about transactions.
An exception is thrown if a channel with the given ChannelName doesn't exist, or if the server returns an error because the channel does not have transaction mode enabled.
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
config Method
Sets or retrieves a configuration setting.
Syntax
def config(configuration_string: str) -> str: ...
Remarks
config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
connect Method
This method connects to a remote host.
Syntax
def connect() -> None: ...
Remarks
This method connects to the remote host specified by remote_host and remote_port. For instance:
component.RemoteHost = "MyHostNameOrIP";
component.RemotePort = 7777;
component.Connect();
connect_to Method
This method connects to a remote host.
Syntax
def connect_to(host: str, port: int) -> None: ...
Remarks
This method connects to the remote host specified by the Host and Port parameters. For instance:
component.ConnectTo("MyHostNameOrIP", 777)
consume Method
Starts a new consumer for a given queue.
Syntax
def consume(channel_name: str, queue_name: str, consumer_tag: str, no_local: bool, no_ack: bool, exclusive: bool, no_wait: bool) -> None: ...
Remarks
This method instructs the server to start a new consumer on the queue named QueueName; once the consumer is created, it will cause messages enqueued to the specified queue to be delivered to the class over the channel specified by ChannelName.
Consumers last as long as the channel they were created on, or until they are cancelled using the cancel_consume method. Each time a message is delivered to the class, it is immediately added to the incoming_messages collection, the received_message property is populated, and the on_message_in event fires.
ConsumerTag is a string which uniquely identifies the new consumer on the specified channel. If empty string is passed for ConsumerTag, the server will generate a consumer tag automatically when it creates the . this auto-generated consumer tag can then be retrieved by querying the ConsumerTag configuration setting after this method returns.
The NoLocal parameter, if True, ensures that the consumer never consumes messages published on the same channel. (Note that this functionality is not available on RabbitMQ servers, which ignore the NoLocal parameter).
The NoAck parameter controls whether the server will expect the class to acknowledge the each message delivered. Refer to on_message_in for more information about acknowledging messages.
The Exclusive parameter, if True, will cause the class to request that the server create an exclusive consumer. Attaching an exclusive consumer to a queue prevents any other consumers from consuming messages from that queue.
The NoWait parameter, if True, will cause the server to execute the request asynchronously. For asynchronous request handling, the server only sends back a response in case of an error.
Additional arguments may be sent with this request by adding them to the arguments collection. Arguments are server-dependent; refer to your server's documentation to determine if any additional arguments apply for this request.
An exception is thrown if no channel with the given ChannelName exists, or if the server returns an error because:
- No queue with the given QueueName exists.
- The given ConsumerTag is already in use on the specified channel.
- An exclusive consumer was requested for a queue which already has consumers attached to it.
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
Receiving a Message
// MessageIn event handler.
amqpc1.OnMessageIn += (s, e) => {
if (e.MessageCount == -1) {
// The server pushed a message to us asynchronously due to a consumer we created.
Console.WriteLine("The server pushed this message to us via consumer '" + e.ConsumerTag + "':");
Console.WriteLine(amqpc1.ReceivedMessage.Body);
} else if (e.DeliveryTag > 0) {
// We pulled a message from a queue with the RetrieveMessage() method.
Console.WriteLine("Message successfully pulled:");
Console.WriteLine(amqpc1.ReceivedMessage.Body);
Console.WriteLine(e.MessageCount + " messages are still available to pull.");
} else {
// We tried to pull a message, but there were none available to pull.
Console.WriteLine("No messages available to pull.");
}
};
// Attach a consumer to "MyQueue".
amqpc1.Consume("channel", "MyQueue", "consumerTag", false, true, false, false);
// Or, try to retrieve a message from "MyQueue".
amqpc1.RetrieveMessage("channel", "MyQueue", true);
create_channel Method
Creates a new channel.
Syntax
def create_channel(channel_name: str) -> None: ...
Remarks
This method creates a new channel with the name ChannelName and adds it to the channels properties. If a channel with the given ChannelName already exists, an error will be thrown.
Connecting and Creating a Channel
// The examples in this documentation use a RabbitMQ server, which requires SASL Plain auth.
amqpc1.AuthScheme = AmqpclassicAuthSchemes.smSASLPlain;
amqpc1.User = "guest";
amqpc1.Password = "guest";
amqpc1.SSLEnabled = true;
amqpc1.ConnectTo("amqpclassic.test-server.com", 5671);
amqpc1.CreateChannel("channel");
declare_exchange Method
Verifies that an exchange exists, potentially creating it if necessary.
Syntax
def declare_exchange(channel_name: str, exchange_name: str, exchange_type: str, passive: bool, durable: bool, auto_delete: bool, no_wait: bool) -> None: ...
Remarks
This method is used to verify that an exchange named ExchangeName exists; and potentially creates it if no such exchange exists.
ChannelName controls what channel the class will send the request over. While any channel can technically be used, keep in mind that the server will close it if a channel error occurs. For this reason, it is good practice to make requests such as this one using a channel that is not involved in message publishing or consumption.
ExchangeName must be a non-empty string consisting only of letters, digits, hyphens, underscores, periods, and colons. It must be no longer than 255 characters, and must not begin with amq. unless the Passive parameter is True.
ExchangeType specifies the exchange type. All servers support the direct and fanout exchange types, and most should also support the topic and header exchange types. Some servers may support additional, custom exchange types as well. Refer to your server's documentation for more information about each exchange type, and to determine what exchange types it supports other than direct and fanout.
If Passive is True, the server will only verify that an exchange with the given ExchangeName actually exists (regardless of how it is configured).
If Passive is False, and no exchange named ExchangeName currently exists, the server will create one.
If Passive is False, and there is a preexisting exchange named ExchangeName, the server will verify that its current configuration matches the given parameters and arguments.
Durable specifies what happens to the exchange in the event of a server restart. Durable exchanges will be recreated, while non-durable (transient) exchanges will not.
AutoDelete specifies whether the server should automatically delete the exchange when all queues have been unbound from it. Note that this parameter is only sent if the RabbitMQCompatible configuration setting is enabled; it is ignored otherwise.
The NoWait parameter, if True, will cause the server to execute the request asynchronously. For asynchronous request handling, the server only sends back a response in case of an error.
Additional arguments may be sent with this request by adding them to the arguments collection. Arguments are server-dependent; refer to your server's documentation to determine if any additional arguments apply for this request.
An exception is thrown if no channel with the given ChannelName exists, or if the server returns an error because:
- One of the parameter constraints described above was violated.
- One of the verification cases described above fails.
- The value passed for ExchangeType did not correspond to an exchange type supported by the server.
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
Declaring an Exchange
// Declare a direct-type exchange.
amqpc1.DeclareExchange("channel", "MyExchange", "direct", false, false, false, false);
declare_queue Method
Verifies that a queue exists, potentially creating it if necessary.
Syntax
def declare_queue(channel_name: str, queue_name: str, passive: bool, durable: bool, exclusive: bool, auto_delete: bool, no_wait: bool) -> None: ...
Remarks
This method is used to verify that a queue named QueueName exists; and potentially creates it if no such queue exists.
After each successful call to this method, the class populates the queue_message_count property, as well as the QueueConsumerCount and QueueName configuration settings. Refer to each one for more information.
ChannelName controls what channel the class will send the request over. While any channel can technically be used, keep in mind that the server will close it if a channel error occurs. For this reason, it is good practice to make requests such as this one using a channel that is not involved in message publishing or consumption.
If creating a new queue, empty string can be passed for QueueName to have the server automatically generate a name for the new queue (which can then be retrieved using the QueueName configuration setting). In all other cases, QueueName must be a non-empty string consisting only of letters, digits, hyphens, underscores, periods, and colons. It must be no longer than 255 characters, and must not begin with amq. unless the Passive parameter is True.
If Passive is True, the server will only verify that a queue with the given QueueName actually exists (regardless of how it is configured).
If Passive is False, and no queue named QueueName currently exists, the server will create one.
If Passive is False, and there is a preexisting queue named QueueName, the server will verify that its current configuration matches the given parameters and arguments.
Durable specifies what happens to the queue in the event of a server restart. Durable queue will be recreated, while non-durable (transient) queue will not. (Note that the messages in durable queues will still be lost unless they are marked as persistent.)
Exclusive, if True, indicates that the queue may only be accessed by the current connection. Exclusive queues are deleted when the current connection closes.
AutoDelete specifies whether the server should automatically delete the queue when all consumers have finished using it. (Note that auto-delete queues aren't eligible for deletion until after a consumer attaches to them for the first time.)
The NoWait parameter, if True, will cause the server to execute the request asynchronously. For asynchronous request handling, the server only sends back a response in case of an error.
Additional arguments may be sent with this request by adding them to the arguments collection. Arguments are server-dependent; refer to your server's documentation to determine if any additional arguments apply for this request.
An exception is thrown if no channel with the given ChannelName exists, if QueueName empty string and NoWait is True, or if the server returns an error because:
- One of the parameter constraints described above was violated.
- One of the verification cases described above fails.
- An attempt was made to verify (i.e., the Passive parameter was True) another connection's exclusive queue.
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
Declaring a Queue
// Declare a queue.
amqpc1.DeclareQueue("channel", "MyQueue", false, false, false, false, false);
delete_exchange Method
Deletes an exchange.
Syntax
def delete_exchange(channel_name: str, exchange_name: str, if_unused: bool, no_wait: bool) -> None: ...
Remarks
This method is used to delete an exchange.
ChannelName controls what channel the class will send the request over. While any channel can technically be used, keep in mind that the server will close it if a channel error occurs. For this reason, it is good practice to make requests such as this one using a channel that is not involved in message publishing or consumption.
ExchangeName must be a non-empty string consisting only of letters, digits, hyphens, underscores, periods, and colons. It must be no longer than 255 characters, and must not begin with amq..
When IfUnused is True, the server will only delete the exchange if no queues are bound to it.
The NoWait parameter, if True, will cause the server to execute the request asynchronously. For asynchronous request handling, the server only sends back a response in case of an error.
An exception is thrown if no channel with the given ChannelName exists, or if the server returns an error because:
- The value passed for ExchangeName fails one or more of the constraints described above.
- No exchange named ExchangeName exists. (This does not apply for RabbitMQ; attempting to delete a non-existent exchange will always succeed.)
- The IfUnused parameter was True, but the exchange still had one or more queues bound to it.
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
delete_queue Method
Deletes a queue.
Syntax
def delete_queue(channel_name: str, queue_name: str, if_unused: bool, if_empty: bool, no_wait: bool) -> None: ...
Remarks
This method is used to delete the queue named QueueName.
After each successful call to this method, the class populates the queue_message_count property with the number of messages deleted along with the queue. (Note that this does not occur if the NoWait parameter is set to True.)
ChannelName controls what channel the class will send the request over. While any channel can technically be used, keep in mind that the server will close it if a channel error occurs. For this reason, it is good practice to make requests such as this one using a channel that is not involved in message publishing or consumption.
QueueName must be a non-empty string consisting only of letters, digits, hyphens, underscores, periods, and colons. It must be no longer than 255 characters, and must not begin with amq..
When IfUnused is True, the server will only delete the queue if no consumers are attached to it.
When IfEmpty is True, the server will only delete the queue if it has no messages in it. (When IfEmpty is False, servers will typically move any remaining messages to a dead-letter queue, if one is available.)
The NoWait parameter, if True, will cause the server to execute the request asynchronously. For asynchronous request handling, the server only sends back a response in case of an error.
An exception is thrown if no channel with the given ChannelName exists, or if the server returns an error because:
- The value passed for QueueName fails one or more of the constraints described above.
- No queue named QueueName exists. (This does not apply for RabbitMQ; attempting to delete a non-existent queue will always succeed.)
- The IfUnused parameter was True, but the queue still had one or more consumers attached to it.
- The IfEmpty parameter was True, but the queue still had one or more messages in it.
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
disconnect Method
This method disconnects from the remote host.
Syntax
def disconnect() -> None: ...
Remarks
This method disconnects from the remote host. Calling this method is equivalent to setting the connected property to False.
do_events Method
This method processes events from the internal message queue.
Syntax
def do_events() -> None: ...
Remarks
When do_events is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.
enable_publish_confirms Method
Enables publish confirmations mode for a channel.
Syntax
def enable_publish_confirms(channel_name: str, no_wait: bool) -> None: ...
Remarks
This method enables publish confirmations mode for the channel with the given ChannelName.
While a channel is in publish confirmations mode, the server will acknowledge each message published by the class. The class will wait to fire the on_message_out event until it receives this acknowledgment. (Note that this mode is only available when the RabbitMQCompatible configuration setting is enabled.)
Note that a channel will stay in publish confirmations mode, once enabled, until it is deleted.
The NoWait parameter, if True, will cause the server to execute the request asynchronously. For asynchronous request handling, the server only sends back a response in case of an error.
An exception is thrown if the RabbitMQCompatible configuration setting is currently False, if no channel with the given ChannelName exists, or if enable_transaction_mode has been called for the specified channel previously.
enable_transaction_mode Method
Enables transaction mode for a channel.
Syntax
def enable_transaction_mode(channel_name: str) -> None: ...
Remarks
This method enables transaction mode for the channel with the given ChannelName.
While a channel is in transaction mode, all messages published and acknowledgements sent over it will be part of a transaction, and the server will wait to process them until the transaction is either committed or rolled back.
To commit the current transaction on a channel, call commit_transaction; and to roll it back (and discard the messages and acknowledgements that were part of it), call rollback_transaction.
Keep in mind that, according to the AMQP 0.9.1 specification:
- A new transaction is always started immediately after committing or rolling back the current one, which means that...
- ...a channel will stay in transaction mode, once enabled, until it is deleted.
- Transactions are only guaranteed to be atomic if all messages published and acknowledgements sent affect a single queue.
- Any messages published on a channel in transaction mode that have the Mandatory or Immediate flags set are not guaranteed to be included in the transaction.
An exception is thrown if no channel with the given ChannelName exists, or if enable_publish_confirms has been called for the specified channel previously.
interrupt Method
Interrupt the current action and disconnects from the remote host.
Syntax
def interrupt() -> None: ...
Remarks
This method will interrupt the current method (if applicable) and cause the class to disconnect from the remote host.
publish_message Method
Publishes a message.
Syntax
def publish_message(channel_name: str, exchange_name: str, routing_key: str, mandatory: bool, immediate: bool) -> None: ...
Remarks
This method is used to publish the message specified by the message property to the exchange named ExchangeName over the channel specified by ChannelName.
When this method is called, the message to publish is immediately added to the outgoing_messages collection, and the on_message_out event fires once it has been sent (or, if the specified channel is in "publish confirmations" mode, after the server has acknowledged it).
Note that all AMQP 0.9.1 servers automatically bind all queues to their default exchange (which is always a direct exchange with no name) using each queue's name as the binding's routing key. This makes it easy to send a message to a specific queue without having to declare bindings; just call publish_message, pass empty string for ExchangeName, and the name of the desired queue for RoutingKey.
Note that messages published over channels which are in either transaction or "publish confirmations" mode may be handled differently than they would be on a channel in normal mode. Refer to the enable_transaction_mode and enable_publish_confirms methods for more information about what each mode entails.
The server's default exchange may be specified by passing empty string for ExchangeName. Otherwise, ExchangeName must be a non-empty string consisting only of letters, digits, hyphens, underscores, periods, and colons. It must be no longer than 255 characters.
The RoutingKey parameter specifies the message's routing key. Whether this parameter needs to be non-empty, and what format it should have if so, depends on the type of exchange it is being sent to. Some exchange types may use information included with the message, such as its message_headers. Refer to bind_queue for more information about how routing keys are used, and to your server's documentation for information on what it expects.
The Mandatory parameter controls what the server should do if the message can't be routed to any queue (either because it isn't eligible for any of the queues bound to the specified exchange because of how their bindings are configured, or because no queues are bound to the exchange in the first place). If True, the server will return the message, at which point the on_message_returned event will be fired. If False, the server will drop the message.
The Immediate parameter controls what the server should do if the message can't be immediately delivered to any consumer (either because it cannot be routed to a queue, or because the queues it can be routed to have no active consumers attached to them). If True, the server will return the message, at which point the on_message_returned event will be fired. If False, the server will queue the message if possible, or drop it if not.
An exception is thrown if no channel with the given ChannelName exists, or if the server returns an error because:
- The value passed for ExchangeName fails one or more of the constraints described above.
- No exchange named ExchangeName exists.
- The message is rejected for some reason.
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
Publishing a Message
amqpc1.Message.Body = "Hello, world!";
// Publish a message to the server's default (no-name) exchange, using the name of a specific queue as the routing key.
amqpc1.PublishMessage("channel", "", "MyQueue", false, false);
// Publish a message to the "MyExchange" exchange, using the routing key "MyRoutingKey".
amqpc1.PublishMessage("channel", "MyExchange", "MyRoutingKey", false, false);
purge_queue Method
Purges all messages from a queue.
Syntax
def purge_queue(channel_name: str, queue_name: str, no_wait: bool) -> None: ...
Remarks
This method purges all messages from the queue named QueueName. Messages which have been sent but are awaiting acknowledgment are not affected.
After each successful call to this method, the class populates the queue_message_count property with the number of messages purged from the queue. (Note that this does not occur if the NoWait parameter is set to True.)
ChannelName controls what channel the class will send the request over. While any channel can technically be used, keep in mind that the server will close it if a channel error occurs. For this reason, it is good practice to make requests such as this one using a channel that is not involved in message publishing or consumption.
QueueName must be a non-empty string consisting only of letters, digits, hyphens, underscores, periods, and colons. It must be no longer than 255 characters.
The NoWait parameter, if True, will cause the server to execute the request asynchronously. For asynchronous request handling, the server only sends back a response in case of an error.
An exception is thrown if no channel with the given ChannelName exists, or if the server returns an error because no queue named QueueName exists.
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
recover Method
Request that the server redeliver all messages on a given channel that have not been acknowledged.
Syntax
def recover(channel_name: str, requeue: bool) -> None: ...
Remarks
This method is used to request that the server redeliver all messages that it previously sent to the class on the channel specified by ChannelName which are still awaiting acknowledgment.
A call to this method may cause the server to redeliver zero or more messages over the channel specified by ChannelName. Those messages will cause the on_message_in event to fire with its Redelivered event parameter set to True.
The Requeue parameter controls how the server should attempt to redeliver the messages awaiting acknowledgment. If set to True, the server will simple put the messages back on their original queues, and they will be delivered like any other queued messages (potentially to other consumers). If set to False, the server will redeliver the messages to the class directly.
An exception is thrown if no channel with the given ChannelName exists, or (for RabbitMQ only) if the server returns an error because Requeue was False. (RabbitMQ only supports setting Requeue to True.)
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
reset Method
This method will reset the class.
Syntax
def reset() -> None: ...
Remarks
This method will reset the class's properties to their default values.
reset_message Method
Resets the Message properties.
Syntax
def reset_message() -> None: ...
Remarks
This method resets the message property.
retrieve_message Method
Attempts to retrieve a message from a given queue.
Syntax
def retrieve_message(channel_name: str, queue_name: str, no_ack: bool) -> None: ...
Remarks
This method attempts to retrieve a message from the queue named QueueName over the channel named ChannelName.
If a message is retrieved as a result of this method being called, it is immediately added to the incoming_messages collection, the received_message property is populated, and the on_message_in event fires.
Even if no message gets retrieved, the on_message_in event will still fire as long as the request was successful. The server returns the number of available messages in the specified queue in response to all successful retrieve requests, and that count is exposed by on_message_in event's MessageCount parameter. Refer to the on_message_in event for more information.
QueueName must be a non-empty string consisting only of letters, digits, hyphens, underscores, periods, and colons. It must be no longer than 255 characters.
The NoAck parameter controls whether the server will expect the class to acknowledge the retrieved message. Refer to on_message_in for more information about acknowledging messages.
An exception is thrown if no channel with the given ChannelName exists, or if the server returns an error because:
- No queue with the given QueueName exists.
- The specified queue exists, but is locked or otherwise unavailable to consume from (e.g., an exclusive consumer might be attached to it).
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
Receiving a Message
// MessageIn event handler.
amqpc1.OnMessageIn += (s, e) => {
if (e.MessageCount == -1) {
// The server pushed a message to us asynchronously due to a consumer we created.
Console.WriteLine("The server pushed this message to us via consumer '" + e.ConsumerTag + "':");
Console.WriteLine(amqpc1.ReceivedMessage.Body);
} else if (e.DeliveryTag > 0) {
// We pulled a message from a queue with the RetrieveMessage() method.
Console.WriteLine("Message successfully pulled:");
Console.WriteLine(amqpc1.ReceivedMessage.Body);
Console.WriteLine(e.MessageCount + " messages are still available to pull.");
} else {
// We tried to pull a message, but there were none available to pull.
Console.WriteLine("No messages available to pull.");
}
};
// Attach a consumer to "MyQueue".
amqpc1.Consume("channel", "MyQueue", "consumerTag", false, true, false, false);
// Or, try to retrieve a message from "MyQueue".
amqpc1.RetrieveMessage("channel", "MyQueue", true);
rollback_transaction Method
Rolls back the current transaction for a channel.
Syntax
def rollback_transaction(channel_name: str) -> None: ...
Remarks
This method rolls back the current transaction for the channel with the given ChannelName. A new transaction is started immediately after the current one is rolled back.
Refer to enable_transaction_mode for more information about transactions.
An exception is thrown if a channel with the given ChannelName doesn't exist, or if the server returns an error because the channel does not have transaction mode enabled.
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
set_channel_accept Method
Disables or enables message acceptance for a given channel.
Syntax
def set_channel_accept(channel_name: str, accept: bool) -> None: ...
Remarks
This method is used to disable and enable message acceptance for the channel specified by ChannelName.
A channel is always configured to accept messages when first created, allowing the server to freely deliver messages to the class for any consumers that have been created on that channel using the consume method.
Disabling message acceptance for a channel prevents the server from automatically delivering messages to the class over it; however, it is still possible to use the retrieve_message method to synchronously attempt to retrieve a message on a channel with message acceptance disabled.
An exception is thrown if no channel with the given ChannelName exists, or (for RabbitMQ only) if the server returns an error because Accept was False. (RabbitMQ does not support disabling message acceptance.)
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
set_qo_s Method
Requests a specific quality of service (QoS).
Syntax
def set_qo_s(channel_name: str, prefetch_size: int, prefetch_count: int, global_: bool) -> None: ...
Remarks
This method is used to request a specific quality of service for a certain scope. When the PrefetchSize and/or PrefetchCount are set for a certain scope, the server will limit how many messages it sends to the class before stopping to wait for one or more of them to be acknowledged.
ChannelName is the name of the channel which is used to send the request. Depending on the server and what Global is set to, it may also be significant to the request itself (refer to the Global parameter's description, below, for more information).
PrefetchSize specifies a window size in bytes; i.e., the server will stop sending messages if the total size of all of the currently unacknowledged messages already sent, plus the size of the next message that could be sent, exceeds PrefetchSize bytes. A PrefetchSize of 0 indicates no limit. (Note that RabbitMQ does not support prefetch size limits.)
PrefetchCount specifies the number of unacknowledged messages the server will limit itself to sending. A PrefetchCount of 0 indicates no limit.
Global specifies the scope which the QoS request should apply to. It is interpreted differently based on whether the server is RabbitMQ or not. Refer to this table:
Global is... | RabbitMQ | Other Servers |
False | QoS will be applied individually to each new consumer on the specified channel (existing consumers are unaffected). | QoS applied to all existing and new consumers on the specified channel. |
True | QoS applied to all existing and new consumers on the specified channel. | QoS applied to all existing and new consumers on the whole connection. |
Keep the following things in mind when using QoS:
- The limits specified by a QoS request only affect messages that require acknowledgment.
- How the server chooses to handle interactions between QoS settings at different scopes is server-dependent.
An exception is thrown if no channel with the given ChannelName exists, or if the server returns an error for any reason.
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
unbind_queue Method
Removes a previously-created queue binding.
Syntax
def unbind_queue(channel_name: str, queue_name: str, exchange_name: str, routing_key: str) -> None: ...
Remarks
This method removes a previously-created queue binding.
ChannelName controls what channel the class will send the request over. While any channel can technically be used, keep in mind that the server will close it if a channel error occurs. For this reason, it is good practice to make requests such as this one using a channel that is not involved in message publishing or consumption.
QueueName must be a non-empty string consisting only of letters, digits, hyphens, underscores, periods, and colons. It must be no longer than 255 characters.
The server's default exchange may be specified by passing empty string for ExchangeName. Otherwise, ExchangeName must be a non-empty string consisting only of letters, digits, hyphens, underscores, periods, and colons. It must be no longer than 255 characters.
RoutingKey should be the same routing key used when originally creating the binding that is to be removed. For bindings created using arguments instead of a routing key, the arguments collection must contain the same items used originally instead.
An exception is thrown if no channel with the given ChannelName exists, or if the server returns an error because:
- No queue with the given QueueName exists. (Does not apply to RabbitMQ.)
- No exchange with the given ExchangeName exists. (Does not apply to RabbitMQ.)
Note that in AMQP, server errors are grouped into "connection errors" and "channel errors", and both are fatal. That is, if the server returns a channel error, it will then close the channel which caused the error; and if it returns a connection error, it will then close the connection. The AMQPClassic class's Error Codes page includes AMQP's various connection and channel errors.
on_channel_ready_to_send Event
Fires when a channel is ready to send messages.
Syntax
class AMQPClassicChannelReadyToSendEventParams(object): @property def channel_name() -> str: ... # In class AMQPClassic: @property def on_channel_ready_to_send() -> Callable[[AMQPClassicChannelReadyToSendEventParams], None]: ... @on_channel_ready_to_send.setter def on_channel_ready_to_send(event_hook: Callable[[AMQPClassicChannelReadyToSendEventParams], None]) -> None: ...
Remarks
This event fires when a channel is ready to send messages.
ChannelName is the name of the channel.
on_connected Event
Fired immediately after a connection completes (or fails).
Syntax
class AMQPClassicConnectedEventParams(object): @property def status_code() -> int: ... @property def description() -> str: ... # In class AMQPClassic: @property def on_connected() -> Callable[[AMQPClassicConnectedEventParams], None]: ... @on_connected.setter def on_connected(event_hook: Callable[[AMQPClassicConnectedEventParams], None]) -> None: ...
Remarks
If the connection is made normally, StatusCode is 0 and Description is "OK".
If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.
Please refer to the Error Codes section for more information.
on_connection_status Event
Fired to indicate changes in the connection state.
Syntax
class AMQPClassicConnectionStatusEventParams(object): @property def connection_event() -> str: ... @property def status_code() -> int: ... @property def description() -> str: ... # In class AMQPClassic: @property def on_connection_status() -> Callable[[AMQPClassicConnectionStatusEventParams], None]: ... @on_connection_status.setter def on_connection_status(event_hook: Callable[[AMQPClassicConnectionStatusEventParams], None]) -> None: ...
Remarks
This event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.
The ConnectionEvent parameter indicates the type of connection event. Values may include the following:
Firewall connection complete. | |
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable). | |
Remote host connection complete. | |
Remote host disconnected. | |
SSL or S/Shell connection broken. | |
Firewall host disconnected. |
on_disconnected Event
Fired when a connection is closed.
Syntax
class AMQPClassicDisconnectedEventParams(object): @property def status_code() -> int: ... @property def description() -> str: ... # In class AMQPClassic: @property def on_disconnected() -> Callable[[AMQPClassicDisconnectedEventParams], None]: ... @on_disconnected.setter def on_disconnected(event_hook: Callable[[AMQPClassicDisconnectedEventParams], None]) -> None: ...
Remarks
If the connection is broken normally, StatusCode is 0 and Description is "OK".
If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.
Please refer to the Error Codes section for more information.
on_error Event
Fired when information is available about errors during data delivery.
Syntax
class AMQPClassicErrorEventParams(object): @property def error_code() -> int: ... @property def description() -> str: ... # In class AMQPClassic: @property def on_error() -> Callable[[AMQPClassicErrorEventParams], None]: ... @on_error.setter def on_error(event_hook: Callable[[AMQPClassicErrorEventParams], None]) -> None: ...
Remarks
The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
on_log Event
Fires once for each log message.
Syntax
class AMQPClassicLogEventParams(object): @property def log_level() -> int: ... @property def message() -> str: ... @property def log_type() -> str: ... # In class AMQPClassic: @property def on_log() -> Callable[[AMQPClassicLogEventParams], None]: ... @on_log.setter def on_log(event_hook: Callable[[AMQPClassicLogEventParams], None]) -> None: ...
Remarks
This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.
LogLevel indicates the level of the Message. Possible values are:
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
LogType identifies the type of log entry. Possible values are:
- Info: General information about the class.
- Frame: Frame status messages.
on_message_in Event
Fires when a message is received; as well as when an attempt is made to fetch a message from a currently empty queue.
Syntax
class AMQPClassicMessageInEventParams(object): @property def channel_name() -> str: ... @property def consumer_tag() -> str: ... @property def delivery_tag() -> int: ... @property def redelivered() -> bool: ... @property def exchange_name() -> str: ... @property def routing_key() -> str: ... @property def message_count() -> int: ... @property def accept() -> int: ... @accept.setter def accept(value) -> None: ... # In class AMQPClassic: @property def on_message_in() -> Callable[[AMQPClassicMessageInEventParams], None]: ... @on_message_in.setter def on_message_in(event_hook: Callable[[AMQPClassicMessageInEventParams], None]) -> None: ...
Remarks
This event fires anytime a message is received. There are two possible ways for the class to receive a message:
- Messages can be asynchronously pushed to the class from the server. At any point in time, the server may push a message to the class from a queue that the consume method has been used to attach a consumer to.
- Messages can be synchronously pulled from the server by the class. The retrieve_message method is used to attempt to pull (or "retrieve") messages from a specific queue.
This event also fires anytime retrieve_message is called against a queue that currently has no messages available to pull. This is a special case, and results in only the ChannelName and MessageCount event parameters being populated.
Other than that special case, and any exceptions noted below, this event's parameters are populated the same way regardless of the manner in which messages are received.
ChannelName always reflects the name of the associated channel.
ConsumerTag reflects the consumer tag associated with the consumer that caused the server to push the message to the class. (ConsumerTag is always empty for messages pulled from the server by retrieve_message since no consumers are involved.)
DeliveryTag reflects the server-assigned, channel-specific delivery tag number for the incoming message.
Redelivered reflects whether the server is redelivering a message that is has delivered previously.
ExchangeName reflects the name of the exchange to which the incoming message was originally published. (If the message was originally published to the server's default exchange, whose name is always the empty string, ExchangeName will also be empty.)
RoutingKey reflects the routing key that the message was originally published with.
MessageCount is always -1 when this event fires due to a message being pushed to the class by the server. When this event fires as a result of retrieve_message being called, MessageCount reflects the number of messages still available in the queue the class tried to pull a message from (even if there were no messages available to pull).
The Accept parameter can be set to control how the class responds to the incoming message, if it needs to be acknowledged (if the message doesn't need to be acknowledged, the value set to the Accept parameter is ignored). Valid values are:
- 0 - default: Accept the message; send a positive acknowledgment.
- 1: Silently accept the message; don't send any acknowledgment.
- 2: Accept the message; send a cumulative positive acknowledgment coving this, and all previously unacknowledged, messages.
- 3: Reject the message; send a negative acknowledgment for it, and instruct the server not to return it to the queue.
- 4: Reject the message; send a negative acknowledgment for it, and instruct the server to return it to the queue.
If the value provided for the Accept parameter isn't one of those described above, the default (0) will be used instead.
Receiving a Message
// MessageIn event handler.
amqpc1.OnMessageIn += (s, e) => {
if (e.MessageCount == -1) {
// The server pushed a message to us asynchronously due to a consumer we created.
Console.WriteLine("The server pushed this message to us via consumer '" + e.ConsumerTag + "':");
Console.WriteLine(amqpc1.ReceivedMessage.Body);
} else if (e.DeliveryTag > 0) {
// We pulled a message from a queue with the RetrieveMessage() method.
Console.WriteLine("Message successfully pulled:");
Console.WriteLine(amqpc1.ReceivedMessage.Body);
Console.WriteLine(e.MessageCount + " messages are still available to pull.");
} else {
// We tried to pull a message, but there were none available to pull.
Console.WriteLine("No messages available to pull.");
}
};
// Attach a consumer to "MyQueue".
amqpc1.Consume("channel", "MyQueue", "consumerTag", false, true, false, false);
// Or, try to retrieve a message from "MyQueue".
amqpc1.RetrieveMessage("channel", "MyQueue", true);
on_message_out Event
Fires when a message is published.
Syntax
class AMQPClassicMessageOutEventParams(object): @property def channel_name() -> str: ... @property def exchange_name() -> str: ... @property def routing_key() -> str: ... @property def message_id() -> str: ... @property def delivery_tag() -> int: ... @property def accepted() -> bool: ... # In class AMQPClassic: @property def on_message_out() -> Callable[[AMQPClassicMessageOutEventParams], None]: ... @on_message_out.setter def on_message_out(event_hook: Callable[[AMQPClassicMessageOutEventParams], None]) -> None: ...
Remarks
This event fires anytime a message is published; or after an outgoing message has been acknowledged by the server, if the channel it was published on is in "publish confirmations" mode.
ChannelName reflects the name of the channel the message was published on.
ExchangeName reflects the name of the exchange the message was published to. (If the message was published to the server's default exchange, whose name is always the empty string, ExchangeName will also be empty.)
RoutingKey reflects the routing key that the message was published with.
MessageId reflects the message's unique Id, if one was set.
DeliveryTag reflects the channel-specific delivery tag number for the message. (Note that this is only populated for messages published on a channel in "publish confirmations" mode; otherwise it will be set to -1.)
Accepted indicates whether the server published back a positive True or negative False acknowledgment for the outgoing message. Note that this is only valid for messages published on a channel in "publish confirmations" mode; Accepted will always be True messages published on a channel in normal or transaction mode.
Refer to enable_publish_confirms for more information about channels in "publish confirmations" mode.
on_message_returned Event
Fires if a previously published message is returned by the server due to it being undeliverable.
Syntax
class AMQPClassicMessageReturnedEventParams(object): @property def channel_name() -> str: ... @property def reply_code() -> int: ... @property def reply_text() -> str: ... @property def exchange_name() -> str: ... @property def routing_key() -> str: ... # In class AMQPClassic: @property def on_message_returned() -> Callable[[AMQPClassicMessageReturnedEventParams], None]: ... @on_message_returned.setter def on_message_returned(event_hook: Callable[[AMQPClassicMessageReturnedEventParams], None]) -> None: ...
Remarks
This event fires if the server returns a previously published message because it could not deliver it. Typically, messages are only undeliverable in one of the following situations:
- The message was originally published with the Mandatory option enabled, but there were no queues it could be routed to.
- The message was originally published with the Immediate option enabled, but there were no consumers it could be delivered to immediately on any queue it was routed to (or there were no queues it could be routed to).
The received_message property will be populated with the returned message.
ChannelName reflects the name of the channel the message was originally published on.
ReplyCode will be an AMQP error code that indicates the reason why the message was returned. (Tip: The AMQPClassic class's Error Codes page includes the various AMQP error codes.)
ReplyText will be a message with further details about why the message was returned.
ExchangeName reflects the name of the exchange to which the message was originally published. (If the message was originally published to the server's default exchange, whose name is always the empty string, ExchangeName will also be empty.)
RoutingKey reflects the routing key that the message was originally published with.
on_ssl_server_authentication Event
Fired after the server presents its certificate to the client.
Syntax
class AMQPClassicSSLServerAuthenticationEventParams(object): @property def cert_encoded() -> bytes: ... @property def cert_subject() -> str: ... @property def cert_issuer() -> str: ... @property def status() -> str: ... @property def accept() -> bool: ... @accept.setter def accept(value) -> None: ... # In class AMQPClassic: @property def on_ssl_server_authentication() -> Callable[[AMQPClassicSSLServerAuthenticationEventParams], None]: ... @on_ssl_server_authentication.setter def on_ssl_server_authentication(event_hook: Callable[[AMQPClassicSSLServerAuthenticationEventParams], None]) -> None: ...
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
on_ssl_status Event
Fired when secure connection progress messages are available.
Syntax
class AMQPClassicSSLStatusEventParams(object): @property def message() -> str: ... # In class AMQPClassic: @property def on_ssl_status() -> Callable[[AMQPClassicSSLStatusEventParams], None]: ... @on_ssl_status.setter def on_ssl_status(event_hook: Callable[[AMQPClassicSSLStatusEventParams], None]) -> None: ...
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
AMQPClassic Config Settings
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.AMQPClassic Config Settings
When auth_scheme is set to smSASLPlain you may use this setting to specify an authorization identity to be used when authenticating.
Each time the consume method is called to create a new consumer, the server will send back a confirmation which includes the consumer tag value for that consumer, and the class will update this setting's value accordingly.
It is possible to pass empty string for the ConsumerTag parameter when calling the consume method, in which case the server will auto-generate a consumer tag.
This setting specifies the desired message locale, which will be compared to the server's list of supported message locales during the connection process. A connection attempt will fail if this setting is set to a locale not supported by the server. This setting cannot be changed while connected.
The default value is "en_US", which is supported by all AMQP 0.9.1 servers.
After a connection attempt (regardless of its success) this setting will reflect the various message locales that the server supports.
The value of this setting is formatted as a space-separated list of message locales.
This setting controls the level of detail that is logged through the on_log event. Possible values are:
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data is logged. |
3 (Debug) | Debug data is logged. |
This setting specifies the maximum number of channels which can be opened. This setting cannot be changed while connected.
The default is 65535 (0xFFFF). Note that this value is negotiated during the connection process; if the value provided by the server is lower than the specified value, the server's value will be used instead (and this setting will be updated accordingly).
This setting specifies the maximum frame size (in bytes) that the class will accept. This setting cannot be changed while connected.
The default is 2147483647 (0x7FFFFFFF). Note that this value is negotiated during the connection process; if the value provided by the server is lower than the specified value, the server's value will be used instead (and this setting will be updated accordingly).
After a connection attempt (regardless of its success) this setting will reflect the various authentication mechanisms that the server supports.
The value of this setting is formatted as a space-separated list of authentication mechanisms.
If the RabbitMQCompatible configuration setting is enabled, this setting controls whether the negative message acknowledgments the class sends based on the value of the on_message_in event's Accept parameter should be cumulative (True) or singular (False - default).
This setting does nothing if the RabbitMQCompatible configuration setting is disabled.
This setting can be queried to determine what AMQP protocol version the class conforms to.
Note: Currently this setting will always return "0.9.1", and cannot be changed. The AMQP class may be used instead of this one if AMQP 1.0 support is needed.
Each time the declare_queue method is called successfully (and with its NoWait parameter set to False), the server returns information about the queue in question, causing the class to update this setting with the number of consumers attached to that queue.
Each time the declare_queue method is called successfully (and with its NoWait parameter set to False), the server returns information about the queue in question, causing the class to update this setting with the name of that queue.
It is possible to pass empty string for the QueueName parameter when calling the declare_queue method to have the server create a new queue with an automatically generated name, which can then be retrieved by querying this setting.
This setting controls whether the class will operate in such a way as to be compatible with RabbitMQ. When enabled, the class complies with the parts of the RabbitMQ AMQP 0.9.1 Errata that are relevant to AMQP 0.9.1 client implementations, as well as offering additional features to support RabbitMQ-specific extensions to the AMQP 0.9.1 specification.
The default is True.
TCPClient Config Settings
When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use timeout for establishing a connection and transmitting/receiving data.
This configuration setting is provided for use by classs that do not directly expose Firewall properties.
If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
The FirewallPort is set automatically when FirewallType is set to a valid value.
Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.
Possible values are as follows:
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.
Note: This setting is provided for use by classs that do not directly expose Firewall properties.
When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.
Note: This value is not applicable in macOS.
When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.
This property controls how a connection is closed. The default is True.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.
The local_host setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.
If the class is connected, the local_host setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
This configuration setting must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by local_port after the connection is established.
local_port cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.
MaxLineLength is the size of an internal buffer, which holds received data while waiting for an eol string.
If an eol string is found in the input stream before MaxLineLength bytes are received, the on_data_in event is fired with the EOL parameter set to True, and the buffer is reset.
If no eol is found, and MaxLineLength bytes are accumulated in the buffer, the on_data_in event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.
This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:
www.google.com;www.nsoftware.com
If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.
Note: This value is not applicable in Java.
When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.
By default, this configuration setting is set to False.
When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:
0 | IPv4 only |
1 | IPv6 only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When ssl_provider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.
When enabled, SSL packet logs are output using the on_ssl_status event, which will fire each time an SSL packet is sent or received.
Enabling this configuration setting has no effect if ssl_provider is set to Platform.
This functionality is available only when the provider is OpenSSL.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
This functionality is available only when the provider is OpenSSL.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
This functionality is available only when the provider is OpenSSL.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
This functionality is available only when the provider is OpenSSL.
By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to True, the class will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the class is the same.
This configuration setting specifies the paths on disk to CA certificate files on Unix/Linux.
The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.
The default value is as follows:
/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem
When ssl_provider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the ssl_cert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
This configuration setting specifies whether the class will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class fails with an error.
When set to 0 (default), the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
This configuration setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the class fails with an error.
When set to 0 (default), the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.
Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the on_ssl_status event.
Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.
This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when ssl_authenticate_clients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
This configuration setting enables the cipher suites to be used in SSL negotiation.
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when ssl_provider is set to Platform include the following:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when ssl_provider is set to Platform include the following:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA");
Possible values when ssl_provider is set to Internal include the following:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
This configuration setting is used to enable or disable the supported security protocols.
Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default - Client and Server) |
TLS1.1 | 768 (Hex 300) (Default - Client) |
TLS1 | 192 (Hex C0) (Default - Client) |
SSL3 | 48 (Hex 30) |
SSL2 | 12 (Hex 0C) |
Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.
SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:
By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the ssl_provider is set to Automatic for all editions.
In editions that are designed to run on Windows, ssl_provider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider), please be aware of the following notes:
- The platform provider is available only on Windows 11/Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the class when the ssl_provider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and ssl_provider needs to be set to platform.
This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is False by default, but it can be set to True to enable the extension.
This configuration setting is applicable only when ssl_provider is set to Internal.
This configuration setting specifies whether the Encoded parameter of the on_ssl_server_authentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the on_ssl_server_authentication event.
If set to True, all certificates returned by the server will be present in the Encoded parameter of the on_ssl_server_authentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.
When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.
Note: This configuration setting is applicable only when ssl_provider is set to Internal.
This configuration setting returns the cipher suite negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
This configuration setting returns the protocol version negotiated during the SSL handshake.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown certificate authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown certificate authority revocation status. |
0x00000800 | Ignore unknown root revocation status. |
0x00008000 | Allow test root certificate. |
0x00004000 | Trust test root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN non-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
This configuration setting specifies the allowed server certificate signature algorithms when ssl_provider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.
When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.
The format of this value is a comma-separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and ssl_provider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.
In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
If AbsoluteTimeout is set to True, any method that does not complete within timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.
Note: This option is not valid for User Datagram Protocol (UDP) ports.
When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).
This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
AMQPClassic Errors
AMQPClassic Errors
311 | AMQP Channel Error content-too-large: Content too large. |
312 | AMQP Channel Error no-route: Cannot deliver message published with "mandatory" flag set; message cannot be routed to any queue. |
313 | AMQP Channel Error no-consumers: Cannot deliver message published with "immediate" flag set; all possible queues are either non-empty or have no consumers. |
320 | AMQP Connection Error connection-forced: Connection forced to close. |
402 | AMQP Connection Error invalid-path: Invalid virtual host path specified. |
403 | AMQP Channel Error access-refused: Attempted to work with a server entity (exchange, queue, etc.) without necessary permissions. |
404 | AMQP Channel Error not-found: Attempted to work with a server entity (exchange, queue, etc.) that does not exist. |
405 | AMQP Channel Error resource-locked: Attempted to work with a server entity (exchange, queue, etc.) that is currently locked by another client. |
406 | AMQP Channel Error precondition-failed: Request failed due to one or more precondition failures. |
501 | AMQP Connection Error frame-error: Server received an AMQP frame that it could not decode. |
502 | AMQP Connection Error syntax-error: Server received an AMQP frame that contained illegal values for one or more fields. |
503 | AMQP Connection Error command-invalid: Server received an invalid sequence of frame, attempting to perform an invalid operation. |
504 | AMQP Connection Error channel-error: Attempted to work with a channel that does not exist (or was not opened correctly). |
505 | AMQP Connection Error unexpected-frame: Server received a frame that was unexpected, typically with regards to the content header and body. |
506 | AMQP Connection Error resource-error: Server could not complete the request due to insufficient resources. |
530 | AMQP Connection Error not-allowed: Attempted to work with some server entity (exchange, queue, etc.) in a manner that is not allowed. |
540 | AMQP Connection Error not-implemented: Requested an operation not supported by the server. |
541 | AMQP Connection Error internal-error: The server encountered an internal error while attempting to process the request. |
600 | General AMQP protocol error. Refer to the error message for more information. |
601 | Cannot open another channel. |
602 | Cannot modify message data. |
603 | Cannot publish message on inactive channel. |
604 | Action not supported. |
606 | Cannot modify configuration setting. |
TCPClient Errors
100 | You cannot change the remote_port at this time. A connection is in progress. |
101 | You cannot change the remote_host (Server) at this time. A connection is in progress. |
102 | The remote_host address is invalid (0.0.0.0). |
104 | Already connected. If you want to reconnect, close the current connection first. |
106 | You cannot change the local_port at this time. A connection is in progress. |
107 | You cannot change the local_host at this time. A connection is in progress. |
112 | You cannot change MaxLineLength at this time. A connection is in progress. |
116 | remote_port cannot be zero. Please specify a valid service port number. |
117 | You cannot change the UseConnection option while the class is active. |
135 | Operation would block. |
201 | Timeout. |
211 | Action impossible in control's present state. |
212 | Action impossible while not connected. |
213 | Action impossible while listening. |
301 | Timeout. |
302 | Could not open file. |
434 | Unable to convert string to selected CodePage. |
1105 | Already connecting. If you want to reconnect, close the current connection first. |
1117 | You need to connect first. |
1119 | You cannot change the LocalHost at this time. A connection is in progress. |
1120 | Connection dropped by remote host. |
SSL Errors
270 | Cannot load specified security library. |
271 | Cannot open certificate store. |
272 | Cannot find specified certificate. |
273 | Cannot acquire security credentials. |
274 | Cannot find certificate chain. |
275 | Cannot verify certificate chain. |
276 | Error during handshake. |
280 | Error verifying certificate. |
281 | Could not find client certificate. |
282 | Could not find server certificate. |
283 | Error encrypting data. |
284 | Error decrypting data. |
TCP/IP Errors
10004 | [10004] Interrupted system call. |
10009 | [10009] Bad file number. |
10013 | [10013] Access denied. |
10014 | [10014] Bad address. |
10022 | [10022] Invalid argument. |
10024 | [10024] Too many open files. |
10035 | [10035] Operation would block. |
10036 | [10036] Operation now in progress. |
10037 | [10037] Operation already in progress. |
10038 | [10038] Socket operation on nonsocket. |
10039 | [10039] Destination address required. |
10040 | [10040] Message is too long. |
10041 | [10041] Protocol wrong type for socket. |
10042 | [10042] Bad protocol option. |
10043 | [10043] Protocol is not supported. |
10044 | [10044] Socket type is not supported. |
10045 | [10045] Operation is not supported on socket. |
10046 | [10046] Protocol family is not supported. |
10047 | [10047] Address family is not supported by protocol family. |
10048 | [10048] Address already in use. |
10049 | [10049] Cannot assign requested address. |
10050 | [10050] Network is down. |
10051 | [10051] Network is unreachable. |
10052 | [10052] Net dropped connection or reset. |
10053 | [10053] Software caused connection abort. |
10054 | [10054] Connection reset by peer. |
10055 | [10055] No buffer space available. |
10056 | [10056] Socket is already connected. |
10057 | [10057] Socket is not connected. |
10058 | [10058] Cannot send after socket shutdown. |
10059 | [10059] Too many references, cannot splice. |
10060 | [10060] Connection timed out. |
10061 | [10061] Connection refused. |
10062 | [10062] Too many levels of symbolic links. |
10063 | [10063] File name is too long. |
10064 | [10064] Host is down. |
10065 | [10065] No route to host. |
10066 | [10066] Directory is not empty |
10067 | [10067] Too many processes. |
10068 | [10068] Too many users. |
10069 | [10069] Disc Quota Exceeded. |
10070 | [10070] Stale NFS file handle. |
10071 | [10071] Too many levels of remote in path. |
10091 | [10091] Network subsystem is unavailable. |
10092 | [10092] WINSOCK DLL Version out of range. |
10093 | [10093] Winsock is not loaded yet. |
11001 | [11001] Host not found. |
11002 | [11002] Nonauthoritative 'Host not found' (try again or check DNS setup). |
11003 | [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP. |
11004 | [11004] Valid name, no data record (check DNS setup). |