MQTT Class

Properties   Methods   Events   Config Settings   Errors  

A lightweight, fully-featured MQTT client implementation.

Syntax

class ipworksmq.MQTT

Remarks

The MQTT class provides a lightweight, fully-featured MQTT client implementation with support for versions 3.1.1 and 5.0. The class supports plaintext and TLS-enabled connections over both standard TCP and WebSockets.

Connecting

Connecting to an MQTT server is easy; in the simplest case, set the client_id property and call the connect_to method, passing it the server's hostname and port number.

When connecting to an MQTT server, the class sends the following information:

If clean_session is True, check the SessionPresent configuration setting once connected to determine whether the server actually had any session state saved.

Refer to clean_session, save_session, and restore_session for more information about MQTT sessions and session state persistence; refer to will_topic, will_message, WillQOS, and WillRetain for more information about MQTT Wills.

Basic Connection Example mqtt1.ClientId = "testClient"; mqtt1.CleanSession = true; mqtt1.KeepAliveInterval = 30; mqtt1.WillTopic = "wills/" + mqtt1.ClientId; mqtt1.WillMessage = mqtt1.ClientId + " was disconnected ungracefully!"; mqtt1.ConnectTo("mqtt.test-server.com", 1883);

Topic Subscriptions

The subscribe and unsubscribe methods are used to subscribe to and unsubscribe from topics.

When subscribing, pass one or more topic filters and QoS levels to indicate the topics to subscribe to and the desired QoS level(s). Topic filters may contain wildcards in order to match multiple topics on the server.

Subscribe Examples // Subscribed event handler. mqtt1.OnSubscribed += (s, e) => { if (e.ResponseCode <= 2) Console.WriteLine("Subscribed to " + e.TopicFilter + " at QoS " + e.QOS + "."); else Console.WriteLine("Failed to subscribe to " + e.TopicFilter + "."); }; // Basic, subscribe to some topic filters, all at the same QoS level. mqtt1.Subscribe("home,home/floor1/+/temperature,home/floor2/#", 2); // A bit more advanced, subscribe to the same topic filters, but at different QoS levels. mqtt1.Config("TopicQOSArray=1,2,2"); // The 0 is ignored here since we've specified individual QoS values explicitly. mqtt1.Subscribe("home,home/floor1/+/temperature,home/floor2/#", 0);

After subscribing to topics, any messages received will cause the on_message_in, and potentially also the on_message_ack, events to fire. Refer to those events for more information about processing steps for inbound messages.

When unsubscribing, pass the exact same topic filter that was used to subscribe.

Unsubscribe Example // Unsubscribe from topic filters; have to use the exact same strings as before. If this // was to be called after calling the code example shown for the Subscribe() method, we // would still be subscribed to the "home" topic filter. mqtt1.Unsubscribe("home/floor1/+/temperature,home/floor2/#");

Refer to subscribe and unsubscribe for more information about subscriptions and topic filters.

Publishing Messages

To publish messages to topics, use the publish_message and publish_data methods.

publish_message is used to publish a message with a string payload, while publish_data is used to publish a message with a raw data payload. Both also accept the name of a topic to publish to, and a QoS level at which to publish.

Publish Examples // Publish a simple string-based message. mqtt1.PublishMessage("/home/floor1/security/camera2", 1, "Cat detected!"); // Publish a raw data message. byte[] catPicture = ...; mqtt1.PublishData("/home/floor1/security/camera2", 1, catPicture);

Refer to publish_data and publish_message for more information about message publishing and processing steps for outbound messages, as well as topic naming.

MQTT 5 Notes

MQTT 5 is similar to v3.1.1, with a few changes and several new features. Major differences include:

Property List


The following is the full list of the properties of the class with short descriptions. Click on the links for further details.

clean_sessionDetermines whether a clean session is used once connected.
client_idA string that uniquely identifies this instance of the class to the server.
connectedTriggers a connection or disconnection.
firewall_auto_detectWhether to automatically detect and use firewall system settings, if available.
firewall_typeThe type of firewall to connect through.
firewall_hostThe name or IP address of the firewall (optional).
firewall_passwordA password if authentication is to be used when connecting through the firewall.
firewall_portThe Transmission Control Protocol (TCP) port for the firewall Host .
firewall_userA username if authentication is to be used when connecting through a firewall.
incoming_message_countThe number of records in the IncomingMessage arrays.
incoming_message_content_typeString describing the content of the message.
incoming_message_correlation_dataUsed by the sender of the request message to identify which request the response message is for when it is received.
incoming_message_duplicateWhether or not this message's Duplicate flag is set.
incoming_message_messageThis message's raw data payload.
incoming_message_message_exp_intervalThe lifetime of the message in seconds specified by the sender.
incoming_message_packet_idThis message's packet Id.
incoming_message_payload_format_indicatorIndicates whether the payload is unspecified bytes or UTF-8 Encoded character data.
incoming_message_qo_sThis message's QoS level.
incoming_message_response_topicString used as the topic name for a response message.
incoming_message_retainedWhether or not this message's Retain flag is set.
incoming_message_stateThis message's current state.
incoming_message_subscription_identifiersA comma separated list of any SubscriptionIdentifiers associated with any client subscription(s) that caused this message to be delivered.
incoming_message_topicThis message's topic.
incoming_message_topic_aliasAn integer used to identify the topic instead of the full topic filter in order to reduce the size of the publish packet.
keep_alive_intervalThe maximum period of inactivity the class will allow before sending a keep-alive packet.
local_hostThe name of the local host or user-assigned IP interface through which connections are initiated or accepted.
local_portThe TCP port in the local host where the class binds.
outgoing_message_countThe number of records in the OutgoingMessage arrays.
outgoing_message_content_typeString describing the content of the message.
outgoing_message_correlation_dataUsed by the sender of the request message to identify which request the response message is for when it is received.
outgoing_message_duplicateWhether or not this message's Duplicate flag is set.
outgoing_message_messageThis message's raw data payload.
outgoing_message_message_exp_intervalThe lifetime of the message in seconds specified by the sender.
outgoing_message_packet_idThis message's packet Id.
outgoing_message_payload_format_indicatorIndicates whether the payload is unspecified bytes or UTF-8 Encoded character data.
outgoing_message_qo_sThis message's QoS level.
outgoing_message_response_topicString used as the topic name for a response message.
outgoing_message_retainedWhether or not this message's Retain flag is set.
outgoing_message_stateThis message's current state.
outgoing_message_subscription_identifiersA comma separated list of any SubscriptionIdentifiers associated with any client subscription(s) that caused this message to be delivered.
outgoing_message_topicThis message's topic.
outgoing_message_topic_aliasAn integer used to identify the topic instead of the full topic filter in order to reduce the size of the publish packet.
passwordA password if authentication is to be used.
ready_to_sendIndicates whether the class is ready to send data.
remote_hostThe address of the remote host. Domain names are resolved to IP addresses.
remote_portThe port of the MQTT server (default is 1883). The default port for SSL is 8883.
ssl_accept_server_cert_effective_dateThe date on which this certificate becomes valid.
ssl_accept_server_cert_expiration_dateThe date on which the certificate expires.
ssl_accept_server_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
ssl_accept_server_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
ssl_accept_server_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
ssl_accept_server_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
ssl_accept_server_cert_issuerThe issuer of the certificate.
ssl_accept_server_cert_private_keyThe private key of the certificate (if available).
ssl_accept_server_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
ssl_accept_server_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
ssl_accept_server_cert_public_keyThe public key of the certificate.
ssl_accept_server_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
ssl_accept_server_cert_public_key_lengthThe length of the certificate's public key (in bits).
ssl_accept_server_cert_serial_numberThe serial number of the certificate encoded as a string.
ssl_accept_server_cert_signature_algorithmThe text description of the certificate's signature algorithm.
ssl_accept_server_cert_storeThe name of the certificate store for the client certificate.
ssl_accept_server_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_accept_server_cert_store_typeThe type of certificate store for this certificate.
ssl_accept_server_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
ssl_accept_server_cert_thumbprint_md5The MD5 hash of the certificate.
ssl_accept_server_cert_thumbprint_sha1The SHA-1 hash of the certificate.
ssl_accept_server_cert_thumbprint_sha256The SHA-256 hash of the certificate.
ssl_accept_server_cert_usageThe text description of UsageFlags .
ssl_accept_server_cert_usage_flagsThe flags that show intended use for the certificate.
ssl_accept_server_cert_versionThe certificate's version number.
ssl_accept_server_cert_subjectThe subject of the certificate used for client authentication.
ssl_accept_server_cert_encodedThe certificate (PEM/Base64 encoded).
ssl_cert_effective_dateThe date on which this certificate becomes valid.
ssl_cert_expiration_dateThe date on which the certificate expires.
ssl_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
ssl_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
ssl_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
ssl_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
ssl_cert_issuerThe issuer of the certificate.
ssl_cert_private_keyThe private key of the certificate (if available).
ssl_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
ssl_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
ssl_cert_public_keyThe public key of the certificate.
ssl_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
ssl_cert_public_key_lengthThe length of the certificate's public key (in bits).
ssl_cert_serial_numberThe serial number of the certificate encoded as a string.
ssl_cert_signature_algorithmThe text description of the certificate's signature algorithm.
ssl_cert_storeThe name of the certificate store for the client certificate.
ssl_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_cert_store_typeThe type of certificate store for this certificate.
ssl_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
ssl_cert_thumbprint_md5The MD5 hash of the certificate.
ssl_cert_thumbprint_sha1The SHA-1 hash of the certificate.
ssl_cert_thumbprint_sha256The SHA-256 hash of the certificate.
ssl_cert_usageThe text description of UsageFlags .
ssl_cert_usage_flagsThe flags that show intended use for the certificate.
ssl_cert_versionThe certificate's version number.
ssl_cert_subjectThe subject of the certificate used for client authentication.
ssl_cert_encodedThe certificate (PEM/Base64 encoded).
ssl_enabledThis property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled.
ssl_providerThe Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
ssl_server_cert_effective_dateThe date on which this certificate becomes valid.
ssl_server_cert_expiration_dateThe date on which the certificate expires.
ssl_server_cert_extended_key_usageA comma-delimited list of extended key usage identifiers.
ssl_server_cert_fingerprintThe hex-encoded, 16-byte MD5 fingerprint of the certificate.
ssl_server_cert_fingerprint_sha1The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
ssl_server_cert_fingerprint_sha256The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
ssl_server_cert_issuerThe issuer of the certificate.
ssl_server_cert_private_keyThe private key of the certificate (if available).
ssl_server_cert_private_key_availableWhether a PrivateKey is available for the selected certificate.
ssl_server_cert_private_key_containerThe name of the PrivateKey container for the certificate (if available).
ssl_server_cert_public_keyThe public key of the certificate.
ssl_server_cert_public_key_algorithmThe textual description of the certificate's public key algorithm.
ssl_server_cert_public_key_lengthThe length of the certificate's public key (in bits).
ssl_server_cert_serial_numberThe serial number of the certificate encoded as a string.
ssl_server_cert_signature_algorithmThe text description of the certificate's signature algorithm.
ssl_server_cert_storeThe name of the certificate store for the client certificate.
ssl_server_cert_store_passwordIf the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
ssl_server_cert_store_typeThe type of certificate store for this certificate.
ssl_server_cert_subject_alt_namesComma-separated lists of alternative subject names for the certificate.
ssl_server_cert_thumbprint_md5The MD5 hash of the certificate.
ssl_server_cert_thumbprint_sha1The SHA-1 hash of the certificate.
ssl_server_cert_thumbprint_sha256The SHA-256 hash of the certificate.
ssl_server_cert_usageThe text description of UsageFlags .
ssl_server_cert_usage_flagsThe flags that show intended use for the certificate.
ssl_server_cert_versionThe certificate's version number.
ssl_server_cert_subjectThe subject of the certificate used for client authentication.
ssl_server_cert_encodedThe certificate (PEM/Base64 encoded).
timeoutThis property includes the timeout for the class.
userA username if authentication is to be used.
versionThe MQTT protocol version that the class will conform to.
will_messageThe message that the server should publish in the event of an ungraceful disconnection.
will_topicThe topic that the server should publish the WillMessage to in the event of an ungraceful disconnection.

Method List


The following is the full list of the methods of the class with short descriptions. Click on the links for further details.

configSets or retrieves a configuration setting.
connectConnects to the remote host.
connect_toConnects to the remote host.
disconnectThis method disconnects from the remote host.
do_eventsThis method processes events from the internal message queue.
interruptInterrupt the current action and disconnects from the remote host.
publish_dataPublishes a message with a raw data payload.
publish_messagePublishes a message with a string payload.
resetThis method will reset the class.
restore_sessionRestores session state data.
save_sessionSaves session state data.
subscribeSubscribes the class to one or more topic filters.
unsubscribeUnsubscribes the class from one or more topic filters.

Event List


The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.

on_connectedFired immediately after a connection completes (or fails).
on_connection_statusFired to indicate changes in the connection state.
on_disconnectedFired when a connection is closed.
on_errorFired when information is available about errors during data delivery.
on_logFires once for each log message.
on_message_ackFired when an incoming or outgoing message has completed all acknowledgment steps.
on_message_inFired when an incoming message has been received and/or fully acknowledged.
on_message_outFired when an outgoing message has been sent and/or fully acknowledged.
on_ready_to_sendFired when the class is ready to send data.
on_ssl_server_authenticationFired after the server presents its certificate to the client.
on_ssl_statusFired when secure connection progress messages are available.
on_subscribedFires for each topic filter subscription the server acknowledges.
on_unsubscribedFires when the server has acknowledged an unsubscribe request.

Config Settings


The following is a list of config settings for the class with short descriptions. Click on the links for further details.

AutoReconnectWhether to automatically attempt to reconnect in the event of a connection error.
ClientTopicAliasMaxThe maximum value the client will accept for a topic alias sent by the server.
ConnAckPropertiesJSON string containing the properties returned in the CONNACK packet.
ConnectionTimeoutHow long to wait for a connection attempt to succeed.
ConnectPropertiesJSON string specifying properties to be included in the CONNECT packet.
DisconnectPropertiesJSON string containing DISCONNECT packet properties.
DisconnectReasonCodeCode describing the reason the client or server closed the connection.
DuplicateWhether to set the Duplicate flag when publishing a message.
IncomingUserPropCountThe size of the IncomingUserPropName and IncomingUserPropValue arrays.
IncomingUserPropName[i]The name of the user property at index i.
IncomingUserPropValue[i]The value of the user property at index i.
LogLevelThe level of detail that is logged.
OutgoingMessagePropertiesJSON string specifying properties to be included in the PUBLISH packet.
OutgoingPacketIdThe packet Id of the last message published.
OutgoingUserPropCountControls the size of the OutgoingUserPropName and OutgoingUserPropValue configuration arrays.
OutgoingUserPropName[i]The name of the User Property at index i.
OutgoingUserPropValue[i]The value of the User Property at index i.
RepublishIntervalHow many seconds to wait before republishing unacknowledged messages.
ResponseTopicTopic name for a response message.
RetainWhether to set the Retain flag when publishing a message.
SendCustomPacketSends a packet constructed using the supplied hex byte string.
ServerTopicAliasMaxThe highest value that the Server will accept as a Topic Alias sent by the Client.
SessionExpIntervalThe length of time in seconds the client and server should store session state data after the connection is closed.
SessionPresentWhen connecting with CleanSession disabled, indicates whether the server actually had any previous session data stored.
SessionStateFileFile to use for saving and restoring session data.
SubscriptionIdentifierA numeric subscription identifier included in SUBSCRIBE packet which will be returned with messages delivered for that subscription.
TopicAliasValue that is used to identify the Topic instead of using the Topic Name in order to reduce packet size.
TopicDelimiterThe string to use as a delimiter in a topic filter list string.
TopicNLArrayList of No Local option flags for subscription topic filters.
TopicQOSArrayComma-separated list of topic filter QoS values to use when subscribing.
TopicRAPArrayList of Retain As Published option flags for subscription topic filters.
TopicRHArrayList of Retain Handling option values for subscription topic filters.
WillPropertiesJSON string specifying will properties to be included in the CONNECT packet.
WillQOSThe QoS value to use for the Will message.
WillRetainWhether the server should retain the Will message after publishing it.
ConnectionTimeoutSets a separate timeout value for establishing a connection.
FirewallAutoDetectTells the class whether or not to automatically detect and use firewall system settings, if available.
FirewallHostName or IP address of firewall (optional).
FirewallPasswordPassword to be used if authentication is to be used when connecting through the firewall.
FirewallPortThe TCP port for the FirewallHost;.
FirewallTypeDetermines the type of firewall to connect through.
FirewallUserA user name if authentication is to be used connecting through a firewall.
KeepAliveIntervalThe retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.
KeepAliveTimeThe inactivity time in milliseconds before a TCP keep-alive packet is sent.
LingerWhen set to True, connections are terminated gracefully.
LingerTimeTime in seconds to have the connection linger.
LocalHostThe name of the local host through which connections are initiated or accepted.
LocalPortThe port in the local host where the class binds.
MaxLineLengthThe maximum amount of data to accumulate when no EOL is found.
MaxTransferRateThe transfer rate limit in bytes per second.
ProxyExceptionsListA semicolon separated list of hosts and IPs to bypass when using a proxy.
TCPKeepAliveDetermines whether or not the keep alive socket option is enabled.
TcpNoDelayWhether or not to delay when sending packets.
UseIPv6Whether to use IPv6.
LogSSLPacketsControls whether SSL packets are logged when using the internal security API.
OpenSSLCADirThe path to a directory containing CA certificates.
OpenSSLCAFileName of the file containing the list of CA's trusted by your application.
OpenSSLCipherListA string that controls the ciphers to be used by SSL.
OpenSSLPrngSeedDataThe data to seed the pseudo random number generator (PRNG).
ReuseSSLSessionDetermines if the SSL session is reused.
SSLCACertFilePathsThe paths to CA certificate files on Unix/Linux.
SSLCACertsA newline separated list of CA certificates to be included when performing an SSL handshake.
SSLCheckCRLWhether to check the Certificate Revocation List for the server certificate.
SSLCheckOCSPWhether to use OCSP to check the status of the server certificate.
SSLCipherStrengthThe minimum cipher strength used for bulk encryption.
SSLClientCACertsA newline separated list of CA certificates to use during SSL client certificate validation.
SSLEnabledCipherSuitesThe cipher suite to be used in an SSL negotiation.
SSLEnabledProtocolsUsed to enable/disable the supported security protocols.
SSLEnableRenegotiationWhether the renegotiation_info SSL extension is supported.
SSLIncludeCertChainWhether the entire certificate chain is included in the SSLServerAuthentication event.
SSLKeyLogFileThe location of a file where per-session secrets are written for debugging purposes.
SSLNegotiatedCipherReturns the negotiated cipher suite.
SSLNegotiatedCipherStrengthReturns the negotiated cipher suite strength.
SSLNegotiatedCipherSuiteReturns the negotiated cipher suite.
SSLNegotiatedKeyExchangeReturns the negotiated key exchange algorithm.
SSLNegotiatedKeyExchangeStrengthReturns the negotiated key exchange algorithm strength.
SSLNegotiatedVersionReturns the negotiated protocol version.
SSLSecurityFlagsFlags that control certificate verification.
SSLServerCACertsA newline separated list of CA certificates to use during SSL server certificate validation.
TLS12SignatureAlgorithmsDefines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.
TLS12SupportedGroupsThe supported groups for ECC.
TLS13KeyShareGroupsThe groups for which to pregenerate key shares.
TLS13SignatureAlgorithmsThe allowed certificate signature algorithms.
TLS13SupportedGroupsThe supported groups for (EC)DHE key exchange.
AbsoluteTimeoutDetermines whether timeouts are inactivity timeouts or absolute timeouts.
FirewallDataUsed to send extra data to the firewall.
InBufferSizeThe size in bytes of the incoming queue of the socket.
OutBufferSizeThe size in bytes of the outgoing queue of the socket.

clean_session Property

Determines whether a clean session is used once connected.

Syntax

def get_clean_session() -> bool: ...
def set_clean_session(value: bool) -> None: ...

clean_session = property(get_clean_session, set_clean_session)

Default Value

TRUE

Remarks

This property determines whether or not the class should instruct the server to use a clean session when it connects. (Note that this property must be set to the desired value before calling connect.)

By default, clean_session is true, so the server will discard any state data previously associated with the current client_id once the class has connected successfully. In addition, the server will not save any state data when the class disconnects.

Setting clean_session to False before connecting will cause the server to re-associate any previously stored state data for the current client_id. The server will also save any state data that exists when the class is disconnected.

The server-side session state consists of:

  • whether a session is present (see SessionPresent),
  • client subscriptions (including subscription identifiers in MQTT 5),
  • QoS 1 and 2 messages sent to the client pending transmission or completed acknowledgment (and optionally pending QoS 0 messages),
  • QoS 2 messages received from the client but not completely acknowledged, and
  • the SessionExpInterval (in MQTT 5).

Note that retained messages are not deleted as a result of a session ending, but are not part of the session state.

Client-Side Session State

When setting clean_session to False, it is important that the restore_session method be used to load any previously saved (client-side) session data from a previous session before calling connect. (Successful calls to restore_session will automatically set clean_session to False.)

Similarly, once disconnected, save the string returned by save_session for later use. The saved session information may be used when connecting with clean_session set to False at a later time.

The client-side session state consists of:

  • QoS 1 and QoS 2 messages which have been sent to the Server, but have not been completely acknowledged, and
  • QoS 2 messages which have been received from the Server, but have not been completely acknowledged.

Refer to save_session and restore_session for more information.

MQTT 5 Notes

In MQTT 5, the "Clean Session" flag from v3.1.1 is split into a "Clean Start" flag indicating that the server should discard previously saved session data from this connection, and a SessionExpInterval controlling the length of time the server should preserve the session data after disconnection.

In MQTT 5, this property acts only as the "Clean Start" flag. It determines whether or not the class should instruct the server to discard any previously stored session data associated with the current client_id and start a new clean session.

For more information on session expiration in MQTT 5, see the SessionExpInterval config. Setting clean_session to True in v3.1.1 is equivalent to setting clean_session to True AND setting SessionExpInterval to 0 in MQTT 5.

As with MQTT 3.1.1, it is important for the client to save and restore its own session data on connection and disconnection depending on the value of clean_session, and to manage its preservation depending on SessionExpInterval.

client_id Property

A string that uniquely identifies this instance of the class to the server.

Syntax

def get_client_id() -> str: ...
def set_client_id(value: str) -> None: ...

client_id = property(get_client_id, set_client_id)

Default Value

""

Remarks

The client_id string is used by the server to uniquely identify each client that is connected to it. In MQTT 5, when the SessionExpInterval config is set to a positive value, the server will also associate it with any session state data that needs to be saved for the length of time specified when the class is disconnected.

If client_id is empty when connect is called, the class's behavior depends on value of clean_session. If clean_session is True, the class will automatically generate a unique value for client_id before connecting. If clean_session is False, the class fails with an error.

connected Property

Triggers a connection or disconnection.

Syntax

def get_connected() -> bool: ...
def set_connected(value: bool) -> None: ...

connected = property(get_connected, set_connected)

Default Value

FALSE

Remarks

This property triggers a connection or disconnection. Setting this property to True makes the class attempt to connect to the host identified by the remote_host property. If successful, after the connection is achieved the value of the property changes to True and the on_connected event is fired.

Setting this property to False closes the connection.

By default the class will connect in plaintext. To enable SSL set ssl_enabled to True.

In addition, WebSocket connections are supported. To connect using WebSockets specify a hostname beginning with ws:// (plaintext) or wss:// (SSL). For instance, ws://test.mosquitto.org.

When connecting to an MQTT server, the class sends the following information:

If clean_session is True, check the SessionPresent configuration setting once connected to determine whether the server actually had any session state saved.

Refer to clean_session, save_session, and restore_session for more information about MQTT sessions and session state persistence; refer to will_topic, will_message, WillQOS, and WillRetain for more information about MQTT Wills.

Basic Connection Example mqtt1.ClientId = "testClient"; mqtt1.CleanSession = true; mqtt1.KeepAliveInterval = 30; mqtt1.WillTopic = "wills/" + mqtt1.ClientId; mqtt1.WillMessage = mqtt1.ClientId + " was disconnected ungracefully!"; mqtt1.RemoteHost = "mqtt.test-server.com"; mqtt1.RemotePort = 1883; mqtt1.Connect();

firewall_auto_detect Property

Whether to automatically detect and use firewall system settings, if available.

Syntax

def get_firewall_auto_detect() -> bool: ...
def set_firewall_auto_detect(value: bool) -> None: ...

firewall_auto_detect = property(get_firewall_auto_detect, set_firewall_auto_detect)

Default Value

FALSE

Remarks

Whether to automatically detect and use firewall system settings, if available.

firewall_type Property

The type of firewall to connect through.

Syntax

def get_firewall_type() -> int: ...
def set_firewall_type(value: int) -> None: ...

firewall_type = property(get_firewall_type, set_firewall_type)

Default Value

0

Remarks

The type of firewall to connect through. The applicable values are as follows:

fwNone (0)No firewall (default setting).
fwTunnel (1)Connect through a tunneling proxy. firewall_port is set to 80.
fwSOCKS4 (2)Connect through a SOCKS4 Proxy. firewall_port is set to 1080.
fwSOCKS5 (3)Connect through a SOCKS5 Proxy. firewall_port is set to 1080.
fwSOCKS4A (10)Connect through a SOCKS4A Proxy. firewall_port is set to 1080.

firewall_host Property

The name or IP address of the firewall (optional).

Syntax

def get_firewall_host() -> str: ...
def set_firewall_host(value: str) -> None: ...

firewall_host = property(get_firewall_host, set_firewall_host)

Default Value

""

Remarks

The name or IP address of the firewall (optional). If a firewall_host is given, the requested connections will be authenticated through the specified firewall when connecting.

If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the class fails with an error.

firewall_password Property

A password if authentication is to be used when connecting through the firewall.

Syntax

def get_firewall_password() -> str: ...
def set_firewall_password(value: str) -> None: ...

firewall_password = property(get_firewall_password, set_firewall_password)

Default Value

""

Remarks

A password if authentication is to be used when connecting through the firewall. If firewall_host is specified, the firewall_user and firewall_password properties are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

firewall_port Property

The Transmission Control Protocol (TCP) port for the firewall Host .

Syntax

def get_firewall_port() -> int: ...
def set_firewall_port(value: int) -> None: ...

firewall_port = property(get_firewall_port, set_firewall_port)

Default Value

0

Remarks

The Transmission Control Protocol (TCP) port for the firewall firewall_host. See the description of the firewall_host property for details.

Note: This property is set automatically when firewall_type is set to a valid value. See the description of the firewall_type property for details.

firewall_user Property

A username if authentication is to be used when connecting through a firewall.

Syntax

def get_firewall_user() -> str: ...
def set_firewall_user(value: str) -> None: ...

firewall_user = property(get_firewall_user, set_firewall_user)

Default Value

""

Remarks

A username if authentication is to be used when connecting through a firewall. If firewall_host is specified, this property and the firewall_password property are used to connect and authenticate to the given Firewall. If the authentication fails, the class fails with an error.

incoming_message_count Property

The number of records in the IncomingMessage arrays.

Syntax

def get_incoming_message_count() -> int: ...

incoming_message_count = property(get_incoming_message_count, None)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at incoming_message_count - 1.

This property is read-only.

incoming_message_content_type Property

String describing the content of the message.

Syntax

def get_incoming_message_content_type(incoming_message_index: int) -> str: ...

Default Value

""

Remarks

String describing the content of the message. Defined by the sending and receiving application.

Valid only for MQTT 5.

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_correlation_data Property

Used by the sender of the request message to identify which request the response message is for when it is received.

Syntax

def get_incoming_message_correlation_data(incoming_message_index: int) -> str: ...

Default Value

""

Remarks

Used by the sender of the request message to identify which request the response message is for when it is received.

Valid only for MQTT 5.

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_duplicate Property

Whether or not this message's Duplicate flag is set.

Syntax

def get_incoming_message_duplicate(incoming_message_index: int) -> bool: ...

Default Value

FALSE

Remarks

Whether or not this message's Duplicate flag is set.

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_message Property

This message's raw data payload.

Syntax

def get_incoming_message_message(incoming_message_index: int) -> bytes: ...

Default Value

""

Remarks

This message's raw data payload.

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_message_exp_interval Property

The lifetime of the message in seconds specified by the sender.

Syntax

def get_incoming_message_message_exp_interval(incoming_message_index: int) -> int: ...

Default Value

0

Remarks

The lifetime of the message in seconds specified by the sender.

For outgoing messages, the value is useful for instructing the server to delete its copies of the message for any subscribers it has not been able to start delivery to.

For incoming messages, the value sent by the server is the lifetime specified by the sender minus the time the message has been waiting in the server.

Valid only for MQTT 5.

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_packet_id Property

This message's packet Id.

Syntax

def get_incoming_message_packet_id(incoming_message_index: int) -> int: ...

Default Value

0

Remarks

This message's packet Id.

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_payload_format_indicator Property

Indicates whether the payload is unspecified bytes or UTF-8 Encoded character data.

Syntax

def get_incoming_message_payload_format_indicator(incoming_message_index: int) -> int: ...

Default Value

0

Remarks

Indicates whether the payload is unspecified bytes or UTF-8 Encoded character data. Possible values are:

ValueDescription
0 Payload is unspecified bytes
1 Payload is UTF-8 Encoded Character Data

Valid only for MQTT 5.

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_qo_s Property

This message's QoS level.

Syntax

def get_incoming_message_qo_s(incoming_message_index: int) -> int: ...

Default Value

0

Remarks

This message's QoS level. Possible values are:

ValueDescription
0At most once delivery
1At least once delivery
2Exactly once delivery

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_response_topic Property

String used as the topic name for a response message.

Syntax

def get_incoming_message_response_topic(incoming_message_index: int) -> str: ...

Default Value

""

Remarks

String used as the topic name for a response message.

Valid only for MQTT 5.

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_retained Property

Whether or not this message's Retain flag is set.

Syntax

def get_incoming_message_retained(incoming_message_index: int) -> bool: ...

Default Value

FALSE

Remarks

Whether or not this message's Retain flag is set.

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_state Property

This message's current state.

Syntax

def get_incoming_message_state(incoming_message_index: int) -> int: ...

Default Value

0

Remarks

This message's current state.

Possible Outgoing Message States:

ValueDescription
0 PUBLISH sent, waiting for PUBACK (QoS 1 only)
1 PUBLISH sent, waiting for PUBREC (QoS 2 only)
2 PUBREC received, sending PUBREL (QoS 2 only)
3 PUBREL sent, waiting for PUBCOMP (QoS 2 only)
4 Final acknowledgment received

Possible Incoming Message States:

ValueDescription
5 PUBLISH received, sending PUBACK (QoS 1 only)
6 PUBLISH received, sending PUBREC (QoS 2 only)
7 PUBREC sent, waiting for PUBREL (QoS 2 only)
8 PUBREL received, sending PUBCOMP (QoS 2 only)
9 Final acknowledgment sent

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_subscription_identifiers Property

A comma separated list of any SubscriptionIdentifiers associated with any client subscription(s) that caused this message to be delivered.

Syntax

def get_incoming_message_subscription_identifiers(incoming_message_index: int) -> str: ...

Default Value

""

Remarks

A comma separated list of any SubscriptionIdentifiers associated with any client subscription(s) that caused this message to be delivered.

This property is only applicable to incoming messages.

If SubscriptionIdentifier is set when subscribing, it will be included in any messages delivered by the broker for the topics specified in that packet.

See the subscribe method for more details.

Valid only for MQTT 5.

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_topic Property

This message's topic.

Syntax

def get_incoming_message_topic(incoming_message_index: int) -> str: ...

Default Value

""

Remarks

This message's topic.

MQTT 5 Notes:

If this value is empty, the incoming_message_topic_alias property holds the assigned alias for the topic.

If this value is not empty and incoming_message_topic_alias is non-zero,

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

incoming_message_topic_alias Property

An integer used to identify the topic instead of the full topic filter in order to reduce the size of the publish packet.

Syntax

def get_incoming_message_topic_alias(incoming_message_index: int) -> int: ...

Default Value

0

Remarks

An integer used to identify the topic instead of the full topic filter in order to reduce the size of the publish packet.

If a non-zero topic alias is received, the client should establish a new topic alias mapping or use an existing mapping, depending on whether the incoming_message_topic string is empty.

For details on setting topic aliases for outgoing messages, see the TopicAlias configuration setting.

Valid only for MQTT 5.

The incoming_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the incoming_message_count property.

This property is read-only.

keep_alive_interval Property

The maximum period of inactivity the class will allow before sending a keep-alive packet.

Syntax

def get_keep_alive_interval() -> int: ...
def set_keep_alive_interval(value: int) -> None: ...

keep_alive_interval = property(get_keep_alive_interval, set_keep_alive_interval)

Default Value

0

Remarks

The keep_alive_interval, if set to a non-zero value, is the maximum number of seconds that the class will allow the connection to be idle before sending a PINGREQ (ping request) packet to the server. The value of keep_alive_interval is sent to the server when connect is called; it cannot be changed when the class is already connected.

MQTT servers are required to measure periods of inactivity for all clients who specify a non-zero keep_alive_interval, and must disconnect them if they have not communicated within 1.5 times keep_alive_interval.

Similarly, if the class doesn't receive a PINGRESP (ping response) packet within keep_alive_interval seconds after sending a PINGREQ packet, it will disconnect from the server.

If keep_alive_interval is set to 0 (default), keep-alive functionality is disabled entirely. In this case, the class will not send any PINGREQ packets, and the server is not required to close the connection due to inactivity.

Note that, regardless of keep-alive settings, the server is always free to disconnect clients it deems "unresponsive".

local_host Property

The name of the local host or user-assigned IP interface through which connections are initiated or accepted.

Syntax

def get_local_host() -> str: ...
def set_local_host(value: str) -> None: ...

local_host = property(get_local_host, set_local_host)

Default Value

""

Remarks

This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.

If the class is connected, the local_host property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

Note: local_host is not persistent. You must always set it in code, and never in the property window.

local_port Property

The TCP port in the local host where the class binds.

Syntax

def get_local_port() -> int: ...
def set_local_port(value: int) -> None: ...

local_port = property(get_local_port, set_local_port)

Default Value

0

Remarks

This property must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this property to 0 (default) enables the system to choose an open port at random. The chosen port will be returned by the local_port property after the connection is established.

local_port cannot be changed once a connection is made. Any attempt to set this property when a connection is active will generate an error.

This property is useful when trying to connect to services that require a trusted port on the client side.

outgoing_message_count Property

The number of records in the OutgoingMessage arrays.

Syntax

def get_outgoing_message_count() -> int: ...

outgoing_message_count = property(get_outgoing_message_count, None)

Default Value

0

Remarks

This property controls the size of the following arrays:

The array indices start at 0 and end at outgoing_message_count - 1.

This property is read-only.

outgoing_message_content_type Property

String describing the content of the message.

Syntax

def get_outgoing_message_content_type(outgoing_message_index: int) -> str: ...

Default Value

""

Remarks

String describing the content of the message. Defined by the sending and receiving application.

Valid only for MQTT 5.

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_correlation_data Property

Used by the sender of the request message to identify which request the response message is for when it is received.

Syntax

def get_outgoing_message_correlation_data(outgoing_message_index: int) -> str: ...

Default Value

""

Remarks

Used by the sender of the request message to identify which request the response message is for when it is received.

Valid only for MQTT 5.

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_duplicate Property

Whether or not this message's Duplicate flag is set.

Syntax

def get_outgoing_message_duplicate(outgoing_message_index: int) -> bool: ...

Default Value

FALSE

Remarks

Whether or not this message's Duplicate flag is set.

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_message Property

This message's raw data payload.

Syntax

def get_outgoing_message_message(outgoing_message_index: int) -> bytes: ...

Default Value

""

Remarks

This message's raw data payload.

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_message_exp_interval Property

The lifetime of the message in seconds specified by the sender.

Syntax

def get_outgoing_message_message_exp_interval(outgoing_message_index: int) -> int: ...

Default Value

0

Remarks

The lifetime of the message in seconds specified by the sender.

For outgoing messages, the value is useful for instructing the server to delete its copies of the message for any subscribers it has not been able to start delivery to.

For incoming messages, the value sent by the server is the lifetime specified by the sender minus the time the message has been waiting in the server.

Valid only for MQTT 5.

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_packet_id Property

This message's packet Id.

Syntax

def get_outgoing_message_packet_id(outgoing_message_index: int) -> int: ...

Default Value

0

Remarks

This message's packet Id.

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_payload_format_indicator Property

Indicates whether the payload is unspecified bytes or UTF-8 Encoded character data.

Syntax

def get_outgoing_message_payload_format_indicator(outgoing_message_index: int) -> int: ...

Default Value

0

Remarks

Indicates whether the payload is unspecified bytes or UTF-8 Encoded character data. Possible values are:

ValueDescription
0 Payload is unspecified bytes
1 Payload is UTF-8 Encoded Character Data

Valid only for MQTT 5.

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_qo_s Property

This message's QoS level.

Syntax

def get_outgoing_message_qo_s(outgoing_message_index: int) -> int: ...

Default Value

0

Remarks

This message's QoS level. Possible values are:

ValueDescription
0At most once delivery
1At least once delivery
2Exactly once delivery

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_response_topic Property

String used as the topic name for a response message.

Syntax

def get_outgoing_message_response_topic(outgoing_message_index: int) -> str: ...

Default Value

""

Remarks

String used as the topic name for a response message.

Valid only for MQTT 5.

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_retained Property

Whether or not this message's Retain flag is set.

Syntax

def get_outgoing_message_retained(outgoing_message_index: int) -> bool: ...

Default Value

FALSE

Remarks

Whether or not this message's Retain flag is set.

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_state Property

This message's current state.

Syntax

def get_outgoing_message_state(outgoing_message_index: int) -> int: ...

Default Value

0

Remarks

This message's current state.

Possible Outgoing Message States:

ValueDescription
0 PUBLISH sent, waiting for PUBACK (QoS 1 only)
1 PUBLISH sent, waiting for PUBREC (QoS 2 only)
2 PUBREC received, sending PUBREL (QoS 2 only)
3 PUBREL sent, waiting for PUBCOMP (QoS 2 only)
4 Final acknowledgment received

Possible Incoming Message States:

ValueDescription
5 PUBLISH received, sending PUBACK (QoS 1 only)
6 PUBLISH received, sending PUBREC (QoS 2 only)
7 PUBREC sent, waiting for PUBREL (QoS 2 only)
8 PUBREL received, sending PUBCOMP (QoS 2 only)
9 Final acknowledgment sent

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_subscription_identifiers Property

A comma separated list of any SubscriptionIdentifiers associated with any client subscription(s) that caused this message to be delivered.

Syntax

def get_outgoing_message_subscription_identifiers(outgoing_message_index: int) -> str: ...

Default Value

""

Remarks

A comma separated list of any SubscriptionIdentifiers associated with any client subscription(s) that caused this message to be delivered.

This property is only applicable to incoming messages.

If SubscriptionIdentifier is set when subscribing, it will be included in any messages delivered by the broker for the topics specified in that packet.

See the subscribe method for more details.

Valid only for MQTT 5.

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_topic Property

This message's topic.

Syntax

def get_outgoing_message_topic(outgoing_message_index: int) -> str: ...

Default Value

""

Remarks

This message's topic.

MQTT 5 Notes:

If this value is empty, the outgoing_message_topic_alias property holds the assigned alias for the topic.

If this value is not empty and outgoing_message_topic_alias is non-zero,

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

outgoing_message_topic_alias Property

An integer used to identify the topic instead of the full topic filter in order to reduce the size of the publish packet.

Syntax

def get_outgoing_message_topic_alias(outgoing_message_index: int) -> int: ...

Default Value

0

Remarks

An integer used to identify the topic instead of the full topic filter in order to reduce the size of the publish packet.

If a non-zero topic alias is received, the client should establish a new topic alias mapping or use an existing mapping, depending on whether the outgoing_message_topic string is empty.

For details on setting topic aliases for outgoing messages, see the TopicAlias configuration setting.

Valid only for MQTT 5.

The outgoing_message_index parameter specifies the index of the item in the array. The size of the array is controlled by the outgoing_message_count property.

This property is read-only.

password Property

A password if authentication is to be used.

Syntax

def get_password() -> str: ...
def set_password(value: str) -> None: ...

password = property(get_password, set_password)

Default Value

""

Remarks

This property can be set to a password if authentication is to be used.

In MQTT 3.1.1, while a user may be specified without a password, setting a password without a user is not supported; attempting to do so will cause the server to reject the connection attempt.

In MQTT 5, a password may be set without a user, allowing the field to be used for credentials other than a password.

ready_to_send Property

Indicates whether the class is ready to send data.

Syntax

def get_ready_to_send() -> bool: ...

ready_to_send = property(get_ready_to_send, None)

Default Value

FALSE

Remarks

This property indicates that the underlying TCP/IP subsystem is ready to accept data. This is True after connecting to the remote host, and will become False if a call to publish_data or publish_message fails due to a WOULDBLOCK condition.

Once data can be sent again, the on_ready_to_send event will fire and this property will be True.

If a WOULDBLOCK error occurs while sending a message the class will automatically complete the transmission when sending is possible. No action needs to be taken to re-send the message. on_ready_to_send will fire after the class completes any partially sent messages.

This property is read-only.

remote_host Property

The address of the remote host. Domain names are resolved to IP addresses.

Syntax

def get_remote_host() -> str: ...
def set_remote_host(value: str) -> None: ...

remote_host = property(get_remote_host, set_remote_host)

Default Value

""

Remarks

This property specifies the IP address (IP number in dotted internet format) or Domain Name of the remote host. It is set before a connection is attempted and cannot be changed once a connection is established.

If this property is set to a Domain Name, a DNS request is initiated, and upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, an error is returned.

If the class is configured to use a SOCKS firewall, the value assigned to this property may be preceded with an "*". If this is the case, the host name is passed to the firewall unresolved and the firewall performs the DNS resolution.

By default the class will connect in plaintext. To enable SSL set ssl_enabled to True.

In addition, WebSocket connections are supported. To connect using WebSockets specify a hostname beginning with ws:// (plaintext) or wss:// (SSL). For instance, ws://test.mosquitto.org.

remote_port Property

The port of the MQTT server (default is 1883). The default port for SSL is 8883.

Syntax

def get_remote_port() -> int: ...
def set_remote_port(value: int) -> None: ...

remote_port = property(get_remote_port, set_remote_port)

Default Value

1883

Remarks

This property specifies a service port on the remote host to connect to.

A valid port number (a value between 1 and 65535) is required for the connection to take place. The property must be set before a connection is attempted and cannot be changed once a connection is established. Any attempt to change this property while connected will fail with an error.

ssl_accept_server_cert_effective_date Property

The date on which this certificate becomes valid.

Syntax

def get_ssl_accept_server_cert_effective_date() -> str: ...

ssl_accept_server_cert_effective_date = property(get_ssl_accept_server_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

ssl_accept_server_cert_expiration_date Property

The date on which the certificate expires.

Syntax

def get_ssl_accept_server_cert_expiration_date() -> str: ...

ssl_accept_server_cert_expiration_date = property(get_ssl_accept_server_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

ssl_accept_server_cert_extended_key_usage Property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_ssl_accept_server_cert_extended_key_usage() -> str: ...

ssl_accept_server_cert_extended_key_usage = property(get_ssl_accept_server_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

ssl_accept_server_cert_fingerprint Property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_ssl_accept_server_cert_fingerprint() -> str: ...

ssl_accept_server_cert_fingerprint = property(get_ssl_accept_server_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

ssl_accept_server_cert_fingerprint_sha1 Property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_ssl_accept_server_cert_fingerprint_sha1() -> str: ...

ssl_accept_server_cert_fingerprint_sha1 = property(get_ssl_accept_server_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

ssl_accept_server_cert_fingerprint_sha256 Property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_ssl_accept_server_cert_fingerprint_sha256() -> str: ...

ssl_accept_server_cert_fingerprint_sha256 = property(get_ssl_accept_server_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

ssl_accept_server_cert_issuer Property

The issuer of the certificate.

Syntax

def get_ssl_accept_server_cert_issuer() -> str: ...

ssl_accept_server_cert_issuer = property(get_ssl_accept_server_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

ssl_accept_server_cert_private_key Property

The private key of the certificate (if available).

Syntax

def get_ssl_accept_server_cert_private_key() -> str: ...

ssl_accept_server_cert_private_key = property(get_ssl_accept_server_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The ssl_accept_server_cert_private_key may be available but not exportable. In this case, ssl_accept_server_cert_private_key returns an empty string.

This property is read-only.

ssl_accept_server_cert_private_key_available Property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_ssl_accept_server_cert_private_key_available() -> bool: ...

ssl_accept_server_cert_private_key_available = property(get_ssl_accept_server_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a ssl_accept_server_cert_private_key is available for the selected certificate. If ssl_accept_server_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

ssl_accept_server_cert_private_key_container Property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_ssl_accept_server_cert_private_key_container() -> str: ...

ssl_accept_server_cert_private_key_container = property(get_ssl_accept_server_cert_private_key_container, None)

Default Value

""

Remarks

The name of the ssl_accept_server_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

ssl_accept_server_cert_public_key Property

The public key of the certificate.

Syntax

def get_ssl_accept_server_cert_public_key() -> str: ...

ssl_accept_server_cert_public_key = property(get_ssl_accept_server_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

ssl_accept_server_cert_public_key_algorithm Property

The textual description of the certificate's public key algorithm.

Syntax

def get_ssl_accept_server_cert_public_key_algorithm() -> str: ...

ssl_accept_server_cert_public_key_algorithm = property(get_ssl_accept_server_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_accept_server_cert_public_key_length Property

The length of the certificate's public key (in bits).

Syntax

def get_ssl_accept_server_cert_public_key_length() -> int: ...

ssl_accept_server_cert_public_key_length = property(get_ssl_accept_server_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

ssl_accept_server_cert_serial_number Property

The serial number of the certificate encoded as a string.

Syntax

def get_ssl_accept_server_cert_serial_number() -> str: ...

ssl_accept_server_cert_serial_number = property(get_ssl_accept_server_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

ssl_accept_server_cert_signature_algorithm Property

The text description of the certificate's signature algorithm.

Syntax

def get_ssl_accept_server_cert_signature_algorithm() -> str: ...

ssl_accept_server_cert_signature_algorithm = property(get_ssl_accept_server_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_accept_server_cert_store Property

The name of the certificate store for the client certificate.

Syntax

def get_ssl_accept_server_cert_store() -> bytes: ...
def set_ssl_accept_server_cert_store(value: bytes) -> None: ...

ssl_accept_server_cert_store = property(get_ssl_accept_server_cert_store, set_ssl_accept_server_cert_store)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The ssl_accept_server_cert_store_type property denotes the type of the certificate store specified by ssl_accept_server_cert_store. If the store is password-protected, specify the password in ssl_accept_server_cert_store_password.

ssl_accept_server_cert_store is used in conjunction with the ssl_accept_server_cert_subject property to specify client certificates. If ssl_accept_server_cert_store has a value, and ssl_accept_server_cert_subject or ssl_accept_server_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_accept_server_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

ssl_accept_server_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_accept_server_cert_store_password() -> str: ...
def set_ssl_accept_server_cert_store_password(value: str) -> None: ...

ssl_accept_server_cert_store_password = property(get_ssl_accept_server_cert_store_password, set_ssl_accept_server_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

ssl_accept_server_cert_store_type Property

The type of certificate store for this certificate.

Syntax

def get_ssl_accept_server_cert_store_type() -> int: ...
def set_ssl_accept_server_cert_store_type(value: int) -> None: ...

ssl_accept_server_cert_store_type = property(get_ssl_accept_server_cert_store_type, set_ssl_accept_server_cert_store_type)

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_accept_server_cert_store and set ssl_accept_server_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

ssl_accept_server_cert_subject_alt_names Property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_ssl_accept_server_cert_subject_alt_names() -> str: ...

ssl_accept_server_cert_subject_alt_names = property(get_ssl_accept_server_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

ssl_accept_server_cert_thumbprint_md5 Property

The MD5 hash of the certificate.

Syntax

def get_ssl_accept_server_cert_thumbprint_md5() -> str: ...

ssl_accept_server_cert_thumbprint_md5 = property(get_ssl_accept_server_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_accept_server_cert_thumbprint_sha1 Property

The SHA-1 hash of the certificate.

Syntax

def get_ssl_accept_server_cert_thumbprint_sha1() -> str: ...

ssl_accept_server_cert_thumbprint_sha1 = property(get_ssl_accept_server_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_accept_server_cert_thumbprint_sha256 Property

The SHA-256 hash of the certificate.

Syntax

def get_ssl_accept_server_cert_thumbprint_sha256() -> str: ...

ssl_accept_server_cert_thumbprint_sha256 = property(get_ssl_accept_server_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_accept_server_cert_usage Property

The text description of UsageFlags .

Syntax

def get_ssl_accept_server_cert_usage() -> str: ...

ssl_accept_server_cert_usage = property(get_ssl_accept_server_cert_usage, None)

Default Value

""

Remarks

The text description of ssl_accept_server_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

ssl_accept_server_cert_usage_flags Property

The flags that show intended use for the certificate.

Syntax

def get_ssl_accept_server_cert_usage_flags() -> int: ...

ssl_accept_server_cert_usage_flags = property(get_ssl_accept_server_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of ssl_accept_server_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the ssl_accept_server_cert_usage property for a text representation of ssl_accept_server_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

ssl_accept_server_cert_version Property

The certificate's version number.

Syntax

def get_ssl_accept_server_cert_version() -> str: ...

ssl_accept_server_cert_version = property(get_ssl_accept_server_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

ssl_accept_server_cert_subject Property

The subject of the certificate used for client authentication.

Syntax

def get_ssl_accept_server_cert_subject() -> str: ...
def set_ssl_accept_server_cert_subject(value: str) -> None: ...

ssl_accept_server_cert_subject = property(get_ssl_accept_server_cert_subject, set_ssl_accept_server_cert_subject)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

ssl_accept_server_cert_encoded Property

The certificate (PEM/Base64 encoded).

Syntax

def get_ssl_accept_server_cert_encoded() -> bytes: ...
def set_ssl_accept_server_cert_encoded(value: bytes) -> None: ...

ssl_accept_server_cert_encoded = property(get_ssl_accept_server_cert_encoded, set_ssl_accept_server_cert_encoded)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_accept_server_cert_store and ssl_accept_server_cert_subject properties also may be used to specify a certificate.

When ssl_accept_server_cert_encoded is set, a search is initiated in the current ssl_accept_server_cert_store for the private key of the certificate. If the key is found, ssl_accept_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_accept_server_cert_subject is set to an empty string.

ssl_cert_effective_date Property

The date on which this certificate becomes valid.

Syntax

def get_ssl_cert_effective_date() -> str: ...

ssl_cert_effective_date = property(get_ssl_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

ssl_cert_expiration_date Property

The date on which the certificate expires.

Syntax

def get_ssl_cert_expiration_date() -> str: ...

ssl_cert_expiration_date = property(get_ssl_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

ssl_cert_extended_key_usage Property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_ssl_cert_extended_key_usage() -> str: ...

ssl_cert_extended_key_usage = property(get_ssl_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

ssl_cert_fingerprint Property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_ssl_cert_fingerprint() -> str: ...

ssl_cert_fingerprint = property(get_ssl_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

ssl_cert_fingerprint_sha1 Property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_ssl_cert_fingerprint_sha1() -> str: ...

ssl_cert_fingerprint_sha1 = property(get_ssl_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

ssl_cert_fingerprint_sha256 Property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_ssl_cert_fingerprint_sha256() -> str: ...

ssl_cert_fingerprint_sha256 = property(get_ssl_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

ssl_cert_issuer Property

The issuer of the certificate.

Syntax

def get_ssl_cert_issuer() -> str: ...

ssl_cert_issuer = property(get_ssl_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

ssl_cert_private_key Property

The private key of the certificate (if available).

Syntax

def get_ssl_cert_private_key() -> str: ...

ssl_cert_private_key = property(get_ssl_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The ssl_cert_private_key may be available but not exportable. In this case, ssl_cert_private_key returns an empty string.

This property is read-only.

ssl_cert_private_key_available Property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_ssl_cert_private_key_available() -> bool: ...

ssl_cert_private_key_available = property(get_ssl_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a ssl_cert_private_key is available for the selected certificate. If ssl_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

ssl_cert_private_key_container Property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_ssl_cert_private_key_container() -> str: ...

ssl_cert_private_key_container = property(get_ssl_cert_private_key_container, None)

Default Value

""

Remarks

The name of the ssl_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

ssl_cert_public_key Property

The public key of the certificate.

Syntax

def get_ssl_cert_public_key() -> str: ...

ssl_cert_public_key = property(get_ssl_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

ssl_cert_public_key_algorithm Property

The textual description of the certificate's public key algorithm.

Syntax

def get_ssl_cert_public_key_algorithm() -> str: ...

ssl_cert_public_key_algorithm = property(get_ssl_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_cert_public_key_length Property

The length of the certificate's public key (in bits).

Syntax

def get_ssl_cert_public_key_length() -> int: ...

ssl_cert_public_key_length = property(get_ssl_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

ssl_cert_serial_number Property

The serial number of the certificate encoded as a string.

Syntax

def get_ssl_cert_serial_number() -> str: ...

ssl_cert_serial_number = property(get_ssl_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

ssl_cert_signature_algorithm Property

The text description of the certificate's signature algorithm.

Syntax

def get_ssl_cert_signature_algorithm() -> str: ...

ssl_cert_signature_algorithm = property(get_ssl_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_cert_store Property

The name of the certificate store for the client certificate.

Syntax

def get_ssl_cert_store() -> bytes: ...
def set_ssl_cert_store(value: bytes) -> None: ...

ssl_cert_store = property(get_ssl_cert_store, set_ssl_cert_store)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The ssl_cert_store_type property denotes the type of the certificate store specified by ssl_cert_store. If the store is password-protected, specify the password in ssl_cert_store_password.

ssl_cert_store is used in conjunction with the ssl_cert_subject property to specify client certificates. If ssl_cert_store has a value, and ssl_cert_subject or ssl_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

ssl_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_cert_store_password() -> str: ...
def set_ssl_cert_store_password(value: str) -> None: ...

ssl_cert_store_password = property(get_ssl_cert_store_password, set_ssl_cert_store_password)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

ssl_cert_store_type Property

The type of certificate store for this certificate.

Syntax

def get_ssl_cert_store_type() -> int: ...
def set_ssl_cert_store_type(value: int) -> None: ...

ssl_cert_store_type = property(get_ssl_cert_store_type, set_ssl_cert_store_type)

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_cert_store and set ssl_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

ssl_cert_subject_alt_names Property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_ssl_cert_subject_alt_names() -> str: ...

ssl_cert_subject_alt_names = property(get_ssl_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

ssl_cert_thumbprint_md5 Property

The MD5 hash of the certificate.

Syntax

def get_ssl_cert_thumbprint_md5() -> str: ...

ssl_cert_thumbprint_md5 = property(get_ssl_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_cert_thumbprint_sha1 Property

The SHA-1 hash of the certificate.

Syntax

def get_ssl_cert_thumbprint_sha1() -> str: ...

ssl_cert_thumbprint_sha1 = property(get_ssl_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_cert_thumbprint_sha256 Property

The SHA-256 hash of the certificate.

Syntax

def get_ssl_cert_thumbprint_sha256() -> str: ...

ssl_cert_thumbprint_sha256 = property(get_ssl_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_cert_usage Property

The text description of UsageFlags .

Syntax

def get_ssl_cert_usage() -> str: ...

ssl_cert_usage = property(get_ssl_cert_usage, None)

Default Value

""

Remarks

The text description of ssl_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

ssl_cert_usage_flags Property

The flags that show intended use for the certificate.

Syntax

def get_ssl_cert_usage_flags() -> int: ...

ssl_cert_usage_flags = property(get_ssl_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of ssl_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the ssl_cert_usage property for a text representation of ssl_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

ssl_cert_version Property

The certificate's version number.

Syntax

def get_ssl_cert_version() -> str: ...

ssl_cert_version = property(get_ssl_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

ssl_cert_subject Property

The subject of the certificate used for client authentication.

Syntax

def get_ssl_cert_subject() -> str: ...
def set_ssl_cert_subject(value: str) -> None: ...

ssl_cert_subject = property(get_ssl_cert_subject, set_ssl_cert_subject)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

ssl_cert_encoded Property

The certificate (PEM/Base64 encoded).

Syntax

def get_ssl_cert_encoded() -> bytes: ...
def set_ssl_cert_encoded(value: bytes) -> None: ...

ssl_cert_encoded = property(get_ssl_cert_encoded, set_ssl_cert_encoded)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_cert_store and ssl_cert_subject properties also may be used to specify a certificate.

When ssl_cert_encoded is set, a search is initiated in the current ssl_cert_store for the private key of the certificate. If the key is found, ssl_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_cert_subject is set to an empty string.

ssl_enabled Property

This property indicates whether Transport Layer Security/Secure Sockets Layer (TLS/SSL) is enabled.

Syntax

def get_ssl_enabled() -> bool: ...
def set_ssl_enabled(value: bool) -> None: ...

ssl_enabled = property(get_ssl_enabled, set_ssl_enabled)

Default Value

FALSE

Remarks

This property specifies whether TLS/SSL is enabled in the class. When False (default), the class operates in plaintext mode. When True, TLS/SSL is enabled.

TLS/SSL may also be enabled by setting ssl_start_mode. Setting ssl_start_mode will automatically update this property value.

ssl_provider Property

The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.

Syntax

def get_ssl_provider() -> int: ...
def set_ssl_provider(value: int) -> None: ...

ssl_provider = property(get_ssl_provider, set_ssl_provider)

Default Value

0

Remarks

This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the class will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.

Possible values are as follows:

0 (sslpAutomatic - default)Automatically selects the appropriate implementation.
1 (sslpPlatform) Uses the platform/system implementation.
2 (sslpInternal) Uses the internal implementation.
Additional Notes

In most cases using the default value (Automatic) is recommended. The class will select a provider depending on the current platform.

When Automatic is selected, on Windows, the class will use the platform implementation. On Linux/macOS, the class will use the internal implementation. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used on all platforms.

ssl_server_cert_effective_date Property

The date on which this certificate becomes valid.

Syntax

def get_ssl_server_cert_effective_date() -> str: ...

ssl_server_cert_effective_date = property(get_ssl_server_cert_effective_date, None)

Default Value

""

Remarks

The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

This property is read-only.

ssl_server_cert_expiration_date Property

The date on which the certificate expires.

Syntax

def get_ssl_server_cert_expiration_date() -> str: ...

ssl_server_cert_expiration_date = property(get_ssl_server_cert_expiration_date, None)

Default Value

""

Remarks

The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

This property is read-only.

ssl_server_cert_extended_key_usage Property

A comma-delimited list of extended key usage identifiers.

Syntax

def get_ssl_server_cert_extended_key_usage() -> str: ...

ssl_server_cert_extended_key_usage = property(get_ssl_server_cert_extended_key_usage, None)

Default Value

""

Remarks

A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

This property is read-only.

ssl_server_cert_fingerprint Property

The hex-encoded, 16-byte MD5 fingerprint of the certificate.

Syntax

def get_ssl_server_cert_fingerprint() -> str: ...

ssl_server_cert_fingerprint = property(get_ssl_server_cert_fingerprint, None)

Default Value

""

Remarks

The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

This property is read-only.

ssl_server_cert_fingerprint_sha1 Property

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.

Syntax

def get_ssl_server_cert_fingerprint_sha1() -> str: ...

ssl_server_cert_fingerprint_sha1 = property(get_ssl_server_cert_fingerprint_sha1, None)

Default Value

""

Remarks

The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

This property is read-only.

ssl_server_cert_fingerprint_sha256 Property

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.

Syntax

def get_ssl_server_cert_fingerprint_sha256() -> str: ...

ssl_server_cert_fingerprint_sha256 = property(get_ssl_server_cert_fingerprint_sha256, None)

Default Value

""

Remarks

The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

This property is read-only.

ssl_server_cert_issuer Property

The issuer of the certificate.

Syntax

def get_ssl_server_cert_issuer() -> str: ...

ssl_server_cert_issuer = property(get_ssl_server_cert_issuer, None)

Default Value

""

Remarks

The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.

This property is read-only.

ssl_server_cert_private_key Property

The private key of the certificate (if available).

Syntax

def get_ssl_server_cert_private_key() -> str: ...

ssl_server_cert_private_key = property(get_ssl_server_cert_private_key, None)

Default Value

""

Remarks

The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The ssl_server_cert_private_key may be available but not exportable. In this case, ssl_server_cert_private_key returns an empty string.

This property is read-only.

ssl_server_cert_private_key_available Property

Whether a PrivateKey is available for the selected certificate.

Syntax

def get_ssl_server_cert_private_key_available() -> bool: ...

ssl_server_cert_private_key_available = property(get_ssl_server_cert_private_key_available, None)

Default Value

FALSE

Remarks

Whether a ssl_server_cert_private_key is available for the selected certificate. If ssl_server_cert_private_key_available is True, the certificate may be used for authentication purposes (e.g., server authentication).

This property is read-only.

ssl_server_cert_private_key_container Property

The name of the PrivateKey container for the certificate (if available).

Syntax

def get_ssl_server_cert_private_key_container() -> str: ...

ssl_server_cert_private_key_container = property(get_ssl_server_cert_private_key_container, None)

Default Value

""

Remarks

The name of the ssl_server_cert_private_key container for the certificate (if available). This functionality is available only on Windows platforms.

This property is read-only.

ssl_server_cert_public_key Property

The public key of the certificate.

Syntax

def get_ssl_server_cert_public_key() -> str: ...

ssl_server_cert_public_key = property(get_ssl_server_cert_public_key, None)

Default Value

""

Remarks

The public key of the certificate. The key is provided as PEM/Base64-encoded data.

This property is read-only.

ssl_server_cert_public_key_algorithm Property

The textual description of the certificate's public key algorithm.

Syntax

def get_ssl_server_cert_public_key_algorithm() -> str: ...

ssl_server_cert_public_key_algorithm = property(get_ssl_server_cert_public_key_algorithm, None)

Default Value

""

Remarks

The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_server_cert_public_key_length Property

The length of the certificate's public key (in bits).

Syntax

def get_ssl_server_cert_public_key_length() -> int: ...

ssl_server_cert_public_key_length = property(get_ssl_server_cert_public_key_length, None)

Default Value

0

Remarks

The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

This property is read-only.

ssl_server_cert_serial_number Property

The serial number of the certificate encoded as a string.

Syntax

def get_ssl_server_cert_serial_number() -> str: ...

ssl_server_cert_serial_number = property(get_ssl_server_cert_serial_number, None)

Default Value

""

Remarks

The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

This property is read-only.

ssl_server_cert_signature_algorithm Property

The text description of the certificate's signature algorithm.

Syntax

def get_ssl_server_cert_signature_algorithm() -> str: ...

ssl_server_cert_signature_algorithm = property(get_ssl_server_cert_signature_algorithm, None)

Default Value

""

Remarks

The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

This property is read-only.

ssl_server_cert_store Property

The name of the certificate store for the client certificate.

Syntax

def get_ssl_server_cert_store() -> bytes: ...

ssl_server_cert_store = property(get_ssl_server_cert_store, None)

Default Value

"MY"

Remarks

The name of the certificate store for the client certificate.

The ssl_server_cert_store_type property denotes the type of the certificate store specified by ssl_server_cert_store. If the store is password-protected, specify the password in ssl_server_cert_store_password.

ssl_server_cert_store is used in conjunction with the ssl_server_cert_subject property to specify client certificates. If ssl_server_cert_store has a value, and ssl_server_cert_subject or ssl_server_cert_encoded is set, a search for a certificate is initiated. Please see the ssl_server_cert_subject property for details.

Designations of certificate stores are platform dependent.

The following designations are the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).

This property is read-only.

ssl_server_cert_store_password Property

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

Syntax

def get_ssl_server_cert_store_password() -> str: ...

ssl_server_cert_store_password = property(get_ssl_server_cert_store_password, None)

Default Value

""

Remarks

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

This property is read-only.

ssl_server_cert_store_type Property

The type of certificate store for this certificate.

Syntax

def get_ssl_server_cert_store_type() -> int: ...

ssl_server_cert_store_type = property(get_ssl_server_cert_store_type, None)

Default Value

0

Remarks

The type of certificate store for this certificate.

The class supports both public and private keys in a variety of formats. When the cstAuto value is used, the class will automatically determine the type. This property can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user.

Note: This store type is not available in Java.

1 (cstMachine)For Windows, this specifies that the certificate store is a machine store.

Note: This store type is not available in Java.

2 (cstPFXFile)The certificate store is the name of a PFX (PKCS#12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates.

Note: This store type is only available in Java.

5 (cstJKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.

Note: This store type is only available in Java.

6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS#7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS#7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).

Note: This store type is only available in Java and .NET.

22 (cstBCFKSBlob)The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.

Note: This store type is only available in Java and .NET.

23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS#11 interface.

To use a security key, the necessary data must first be collected using the CertMgr class. The list_store_certificates method may be called after setting cert_store_type to cstPKCS11, cert_store_password to the PIN, and cert_store to the full path of the PKCS#11 DLL. The certificate information returned in the on_cert_list event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the ssl_server_cert_store and set ssl_server_cert_store_password to the PIN.

Code Example. SSH Authentication with Security Key: certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

This property is read-only.

ssl_server_cert_subject_alt_names Property

Comma-separated lists of alternative subject names for the certificate.

Syntax

def get_ssl_server_cert_subject_alt_names() -> str: ...

ssl_server_cert_subject_alt_names = property(get_ssl_server_cert_subject_alt_names, None)

Default Value

""

Remarks

Comma-separated lists of alternative subject names for the certificate.

This property is read-only.

ssl_server_cert_thumbprint_md5 Property

The MD5 hash of the certificate.

Syntax

def get_ssl_server_cert_thumbprint_md5() -> str: ...

ssl_server_cert_thumbprint_md5 = property(get_ssl_server_cert_thumbprint_md5, None)

Default Value

""

Remarks

The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_server_cert_thumbprint_sha1 Property

The SHA-1 hash of the certificate.

Syntax

def get_ssl_server_cert_thumbprint_sha1() -> str: ...

ssl_server_cert_thumbprint_sha1 = property(get_ssl_server_cert_thumbprint_sha1, None)

Default Value

""

Remarks

The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_server_cert_thumbprint_sha256 Property

The SHA-256 hash of the certificate.

Syntax

def get_ssl_server_cert_thumbprint_sha256() -> str: ...

ssl_server_cert_thumbprint_sha256 = property(get_ssl_server_cert_thumbprint_sha256, None)

Default Value

""

Remarks

The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

This property is read-only.

ssl_server_cert_usage Property

The text description of UsageFlags .

Syntax

def get_ssl_server_cert_usage() -> str: ...

ssl_server_cert_usage = property(get_ssl_server_cert_usage, None)

Default Value

""

Remarks

The text description of ssl_server_cert_usage_flags.

This value will be one or more of the following strings and will be separated by commas:

  • Digital Signature
  • Non-Repudiation
  • Key Encipherment
  • Data Encipherment
  • Key Agreement
  • Certificate Signing
  • CRL Signing
  • Encipher Only

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

This property is read-only.

ssl_server_cert_usage_flags Property

The flags that show intended use for the certificate.

Syntax

def get_ssl_server_cert_usage_flags() -> int: ...

ssl_server_cert_usage_flags = property(get_ssl_server_cert_usage_flags, None)

Default Value

0

Remarks

The flags that show intended use for the certificate. The value of ssl_server_cert_usage_flags is a combination of the following flags:

0x80Digital Signature
0x40Non-Repudiation
0x20Key Encipherment
0x10Data Encipherment
0x08Key Agreement
0x04Certificate Signing
0x02CRL Signing
0x01Encipher Only

Please see the ssl_server_cert_usage property for a text representation of ssl_server_cert_usage_flags.

This functionality currently is not available when the provider is OpenSSL.

This property is read-only.

ssl_server_cert_version Property

The certificate's version number.

Syntax

def get_ssl_server_cert_version() -> str: ...

ssl_server_cert_version = property(get_ssl_server_cert_version, None)

Default Value

""

Remarks

The certificate's version number. The possible values are the strings "V1", "V2", and "V3".

This property is read-only.

ssl_server_cert_subject Property

The subject of the certificate used for client authentication.

Syntax

def get_ssl_server_cert_subject() -> str: ...

ssl_server_cert_subject = property(get_ssl_server_cert_subject, None)

Default Value

""

Remarks

The subject of the certificate used for client authentication.

This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.

If a matching certificate is found, the property is set to the full subject of the matching certificate.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:

FieldMeaning
CNCommon Name. This is commonly a hostname like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma, it must be quoted.

This property is read-only.

ssl_server_cert_encoded Property

The certificate (PEM/Base64 encoded).

Syntax

def get_ssl_server_cert_encoded() -> bytes: ...

ssl_server_cert_encoded = property(get_ssl_server_cert_encoded, None)

Default Value

""

Remarks

The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The ssl_server_cert_store and ssl_server_cert_subject properties also may be used to specify a certificate.

When ssl_server_cert_encoded is set, a search is initiated in the current ssl_server_cert_store for the private key of the certificate. If the key is found, ssl_server_cert_subject is updated to reflect the full subject of the selected certificate; otherwise, ssl_server_cert_subject is set to an empty string.

This property is read-only.

timeout Property

This property includes the timeout for the class.

Syntax

def get_timeout() -> int: ...
def set_timeout(value: int) -> None: ...

timeout = property(get_timeout, set_timeout)

Default Value

60

Remarks

If the timeout property is set to 0, all operations return immediately, potentially failing with a WOULDBLOCK error if data cannot be sent immediately.

If timeout is set to a positive value, data is sent in a blocking manner and the class will wait for the operation to complete before returning control. The class will handle any potential WOULDBLOCK errors internally and automatically retry the operation for a maximum of timeout seconds.

The class will use do_events to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.

If timeout expires, and the operation is not yet complete, the class fails with an error.

Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by timeout seconds when any amount of data is successfully sent or received.

The default value for the timeout property is 60 seconds.

user Property

A username if authentication is to be used.

Syntax

def get_user() -> str: ...
def set_user(value: str) -> None: ...

user = property(get_user, set_user)

Default Value

""

Remarks

This property can be set to a username if authentication is to be used.

In MQTT 3.1.1, while a user may be specified without a password, setting a password without a user is not supported; attempting to do so will cause the server to reject the connection attempt.

In MQTT 5, a password may be set without a user, allowing the field to be used for credentials other than a password.

version Property

The MQTT protocol version that the class will conform to.

Syntax

def get_version() -> int: ...
def set_version(value: int) -> None: ...

version = property(get_version, set_version)

Default Value

0

Remarks

This property specifies the version of the MQTT protocol to use. Possible values are:

0 (mvV3 - default) MQTT 3.1.1
1 (mvV5) MQTT 5
This property must be set before connecting.

will_message Property

The message that the server should publish in the event of an ungraceful disconnection.

Syntax

def get_will_message() -> str: ...
def set_will_message(value: str) -> None: ...

will_message = property(get_will_message, set_will_message)

Default Value

""

Remarks

This property may be set before calling connect to specify to the server a message that should be published on will_topic if the connection is closed ungracefully. Since it is sent to the server when connect is called, this property's value cannot be changed when already connected.

Note that the will_message will only be sent to the server when connect is called if will_topic is set.

Refer to will_topic for more information about MQTT Will functionality.

will_topic Property

The topic that the server should publish the WillMessage to in the event of an ungraceful disconnection.

Syntax

def get_will_topic() -> str: ...
def set_will_topic(value: str) -> None: ...

will_topic = property(get_will_topic, set_will_topic)

Default Value

""

Remarks

This property may be set before calling connect to specify the topic name that the server should publish the will_message on if the connection is closed ungracefully. Since it is sent to the server when connect is called, this property's value cannot be changed when already connected.

MQTT Wills

The Will feature of MQTT allows a client to specify to the server a will_message to publish (as well as a will_topic to publish it on) in the event of an ungraceful disconnection.

An "ungraceful disconnection" is any disconnection other than one triggered by calling disconnect (in which case the server discards the Will message without publishing it). Note that in MQTT 5, the client can set a DisconnectReasonCode of 0x04 before calling disconnect to instruct the server to publish the Will message anyway.

In addition to the will_topic and will_message properties, the WillQOS setting may be used to specify the Will message's QoS level, and the WillRetain setting to set the Will message's Retain flag. Refer to those settings for more information.

If will_topic is set to empty string (default) when connect is called, the class will not send a Will to the server.

In MQTT 5, the "WillDelayInterval" value in the WillProperties config can specify a delay between the ending of the connection and sending the will message, so that the will_message will not be sent if a connection is re-established within a certain period of time.

config Method

Sets or retrieves a configuration setting.

Syntax

def config(configuration_string: str) -> str: ...

Remarks

config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

connect Method

Connects to the remote host.

Syntax

def connect() -> None: ...

Remarks

This method connects to the remote host specified by remote_host and remote_port. Calling this method is equivalent to setting the connected property to True.

By default the class will connect in plaintext. To enable SSL set ssl_enabled to True.

In addition, WebSocket connections are supported. To connect using WebSockets specify a hostname beginning with ws:// (plaintext) or wss:// (SSL). For instance, ws://test.mosquitto.org.

When connecting to an MQTT server, the class sends the following information:

If clean_session is True, check the SessionPresent configuration setting once connected to determine whether the server actually had any session state saved.

Refer to clean_session, save_session, and restore_session for more information about MQTT sessions and session state persistence; refer to will_topic, will_message, WillQOS, and WillRetain for more information about MQTT Wills.

Basic Connection Example mqtt1.ClientId = "testClient"; mqtt1.CleanSession = true; mqtt1.KeepAliveInterval = 30; mqtt1.WillTopic = "wills/" + mqtt1.ClientId; mqtt1.WillMessage = mqtt1.ClientId + " was disconnected ungracefully!"; mqtt1.RemoteHost = "mqtt.test-server.com"; mqtt1.RemotePort = 1883; mqtt1.Connect();

connect_to Method

Connects to the remote host.

Syntax

def connect_to(host: str, port: int) -> None: ...

Remarks

This method connects to the remote host specified by the Host and Port parameters. Calling this method is equivalent to setting the remote_host property to Host, setting remote_port to Port, and then setting the connected property to True.

By default the class will connect in plaintext. To enable SSL set ssl_enabled to True.

In addition, WebSocket connections are supported. To connect using WebSockets specify a hostname beginning with ws:// (plaintext) or wss:// (SSL). For instance, ws://test.mosquitto.org.

When connecting to an MQTT server, the class sends the following information:

If clean_session is True, check the SessionPresent configuration setting once connected to determine whether the server actually had any session state saved.

Refer to clean_session, save_session, and restore_session for more information about MQTT sessions and session state persistence; refer to will_topic, will_message, WillQOS, and WillRetain for more information about MQTT Wills.

Basic Connection Example mqtt1.ClientId = "testClient"; mqtt1.CleanSession = true; mqtt1.KeepAliveInterval = 30; mqtt1.WillTopic = "wills/" + mqtt1.ClientId; mqtt1.WillMessage = mqtt1.ClientId + " was disconnected ungracefully!"; mqtt1.ConnectTo("mqtt.test-server.com", 1883);

disconnect Method

This method disconnects from the remote host.

Syntax

def disconnect() -> None: ...

Remarks

This method disconnects from the remote host. Calling this method is equivalent to setting the connected property to False.

Refer to the connected property for more information about MQTT-specific behavior.

do_events Method

This method processes events from the internal message queue.

Syntax

def do_events() -> None: ...

Remarks

When do_events is called, the class processes any available events. If no events are available, it waits for a preset period of time, and then returns.

interrupt Method

Interrupt the current action and disconnects from the remote host.

Syntax

def interrupt() -> None: ...

Remarks

This method will interrupt the current method (if applicable) and cause the class to disconnect from the remote host.

publish_data Method

Publishes a message with a raw data payload.

Syntax

def publish_data(topic: str, qos: int, data: bytes) -> None: ...

Remarks

This method publishes an MQTT message with a raw data payload to the specified Topic at a given QOS level.

Publish Examples // Publish a simple string-based message. mqtt1.PublishMessage("/home/floor1/security/camera2", 1, "Cat detected!"); // Publish a raw data message. byte[] catPicture = ...; mqtt1.PublishData("/home/floor1/security/camera2", 1, catPicture);

The Retain configuration setting may be set before calling this method in order to publish a retained message (see Retain for more information).

Topic Names

Topic names are case-sensitive, must be 1-65535 characters long, and may include any characters except wildcard characters (# and +) and the null character. The / character separates levels within a topic name, which is important in the context of subscribing (see subscribe for more information).

Keep in mind that using topic names with leading or trailing / characters will cause topic levels with zero-length names to be created. That is, a topic name like /a/b/ consists of the levels '', 'a', 'b', and ''. Depending on the server, multiple successive /s may also cause zero-length levels to be created, or may be treated as a single /.

Topic names that begin with a $ are "system topics", and servers will typically prevent clients from publishing to them.

For example, topic names that begin with $share are reserved for Shared Subscriptions (see subscribe).

QoS Values

QoS values set the service level for delivery of a message. Values range from 0 to 2 and have the following meanings:

QoS LevelDescription
0 At most once - The published message is sent once, and if it does not arrive it is lost.
1 At least once - Guarantees that the published message arrives, but there may be duplicates.
2 Exactly once - Guarantees that the publish message arrives and that there are no duplicates.
For outgoing messages with a QoS of 0, the class sends a PUBLISH packet, but does not add the message to outgoing_messages (since QoS 0 messages do not get acknowledged).

QoS is not guaranteed to be end-to-end in MQTT. The server must downgrade a message's QoS level when delivering it to clients who specified a lower "maximum acceptable" QoS when they subscribed. For example, if Client X subscribes to a topic at QoS 1, and Client Y publishes a message to that topic at QoS 2, the server will downgrade the message to QoS 1 when attempting to deliver it to Client X.

Outbound Message Processing

Outgoing messages with a QoS of 1 follow these steps:

  1. The class sends the PUBLISH packet, then adds the message to outgoing_messages.
  2. The class waits to receive a PUBACK (publish acknowledgment) packet.
  3. The on_message_ack event is fired.
  4. The message is removed from outgoing_messages.
  5. The on_message_out event is fired.

Outgoing messages with a QoS of 2 follow these steps:

  1. The class sends the PUBLISH packet, then adds the message to outgoing_messages.
  2. The class waits to receive a PUBREC (publish received) packet.
  3. The class sends a PUBREL (publish release) packet in response.
  4. The class waits to receive a PUBCOMP (publish complete) packet.
  5. The on_message_ack event is fired.
  6. The message is removed from outgoing_messages.
  7. The on_message_out event is fired.

In MQTT 3.1.1, the RepublishInterval configuration setting, if set to a non-zero value (default), controls how long the class will wait to receive a PUBACK (for QoS 1) or PUBREC (for QoS 2) before automatically republishing an outgoing message. In MQTT 5, messages are only republished if the client is disconnected before receiving a PUBACK or PUBREC.

MQTT 5 Notes

MQTT 5 makes a number of new features available when publishing messages, including:

  • TopicAlias - Set an integer alias along with the topic name when first publishing a message. When publishing additional messages to the same topic if TopicAlias is set the Topic parameter does not need to be set. This reduces the size of the message sent to the server.
  • Request / Response - Set a ResponseTopic which identifies the topic to which a receiver should respond.

Some of these features require configuration settings to be set prior to publishing. In these cases, note that these configuration settings will continue to be applicable to any future PUBLISH packets sent with the method unless they are updated or reset. To prevent clear a previously set configuration setting, set it to "", or -1 (for integers).

See the OutgoingMessageProperties configuration setting for additional details.

publish_message Method

Publishes a message with a string payload.

Syntax

def publish_message(topic: str, qos: int, message: str) -> None: ...

Remarks

This method publishes an MQTT message with a string payload to the specified Topic at a given QOS level.

Publish Examples // Publish a simple string-based message. mqtt1.PublishMessage("/home/floor1/security/camera2", 1, "Cat detected!"); // Publish a raw data message. byte[] catPicture = ...; mqtt1.PublishData("/home/floor1/security/camera2", 1, catPicture);

The Retain configuration setting may be set before calling this method in order to publish a retained message (see Retain for more information).

Topic Names

Topic names are case-sensitive, must be 1-65535 characters long, and may include any characters except wildcard characters (# and +) and the null character. The / character separates levels within a topic name, which is important in the context of subscribing (see subscribe for more information).

Keep in mind that using topic names with leading or trailing / characters will cause topic levels with zero-length names to be created. That is, a topic name like /a/b/ consists of the levels '', 'a', 'b', and ''. Depending on the server, multiple successive /s may also cause zero-length levels to be created, or may be treated as a single /.

Topic names that begin with a $ are "system topics", and servers will typically prevent clients from publishing to them.

For example, topic names that begin with $share are reserved for Shared Subscriptions (see subscribe).

QoS Values

QoS values set the service level for delivery of a message. Values range from 0 to 2 and have the following meanings:

QoS LevelDescription
0 At most once - The published message is sent once, and if it does not arrive it is lost.
1 At least once - Guarantees that the published message arrives, but there may be duplicates.
2 Exactly once - Guarantees that the publish message arrives and that there are no duplicates.
For outgoing messages with a QoS of 0, the class sends a PUBLISH packet, but does not add the message to outgoing_messages (since QoS 0 messages do not get acknowledged).

QoS is not guaranteed to be end-to-end in MQTT. The server must downgrade a message's QoS level when delivering it to clients who specified a lower "maximum acceptable" QoS when they subscribed. For example, if Client X subscribes to a topic at QoS 1, and Client Y publishes a message to that topic at QoS 2, the server will downgrade the message to QoS 1 when attempting to deliver it to Client X.

Outbound Message Processing

Outgoing messages with a QoS of 1 follow these steps:

  1. The class sends the PUBLISH packet, then adds the message to outgoing_messages.
  2. The class waits to receive a PUBACK (publish acknowledgment) packet.
  3. The on_message_ack event is fired.
  4. The message is removed from outgoing_messages.
  5. The on_message_out event is fired.

Outgoing messages with a QoS of 2 follow these steps:

  1. The class sends the PUBLISH packet, then adds the message to outgoing_messages.
  2. The class waits to receive a PUBREC (publish received) packet.
  3. The class sends a PUBREL (publish release) packet in response.
  4. The class waits to receive a PUBCOMP (publish complete) packet.
  5. The on_message_ack event is fired.
  6. The message is removed from outgoing_messages.
  7. The on_message_out event is fired.

In MQTT 3.1.1, the RepublishInterval configuration setting, if set to a non-zero value (default), controls how long the class will wait to receive a PUBACK (for QoS 1) or PUBREC (for QoS 2) before automatically republishing an outgoing message. In MQTT 5, messages are only republished if the client is disconnected before receiving a PUBACK or PUBREC.

MQTT 5 Notes

MQTT 5 makes a number of new features available when publishing messages, including:

  • TopicAlias - Set an integer alias along with the topic name when first publishing a message. When publishing additional messages to the same topic if TopicAlias is set the Topic parameter does not need to be set. This reduces the size of the message sent to the server.
  • Request / Response - Set a ResponseTopic which identifies the topic to which a receiver should respond.

Some of these features require configuration settings to be set prior to publishing. In these cases, note that these configuration settings will continue to be applicable to any future PUBLISH packets sent with the method unless they are updated or reset. To prevent clear a previously set configuration setting, set it to "", or -1 (for integers).

See the OutgoingMessageProperties configuration setting for additional details.

reset Method

This method will reset the class.

Syntax

def reset() -> None: ...

Remarks

This method will reset the class's properties to their default values.

restore_session Method

Restores session state data.

Syntax

def restore_session(state_data: str) -> None: ...

Remarks

This method restores previously-saved session state data and sets clean_session to False. If the SessionStateFile configuration setting is set, the class will use the contents of that file to restore the session state data, ignoring the string passed to this method.

Depending on the elapsed time between connections the server may discard any previously saved session data on its side.

In MQTT 3.1.1, the time after which the server discards saved session data is not defined in the protocol specification and may vary between implementations. As a result, when re-connecting it may not be known if the server is capable of restoring a previous session.

To determine if a session can be restored on connection, set clean_session to False, client_id to the same value used in the initial connection, and call connect_to.

When the on_connected event fires, query the SessionPresent configuration setting. If SessionPresent is True the session should be restored by calling restore_session. If SessionPresent is False the session should not be restored so that the connection proceeds as a clean session.

Note: Not all servers support the use of SessionPresent.

Restore Session Example (Query SessionPresent) mqtt1.CleanSession = false; mqtt1.ClientId = clientId; mqtt1.OnConnected += (s, e) => { if (mqtt1.Config("SessionPresent").ToLower() == "true") mqtt1.RestoreSession(sessionStr); }; mqtt1.ConnectTo(host,port);

If it is known that the server has not discarded the session state, for instance from familiarity with the server implementation and its behavior, then a simplified procedure can be performed. Simply set client_id to the value used in the initial connection, call restore_session, and then call connect_to.

Restore Session Example (Server Status Known) mqtt1.ClientId = clientId; mqtt1.RestoreSession(sessionStr); mqtt1.ConnectTo(host,port);

Refer to clean_session and save_session for more information.

MQTT 5 Notes

In MQTT 5, the time after which the server discards saved session data is controlled by the SessionExpInterval. The server is required to store state data for the amount of time specified by this value, at which point it is required to delete it.

This feature allows the client to use its own time-based logic to determine whether it is necessary to call restore_session.

save_session Method

Saves session state data.

Syntax

def save_session() -> str: ...

Remarks

This method saves session state data currently held by the class, returning it as a string that can later be used to restore it. If the SessionStateFile configuration setting is set, the class will also write the session state data to that file (creating and/or overwriting it, as necessary).

Refer to clean_session and restore_session for more information.

subscribe Method

Subscribes the class to one or more topic filters.

Syntax

def subscribe(topic_filter: str, qos: int) -> None: ...

Remarks

This method subscribes the class to one or more topic filters using one or more QoS levels.

The on_subscribed event will fire once for each topic filter given once the server acknowledges the subscription request(s). Keep in mind that the server is allowed to start publishing messages before it sends the acknowledgment.

It is legal to call subscribe again for the same topic filter at any time, and pass a different QoS value at that time if desired. The on_subscribed event will fire as normal when doing this.

Subscribe Examples // Subscribed event handler. mqtt1.OnSubscribed += (s, e) => { if (e.ResponseCode <= 2) Console.WriteLine("Subscribed to " + e.TopicFilter + " at QoS " + e.QOS + "."); else Console.WriteLine("Failed to subscribe to " + e.TopicFilter + "."); }; // Basic, subscribe to some topic filters, all at the same QoS level. mqtt1.Subscribe("home,home/floor1/+/temperature,home/floor2/#", 2); // A bit more advanced, subscribe to the same topic filters, but at different QoS levels. mqtt1.Config("TopicQOSArray=1,2,2"); // The 0 is ignored here since we've specified individual QoS values explicitly. mqtt1.Subscribe("home,home/floor1/+/temperature,home/floor2/#", 0);

Topic Filters

The string passed for TopicFilter must contain one or more valid topic filter strings, separated by the delimiter string specified by the TopicDelimiter configuration setting (, by default).

A topic filter is a case-sensitive string between 1 and 65535 characters long (per topic filter), and can include any character other than the null character. Certain characters have special meanings:

  • / - The topic level separator
  • # - The multi-level wildcard (zero or more levels)
  • + - The single-level wildcard (exactly one level)
  • Leading $ - Denotes a "system topic"

Note that both types of wildcards may be used in the same topic filter.

Topic Level Separators

The topic level separator, as its name implies, is used to separate a topic name (or in this case, filter) into "levels". This concept of topic names having levels is what allows topic filters to match multiple topics through the use of wildcards. For the examples in the next sections, assume the following topics exist:

  • home/floor1
  • home/floor1/livingRoom
  • home/floor1/livingRoom/temperature
  • home/floor1/kitchen/temperature
  • home/floor1/kitchen/fridge/temperature
  • home/floor2/bedroom1
  • home/floor2/bedroom1/temperature

Multi-level Wildcards

The multi-level wildcard character is used at the end of a topic filter to make it match an arbitrary number of successive levels. For example, the topic filter home/floor1/# would match the following topics:

  • home/floor1 (because it can match zero levels)
  • home/floor1/livingRoom
  • home/floor1/livingRoom/temperature
  • home/floor1/kitchen/temperature
  • home/floor1/kitchen/fridge/temperature

Here are some things to keep in mind when using a multi-level wildcard:

  • # must always be the last character in the topic filter (e.g., home/floor1/#/livingRoom is not valid)
  • # must always be preceded by a / (e.g., home/floor1# is not valid)
  • # by itself is a valid topic filter, and will match all topics except system topics

Single-level Wildcards

The single-level wildcard character is used between two /s in a topic filter to make it any single level. For example, the topic filter home/floor1/+/temperature would match the following topics:

  • home/floor1/livingRoom/temperature
  • home/floor1/kitchen/temperature

Any number of single-level wildcards are supported in a topic filter. For example, the topic filter home/+/+/temperature would match the following topics:

  • home/floor1/livingRoom/temperature
  • home/floor1/kitchen/temperature
  • home/floor2/bedroom1/temperature

Here are some things to keep in mind when using single-level wildcards:

  • + must always be separated from other levels using /s (e.g., home/floor1+ is invalid, but +/floor1/+ is valid)
  • + by itself is a valid topic filter, and will match all topics with exactly one level in their name except system topics
  • Remember, topic names with a leading / have a zero-length string as their first level. So a topic named /people would be matched by the topic filter +/+, but not by +
  • + must match exactly one level. So for example, the topic filter home/floor1/kitchen/+/temperature would match /home/floor1/kitchen/fridge/temperature, but not home/floor1/kitchen/temperature

System Topics

Topic names which begin with a $ are "system topics". Typically, the server prohibits clients from publishing to such topics, but permits subscribing to them. As described above, wildcards will never match the first level of a topic if it begins with a $.

Note that MQTT 5 defines shared subscriptions, a special type of system topic. See the MQTT 5 notes below for more.

Requested QoS Values

The QoS value passed for QOS will be used to subscribe to all given topic filters, unless the TopicQOSArray configuration setting is used to specify explicit QoS values for each individual topic filter.

QoS values range from 0 to 2 and have the following meanings:

QoS LevelDescription
0 At most once - The published message is sent once, and if it does not arrive it is lost.
1 At least once - Guarantees that the published message arrives, but there may be duplicates.
2 Exactly once - Guarantees that the publish message arrives and that there are no duplicates.

QoS is not guaranteed to be end-to-end in MQTT. The server must downgrade a message's QoS level when delivering it to clients who specified a lower "maximum acceptable" QoS when they subscribed. For example, if Client X subscribes to a topic at QoS 1, and Client Y publishes a message to that topic at QoS 2, the server will downgrade the message to QoS 1 when attempting to deliver it to Client X.

MQTT 5 Notes

MQTT 5 defines several new features that apply to subscriptions, including Shared Subscriptions, Subscription Options and Subscription Identifiers. Some of these features require configuration settings to be set prior to calling subscribe. In these cases, note that thee configuration settings will continue to be applied to any future SUBSCRIBE packets sent with the method unless they are updated or reset. To prevent a value from being included in packets after it has been set previously, set it to "", or -1 (for integers).

Shared Subscriptions

Shared subscriptions allow a client to subscribe to a topic as a part of a group of clients, where each client in the group is subscribing to the same topic. Each message published to such a group will be delivered to only one client in the group, making shared subscriptions useful when several clients share the processing of the publications in parallel.

Subscribing to a topic as part of a shared subscription is similar to a normal subscription, the only difference being the syntax of the topic filter passed to the subscribe method.

The format of this filter is $share/{ShareName}/{filter}, where

  • $share is a string literal identifying the subscription as a shared subscriptions.
  • {ShareName} is a string at least one character long that must not include /, + or #.
  • {filter} is a full topic filter formatted just as in a non-shared subscription.

Unsubscribing is done by passing the same value to the unsubscribe method.

A shared subscription behaves the same way as a non-shared subscription, except that the $share/{ShareName} portion of the topic filter is ignored when filtering publication topics, and that the server will distribute delivery of messages amongst the group, with each message delivered to only one client per group per topic.

Shared subscriptions can be implemented without any additional properties or methods, simply by using the subscribe and unsubscribe methods. However, if it is necessary to verify that the feature is supported by the server, check the "SharedSubscriptionAvailable" value of the ConnAckProperties config.

Shared Subscription Example mqtt1.Subscribe("$share/myShareGroup/myTopicFilter/subTopic", 2);

Subscription Options

MQTT 5 defines three subscription options which can be configured on a per-subscription basis and are useful for message bridge applications:

  • No Local flag - indicates that messages must not be forwarded to a connection with a client_id equal to the client_id of the publishing connection (cannot be set on a shared subscription).
  • Retain As Published flag - indicates that messages forwarded using this subscription keep the retain flag they were published with (as opposed to always being set to False).
  • Retain Handling option - specifies whether retained messages are sent when the subscription is established. Possible values are:
    0Send retained messages at the time of the subscribe
    1Send retained messages at subscribe only if the subscription does not currently exist
    2Do not send retained messages at the time of the subscribe

To specify these options in the subscribe method, the class has three corresponding configuration settings (TopicNLArray, TopicRAPArray and TopicRHArray) which each take a string value in the form of a comma-separated list. Each element in the list corresponds to a topic filter passed to the subscribe method, as with TopicQOSArray.

If the subscription is only for one topic, these lists would have only one value. If the number of elements in the string is less than the number of topic filters in the subscription, the final element will be applied to all remaining topics.

Subscription Options Example mqtt1.Connected = true; mqtt1.Config("TopicNLArray=true, false, true"); // TestTopic1 = true, TestTopic2 = false, TestTopic3 = true mqtt1.Config("TopicRAPArray=false"); // TestTopic1 = false, TestTopic2 = false, TestTopic3 = false mqtt1.Config("TopicRHArray=1, 0"); // // TestTopic1 = 1, TestTopic2 = 0, TestTopic3 = 0 mqtt1.Subscribe("TestTopic1, TestTopic2, TestTopic3", 1);

Subscription Identifiers

MQTT 5 allows clients to specify a numeric subscription identifier which will be returned with messages delivered for that subscription.

To do so with the class, set the SubscriptionIdentifier configuration setting before calling subscribe. To update the identifier, call subscribe with a new SubscriptionIdentifier.

To verify that a server supports subscription identifiers, check the "SubscriptionIdentifiersAvailable" value in the ConnAckProperties configuration setting. See the SubscriptionIdentifiers property of the MQTTMessage type for details on returning the ids associated with messages.

Note that a topic may have multiple identifiers associated with it (due to wildcards), and the same identifier may be associated with multiple topics.

Subscription Options Example mqtt1.Connected = true; mqtt1.OnMessageAck += (o, e) => { String ids = mqtt1.IncomingMessages[e.Index].SubscriptionIdentifiers; // ids = "123,321" }; mqtt1.Config("SubscriptionIdentifier=123"); mqtt1.Subscribe("test_topic/subtopic", 1); mqtt1.Config("SubscriptionIdentifier=321"); mqtt1.Subscribe("test_topic/+", 1); mqtt2.Connected = true; mqtt2.PublishMessage("test_topic/subtopic", 1, "hello world");

unsubscribe Method

Unsubscribes the class from one or more topic filters.

Syntax

def unsubscribe(topic_filter: str) -> None: ...

Remarks

This method unsubscribes the class from one or more topic filters. The string passed for TopicFilter must contain one or more valid topic filter strings, separated by the delimiter string specified by the TopicDelimiter configuration setting (, by default).

The on_unsubscribed event will fire when the server has acknowledged the unsubscribe request. However, note that the server's acknowledgment doesn't specify which topics a client was unsubscribed from. Please refer to the on_unsubscribed event for more information.

To successfully unsubscribe from a topic filter, the exact filter must be passed to unsubscribe, regardless of whether or not if contains wildcards. The server ignores any topic filters in an unsubscribe request which do not exactly match that of an existing subscription.

It is impossible to partially unsubscribe from a topic filter with wildcards (that is, if a client is subscribed to a topic filter home/floor1/+/#, requesting to unsubscribe from a topic filter home/floor1/livingRoom/temperature does nothing).

Similarly, because topic filters in an unsubscribe request are simply compared character-by-character with existing subscriptions rather than being interpreted, it is not possible to perform an action such as unsubscribing from all currently subscribed topics by passing "#" for TopicFilter.

Unsubscribe Example // Unsubscribe from topic filters; have to use the exact same strings as before. If this // was to be called after calling the code example shown for the Subscribe() method, we // would still be subscribed to the "home" topic filter. mqtt1.Unsubscribe("home/floor1/+/temperature,home/floor2/#");

on_connected Event

Fired immediately after a connection completes (or fails).

Syntax

class MQTTConnectedEventParams(object):
  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class MQTT:
@property
def on_connected() -> Callable[[MQTTConnectedEventParams], None]: ...
@on_connected.setter
def on_connected(event_hook: Callable[[MQTTConnectedEventParams], None]) -> None: ...

Remarks

If the connection is made normally, StatusCode is 0 and Description is "OK".

If the connection fails, StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

Please refer to the Error Codes section for more information.

on_connection_status Event

Fired to indicate changes in the connection state.

Syntax

class MQTTConnectionStatusEventParams(object):
  @property
  def connection_event() -> str: ...

  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class MQTT:
@property
def on_connection_status() -> Callable[[MQTTConnectionStatusEventParams], None]: ...
@on_connection_status.setter
def on_connection_status(event_hook: Callable[[MQTTConnectionStatusEventParams], None]) -> None: ...

Remarks

This event is fired when the connection state changes: for example, completion of a firewall or proxy connection or completion of a security handshake.

The ConnectionEvent parameter indicates the type of connection event. Values may include the following:

Firewall connection complete.
Secure Sockets Layer (SSL) or S/Shell handshake complete (where applicable).
Remote host connection complete.
Remote host disconnected.
SSL or S/Shell connection broken.
Firewall host disconnected.
StatusCode has the error code returned by the Transmission Control Protocol (TCP)/IP stack. Description contains a description of this code. The value of StatusCode is equal to the value of the error.

on_disconnected Event

Fired when a connection is closed.

Syntax

class MQTTDisconnectedEventParams(object):
  @property
  def status_code() -> int: ...

  @property
  def description() -> str: ...

# In class MQTT:
@property
def on_disconnected() -> Callable[[MQTTDisconnectedEventParams], None]: ...
@on_disconnected.setter
def on_disconnected(event_hook: Callable[[MQTTDisconnectedEventParams], None]) -> None: ...

Remarks

If the connection is broken normally, StatusCode is 0 and Description is "OK".

If the connection is broken for any other reason, StatusCode has the error code returned by the Transmission Control Protocol (TCP/IP) subsystem. Description contains a description of this code. The value of StatusCode is equal to the value of the TCP/IP error.

Please refer to the Error Codes section for more information.

on_error Event

Fired when information is available about errors during data delivery.

Syntax

class MQTTErrorEventParams(object):
  @property
  def error_code() -> int: ...

  @property
  def description() -> str: ...

# In class MQTT:
@property
def on_error() -> Callable[[MQTTErrorEventParams], None]: ...
@on_error.setter
def on_error(event_hook: Callable[[MQTTErrorEventParams], None]) -> None: ...

Remarks

The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.

The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

on_log Event

Fires once for each log message.

Syntax

class MQTTLogEventParams(object):
  @property
  def log_level() -> int: ...

  @property
  def message() -> str: ...

  @property
  def log_type() -> str: ...

# In class MQTT:
@property
def on_log() -> Callable[[MQTTLogEventParams], None]: ...
@on_log.setter
def on_log(event_hook: Callable[[MQTTLogEventParams], None]) -> None: ...

Remarks

This event fires once for each log message generated by the class. The verbosity is controlled by the LogLevel setting.

LogLevel indicates the level of the Message. Possible values are:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data is logged.
3 (Debug) Debug data is logged.

LogType identifies the type of log entry. Possible values are:

  • Info: General information about the class.
  • Packet: Packet content logging.
  • Reconnect: Reconnection status messages.
  • Session: Session status messages.

on_message_ack Event

Fired when an incoming or outgoing message has completed all acknowledgment steps.

Syntax

class MQTTMessageAckEventParams(object):
  @property
  def packet_id() -> int: ...

  @property
  def direction() -> int: ...

  @property
  def index() -> int: ...

  @property
  def response_code() -> int: ...

# In class MQTT:
@property
def on_message_ack() -> Callable[[MQTTMessageAckEventParams], None]: ...
@on_message_ack.setter
def on_message_ack(event_hook: Callable[[MQTTMessageAckEventParams], None]) -> None: ...

Remarks

The on_message_ack event fires once an incoming or outgoing message with a QoS of 1 or 2 has successfully completed all acknowledgment steps as required by its QoS level. (Note that this event does not fire for messages with a QoS of 0 since they do not require acknowledgment.)

  • PacketId: The Id of the original PUBLISH packet for the message.
  • Direction: Shows whether the client (0) or the server (1) is sending the data.
  • Index: The index at which the message resides in either the incoming_messages collection or outgoing_messages collection.
  • ResponseCode: In MQTT 5, all response packets contain Reason Codes. This argument contains any code encountered in message acknowledgment packets (PUBACK, PUBREC, PUBREL, PUBCOMP).

Possible MQTT-specific values for ResponseCode are:

Value Applicable packets Description
0 PUBACK, PUBREC, PUBREL, PUBCOMP Success
16 PUBACK, PUBREC No matching subscribers
128 PUBACK, PUBREC Unspecified error
131 PUBACK, PUBREC Implementation specific error
135 PUBACK, PUBREC Not authorized
144 PUBACK, PUBREC Topic Name invalid
145 PUBACK, PUBREC Packet Identifier in use
146 PUBREL, PUBCOMP Packet Identifier not found

Inbound Message Processing

Incoming messages with a QoS of 1 follow these steps:

  1. The message is added to incoming_messages when the class receives the PUBLISH packet.
  2. The class sends a PUBACK (publish acknowledgment) packet in response.
  3. The on_message_ack event is fired.
  4. The message is removed from incoming_messages.
  5. The on_message_in event is fired.

Incoming messages with a QoS of 2 follow these steps:

  1. The message is added to incoming_messages when the class receives the PUBLISH packet.
  2. The class sends a PUBREC (publish received) packet in response.
  3. The class waits to receive a PUBREL (publish release) packet.
  4. The class sends a PUBCOMP (publish complete) packet in response.
  5. The on_message_ack event is fired.
  6. The message is removed from incoming_messages.
  7. The on_message_in event is fired.

Outbound Message Processing

Outgoing messages with a QoS of 1 follow these steps:

  1. The class sends the PUBLISH packet, then adds the message to outgoing_messages.
  2. The class waits to receive a PUBACK (publish acknowledgment) packet.
  3. The on_message_ack event is fired.
  4. The message is removed from outgoing_messages.
  5. The on_message_out event is fired.

Outgoing messages with a QoS of 2 follow these steps:

  1. The class sends the PUBLISH packet, then adds the message to outgoing_messages.
  2. The class waits to receive a PUBREC (publish received) packet.
  3. The class sends a PUBREL (publish release) packet in response.
  4. The class waits to receive a PUBCOMP (publish complete) packet.
  5. The on_message_ack event is fired.
  6. The message is removed from outgoing_messages.
  7. The on_message_out event is fired.

In MQTT 3.1.1, the RepublishInterval configuration setting, if set to a non-zero value (default), controls how long the class will wait to receive a PUBACK (for QoS 1) or PUBREC (for QoS 2) before automatically republishing an outgoing message. In MQTT 5, messages are only republished if the client is disconnected before receiving a PUBACK or PUBREC.

on_message_in Event

Fired when an incoming message has been received and/or fully acknowledged.

Syntax

class MQTTMessageInEventParams(object):
  @property
  def packet_id() -> int: ...

  @property
  def topic() -> str: ...

  @property
  def qos() -> int: ...

  @property
  def message() -> bytes: ...

  @property
  def retained() -> bool: ...

  @property
  def duplicate() -> bool: ...

# In class MQTT:
@property
def on_message_in() -> Callable[[MQTTMessageInEventParams], None]: ...
@on_message_in.setter
def on_message_in(event_hook: Callable[[MQTTMessageInEventParams], None]) -> None: ...

Remarks

The on_message_in event fires once for each incoming message either immediately after it is received (QoS 0), or after it has been fully acknowledged (QoS 1 and 2).

  • PacketId: The message packet Id. This will always be -1 if QOS is 0.
  • Topic: The message's topic string.
  • QOS: The message's QoS level.
  • Message: The message data.
  • Retained: Whether or not this message was received as a result of subscribing to a topic.
  • Duplicate: Whether or not the server has indicated that this message is a duplicate of another message sent previously.

Refer to on_message_ack for more information about QoS 1 and 2 message processing steps.

// MessageIn event handler. mqtt1.OnMessageIn += (s, e) => { Console.WriteLine("Received message from topic '" + e.Topic + "' with QoS " + e.QOS + ":"); Console.WriteLine(e.Message); };

on_message_out Event

Fired when an outgoing message has been sent and/or fully acknowledged.

Syntax

class MQTTMessageOutEventParams(object):
  @property
  def packet_id() -> int: ...

  @property
  def topic() -> str: ...

  @property
  def qos() -> int: ...

  @property
  def message() -> bytes: ...

  @property
  def retained() -> bool: ...

  @property
  def duplicate() -> bool: ...

# In class MQTT:
@property
def on_message_out() -> Callable[[MQTTMessageOutEventParams], None]: ...
@on_message_out.setter
def on_message_out(event_hook: Callable[[MQTTMessageOutEventParams], None]) -> None: ...

Remarks

The on_message_out event fires once for each outgoing message either immediately after it is sent (QoS 0), or after it has been fully acknowledged by the receiver (QoS 1 and 2).

  • PacketId: The message packet Id. This will always be -1 if QOS is 0.
  • Topic: The message's topic string.
  • QOS: The message's QoS level.
  • Message: The message data.
  • Retained: Whether or not this message was sent with the "Retain" flag set.
  • Duplicate: Whether or not this message was sent with the "Duplicate" flag set.

Refer to on_message_ack for more information about QoS 1 and 2 message processing steps.

// MessageOut event handler. mqtt1.OnMessageOut += (s, e) => { Console.WriteLine("Send message to topic '" + e.Topic + "' with QoS " + e.QOS + ":"); Console.WriteLine(e.Message); };

on_ready_to_send Event

Fired when the class is ready to send data.

Syntax

class MQTTReadyToSendEventParams(object):
# In class MQTT:
@property
def on_ready_to_send() -> Callable[[MQTTReadyToSendEventParams], None]: ...
@on_ready_to_send.setter
def on_ready_to_send(event_hook: Callable[[MQTTReadyToSendEventParams], None]) -> None: ...

Remarks

The on_ready_to_send event indicates that the underlying TCP/IP subsystem is ready to accept data after a call to publish_data or publish_message fails due to a WOULDBLOCK condition. The event is also fired immediately after a connection to the remote host is established.

on_ssl_server_authentication Event

Fired after the server presents its certificate to the client.

Syntax

class MQTTSSLServerAuthenticationEventParams(object):
  @property
  def cert_encoded() -> bytes: ...

  @property
  def cert_subject() -> str: ...

  @property
  def cert_issuer() -> str: ...

  @property
  def status() -> str: ...

  @property
  def accept() -> bool: ...
  @accept.setter
  def accept(value) -> None: ...

# In class MQTT:
@property
def on_ssl_server_authentication() -> Callable[[MQTTSSLServerAuthenticationEventParams], None]: ...
@on_ssl_server_authentication.setter
def on_ssl_server_authentication(event_hook: Callable[[MQTTSSLServerAuthenticationEventParams], None]) -> None: ...

Remarks

During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.

When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.

on_ssl_status Event

Fired when secure connection progress messages are available.

Syntax

class MQTTSSLStatusEventParams(object):
  @property
  def message() -> str: ...

# In class MQTT:
@property
def on_ssl_status() -> Callable[[MQTTSSLStatusEventParams], None]: ...
@on_ssl_status.setter
def on_ssl_status(event_hook: Callable[[MQTTSSLStatusEventParams], None]) -> None: ...

Remarks

The event is fired for informational and logging purposes only. This event tracks the progress of the connection.

on_subscribed Event

Fires for each topic filter subscription the server acknowledges.

Syntax

class MQTTSubscribedEventParams(object):
  @property
  def topic_filter() -> str: ...

  @property
  def qos() -> int: ...

  @property
  def response_code() -> int: ...

# In class MQTT:
@property
def on_subscribed() -> Callable[[MQTTSubscribedEventParams], None]: ...
@on_subscribed.setter
def on_subscribed(event_hook: Callable[[MQTTSubscribedEventParams], None]) -> None: ...

Remarks

This event fires each time the server has acknowledged a topic filter subscription request (that is, calling subscribe with multiple topic filters will cause this to fire multiple times).

  • TopicFilter: The topic filter subscription request being acknowledged.
  • QOS: The QoS level the server has granted for the subscription.
  • ResponseCode: Indicates the result of the subscription request.

Possible values for ResponseCode are:

  • 0: Success, QoS 0 granted
  • 1: Success, QoS 1 granted
  • 2: Success, QoS 2 granted
  • 128: Unspecified error
  • 131: Implementation specific error; The SUBSCRIBE is valid but the Server does not accept it.
  • 135: Not authorized; The Client is not authorized to make this subscription.
  • 143: Topic Filter invalid; The Topic Filter is correctly formed but is not allowed for this Client.
  • 145: Packet Identifier in use
  • 151: Quota exceeded; An implementation or administrative imposed limit has been exceeded.
  • 158: Shared Subscriptions not supported
  • 161: Shared Subscriptions not supported
  • 162: Wildcard Subscriptions not supported

Keep in mind that the server may have chosen to grant a lower QoS than was requested under certain circumstances (e.g., if the server doesn't support the requested QoS).

Note: the server is not required to acknowledge a subscription before it begins delivering messages for that subscription.

on_unsubscribed Event

Fires when the server has acknowledged an unsubscribe request.

Syntax

class MQTTUnsubscribedEventParams(object):
  @property
  def topic_filters() -> str: ...

  @property
  def response_code() -> int: ...

# In class MQTT:
@property
def on_unsubscribed() -> Callable[[MQTTUnsubscribedEventParams], None]: ...
@on_unsubscribed.setter
def on_unsubscribed(event_hook: Callable[[MQTTUnsubscribedEventParams], None]) -> None: ...

Remarks

This event fires when the server has acknowledged an unsubscribe request sent with unsubscribe (that is, unlike the on_subscribed event, this event fires only once for each call to unsubscribe, regardless of how many topic filters are passed to it).

Note that in MQTT 3.1.1, servers do not specify which topic filters a client has been successfully unsubscribed in their acknowledgments. In fact, they will still acknowledge an unsubscribe request even if none of the topic filters included matched existing subscriptions. It is up to the client to keep track of what topics it is subscribed to; the TopicFilters parameter is provided as a convenience, its value simply a copy of the value passed to unsubscribe originally.

Possible values for ResponseCode are:

  • 0: Success; The subscription is deleted.
  • 17: No subscription existed; No matching Topic Filter is being used by the Client.
  • 128: Unspecified error; The unsubscribe could not be completed and the Server either does not wish to reveal the reason or none of the other Reason Codes apply.
  • 131: Implementation specific error; The UNSUBSCRIBE is valid but the Server does not accept it.
  • 135: Not authorized; The Client is not authorized to unsubscribe.
  • 143: Topic Filter invalid; The Topic Filter is correctly formed but is not allowed for this Client.
  • 145: Packet Identifier in use; The specified Packet Identifier is already in use.

MQTT Config Settings

The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.

MQTT Config Settings

AutoReconnect:   Whether to automatically attempt to reconnect in the event of a connection error.

When enabled, the class will automatically attempt to reconnect to the server if the connection is interrupted due to a connection error. This behavior is disabled by default.

ClientTopicAliasMax:   The maximum value the client will accept for a topic alias sent by the server.

The client uses this value to limit the number of aliases it is willing to hold on this connection. A value of 0 (default) indicates that the client does not accept any topic aliases on this connection.

This value is sent to the server in the CONNECT packet and must be set before calling connect. It is also available in the ConnectProperties config. See the TopicAlias config for more details.

Valid only for MQTT 5.

ConnAckProperties:   JSON string containing the properties returned in the CONNACK packet.

This property is set when the class receives the CONNACK packet from the server and describes server-specified requirements and server-supported features.

The values listed below are available. If a value is absent in the CONNACK packet, the client should treat its value as the default listed.

Name Type Default Description
AssignedClientIdentifier String N/A The Client Identifier which was assigned by the Server because a zero length Client Identifier was found in the CONNECT packet.
MaximumQoS Integer 2 The maximum accepted QoS of PUBLISH packets to be received by the server.
MaximumPacketSize Integer Unlimited Maximum packet size in bytes the server is willing to accept.
ReasonString String N/A A human readable string designed for diagnostics.
ReceiveMaximum Integer 65,535 Number of QoS 1 and QoS 2 publications the server is willing to process concurrently for the client.
ResponseInformation String N/A String used as the basis for creating a Response Topic.
RetainAvailable Boolean True Indicates whether the client may send PUBLISH packets with Retain set to True.
ServerKeepAlive Integer Value in CONNECT Keep Alive time assigned by server. If specified by server this value overrides the value requested by the client.
ServerTopicAliasMax Integer 0 See ServerTopicAliasMax.
SessionExpInterval Integer Value in CONNECT Defines the length of time for which the client and server must store session state data after disconnection. If included in the CONNACK and different than the SessionExpInterval which the client requested in the CONNECT packet, this value overrides the client-requested value and must be followed by the client.
SharedSubscriptionAvailable Boolean True Indicates whether the server supports shared subscriptions.
SubscriptionIdentifiersAvailable Boolean True Indicates whether the server supports subscription identifiers.
WildcardSubscriptionAvaiable Boolean True Indicates whether the server supports wildcard subscriptions.

Read-only. Valid only for MQTT 5.

ConnectionTimeout:   How long to wait for a connection attempt to succeed.

This setting controls how long the class will wait, in seconds, for connection attempt to succeed before timing out. The default is 60 seconds.

ConnectProperties:   JSON string specifying properties to be included in the CONNECT packet.

The values listed below are available. If a value is absent in the CONNECT packet, the server will treat its value as the default listed.

To reset an individual value so that it is no longer included in the CONNECT packet (after it has previously been set), set it to "", or -1 for integers. To reset all ConnectProperties values, set the config JSON string to "".

Name Type Default Description
ClientTopicAliasMax Integer 0 See ClientTopicAliasMax.
MaximumPacketSize Integer Unlimited Maximum Packet Size the Client is willing to accept (cannot be 0).
ReceiveMaximum Integer 65,535 The number of QoS 1 and QoS 2 publications the client is willing to process concurrently.
RequestProblemInformation Boolean True Indicates the server is allowed to return a Reason String and or User Properties on packets other than PUBLISH, CONNACK or DISCONNECT.
RequestResponseInformation Boolean False Indicates the client requests the server to return response information in the CONNACK packet.
SessionExpInterval Integer 0 See SessionExpInterval.

To set these values, set the ConnectProperties config to a string JSON object containing one or more key/value pairs to set. For example, to set all values:

{ 
  "ClientTopicAliasMax":"20",
  "MaximumPacketSize":"128000",
  "ReceiveMaximum":"12",
  "RequestResponseInformation":"false",
  "RequestProblemInformation":"true",
  "SessionExpInterval":"1234"
}

Valid only for MQTT 5.

DisconnectProperties:   JSON string containing DISCONNECT packet properties.

This property contains properties to be sent by the client in the DISCONNECT packet, or is set when the client receives a DISCONNECT packet from the server.

Supported properties are:

Name Type Default Description
SessionExpInterval Integer Value in CONNECT Can only be sent by client. A new length of time for the client and server to store session state data. Cannot be non-zero if the client set it to zero in the CONNECT packet. If absent, the client and server should use the value specified in the CONNECT packet.
ReasonString String N/A A human readable string designed for diagnostics.

To reset an individual value so that it is no longer included in the DISCONNECT packet (after it has previously been set), set it to "", or -1 for integers. To reset all DisconnectProperties values, set the config JSON string to "".

Valid only for MQTT 5.

DisconnectReasonCode:   Code describing the reason the client or server closed the connection.

Either the client or server may set a reason code before disconnecting to be included in the DISCONNECT packet.

To specify a code as the client, set this value before calling disconnect.

This value will be populated when the class receives a DISCONNECT packet from the server.

For a full list of values applicable to be sent by the client, server or both, see the MQTT 5 specification. They include:

  • 0x00: Normal disconnection - Close the connection normally. Do not send the Will Message.
  • 0x04: Disconnect with Will Message (Client only) - The Client wishes to disconnect but requires that the Server also publishes its Will Message.
  • 0x80: Unspecified error - The Connection is closed but the sender either does not wish to reveal the reason, or none of the other Reason Codes apply.

Valid only for MQTT 5.

Duplicate:   Whether to set the Duplicate flag when publishing a message.

When enabled, the class will set the Duplicate flag when a message is published using publish_data or publish_message. By default, this is disabled; and manually enabling it is not recommended. Prefer instead to let the class handle republishing packets, which it will do automatically so long as RepublishInterval is set to a non-zero value (default).

This setting is ignored when messages are published with a QoS of 0.

Note: The Duplicate flag in an MQTT PUBLISH packet refers to the Id of the packet, not the message itself. According to the MQTT specification, it is possible (and perfectly legal) that a client could receive two QoS 1 PUBLISH packets with different Ids despite having the exact same message data.

IncomingUserPropCount:   The size of the IncomingUserPropName and IncomingUserPropValue arrays.

This setting can be queried to return the number of distinct user properties in the previous received message.

Read-only. Valid only for MQTT 5.

IncomingUserPropName[i]:   The name of the user property at index i.

This setting can be queried to return the name of a specific user property.

Read-only. Valid only for MQTT 5.

IncomingUserPropValue[i]:   The value of the user property at index i.

This setting can be queried to return the value of a specific user property.

Read-only. Valid only for MQTT 5.

LogLevel:   The level of detail that is logged.

This setting controls the level of detail that is logged through the on_log event. Possible values are:

0 (None) No events are logged.
1 (Info - default) Informational events are logged.
2 (Verbose) Detailed data is logged.
3 (Debug) Debug data is logged.

OutgoingMessageProperties:   JSON string specifying properties to be included in the PUBLISH packet.

The values listed below are available. If a value is absent in the PUBLISH packet, the server will treat its value as the default listed.

To reset an individual value so that it is no longer included in the PUBLISH packet (after it has previously been set), set it to "", or -1 for integers. To reset all OutgoingMessageProperties values, set the config JSON string to "".

Name Type Default Description
ContentType String N/A String describing content of message to be sent to all subscribers receiving the message.
CorrelationData String N/A Hex-encoded binary string used by the sender of a request message to identify which request the response message is for when received (See ResponseTopic).
MessageExpInterval Integer No exp. Length of time after which the server must stop delivery to a subscriber if not yet processed.
PayloadFormatIndicator Integer 0x00 0x00 = unspecified bytes. 0x01 = UTF-8 encoded character data. Sent to all subscribers receiving the message.
ResponseTopic String N/A See ResponseTopic.
TopicAlias Integer N/A See TopicAlias.
UserProperty String "" String key:value pair to be included in the header properties. The UserProperty can appear multiple times to represent multiple name, value pairs.

To set these values, set the OutgoingMessageProperties config to a string JSON object containing one or more key/value pairs to set. For example:

{
  "ContentType":"plain/text",
  "CorrelationData":"00000000",
  "MessageExpInterval":"1000",
  "PayloadFormatIndicator":"1",
  "ResponseTopic": "ResponseTopic",
  "TopicAlias":"1",
  "UserProperty":"prp1:val1",
  "UserProperty":"prp2:val2"
}
Valid only for MQTT 5.

OutgoingPacketId:   The packet Id of the last message published.

This configuration setting can be queried to determine the packet Id of the last message published.

OutgoingUserPropCount:   Controls the size of the OutgoingUserPropName and OutgoingUserPropValue configuration arrays.

Set this to a positive integer to indicate the total number of User Properties which will be specified in OutgoingUserPropName and OutgoingUserPropValue.

By default, this setting is 0 and no User Properties are sent in the outgoing message.

Code Example

mqtt1.Connected = true; mqtt.Config("OutgoingUserPropCount=1"); mqtt.Config("OutgoingUserPropName[0]=prp1"); mqtt.Config("OutgoingUserPropValue[0]=val1"); mqtt1.PublishMessage(topic, 1, "hello");

Valid only for MQTT 5.

OutgoingUserPropName[i]:   The name of the User Property at index i.

Each index in the array corresponds to a distinct User Property to include in the outgoing message. This setting controls the name part of the string pair at index i.

The size of this array is controlled by the OutgoingUserPropCount configuration setting.

Valid only for MQTT 5.

OutgoingUserPropValue[i]:   The value of the User Property at index i.

Each index in the array corresponds to a distinct User Property to send in the outgoing message. This setting controls the value part of the string pair at index i.

The size of this array is controlled by the OutgoingUserPropCount configuration setting.

Valid only for MQTT 5.

RepublishInterval:   How many seconds to wait before republishing unacknowledged messages.

In MQTT 3.1.1 this setting determines how long the class will wait to receive a PUBACK (QoS 1) or PUBREC (QoS 2) for an outgoing message before republishing it. Republished messages will automatically use the same packet Id and have their Duplicate flag set.

The default RepublishInterval is 60 seconds. Specify a RepublishInterval of 0 to prevent the class from automatically republishing messages.

In MQTT 5, messages are only republished if the client is disconnected before receiving a PUBACK or PUBREC. This property is only valid for MQTT 3.1.1.

ResponseTopic:   Topic name for a response message.

The receiver of a message with a Response Topic sends a response by using the Response Topic as the Topic Name of a PUBLISH. If the Request Message contains a Correlation Data, the receiver of the Request Message should also include this Correlation Data as a property in the PUBLISH packet of the Response Message.

To send a Request Message, set this value before calling publish_message.

To reset the value once it has been previously set, so that it is no longer included in future packets, set it to "".

ResponseTopic and Correlation Data are also accessible in the OutgoingMessageProperties config.

Valid only for MQTT 5.

Retain:   Whether to set the Retain flag when publishing a message.

When enabled, the class will set the Retain flag when a message is published using publish_data or publish_message. By default, this is disabled.

Publishing a non-empty message with the Retain flag set and a non-zero QoS will cause the server to store it (replacing any previously retained message in the process) so that it can be delivered to any clients which subscribe to the topic in the future. (If the QoS is 0, the server can store the message, but it is not required to do so indefinitely, if at all.)

If the class publishes an empty message with the Retain flag set, then (regardless of its QoS) the server will remove any previously retained message for the topic.

Note that messages with the Retain flag set are still processed by the server and delivered as usual to clients currently subscribed to the topic, regardless of whether they are empty or not. Also note that retained messages are not part of a session's state, they are retained until they are either removed or replaced by another retained message, regardless of whether or not the client connected with clean_session set to True.

MQTT 5 Notes

In MQTT 5, the "RetainAvailable" value in the ConnAckProperties config indicates whether the client may send messages with the Retain flag set to True.

SendCustomPacket:   Sends a packet constructed using the supplied hex byte string.

Setting this setting to a string with hex bytes will cause the class to construct and send a custom packet. This should not be necessary except for debugging purposes.

ServerTopicAliasMax:   The highest value that the Server will accept as a Topic Alias sent by the Client.

The Client must not send topic aliases less than 1 or greater than this value.

This property is also accessible in the ConnAckProperties config.

Read-only. Valid only for MQTT 5.

SessionExpInterval:   The length of time in seconds the client and server should store session state data after the connection is closed.

If 0 (default), the session ends on disconnection. If 0xFFFFFFFF, the session does not expire.

The server may return a different Session Expiration Interval in the ConnAckProperties, overriding this value. Additionally, the client may send a new value in the DisconnectProperties (as long as it was not 0 originally).

See clean_session for more details on stored sessions in MQTT 5. This property also available in ConnectProperties.

Valid only for MQTT 5.

SessionPresent:   When connecting with CleanSession disabled, indicates whether the server actually had any previous session data stored.

If clean_session is False when connect is called, query this setting after the class connects to determine whether the server actually had data from a previous session.

If clean_session is True when connect is called, this will always return False.

SessionStateFile:   File to use for saving and restoring session data.

This can be set to a valid file path before calling save_session or restore_session to have the class automatically save and restore the session state data to and from a file.

SubscriptionIdentifier:   A numeric subscription identifier included in SUBSCRIBE packet which will be returned with messages delivered for that subscription.

To instruct the server to establish a subscription identifier mapping and return this value with any future PUBLISH packets for a topic filter, set this config before calling subscribe for the desired topic.

Note that this value applies only to SUBSCRIBE packets and not to outgoing or incoming messages. The client is not permitted to send a PUBLISH packet with a subscription id - the server will include it when it sends PUBLISH packets to subscribing clients if those clients have established ids. To access subscription ids of incoming messages, see the "SubscriptionIdentifiers" field in the MQTTMessage type.

To reset the value once it has been previously set, so that it is no longer included in future packets, set it to -1.

See the subscribe method for details on subscription identifiers. Valid only for MQTT 5.

TopicAlias:   Value that is used to identify the Topic instead of using the Topic Name in order to reduce packet size.

To establish a topic alias mapping, set this to a unique value before calling publish_message with the desired topic filter. Then, next time the client publishes a message to this topic, it may set TopicAlias to the value established and call publish_message with an empty topic filter string. The message will be published to the proper topic without sending the topic filter.

A sender can modify the Topic Alias mapping by sending another PUBLISH in the same Network Connection with the same Topic Alias value and a different non-zero length Topic Name.

Note that a topic alias must have a value greater than zero and less than or equal to ServerTopicAliasMax. Topic alias mappings exist only within a connection and are not a part of stored session state data. The Topic Alias mappings used by the Client and Server are independent from each other.

To reset the value once it has been previously set, so that it is no longer included in future packets, set it to -1.

Also accessible in the OutgoingMessageProperties config.

Code Example

mqtt1.Connected = true; mqtt1.Config("TopicAlias=1"); // map 1 to topic "PublishWithTopicAlias" mqtt1.PublishMessage(topic, 1, "hello"); mqtt1.Config("TopicAlias=1"); // set topic alias 1 to publish with empty topic filter mqtt1.PublishMessage("", 1, "hello");

Valid only for MQTT 5.

TopicDelimiter:   The string to use as a delimiter in a topic filter list string.

When the subscribe and unsubscribe methods are called, the class parses the topic filters string passed to them into a list of topic filters by splitting it, using this setting's current value as the delimiter. By default, this is set to ,.

TopicNLArray:   List of No Local option flags for subscription topic filters.

The value of this config should be a comma-separated list of boolean values.

For topic filters subscribed to with a True flag, messages will not be forwarded to the same client_id they were published from.

By default, this value is empty and all flags are False.

See the subscribe method for more details on Subscription Options. Valid only for MQTT 5.

TopicQOSArray:   Comma-separated list of topic filter QoS values to use when subscribing.

This can be set to a comma-separated list of individual QoS values to use for each topic filter passed to the subscribe method, causing the class to ignore the QoS value passed to subscribe. When doing this, the number of QoS values set to this setting must match the number of topic filters passed to subscribe.

If this setting is set to the empty string (default) when subscribe is called with multiple topic filters, the class will use the QoS value passed to subscribe for all of them.

TopicRAPArray:   List of Retain As Published option flags for subscription topic filters.

The value of this config should be a comma-separated list of boolean values.

For topic filters subscribed to with a True flag, messages forwarded for this subscription will keep the retain flag they were published with (as opposed to always being set to False).

By default, this value is empty and all flags are False.

See the subscribe method for more details on Subscription Options. Valid only for MQTT 5.

TopicRHArray:   List of Retain Handling option values for subscription topic filters.

The value of this config should be a comma-separated list of integer values specifying whether retained messages are sent when the subscription is established. Possible values are:

  • 0 = send retained messages at the time of the subscribe
  • 1 = send retained messages at subscribe only if the subscription does not currently exist
  • 2 = do not send retained messages at the time of the subscribe

By default, this value is empty and all values are 0.

See the subscribe method for more details on Subscription Options. Valid only for MQTT 5.

WillProperties:   JSON string specifying will properties to be included in the CONNECT packet.

The values listed below are available. If a value is absent in the CONNECT packet, the server will treat its value as the default listed.

To reset an individual value so that it is no longer included in the CONNECT packet (after it has previously been set), set it to "", or -1 for integers. To reset all WillProperties values, set the config JSON string to "".

Name Type Default Description
ContentType String N/A String describing content of will message.
CorrelationData String N/A Hex-encoded binary string used by the sender of a request message to identify which request the response message is for when received.
MessageExpInterval Integer No exp. Length of time after which the server must stop delivery of the will message to a subscriber if not yet processed.
PayloadFormatIndicator Integer 0x00 0x00 = unspecified bytes.
ReponseTopic String N/A Used as a topic name for a response message.
WillDelayInterval Integer 0 Delay in seconds after disconnection until the server should publish the client will_message.

Note that these values will be ignored if will_topic is empty.

To set these values, set the ConnectProperties config to a string JSON object containing one or more key/value pairs to set. For example, to set all values:

{
"ContentType":"text/plain",
"CorrelationData":"00000000",
"MessageExpInterval":"3600",
"PayloadFormatIndicator":"1",
"ResponseTopic": "ResponseTopic",
"WillDelayInterval":"10"
}

Valid only for MQTT 5.

WillQOS:   The QoS value to use for the Will message.

If will_topic is set to a non-empty string when connect is called, this is the QoS value that will be used for the Will message; possible values are 0 (default), 1, and 2. (Note that this setting is ignored if will_topic is empty.)

Refer to will_topic for more information.

WillRetain:   Whether the server should retain the Will message after publishing it.

If will_topic is set to a non-empty string when connect is called, this determines whether or not the server will treat the Will message as retained. By default, this is disabled. (Note that this setting is ignored if will_topic is empty.)

See Retain for general information about how retained messages are handled by the server.

Refer to will_topic for more information.

TCPClient Config Settings

ConnectionTimeout:   Sets a separate timeout value for establishing a connection.

When set, this configuration setting allows you to specify a different timeout value for establishing a connection. Otherwise, the class will use timeout for establishing a connection and transmitting/receiving data.

FirewallAutoDetect:   Tells the class whether or not to automatically detect and use firewall system settings, if available.

This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallHost:   Name or IP address of firewall (optional).

If a FirewallHost is given, requested connections will be authenticated through the specified firewall when connecting.

If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPassword:   Password to be used if authentication is to be used when connecting through the firewall.

If FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the given firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallPort:   The TCP port for the FirewallHost;.

The FirewallPort is set automatically when FirewallType is set to a valid value.

Note: This configuration setting is provided for use by classs that do not directly expose Firewall properties.

FirewallType:   Determines the type of firewall to connect through.

Possible values are as follows:

0No firewall (default setting).
1Connect through a tunneling proxy. FirewallPort is set to 80.
2Connect through a SOCKS4 Proxy. FirewallPort is set to 1080.
3Connect through a SOCKS5 Proxy. FirewallPort is set to 1080.
10Connect through a SOCKS4A Proxy. FirewallPort is set to 1080.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

FirewallUser:   A user name if authentication is to be used connecting through a firewall.

If the FirewallHost is specified, the FirewallUser and FirewallPassword settings are used to connect and authenticate to the Firewall. If the authentication fails, the class fails with an error.

Note: This setting is provided for use by classs that do not directly expose Firewall properties.

KeepAliveInterval:   The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received.

When set, TCPKeepAlive will automatically be set to True. A TCP keep-alive packet will be sent after a period of inactivity as defined by KeepAliveTime. If no acknowledgment is received from the remote host, the keep-alive packet will be sent again. This configuration setting specifies the interval at which the successive keep-alive packets are sent in milliseconds. This system default if this value is not specified here is 1 second.

Note: This value is not applicable in macOS.

KeepAliveTime:   The inactivity time in milliseconds before a TCP keep-alive packet is sent.

When set, TCPKeepAlive will automatically be set to True. By default, the operating system will determine the time a connection is idle before a Transmission Control Protocol (TCP) keep-alive packet is sent. This system default if this value is not specified here is 2 hours. In many cases, a shorter interval is more useful. Set this value to the desired interval in milliseconds.

Linger:   When set to True, connections are terminated gracefully.

This property controls how a connection is closed. The default is True.

In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.

In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.

The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the class returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).

Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.

LingerTime:   Time in seconds to have the connection linger.

LingerTime is the time, in seconds, the socket connection will linger. This value is 0 by default, which means it will use the default IP timeout.

LocalHost:   The name of the local host through which connections are initiated or accepted.

The local_host setting contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.

In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the class initiate connections (or accept in the case of server classs) only through that interface.

If the class is connected, the local_host setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).

LocalPort:   The port in the local host where the class binds.

This configuration setting must be set before a connection is attempted. It instructs the class to bind to a specific port (or communication endpoint) in the local machine.

Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by local_port after the connection is established.

local_port cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.

This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.

MaxLineLength:   The maximum amount of data to accumulate when no EOL is found.

MaxLineLength is the size of an internal buffer, which holds received data while waiting for an eol string.

If an eol string is found in the input stream before MaxLineLength bytes are received, the on_data_in event is fired with the EOL parameter set to True, and the buffer is reset.

If no eol is found, and MaxLineLength bytes are accumulated in the buffer, the on_data_in event is fired with the EOL parameter set to False, and the buffer is reset.

The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.

MaxTransferRate:   The transfer rate limit in bytes per second.

This configuration setting can be used to throttle outbound TCP traffic. Set this to the number of bytes to be sent per second. By default, this is not set and there is no limit.

ProxyExceptionsList:   A semicolon separated list of hosts and IPs to bypass when using a proxy.

This configuration setting optionally specifies a semicolon-separated list of hostnames or IP addresses to bypass when a proxy is in use. When requests are made to hosts specified in this property, the proxy will not be used. For instance:

www.google.com;www.nsoftware.com

TCPKeepAlive:   Determines whether or not the keep alive socket option is enabled.

If set to True, the socket's keep-alive option is enabled and keep-alive packets will be sent periodically to maintain the connection. Set KeepAliveTime and KeepAliveInterval to configure the timing of the keep-alive packets.

Note: This value is not applicable in Java.

TcpNoDelay:   Whether or not to delay when sending packets.

When set to True, the socket will send all data that are ready to send at once. When set to False, the socket will send smaller buffered packets of data at small intervals. This is known as the Nagle algorithm.

By default, this configuration setting is set to False.

UseIPv6:   Whether to use IPv6.

When set to 0 (default), the class will use IPv4 exclusively. When set to 1, the class will use IPv6 exclusively. To instruct the class to prefer IPv6 addresses, but use IPv4 if IPv6 is not supported on the system, this setting should be set to 2. The default value is 0. Possible values are as follows:

0 IPv4 only
1 IPv6 only
2 IPv6 with IPv4 fallback

SSL Config Settings

LogSSLPackets:   Controls whether SSL packets are logged when using the internal security API.

When ssl_provider is set to Internal, this configuration setting controls whether Secure Sockets Layer (SSL) packets should be logged. By default, this configuration setting is False, as it is useful only for debugging purposes.

When enabled, SSL packet logs are output using the on_ssl_status event, which will fire each time an SSL packet is sent or received.

Enabling this configuration setting has no effect if ssl_provider is set to Platform.

OpenSSLCADir:   The path to a directory containing CA certificates.

This functionality is available only when the provider is OpenSSL.

The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCAFile:   Name of the file containing the list of CA's trusted by your application.

This functionality is available only when the provider is OpenSSL.

The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:

-----BEGIN CERTIFICATE-----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE-----

Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.

OpenSSLCipherList:   A string that controls the ciphers to be used by SSL.

This functionality is available only when the provider is OpenSSL.

The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".

OpenSSLPrngSeedData:   The data to seed the pseudo random number generator (PRNG).

This functionality is available only when the provider is OpenSSL.

By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.

ReuseSSLSession:   Determines if the SSL session is reused.

If set to True, the class will reuse the context if and only if the following criteria are met:

  • The target host name is the same.
  • The system cache entry has not expired (default timeout is 10 hours).
  • The application process that calls the function is the same.
  • The logon session is the same.
  • The instance of the class is the same.

SSLCACertFilePaths:   The paths to CA certificate files on Unix/Linux.

This configuration setting specifies the paths on disk to CA certificate files on Unix/Linux.

The value is formatted as a list of paths separated by semicolons. The class will check for the existence of each file in the order specified. When a file is found, the CA certificates within the file will be loaded and used to determine the validity of server or client certificates.

The default value is as follows:

/etc/ssl/ca-bundle.pem;/etc/pki/tls/certs/ca-bundle.crt;/etc/ssl/certs/ca-certificates.crt;/etc/pki/tls/cacert.pem

SSLCACerts:   A newline separated list of CA certificates to be included when performing an SSL handshake.

When ssl_provider is set to Internal, this configuration setting specifies one or more CA certificates to be included with the ssl_cert property. Some servers or clients require the entire chain, including CA certificates, to be presented when performing SSL authentication. The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLCheckCRL:   Whether to check the Certificate Revocation List for the server certificate.

This configuration setting specifies whether the class will check the Certificate Revocation List (CRL) specified by the server certificate. If set to 1 or 2, the class will first obtain the list of CRL URLs from the server certificate's CRL distribution points extension. The class will then make HTTP requests to each CRL endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation the class fails with an error.

When set to 0 (default), the CRL check will not be performed by the class. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCheckOCSP:   Whether to use OCSP to check the status of the server certificate.

This configuration setting specifies whether the class will use OCSP to check the validity of the server certificate. If set to 1 or 2, the class will first obtain the Online Certificate Status Protocol (OCSP) URL from the server certificate's OCSP extension. The class will then locate the issuing certificate and make an HTTP request to the OCSP endpoint to check the validity of the server's certificate. If the certificate has been revoked or any other issues are found during validation, the class fails with an error.

When set to 0 (default), the class will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.

This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.

SSLCipherStrength:   The minimum cipher strength used for bulk encryption.

This minimum cipher strength is largely dependent on the security modules installed on the system. If the cipher strength specified is not supported, an error will be returned when connections are initiated.

Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the on_ssl_status event.

Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.

When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.

SSLClientCACerts:   A newline separated list of CA certificates to use during SSL client certificate validation.

This configuration setting is only applicable to server components (e.g., TCPServer) see SSLServerCACerts for client components (e.g., TCPClient). This setting can be used to optionally specify one or more CA certificates to be used when verifying the client certificate that is presented by the client during the SSL handshake when ssl_authenticate_clients is enabled. When verifying the client's certificate, the certificates trusted by the system will be used as part of the verification process. If the client's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the client's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert ...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert ...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

SSLEnabledCipherSuites:   The cipher suite to be used in an SSL negotiation.

This configuration setting enables the cipher suites to be used in SSL negotiation.

By default, the enabled cipher suites will include all available ciphers ("*").

The special value "*" means that the class will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.

Multiple cipher suites are separated by semicolons.

Example values when ssl_provider is set to Platform include the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=CALG_AES_256"); obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES"); Possible values when ssl_provider is set to Platform include the following:

  • CALG_3DES
  • CALG_3DES_112
  • CALG_AES
  • CALG_AES_128
  • CALG_AES_192
  • CALG_AES_256
  • CALG_AGREEDKEY_ANY
  • CALG_CYLINK_MEK
  • CALG_DES
  • CALG_DESX
  • CALG_DH_EPHEM
  • CALG_DH_SF
  • CALG_DSS_SIGN
  • CALG_ECDH
  • CALG_ECDH_EPHEM
  • CALG_ECDSA
  • CALG_ECMQV
  • CALG_HASH_REPLACE_OWF
  • CALG_HUGHES_MD5
  • CALG_HMAC
  • CALG_KEA_KEYX
  • CALG_MAC
  • CALG_MD2
  • CALG_MD4
  • CALG_MD5
  • CALG_NO_SIGN
  • CALG_OID_INFO_CNG_ONLY
  • CALG_OID_INFO_PARAMETERS
  • CALG_PCT1_MASTER
  • CALG_RC2
  • CALG_RC4
  • CALG_RC5
  • CALG_RSA_KEYX
  • CALG_RSA_SIGN
  • CALG_SCHANNEL_ENC_KEY
  • CALG_SCHANNEL_MAC_KEY
  • CALG_SCHANNEL_MASTER_HASH
  • CALG_SEAL
  • CALG_SHA
  • CALG_SHA1
  • CALG_SHA_256
  • CALG_SHA_384
  • CALG_SHA_512
  • CALG_SKIPJACK
  • CALG_SSL2_MASTER
  • CALG_SSL3_MASTER
  • CALG_SSL3_SHAMD5
  • CALG_TEK
  • CALG_TLS1_MASTER
  • CALG_TLS1PRF
Example values when ssl_provider is set to Internalinclude the following: obj.config("SSLEnabledCipherSuites=*"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA"); obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA"); Possible values when ssl_provider is set to Internal include the following:
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
  • TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_DHE_DSS_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
  • TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_RSA_WITH_DES_CBC_SHA
  • TLS_DHE_DSS_WITH_DES_CBC_SHA
  • TLS_RSA_WITH_RC4_128_MD5
  • TLS_RSA_WITH_RC4_128_SHA

When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:

  • TLS_AES_256_GCM_SHA384
  • TLS_CHACHA20_POLY1305_SHA256
  • TLS_AES_128_GCM_SHA256

SSLEnabledCipherSuites is used together with SSLCipherStrength.

SSLEnabledProtocols:   Used to enable/disable the supported security protocols.

This configuration setting is used to enable or disable the supported security protocols.

Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:

TLS1.312288 (Hex 3000)
TLS1.23072 (Hex C00) (Default - Client and Server)
TLS1.1768 (Hex 300) (Default - Client)
TLS1 192 (Hex C0) (Default - Client)
SSL3 48 (Hex 30)
SSL2 12 (Hex 0C)

Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.

SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:

By default when TLS 1.3 is enabled, the class will use the internal TLS implementation when the ssl_provider is set to Automatic for all editions.

In editions that are designed to run on Windows, ssl_provider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.

If set to 1 (Platform provider), please be aware of the following notes:

  • The platform provider is available only on Windows 11/Windows Server 2022 and up.
  • SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
  • If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.

SSLEnabledProtocols: SSL2 and SSL3 Notes:

SSL 2.0 and 3.0 are not supported by the class when the ssl_provider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and ssl_provider needs to be set to platform.

SSLEnableRenegotiation:   Whether the renegotiation_info SSL extension is supported.

This configuration setting specifies whether the renegotiation_info SSL extension will be used in the request when using the internal security API. This configuration setting is False by default, but it can be set to True to enable the extension.

This configuration setting is applicable only when ssl_provider is set to Internal.

SSLIncludeCertChain:   Whether the entire certificate chain is included in the SSLServerAuthentication event.

This configuration setting specifies whether the Encoded parameter of the on_ssl_server_authentication event contains the full certificate chain. By default this value is False and only the leaf certificate will be present in the Encoded parameter of the on_ssl_server_authentication event.

If set to True, all certificates returned by the server will be present in the Encoded parameter of the on_ssl_server_authentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.

SSLKeyLogFile:   The location of a file where per-session secrets are written for debugging purposes.

This configuration setting optionally specifies the full path to a file on disk where per-session secrets are stored for debugging purposes.

When set, the class will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the class will only append, it will not overwrite previous values.

Note: This configuration setting is applicable only when ssl_provider is set to Internal.

SSLNegotiatedCipher:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipher[connId]");

SSLNegotiatedCipherStrength:   Returns the negotiated cipher suite strength.

This configuration setting returns the strength of the cipher suite negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherStrength[connId]");

SSLNegotiatedCipherSuite:   Returns the negotiated cipher suite.

This configuration setting returns the cipher suite negotiated during the SSL handshake represented as a single string.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedCipherSuite[connId]");

SSLNegotiatedKeyExchange:   Returns the negotiated key exchange algorithm.

This configuration setting returns the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchange[connId]");

SSLNegotiatedKeyExchangeStrength:   Returns the negotiated key exchange algorithm strength.

This configuration setting returns the strength of the key exchange algorithm negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedKeyExchangeStrength[connId]");

SSLNegotiatedVersion:   Returns the negotiated protocol version.

This configuration setting returns the protocol version negotiated during the SSL handshake.

Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example: server.Config("SSLNegotiatedVersion[connId]");

SSLSecurityFlags:   Flags that control certificate verification.

The following flags are defined (specified in hexadecimal notation). They can be ORed together to exclude multiple conditions:

0x00000001Ignore time validity status of certificate.
0x00000002Ignore time validity status of CTL.
0x00000004Ignore non-nested certificate times.
0x00000010Allow unknown certificate authority.
0x00000020Ignore wrong certificate usage.
0x00000100Ignore unknown certificate revocation status.
0x00000200Ignore unknown CTL signer revocation status.
0x00000400Ignore unknown certificate authority revocation status.
0x00000800Ignore unknown root revocation status.
0x00008000Allow test root certificate.
0x00004000Trust test root certificate.
0x80000000Ignore non-matching CN (certificate CN non-matching server name).

This functionality is currently not available when the provider is OpenSSL.

SSLServerCACerts:   A newline separated list of CA certificates to use during SSL server certificate validation.

This configuration setting is only used by client components (e.g., TCPClient) see SSLClientCACerts for server components (e.g., TCPServer). This configuration setting can be used to optionally specify one or more CA certificates to be used when connecting to the server and verifying the server certificate. When verifying the server's certificate, the certificates trusted by the system will be used as part of the verification process. If the server's CA certificates are not installed to the trusted system store, they may be specified here so they are included when performing the verification process. This configuration setting should be set only if the server's CA certificates are not already trusted on the system and cannot be installed to the trusted system store.

The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:

-----BEGIN CERTIFICATE-----
MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw
... Intermediate Cert...
eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w
F0I1XhM+pKj7FjDr+XNj
-----END CERTIFICATE-----
\r \n
-----BEGIN CERTIFICATE-----
MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp
... Root Cert...
d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA
-----END CERTIFICATE-----

TLS12SignatureAlgorithms:   Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal.

This configuration setting specifies the allowed server certificate signature algorithms when ssl_provider is set to Internal and SSLEnabledProtocols is set to allow TLS 1.2.

When specified the class will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the class fails with an error.

The format of this value is a comma-separated list of hash-signature combinations. For instance: component.SSLProvider = TCPClientSSLProviders.sslpInternal; component.Config("SSLEnabledProtocols=3072"); //TLS 1.2 component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa"); The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.

To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.

TLS12SupportedGroups:   The supported groups for ECC.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.2 for ECC.

The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.

When using TLS 1.2 and ssl_provider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:

  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)

TLS13KeyShareGroups:   The groups for which to pregenerate key shares.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. The groups specified here will have key share data pregenerated locally before establishing a connection. This can prevent an additional roundtrip during the handshake if the group is supported by the server.

The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.

Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.

In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448"
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1"
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096"
  • "ffdhe_6144"
  • "ffdhe_8192"

TLS13SignatureAlgorithms:   The allowed certificate signature algorithms.

This configuration setting holds a comma-separated list of allowed signature algorithms. Possible values include the following:

  • "ed25519" (default)
  • "ed448" (default)
  • "ecdsa_secp256r1_sha256" (default)
  • "ecdsa_secp384r1_sha384" (default)
  • "ecdsa_secp521r1_sha512" (default)
  • "rsa_pkcs1_sha256" (default)
  • "rsa_pkcs1_sha384" (default)
  • "rsa_pkcs1_sha512" (default)
  • "rsa_pss_sha256" (default)
  • "rsa_pss_sha384" (default)
  • "rsa_pss_sha512" (default)
The default value is rsa_pss_sha256,rsa_pss_sha384,rsa_pss_sha512,rsa_pkcs1_sha256,rsa_pkcs1_sha384,rsa_pkcs1_sha512,ecdsa_secp256r1_sha256,ecdsa_secp384r1_sha384,ecdsa_secp521r1_sha512,ed25519,ed448. This configuration setting is applicable only when SSLEnabledProtocols includes TLS 1.3.
TLS13SupportedGroups:   The supported groups for (EC)DHE key exchange.

This configuration setting specifies a comma-separated list of named groups used in TLS 1.3 for key exchange. This configuration setting should be modified only if there is a specific reason to do so.

The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192

The values are ordered from most preferred to least preferred. The following values are supported:

  • "ecdhe_x25519" (default)
  • "ecdhe_x448" (default)
  • "ecdhe_secp256r1" (default)
  • "ecdhe_secp384r1" (default)
  • "ecdhe_secp521r1" (default)
  • "ffdhe_2048" (default)
  • "ffdhe_3072" (default)
  • "ffdhe_4096" (default)
  • "ffdhe_6144" (default)
  • "ffdhe_8192" (default)

Socket Config Settings

AbsoluteTimeout:   Determines whether timeouts are inactivity timeouts or absolute timeouts.

If AbsoluteTimeout is set to True, any method that does not complete within timeout seconds will be aborted. By default, AbsoluteTimeout is False, and the timeout is an inactivity timeout.

Note: This option is not valid for User Datagram Protocol (UDP) ports.

FirewallData:   Used to send extra data to the firewall.

When the firewall is a tunneling proxy, use this property to send custom (additional) headers to the firewall (e.g., headers for custom authentication schemes).

InBufferSize:   The size in bytes of the incoming queue of the socket.

This is the size of an internal queue in the Transmission Control Protocol (TCP)/IP stack. You can increase or decrease its size depending on the amount of data that you will be receiving. In some cases, increasing the value of the InBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

OutBufferSize:   The size in bytes of the outgoing queue of the socket.

This is the size of an internal queue in the TCP/IP stack. You can increase or decrease its size depending on the amount of data that you will be sending. In some cases, increasing the value of the OutBufferSize setting can provide significant improvements in performance.

Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the class is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.

MQTT Errors

MQTT Errors

500   MQTT protocol error. Refer to the error message for more information.
501   Packet Id pool exhausted, no more packet Ids are available.
502   Invalid topic name. Refer to the error message for more information.
503   Invalid topic filter. Refer to the error message for more information.
504   Message data is malformed.
505   Invalid QoS value. Refer to the error message for more information.

WebSocket Errors

4001   Error transmitting packet.
4002   Error sending CLOSE packet.
4003   General protocol error.

HTTP Errors

118   Firewall error. The error description contains the detailed message.
143   Busy executing current method.
151   HTTP protocol error. The error message has the server response.
152   No server specified in url.
153   Specified url_scheme is invalid.
155   Range operation is not supported by server.
156   Invalid cookie index (out of range).
301   Interrupted.
302   Cannot open attached_file.

The class may also return one of the following error codes, which are inherited from other classes.

TCPClient Errors

100   You cannot change the remote_port at this time. A connection is in progress.
101   You cannot change the remote_host (Server) at this time. A connection is in progress.
102   The remote_host address is invalid (0.0.0.0).
104   Already connected. If you want to reconnect, close the current connection first.
106   You cannot change the local_port at this time. A connection is in progress.
107   You cannot change the local_host at this time. A connection is in progress.
112   You cannot change MaxLineLength at this time. A connection is in progress.
116   remote_port cannot be zero. Please specify a valid service port number.
117   You cannot change the UseConnection option while the class is active.
135   Operation would block.
201   Timeout.
211   Action impossible in control's present state.
212   Action impossible while not connected.
213   Action impossible while listening.
301   Timeout.
302   Could not open file.
434   Unable to convert string to selected CodePage.
1105   Already connecting. If you want to reconnect, close the current connection first.
1117   You need to connect first.
1119   You cannot change the LocalHost at this time. A connection is in progress.
1120   Connection dropped by remote host.

SSL Errors

270   Cannot load specified security library.
271   Cannot open certificate store.
272   Cannot find specified certificate.
273   Cannot acquire security credentials.
274   Cannot find certificate chain.
275   Cannot verify certificate chain.
276   Error during handshake.
280   Error verifying certificate.
281   Could not find client certificate.
282   Could not find server certificate.
283   Error encrypting data.
284   Error decrypting data.

TCP/IP Errors

10004   [10004] Interrupted system call.
10009   [10009] Bad file number.
10013   [10013] Access denied.
10014   [10014] Bad address.
10022   [10022] Invalid argument.
10024   [10024] Too many open files.
10035   [10035] Operation would block.
10036   [10036] Operation now in progress.
10037   [10037] Operation already in progress.
10038   [10038] Socket operation on nonsocket.
10039   [10039] Destination address required.
10040   [10040] Message is too long.
10041   [10041] Protocol wrong type for socket.
10042   [10042] Bad protocol option.
10043   [10043] Protocol is not supported.
10044   [10044] Socket type is not supported.
10045   [10045] Operation is not supported on socket.
10046   [10046] Protocol family is not supported.
10047   [10047] Address family is not supported by protocol family.
10048   [10048] Address already in use.
10049   [10049] Cannot assign requested address.
10050   [10050] Network is down.
10051   [10051] Network is unreachable.
10052   [10052] Net dropped connection or reset.
10053   [10053] Software caused connection abort.
10054   [10054] Connection reset by peer.
10055   [10055] No buffer space available.
10056   [10056] Socket is already connected.
10057   [10057] Socket is not connected.
10058   [10058] Cannot send after socket shutdown.
10059   [10059] Too many references, cannot splice.
10060   [10060] Connection timed out.
10061   [10061] Connection refused.
10062   [10062] Too many levels of symbolic links.
10063   [10063] File name is too long.
10064   [10064] Host is down.
10065   [10065] No route to host.
10066   [10066] Directory is not empty
10067   [10067] Too many processes.
10068   [10068] Too many users.
10069   [10069] Disc Quota Exceeded.
10070   [10070] Stale NFS file handle.
10071   [10071] Too many levels of remote in path.
10091   [10091] Network subsystem is unavailable.
10092   [10092] WINSOCK DLL Version out of range.
10093   [10093] Winsock is not loaded yet.
11001   [11001] Host not found.
11002   [11002] Nonauthoritative 'Host not found' (try again or check DNS setup).
11003   [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP.
11004   [11004] Valid name, no data record (check DNS setup).