AzureKeys Component
Properties Methods Events Config Settings Errors
The AzureKeys component makes it easy to interact with keys in Azure Key Vaults.
Syntax
TckAzureKeys
Remarks
The AzureKeys component provides an easy-to-use interface for the key-related functionality of the Azure Key Vault service. Azure Key Vault allows you to works with a few different kinds of resources, one of which is asymmetric key pairs. This component helps you to create, manage, and use said key pairs (or just "keys", for short) for cryptographic operations. To work with "secrets" instead, refer to the AzureSecrets component.
To begin, register for an Azure account and create one or more Key Vaults via the Azure Portal. Set the Vault property to the name of the vault you wish to work with.
This component requires authentication via OAuth 2.0. First, perform OAuth authentication using the OAuth property to set the appropriate fields for the chosen OAuthClientProfile and OAuthGrantType.
The component has the following defaults:
Authorization Server URL | "https://login.microsoftonline.com/common/oauth2/v2.0/authorize" |
Token Server URL | "https://login.microsoftonline.com/common/oauth2/v2.0/token" |
Scopes | "offline_access https://vault.azure.net/user_impersonation" |
Additionaly, depending on how the application is registered (Ex. Single-tenant, Multi-tenant) and what OAuthGrantType is selected (Ex. Authorization Code, Password), it may be required to use the tenant ID rather than "common" in the OAuthServerAuthURL, and OAuthServerTokenURL properties. See below for examples of the modified URLs:
Authorization Server URL | "https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/authorize" |
Token Server URL | "https://login.microsoftonline.com/{TENANT_ID}/oauth2/v2.0/token" |
Application Profile
This profile encompasses the most basic grant types that OAuth supports. When this profile is set, all the requests and response handling is done by the component. Depending on the grant type, this may involve launching a browser so a user can login to authenticate with a authorization server. It may also involve starting an embedded web server to receive a response from a redirect.
To start the authentication and authorization process, the Authorize method should be called. If the authorization and authentication was successful, then the OAuthAccessToken property will be populated. Additionally, if a refresh token was provided the OAuthRefreshToken property will be populated as well. These values of the fields are for informational purposes. The component will also cache these tokens along with when the OAuthAccessToken will be expired. When a method that makes requests to the service provider is called or the Authorize method is called the component will automatically check to see if the access token is expired. If it is, it will then automatically try to get a new OAuthAccessToken. If the Authorize method was not used and user interaction would be required, the component will throw an error which can be caught. When user interaction is needed depends on what grant type is set in the OAuthGrantType property. To force the component to only check the access token when the Authorize method is called, the OAuthAutomaticRefresh configuration setting can be set to false.
A brief description of the supported values for the OAuthGrantType property are below. For more information, see the service documentation.
Authorization Code
When using the Authorization Code grant type, the component will use an authorization code to get an access token. For this OAuthGrantType the component expects a OAuthClientId, OAuthClientSecret, OAuthServerAuthURL, and OAuthServerTokenURL to be set. When the Authorize method is called, the component will start the embedded web server and launch the browser so the user can authorize the application. Once the user authorizes, the service provider will redirect them to the embedded web server and the component will parse the authorization code, setting the OAuthAuthorizationCode property, from the redirect. Immediately, the component will make a request to the token server to exchange the authorization code for an access token. The token server will return an access token and possibly a refresh token. If the OAuthRefreshToken property is set, or a refresh token is cached, then the component will not launch the browser and use the refresh token in its request to the token server instead of an authorization code.
Example:
AzureKeys azurekeys = new AzureKeys();
azurekeys.OAuth.ClientProfile = CloudOAuthClientProfiles.cocpApplication;
azurekeys.OAuth.GrantType = OAuthSettingsGrantTypes.cogtAuthorizationCode;
azurekeys.OAuth.ClientId = CLIENT_ID;
azurekeys.OAuth.ClientSecret = SECRET_ID;
azurekeys.OAuth.AuthorizationScope = "offline_access https://vault.azure.net/user_impersonation";
azurekeys.OAuth.ServerAuthURL = "https://login.microsoftonline.com/" + TENANT_ID + "/oauth2/v2.0/authorize";
azurekeys.OAuth.ServerTokenURL = "https://login.microsoftonline.com/" + TENANT_ID + "/oauth2/v2.0/token";
azurekeys.Authorize();
Implicit
Note: This grant type is considered insecure and should only be used when necessary.
When using the Implicit grant type, the component will request the authorization server to get an access token. For this OAuthGrantType the component expects a OAuthClientId, OAuthClientSecret, and OAuthServerAuthURL to be set. When the Authorize method is called, the component will start the embedded web server and launch the browser so the user can authorize the application. Once the user authorizes, the service provider will redirect them to the embedded web server and the component will parse the access token from the redirect.
A disadvantage of the grant type is that can not use a refresh token to silently get a new access token. Most service providers offer a way to silently get a new access token. See the service documentation for specifics. This means the component will not be able to automatically get a fresh token once it expires.
Password
Note: This grant type is considered insecure and should only be used when necessary.
When using the Resource Owner Password Credentials grant type, the component will authenticate as the resource owner. This allows for the component to avoid user interaction. This grant type often has specific limitations put on it by the service provider. See the service documentation for more details.
For this OAuthGrantType the component requires OAuthPasswordGrantUsername, OAuthClientSecret, and OAuthServerTokenURL to be set. The OAuthClientSecret should be set to the password of the account instead of a typical secret. In some cases, the OAuthClientId also needs to be set. When the Authorize method is called, the component will make a request to the token server for an access token using the username and password. The token server will return an access token if the authentication was successful. When this access token is expired, the component will automatically (see above for detailed description) make a new request to get a fresh one.
Web Profile
This profile is similar to setting the component to the Application profile and Authorization Code grant type except the component will not launch the browser. It is typically used in situations where there is a back-end that is supporting some front end. This profile expects that OAuthClientId, OAuthClientSecret, OAuthServerAuthURL, OAuthServerTokenURL, and the OAuthReturnURL properties to be set. Before calling the Authorize method, the OAuthWebAuthURL property should be queried to get a URL. This URL should be used to redirect the user to the authorization page for the service provider. The redirect_uri parameter of this URL is mapped to the OAuthReturnURL property. The OAuthReturnURL property should be set to some web server that will parse the authorization code out of the query parameter from the redirect. Once the authorization code is parsed, it should be passed back to the server where it is then set to the OAuthAuthorizationCode property. Once that is set, the Authorize method can be called to exchange the authorization code for an access token and refresh token if provided. The component will then cache these values like normal and use them to make requests. If the OAuthRefreshToken field is set, or a refresh token is cached, then the Authorize method can immediately be called to make a request to the token server to get a new access token.
External OAuth Support
For complex profiles or grant types, or for more control of the flow, it is possible to perform OAuth authentication using the OAuth component or a separate process. Once complete you should have an authorization string which looks like:Bearer ACCESS_TOKEN_VALUE
Assign this value to the Authorization property before attempting any operations. Setting the Authorization property will cause the component to ignore the values set in the OAuth property.
For Example:
Oauth oauth = new Oauth();
oauth.ClientId = "CLIENT_ID";
oauth.ClientSecret = "CLIENT_SECRET";
oauth.ServerAuthURL = "https://login.microsoftonline.com/common/oauth2/v2.0/authorize";
oauth.ServerTokenURL = "https://login.microsoftonline.com/common/oauth2/v2.0/token";
oauth.AuthorizationScope = "offline_access https://vault.azure.net/user_impersonation";
oauth.GrantType = OauthGrantTypes.ogtAuthorizationCode;
azurekeys.Authorization = oauth.GetAuthorization();
Consult the documentation for the service for more information about supported scope values and more details on OAuth authentication.
Using the Component
Keys can be created using the CreateKey method. A key's name and type (i.e., whether it is RSA or EC, and its size or curve, respectively) must be set at the time of creation, and cannot be changed later. A list of cryptographic operations that the key is valid for must also be set, but can be changed at any time using the UpdateKey. If a key with the specified name already exists, a new version of it is created; this makes it easy to "rotate" a key.
When a key will no longer be used, it can be deleted using the DeleteKey method. However, the key will only be soft-deleted; by default, Azure will permanently delete it after the waiting period configured for the vault. During this waiting period, the soft-deleted key may be recovered using RecoverKey, or permanently deleted using PurgeKey (assuming the currently-authenticated user has the permissions to do so).
azurekeys.CreateKey("mykey", "RSA_2048", "encrypt,decrypt,sign,verify,wrapKey,unwrapKey");
// ... Some time later, when the key is no longer needed ...
azurekeys.DeleteKey("mykey");
// At this point, the key is only soft-deleted. It could be recovered...
azurekeys.RecoverKey("mykey");
// ...or permanently deleted.
azurekeys.PurgeKey("mykey");
To list keys, use the ListKeys method. This method is also used to list soft-deleted keys if the GetDeleted configuration setting has been enabled first. To list a key's versions, use the ListVersions method. (You cannot list a deleted key's versions.) In all cases, the IncludeKeyDetails property can optionally be enabled to have the component attempt to retrieve the full information for each key (Azure leaves out certain fields by default when listing).
// If there are many keys to list, there may be multiple pages of results. This will
// cause all pages of results to be accumulated into the Keys collection property.
do {
azurekeys.ListKeys();
} while (!string.IsNullOrEmpty(azurekeys.KeyMarker));
// A similar thing applies to key versions as well.
do {
azurekeys.ListVersions("mykey");
} while (!string.IsNullOrEmpty(azurekeys.VersionMarker));
Depending on a key's "key ops" list, it can be used to perform different cryptographic operations. Keys with the encrypt and decrypt ops can be used in Encrypt and Decrypt operations. Keys with the sign and verify ops can be used in Sign and Verify. Finally, keys with the wrapKey and unwrapKey ops can be used in WrapKey and UnwrapKey operations (which are just like encryption and decryption, but which are intended to be used for wrapping a symmetric key, and which require different permissions to call successfully).
To perform a cryptographic operation, use InputData or InputFile to supply the input data that should be processed. All operations will output the result data to OutputData or OutputFile (except Verify; refer to its documentation for more information).
azurekeys.CreateKey("mykey", "RSA_2048", "encrypt,decrypt");
azurekeys.InputData = "Test123";
azurekeys.OutputFile = "C:/temp/enc.dat";
azurekeys.Encrypt("mykey", "RSA-OAEP-256");
azurekeys.InputFile = "C:/temp/enc.dat";
azurekeys.OutputFile = ""; // So that the data will be output to the OutputData property.
azurekeys.Decrypt("mykey", "RSA-OAEP-256");
The component also supports a variety of other functionality, including:
- Retrieval of a single key's information (including public key) with GetKeyInfo.
- Enabling and disabling keys with SetKeyEnabled.
- Tagging support using AddTag and the Tags properties.
- Secure key backup and restoration using BackupKey and RestoreKey.
- And more!
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
Authorization | OAuth 2.0 Authorization Token. |
FirewallAutoDetect | Whether to automatically detect and use firewall system settings, if available. |
FirewallType | The type of firewall to connect through. |
FirewallHost | The name or IP address of the firewall (optional). |
FirewallPassword | A password if authentication is to be used when connecting through the firewall. |
FirewallPort | The Transmission Control Protocol (TCP) port for the firewall Host . |
FirewallUser | A username if authentication is to be used when connecting through a firewall. |
Idle | The current status of the component. |
IncludeKeyDetails | Whether to attempt to retrieve fill details when listing keys. |
InputData | The data to process. |
InputFile | The file whose data should be processed. |
KeyMarker | A marker indicating what page of keys to return next. |
KeyCount | The number of records in the Key arrays. |
KeyCreationDate | The creation date of the key. |
KeyDeletionDate | The deletion date of the key. |
KeyEnabled | Whether the key is enabled. |
KeyExpiryDate | The expiration date of the key. |
KeyOps | The operation that the key may be used for. |
KeyType | The key's type. |
KeyName | The name of the key. |
KeyNotBeforeDate | The 'not before' date of the key. |
KeyPublicKey | The key's public key. |
KeyPurgeDate | The purge date of the key. |
KeyRecoverableDays | The number of days the key will be recoverable if it gets deleted. |
KeyRecoveryLevel | The key's ability to be recovered and/or purged if it gets deleted. |
KeyUpdateDate | The update date of the key. |
KeyVersionId | The version Id of the key. |
LocalHost | The name of the local host or user-assigned IP interface through which connections are initiated or accepted. |
OAuthAccessToken | The access token returned by the authorization server. |
OAuthAuthorizationCode | The authorization code that is exchanged for an access token. |
OAuthAuthorizationScope | The scope request or response parameter used during authorization. |
OAuthClientId | The id of the client assigned when registering the application. |
OAuthClientProfile | The type of client that is requesting authorization. |
OAuthClientSecret | The secret value for the client assigned when registering the application. |
OAuthGrantType | The OAuth grant type used to acquire an OAuth access token. |
OAuthRefreshToken | Specifies the refresh token received from or sent to the authorization server. |
OAuthRequestRefreshToken | Specifies whether the component will request a refresh token during authorization. |
OAuthReturnURL | The URL where the user (browser) returns after authenticating. |
OAuthServerAuthURL | The URL of the authorization server. |
OAuthServerTokenURL | The URL of the token server used to obtain the access token. |
OAuthWebAuthURL | The URL to which the user should be re-directed for authorization. |
OtherHeaders | Other headers as determined by the user (optional). |
OutputData | The output data. |
OutputFile | The file to which output data should be written. |
Overwrite | Whether the output file should be overwritten if necessary. |
ParsedHeaderCount | The number of records in the ParsedHeader arrays. |
ParsedHeaderField | This property contains the name of the HTTP header (this is the same case as it is delivered). |
ParsedHeaderValue | This property contains the header contents. |
ProxyAuthScheme | The type of authorization to perform when connecting to the proxy. |
ProxyAutoDetect | Whether to automatically detect and use proxy system settings, if available. |
ProxyPassword | A password if authentication is to be used for the proxy. |
ProxyPort | The Transmission Control Protocol (TCP) port for the proxy Server (default 80). |
ProxyServer | If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified. |
ProxySSL | When to use a Secure Sockets Layer (SSL) for the connection to the proxy. |
ProxyUser | A username if authentication is to be used for the proxy. |
QueryParamCount | The number of records in the QueryParam arrays. |
QueryParamName | The name of the query parameter. |
QueryParamValue | The value of the query parameter. |
SSLAcceptServerCertEffectiveDate | The date on which this certificate becomes valid. |
SSLAcceptServerCertExpirationDate | The date on which the certificate expires. |
SSLAcceptServerCertExtendedKeyUsage | A comma-delimited list of extended key usage identifiers. |
SSLAcceptServerCertFingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
SSLAcceptServerCertFingerprintSHA1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
SSLAcceptServerCertFingerprintSHA256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
SSLAcceptServerCertIssuer | The issuer of the certificate. |
SSLAcceptServerCertPrivateKey | The private key of the certificate (if available). |
SSLAcceptServerCertPrivateKeyAvailable | Whether a PrivateKey is available for the selected certificate. |
SSLAcceptServerCertPrivateKeyContainer | The name of the PrivateKey container for the certificate (if available). |
SSLAcceptServerCertPublicKey | The public key of the certificate. |
SSLAcceptServerCertPublicKeyAlgorithm | The textual description of the certificate's public key algorithm. |
SSLAcceptServerCertPublicKeyLength | The length of the certificate's public key (in bits). |
SSLAcceptServerCertSerialNumber | The serial number of the certificate encoded as a string. |
SSLAcceptServerCertSignatureAlgorithm | The text description of the certificate's signature algorithm. |
SSLAcceptServerCertStore | The name of the certificate store for the client certificate. |
SSLAcceptServerCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSLAcceptServerCertStoreType | The type of certificate store for this certificate. |
SSLAcceptServerCertSubjectAltNames | Comma-separated lists of alternative subject names for the certificate. |
SSLAcceptServerCertThumbprintMD5 | The MD5 hash of the certificate. |
SSLAcceptServerCertThumbprintSHA1 | The SHA-1 hash of the certificate. |
SSLAcceptServerCertThumbprintSHA256 | The SHA-256 hash of the certificate. |
SSLAcceptServerCertUsage | The text description of UsageFlags . |
SSLAcceptServerCertUsageFlags | The flags that show intended use for the certificate. |
SSLAcceptServerCertVersion | The certificate's version number. |
SSLAcceptServerCertSubject | The subject of the certificate used for client authentication. |
SSLAcceptServerCertEncoded | The certificate (PEM/Base64 encoded). |
SSLCertEffectiveDate | The date on which this certificate becomes valid. |
SSLCertExpirationDate | The date on which the certificate expires. |
SSLCertExtendedKeyUsage | A comma-delimited list of extended key usage identifiers. |
SSLCertFingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
SSLCertFingerprintSHA1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
SSLCertFingerprintSHA256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
SSLCertIssuer | The issuer of the certificate. |
SSLCertPrivateKey | The private key of the certificate (if available). |
SSLCertPrivateKeyAvailable | Whether a PrivateKey is available for the selected certificate. |
SSLCertPrivateKeyContainer | The name of the PrivateKey container for the certificate (if available). |
SSLCertPublicKey | The public key of the certificate. |
SSLCertPublicKeyAlgorithm | The textual description of the certificate's public key algorithm. |
SSLCertPublicKeyLength | The length of the certificate's public key (in bits). |
SSLCertSerialNumber | The serial number of the certificate encoded as a string. |
SSLCertSignatureAlgorithm | The text description of the certificate's signature algorithm. |
SSLCertStore | The name of the certificate store for the client certificate. |
SSLCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSLCertStoreType | The type of certificate store for this certificate. |
SSLCertSubjectAltNames | Comma-separated lists of alternative subject names for the certificate. |
SSLCertThumbprintMD5 | The MD5 hash of the certificate. |
SSLCertThumbprintSHA1 | The SHA-1 hash of the certificate. |
SSLCertThumbprintSHA256 | The SHA-256 hash of the certificate. |
SSLCertUsage | The text description of UsageFlags . |
SSLCertUsageFlags | The flags that show intended use for the certificate. |
SSLCertVersion | The certificate's version number. |
SSLCertSubject | The subject of the certificate used for client authentication. |
SSLCertEncoded | The certificate (PEM/Base64 encoded). |
SSLProvider | The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use. |
SSLServerCertEffectiveDate | The date on which this certificate becomes valid. |
SSLServerCertExpirationDate | The date on which the certificate expires. |
SSLServerCertExtendedKeyUsage | A comma-delimited list of extended key usage identifiers. |
SSLServerCertFingerprint | The hex-encoded, 16-byte MD5 fingerprint of the certificate. |
SSLServerCertFingerprintSHA1 | The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. |
SSLServerCertFingerprintSHA256 | The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. |
SSLServerCertIssuer | The issuer of the certificate. |
SSLServerCertPrivateKey | The private key of the certificate (if available). |
SSLServerCertPrivateKeyAvailable | Whether a PrivateKey is available for the selected certificate. |
SSLServerCertPrivateKeyContainer | The name of the PrivateKey container for the certificate (if available). |
SSLServerCertPublicKey | The public key of the certificate. |
SSLServerCertPublicKeyAlgorithm | The textual description of the certificate's public key algorithm. |
SSLServerCertPublicKeyLength | The length of the certificate's public key (in bits). |
SSLServerCertSerialNumber | The serial number of the certificate encoded as a string. |
SSLServerCertSignatureAlgorithm | The text description of the certificate's signature algorithm. |
SSLServerCertStore | The name of the certificate store for the client certificate. |
SSLServerCertStorePassword | If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store. |
SSLServerCertStoreType | The type of certificate store for this certificate. |
SSLServerCertSubjectAltNames | Comma-separated lists of alternative subject names for the certificate. |
SSLServerCertThumbprintMD5 | The MD5 hash of the certificate. |
SSLServerCertThumbprintSHA1 | The SHA-1 hash of the certificate. |
SSLServerCertThumbprintSHA256 | The SHA-256 hash of the certificate. |
SSLServerCertUsage | The text description of UsageFlags . |
SSLServerCertUsageFlags | The flags that show intended use for the certificate. |
SSLServerCertVersion | The certificate's version number. |
SSLServerCertSubject | The subject of the certificate used for client authentication. |
SSLServerCertEncoded | The certificate (PEM/Base64 encoded). |
TagCount | The number of records in the Tag arrays. |
TagName | The name of the tag. |
TagValue | The value of the tag. |
Timeout | The timeout for the component. |
Vault | Selects a vault for the component to interact with. |
VersionMarker | A marker indicating what page of key versions to return next. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
AddQueryParam | Adds a query parameter to the QueryParams properties. |
AddTag | Adds an item to the Tags properties. |
Authorize | Get the authorization string required to access the protected resource. |
BackupKey | Backs up a key. |
Config | Sets or retrieves a configuration setting. |
CreateKey | Creates a new key. |
Decrypt | Decrypts data using a key. |
DeleteKey | Deletes a key. |
DoEvents | This method processes events from the internal message queue. |
Encrypt | Encrypts data using a key. |
GetKeyInfo | Gets a key's information and public key. |
ListKeys | Lists keys in the currently-selected vault. |
ListVersions | Lists versions of a key. |
PurgeKey | Permanently deletes a soft-deleted key. |
RecoverKey | Recovers a soft-deleted key. |
Reset | Resets the component to its initial state. |
RestoreKey | Restores a previously backed-up key to the vault. |
SendCustomRequest | Sends a custom request to the server. |
SetKeyEnabled | Enables or disables a key. |
Sign | Signs a message using a key. |
UnwrapKey | Unwraps a symmetric key. |
UpdateKey | Updates a key's information. |
Verify | Verifies a digital signature using a key. |
WrapKey | Wraps a symmetric key. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
EndTransfer | This event fires when a document finishes transferring. |
Error | Fired when information is available about errors during data delivery. |
Header | Fired every time a header line comes in. |
KeyList | Fires once for each key when listing keys. |
Log | Fired once for each log message. |
SSLServerAuthentication | Fired after the server presents its certificate to the client. |
SSLStatus | Fired when secure connection progress messages are available. |
StartTransfer | This event fires when a document starts transferring (after the headers). |
TagList | Fires once for each tag returned when a key's information is retrieved. |
Transfer | Fired while a document transfers (delivers document). |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
AccumulatePages | Whether the component should accumulate subsequent pages of results when listing them. |
APIVersion | The Azure Key Vault API version that the component conforms to. |
CreateKeyEnabled | Whether new keys should be created in an enabled or disabled state. |
ExpiryDate | The expiry date to send for the key. |
GetDeleted | Whether the component should retrieve information about soft-deleted keys. |
MaxKeys | The maximum number of results to return when listing keys. |
MessageDigest | The message digest computed by the component during the last sign or verify operation, if any. |
NotBeforeDate | The 'not before' date to send for the key. |
RawRequest | Returns the data that was sent to the server. |
RawResponse | Returns the data that was received from the server. |
VersionId | The Id of the key version that the component should make requests against. |
XChildCount | The number of child elements of the current element. |
XChildName[i] | The name of the child element. |
XChildXText[i] | The inner text of the child element. |
XElement | The name of the current element. |
XParent | The parent of the current element. |
XPath | Provides a way to point to a specific element in the returned XML or JSON response. |
XSubTree | A snapshot of the current element in the document. |
XText | The text of the current element. |
OAuthAccessTokenExpiration | The lifetime of the access token. |
OAuthAuthorizationTokenType | The type of access token returned. |
OAuthAutomaticRefresh | Whether or not to refresh an expired access token automatically. |
OAuthBrowserResponseTimeout | Specifies the amount of time to wait for a response from the browser. |
OAuthIncludeEmptyRedirectURI | Whether an empty redirect_uri parameter is included in requests. |
OAuthJWTPayload | The payload of the JWT access token if present. |
OAuthJWTXChildCount | The number of child elements of the current element. |
OauthJWTXChildName[i] | The name of the child element. |
OAuthJWTXChildXText[i] | The inner text of the child element. |
OAuthJWTXElement | The name of the current element. |
OauthJWTXParent | The parent of the current element. |
OAuthJWTXPath | Provides a way to point to a specific element in the returned payload of a JWT based access token. |
OAuthJWTXSubTree | A snapshot of the current element in the document. |
OAuthJWTXText | The text of the current element. |
OAuthParamCount | Specifies the number of additional parameters variables to include in the request. |
OAuthParamName[i] | Specifies the parameter name at the specified index. |
OAuthParamValue[i] | Specifies the parameter value at the specified index. |
OAuthPasswordGrantUsername | Used in the Resource Owner Password grant type. |
OAuthPKCEChallengeEncoding | The PKCE code challenge method to use. |
OAuthPKCEVerifier | The PKCE verifier used to generate the challenge. |
OAuthResetData | Determines if the Reset method applies to the OAuth settings. |
OAuthReUseWebServer | Determines if the same server instance is used between requests. |
OAuthTransferredRequest | The full OAuth request last sent by the client. |
OAuthUsePKCE | Specifies if PKCE should be used. |
OAuthWebServerActive | Specifies and controls whether the embedded web server is active. |
OAuthWebServerCertStore | The certificate with private key to use when SSL is enabled. |
OAuthWebServerCertStorePassword | The certificate with private key to use when SSL is enabled. |
OAuthWebServerCertStoreType | The certificate with private key to use when SSL is enabled. |
OAuthWebServerCertSubject | The certificate with private key to use when SSL is enabled. |
OAuthWebServerFailedResponse | The custom response that will be displayed to the user if authentication failed. |
OAuthWebServerHost | The hostname used by the embedded web server displayed in the ReturnURL. |
OAuthWebServerPort | The local port on which the embedded web server listens. |
OAuthWebServerResponse | The custom response that will be displayed to the user. |
OAuthWebServerSSLEnabled | Whether the web server requires SSL connections. |
AcceptEncoding | Used to tell the server which types of content encodings the client supports. |
AllowHTTPCompression | This property enables HTTP compression for receiving data. |
AllowHTTPFallback | Whether HTTP/2 connections are permitted to fallback to HTTP/1.1. |
Append | Whether to append data to LocalFile. |
Authorization | The Authorization string to be sent to the server. |
BytesTransferred | Contains the number of bytes transferred in the response data. |
ChunkSize | Specifies the chunk size in bytes when using chunked encoding. |
CompressHTTPRequest | Set to true to compress the body of a PUT or POST request. |
EncodeURL | If set to True the URL will be encoded by the component. |
FollowRedirects | Determines what happens when the server issues a redirect. |
GetOn302Redirect | If set to True the component will perform a GET on the new location. |
HTTP2HeadersWithoutIndexing | HTTP2 headers that should not update the dynamic header table with incremental indexing. |
HTTPVersion | The version of HTTP used by the component. |
IfModifiedSince | A date determining the maximum age of the desired document. |
KeepAlive | Determines whether the HTTP connection is closed after completion of the request. |
KerberosSPN | The Service Principal Name for the Kerberos Domain Controller. |
LogLevel | The level of detail that is logged. |
MaxRedirectAttempts | Limits the number of redirects that are followed in a request. |
NegotiatedHTTPVersion | The negotiated HTTP version. |
OtherHeaders | Other headers as determined by the user (optional). |
ProxyAuthorization | The authorization string to be sent to the proxy server. |
ProxyAuthScheme | The authorization scheme to be used for the proxy. |
ProxyPassword | A password if authentication is to be used for the proxy. |
ProxyPort | Port for the proxy server (default 80). |
ProxyServer | Name or IP address of a proxy server (optional). |
ProxyUser | A user name if authentication is to be used for the proxy. |
SentHeaders | The full set of headers as sent by the client. |
StatusCode | The status code of the last response from the server. |
StatusLine | The first line of the last response from the server. |
TransferredData | The contents of the last response from the server. |
TransferredDataLimit | The maximum number of incoming bytes to be stored by the component. |
TransferredHeaders | The full set of headers as received from the server. |
TransferredRequest | The full request as sent by the client. |
UseChunkedEncoding | Enables or Disables HTTP chunked encoding for transfers. |
UseIDNs | Whether to encode hostnames to internationalized domain names. |
UseProxyAutoConfigURL | Whether to use a Proxy auto-config file when attempting a connection. |
UserAgent | Information about the user agent (browser). |
ConnectionTimeout | Sets a separate timeout value for establishing a connection. |
FirewallAutoDetect | Tells the component whether or not to automatically detect and use firewall system settings, if available. |
FirewallHost | Name or IP address of firewall (optional). |
FirewallPassword | Password to be used if authentication is to be used when connecting through the firewall. |
FirewallPort | The TCP port for the FirewallHost;. |
FirewallType | Determines the type of firewall to connect through. |
FirewallUser | A user name if authentication is to be used connecting through a firewall. |
KeepAliveInterval | The retry interval, in milliseconds, to be used when a TCP keep-alive packet is sent and no response is received. |
KeepAliveTime | The inactivity time in milliseconds before a TCP keep-alive packet is sent. |
Linger | When set to True, connections are terminated gracefully. |
LingerTime | Time in seconds to have the connection linger. |
LocalHost | The name of the local host through which connections are initiated or accepted. |
LocalPort | The port in the local host where the component binds. |
MaxLineLength | The maximum amount of data to accumulate when no EOL is found. |
MaxTransferRate | The transfer rate limit in bytes per second. |
ProxyExceptionsList | A semicolon separated list of hosts and IPs to bypass when using a proxy. |
TCPKeepAlive | Determines whether or not the keep alive socket option is enabled. |
TcpNoDelay | Whether or not to delay when sending packets. |
UseIPv6 | Whether to use IPv6. |
LogSSLPackets | Controls whether SSL packets are logged when using the internal security API. |
OpenSSLCADir | The path to a directory containing CA certificates. |
OpenSSLCAFile | Name of the file containing the list of CA's trusted by your application. |
OpenSSLCipherList | A string that controls the ciphers to be used by SSL. |
OpenSSLPrngSeedData | The data to seed the pseudo random number generator (PRNG). |
ReuseSSLSession | Determines if the SSL session is reused. |
SSLCACerts | A newline separated list of CA certificates to be included when performing an SSL handshake. |
SSLCheckCRL | Whether to check the Certificate Revocation List for the server certificate. |
SSLCheckOCSP | Whether to use OCSP to check the status of the server certificate. |
SSLCipherStrength | The minimum cipher strength used for bulk encryption. |
SSLClientCACerts | A newline separated list of CA certificates to use during SSL client certificate validation. |
SSLEnabledCipherSuites | The cipher suite to be used in an SSL negotiation. |
SSLEnabledProtocols | Used to enable/disable the supported security protocols. |
SSLEnableRenegotiation | Whether the renegotiation_info SSL extension is supported. |
SSLIncludeCertChain | Whether the entire certificate chain is included in the SSLServerAuthentication event. |
SSLKeyLogFile | The location of a file where per-session secrets are written for debugging purposes. |
SSLNegotiatedCipher | Returns the negotiated cipher suite. |
SSLNegotiatedCipherStrength | Returns the negotiated cipher suite strength. |
SSLNegotiatedCipherSuite | Returns the negotiated cipher suite. |
SSLNegotiatedKeyExchange | Returns the negotiated key exchange algorithm. |
SSLNegotiatedKeyExchangeStrength | Returns the negotiated key exchange algorithm strength. |
SSLNegotiatedVersion | Returns the negotiated protocol version. |
SSLSecurityFlags | Flags that control certificate verification. |
SSLServerCACerts | A newline separated list of CA certificates to use during SSL server certificate validation. |
TLS12SignatureAlgorithms | Defines the allowed TLS 1.2 signature algorithms when SSLProvider is set to Internal. |
TLS12SupportedGroups | The supported groups for ECC. |
TLS13KeyShareGroups | The groups for which to pregenerate key shares. |
TLS13SignatureAlgorithms | The allowed certificate signature algorithms. |
TLS13SupportedGroups | The supported groups for (EC)DHE key exchange. |
AbsoluteTimeout | Determines whether timeouts are inactivity timeouts or absolute timeouts. |
FirewallData | Used to send extra data to the firewall. |
InBufferSize | The size in bytes of the incoming queue of the socket. |
OutBufferSize | The size in bytes of the outgoing queue of the socket. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
UseFIPSCompliantAPI | Tells the component whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
Authorization Property (AzureKeys Component)
OAuth 2.0 Authorization Token.
Syntax
__property String Authorization = { read=FAuthorization, write=FSetAuthorization };
Default Value
""
Remarks
This component supports authentication via OAuth 2.0. First, perform OAuth authentication using the OAuth component or a separate process. Once complete you should have an authorization string which looks like:
Bearer ACCESS_TOKENAssign this value to the Authorization property before attempting any operations. Consult the documentation for the service for more information about supported scope values and more details on OAuth authentication.
Data Type
String
FirewallAutoDetect Property (AzureKeys Component)
Whether to automatically detect and use firewall system settings, if available.
Syntax
__property bool FirewallAutoDetect = { read=FFirewallAutoDetect, write=FSetFirewallAutoDetect };
Default Value
False
Remarks
Whether to automatically detect and use firewall system settings, if available.
Data Type
Boolean
FirewallType Property (AzureKeys Component)
The type of firewall to connect through.
Syntax
__property TckAzureKeysFirewallTypes FirewallType = { read=FFirewallType, write=FSetFirewallType };
enum TckAzureKeysFirewallTypes { fwNone=0, fwTunnel=1, fwSOCKS4=2, fwSOCKS5=3, fwSOCKS4A=10 };
Default Value
fwNone
Remarks
The type of firewall to connect through. The applicable values are as follows:
fwNone (0) | No firewall (default setting). |
fwTunnel (1) | Connect through a tunneling proxy. FirewallPort is set to 80. |
fwSOCKS4 (2) | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
fwSOCKS5 (3) | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
fwSOCKS4A (10) | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Data Type
Integer
FirewallHost Property (AzureKeys Component)
The name or IP address of the firewall (optional).
Syntax
__property String FirewallHost = { read=FFirewallHost, write=FSetFirewallHost };
Default Value
""
Remarks
The name or IP address of the firewall (optional). If a FirewallHost is given, the requested connections will be authenticated through the specified firewall when connecting.
If this property is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, this property is set to the corresponding address. If the search is not successful, the component raises an exception.
Data Type
String
FirewallPassword Property (AzureKeys Component)
A password if authentication is to be used when connecting through the firewall.
Syntax
__property String FirewallPassword = { read=FFirewallPassword, write=FSetFirewallPassword };
Default Value
""
Remarks
A password if authentication is to be used when connecting through the firewall. If FirewallHost is specified, the FirewallUser and FirewallPassword properties are used to connect and authenticate to the given firewall. If the authentication fails, the component raises an exception.
Data Type
String
FirewallPort Property (AzureKeys Component)
The Transmission Control Protocol (TCP) port for the firewall Host .
Syntax
__property int FirewallPort = { read=FFirewallPort, write=FSetFirewallPort };
Default Value
0
Remarks
The Transmission Control Protocol (TCP) port for the firewall FirewallHost. See the description of the FirewallHost property for details.
Note: This property is set automatically when FirewallType is set to a valid value. See the description of the FirewallType property for details.
Data Type
Integer
FirewallUser Property (AzureKeys Component)
A username if authentication is to be used when connecting through a firewall.
Syntax
__property String FirewallUser = { read=FFirewallUser, write=FSetFirewallUser };
Default Value
""
Remarks
A username if authentication is to be used when connecting through a firewall. If FirewallHost is specified, this property and the FirewallPassword property are used to connect and authenticate to the given Firewall. If the authentication fails, the component raises an exception.
Data Type
String
Idle Property (AzureKeys Component)
The current status of the component.
Syntax
__property bool Idle = { read=FIdle };
Default Value
True
Remarks
This property will be False if the component is currently busy (communicating or waiting for an answer), and True at all other times.
This property is read-only.
Data Type
Boolean
IncludeKeyDetails Property (AzureKeys Component)
Whether to attempt to retrieve fill details when listing keys.
Syntax
__property bool IncludeKeyDetails = { read=FIncludeKeyDetails, write=FSetIncludeKeyDetails };
Default Value
false
Remarks
This property specifies whether the component should make additional requests when ListKeys or ListVersions is called in order to retrieve full information for each key. By default, Azure will omit certain fields when one of those methods is called (refer to each one's documentation for more information).
If this property is enabled, then after the initial listing is returned, the component will call GetKeyInfo internally for each key returned. For all keys for which this call is successful, the additional information will be used to populate the Keys properties. Any keys for which the GetKeyInfo call fails will not have the additional properties populated.
This property is not available at design time.
Data Type
Boolean
InputData Property (AzureKeys Component)
The data to process.
Syntax
__property String InputData = { read=FInputData, write=FSetInputData }; __property DynamicArray<Byte> InputDataB = { read=FInputDataB, write=FSetInputDataB };
Default Value
""
Remarks
This property specifies the data that should be processed in a cryptographic operation.
Input Sources & Output Destinations
The component automatically determines the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- The InputFile property
- The InputData property
The first valid input source found is used. The order in which the output properties are considered is as follows:
- The OutputFile property
- The OutputData property
This property is not available at design time.
Data Type
Byte Array
InputFile Property (AzureKeys Component)
The file whose data should be processed.
Syntax
__property String InputFile = { read=FInputFile, write=FSetInputFile };
Default Value
""
Remarks
This property specifies the file whose data should be processed in a cryptographic operation. It accepts both absolute and relative file paths.
Input Sources & Output Destinations
The component automatically determines the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- The InputFile property
- The InputData property
The first valid input source found is used. The order in which the output properties are considered is as follows:
- The OutputFile property
- The OutputData property
Data Type
String
KeyMarker Property (AzureKeys Component)
A marker indicating what page of keys to return next.
Syntax
__property String KeyMarker = { read=FKeyMarker, write=FSetKeyMarker };
Default Value
""
Remarks
This property will be populated when ListKeys is called if the results are paged and there are more pages. To list all keys, continue to call ListKeys until this property returns empty string.
Refer to ListKeys for more information.
This property is not available at design time.
Data Type
String
KeyCount Property (AzureKeys Component)
The number of records in the Key arrays.
Syntax
__property int KeyCount = { read=FKeyCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
- KeyCreationDate
- KeyDeletionDate
- KeyEnabled
- KeyExpiryDate
- KeyName
- KeyNotBeforeDate
- KeyOps
- KeyPublicKey
- KeyPurgeDate
- KeyRecoverableDays
- KeyRecoveryLevel
- KeyType
- KeyUpdateDate
- KeyVersionId
This property is read-only and not available at design time.
Data Type
Integer
KeyCreationDate Property (AzureKeys Component)
The creation date of the key.
Syntax
__property __int64 KeyCreationDate[int KeyIndex] = { read=FKeyCreationDate };
Default Value
-1
Remarks
The creation date of the key.
This property reflects the creation date of the key, in seconds since the Unix epoch.
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
Long64
KeyDeletionDate Property (AzureKeys Component)
The deletion date of the key.
Syntax
__property __int64 KeyDeletionDate[int KeyIndex] = { read=FKeyDeletionDate };
Default Value
-1
Remarks
The deletion date of the key.
This property reflects the deletion date of the key, in seconds since the Unix epoch, or -1 if the key has not been deleted.
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
Long64
KeyEnabled Property (AzureKeys Component)
Whether the key is enabled.
Syntax
__property bool KeyEnabled[int KeyIndex] = { read=FKeyEnabled };
Default Value
false
Remarks
Whether the key is enabled.
This property reflects whether the key is currently enabled.
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
Boolean
KeyExpiryDate Property (AzureKeys Component)
The expiration date of the key.
Syntax
__property __int64 KeyExpiryDate[int KeyIndex] = { read=FKeyExpiryDate };
Default Value
-1
Remarks
The expiration date of the key.
This property reflects the expiration date of the key, in seconds since the Unix epoch, or -1 if the key does not expire.
A key can only be used for the Decrypt, Verify, and UnwrapKey operations after its expiry date.
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
Long64
KeyOps Property (AzureKeys Component)
The operation that the key may be used for.
Syntax
__property String KeyOps[int KeyIndex] = { read=FKeyOps };
Default Value
""
Remarks
The operation that the key may be used for.
This property reflects a comma-separated list of operations that they key may be used for. Possible values are:
- encrypt
- decrypt
- sign
- verify
- wrapKey
- unwrapKey
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
String
KeyType Property (AzureKeys Component)
The key's type.
Syntax
__property String KeyType[int KeyIndex] = { read=FKeyType };
Default Value
""
Remarks
The key's type.
This property reflects the key's type. Each key type has two variants, a software-based one and an HSM-based one. Possible values for this property are shown in the first two columns of the following table:
Software-based | HSM-based | Description |
EC_P256 | EC_HSM_P256 | The NIST P-256 curve (SECP256R1). |
EC_P256K | EC_HSM_P256K | The SECP256K1 curve. |
EC_P384 | EC_HSM_P384 | The NIST P-384 curve (SECP384R1). |
EC_P521 | EC_HSM_P521 | The NIST P-521 curve (SECP521R1). |
RSA_2048 | RSA_HSM_2048 | 2048-bit RSA key. |
RSA_3072 | RSA_HSM_3072 | 3072-bit RSA key. |
RSA_4096 | RSA_HSM_4096 | 4096-bit RSA key. |
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
String
KeyName Property (AzureKeys Component)
The name of the key.
Syntax
__property String KeyName[int KeyIndex] = { read=FKeyName };
Default Value
""
Remarks
The name of the key.
This property reflects the name of the key.
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
String
KeyNotBeforeDate Property (AzureKeys Component)
The 'not before' date of the key.
Syntax
__property __int64 KeyNotBeforeDate[int KeyIndex] = { read=FKeyNotBeforeDate };
Default Value
-1
Remarks
The 'not before' date of the key.
This property reflects the "not before" date of the key, in seconds since the Unix epoch, or -1 if the key doesn't have an explicit "not before" date.
A key can only be used for the Decrypt, Verify, and UnwrapKey operations prior to its "not before" date.
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
Long64
KeyPublicKey Property (AzureKeys Component)
The key's public key.
Syntax
__property String KeyPublicKey[int KeyIndex] = { read=FKeyPublicKey };
Default Value
""
Remarks
The key's public key.
This property reflects the public key of the key, in PEM format.
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
String
KeyPurgeDate Property (AzureKeys Component)
The purge date of the key.
Syntax
__property __int64 KeyPurgeDate[int KeyIndex] = { read=FKeyPurgeDate };
Default Value
-1
Remarks
The purge date of the key.
This property reflects the purge (i.e., permanent deletion) date of the key, in seconds since the Unix epoch, or -1 if the key has not been deleted.
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
Long64
KeyRecoverableDays Property (AzureKeys Component)
The number of days the key will be recoverable if it gets deleted.
Syntax
__property int KeyRecoverableDays[int KeyIndex] = { read=FKeyRecoverableDays };
Default Value
0
Remarks
The number of days the key will be recoverable if it gets deleted.
This property reflects the number of days that the key will be recoverable for if it gets deleted.
Note that this property's value is based on the retention policy of the currently-selected Vault; it will not change after the key has actually been deleted.
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
Integer
KeyRecoveryLevel Property (AzureKeys Component)
The key's ability to be recovered and/or purged if it gets deleted.
Syntax
__property String KeyRecoveryLevel[int KeyIndex] = { read=FKeyRecoveryLevel };
Default Value
""
Remarks
The key's ability to be recovered and/or purged if it gets deleted.
This property reflects the key's ability to be recovered and/or purged (i.e., permanently deleted) if it gets deleted. Possible values are as follows; please refer to this part of the Azure Key Vault documentation for more information about each one:
- CustomizedRecoverable
- CustomizedRecoverable+ProtectedSubscription
- CustomizedRecoverable+Purgeable
- Purgeable
- Recoverable
- Recoverable+ProtectedSubscription
- Recoverable+Purgeable
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
String
KeyUpdateDate Property (AzureKeys Component)
The update date of the key.
Syntax
__property __int64 KeyUpdateDate[int KeyIndex] = { read=FKeyUpdateDate };
Default Value
-1
Remarks
The update date of the key.
This property reflects the update date of the key, in seconds since the Unix epoch.
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
Long64
KeyVersionId Property (AzureKeys Component)
The version Id of the key.
Syntax
__property String KeyVersionId[int KeyIndex] = { read=FKeyVersionId };
Default Value
""
Remarks
The version Id of the key.
This property reflects the version Id of the key.
The KeyIndex parameter specifies the index of the item in the array. The size of the array is controlled by the KeyCount property.
This property is read-only and not available at design time.
Data Type
String
LocalHost Property (AzureKeys Component)
The name of the local host or user-assigned IP interface through which connections are initiated or accepted.
Syntax
__property String LocalHost = { read=FLocalHost, write=FSetLocalHost };
Default Value
""
Remarks
This property contains the name of the local host as obtained by the gethostname() system call, or if the user has assigned an IP address, the value of that address.
In multihomed hosts (machines with more than one IP interface) setting LocalHost to the IP address of an interface will make the component initiate connections (or accept in the case of server components) only through that interface. It is recommended to provide an IP address rather than a hostname when setting this property to ensure the desired interface is used.
If the component is connected, the LocalHost property shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Note: LocalHost is not persistent. You must always set it in code, and never in the property window.
Data Type
String
OAuthAccessToken Property (AzureKeys Component)
The access token returned by the authorization server.
Syntax
__property String OAuthAccessToken = { read=FOAuthAccessToken, write=FSetOAuthAccessToken };
Default Value
""
Remarks
The access token returned by the authorization server. This is set when the component makes a request to the token server.
This property is not available at design time.
Data Type
String
OAuthAuthorizationCode Property (AzureKeys Component)
The authorization code that is exchanged for an access token.
Syntax
__property String OAuthAuthorizationCode = { read=FOAuthAuthorizationCode, write=FSetOAuthAuthorizationCode };
Default Value
""
Remarks
The authorization code that is exchanged for an access token. This is required to be set when the OAuthClientProfile property is set to the Web profile. Otherwise, this field is for information purposes only.
This property is not available at design time.
Data Type
String
OAuthAuthorizationScope Property (AzureKeys Component)
The scope request or response parameter used during authorization.
Syntax
__property String OAuthAuthorizationScope = { read=FOAuthAuthorizationScope, write=FSetOAuthAuthorizationScope };
Default Value
""
Remarks
The scope request or response parameter used during authorization.
This property is not available at design time.
Data Type
String
OAuthClientId Property (AzureKeys Component)
The id of the client assigned when registering the application.
Syntax
__property String OAuthClientId = { read=FOAuthClientId, write=FSetOAuthClientId };
Default Value
""
Remarks
The id of the client assigned when registering the application.
This property is not available at design time.
Data Type
String
OAuthClientProfile Property (AzureKeys Component)
The type of client that is requesting authorization.
Syntax
__property TckAzureKeysOAuthClientProfiles OAuthClientProfile = { read=FOAuthClientProfile, write=FSetOAuthClientProfile };
enum TckAzureKeysOAuthClientProfiles { cocpApplication=0, cocpWeb=1 };
Default Value
cocpApplication
Remarks
The type of client that is requesting authorization. See the introduction section for more information. Possible values are:
0 (cocpApplication - Default) | The application profile is applicable to applications that are run by the user directly. For instance a windows form application would use the application profile. To authorize your application (client) using the application profile see the introduction section. |
1 (cocpWeb) | The Web profile is applicable to applications that are run on the server side where the user uses the application from a web browser. To authorize your application (client) using this profile follow see the introduction section. |
This property is not available at design time.
Data Type
Integer
OAuthClientSecret Property (AzureKeys Component)
The secret value for the client assigned when registering the application.
Syntax
__property String OAuthClientSecret = { read=FOAuthClientSecret, write=FSetOAuthClientSecret };
Default Value
""
Remarks
The secret value for the client assigned when registering the application.
This property is not available at design time.
Data Type
String
OAuthGrantType Property (AzureKeys Component)
The OAuth grant type used to acquire an OAuth access token.
Syntax
__property TckAzureKeysOAuthGrantTypes OAuthGrantType = { read=FOAuthGrantType, write=FSetOAuthGrantType };
enum TckAzureKeysOAuthGrantTypes { cogtAuthorizationCode=0, cogtImplicit=1, cogtPassword=2, cogtClientCredentials=3 };
Default Value
cogtAuthorizationCode
Remarks
The OAuth grant type used to acquire an OAuth access token. See the introduction section for more information. Possible values are:
0 (cogtAuthorizationCode - Default) | Authorization Code grant type |
1 (cogtImplicit) | Implicit grant type |
2 (cogtPassword) | Resource Owner Password Credentials grant type |
3 (cogtClientCredentials) | Client Credentials grant type |
This property is not available at design time.
Data Type
Integer
OAuthRefreshToken Property (AzureKeys Component)
Specifies the refresh token received from or sent to the authorization server.
Syntax
__property String OAuthRefreshToken = { read=FOAuthRefreshToken, write=FSetOAuthRefreshToken };
Default Value
""
Remarks
Specifies the refresh token received from or sent to the authorization server. This property is set automatically if a refresh token is retrieved from the token server. If the OAuthAutomaticRefresh configuration setting is set to true, and the OAuthGrantType property is set to a grant that can use refresh tokens.
This property is not available at design time.
Data Type
String
OAuthRequestRefreshToken Property (AzureKeys Component)
Specifies whether the component will request a refresh token during authorization.
Syntax
__property bool OAuthRequestRefreshToken = { read=FOAuthRequestRefreshToken, write=FSetOAuthRequestRefreshToken };
Default Value
true
Remarks
Specifies whether the component will request a refresh token during authorization. By default, this value is True.
When True, the component will automatically add the necessary scopes or parameters to obtain a refresh token. When False, this property will have no effect. If the necessary scopes or parameters are specified manually, a refresh token can still be obtained.
Note: This property is only applicable when the OAuthGrantType property is set to cogtAuthorizationCode.
This property is not available at design time.
Data Type
Boolean
OAuthReturnURL Property (AzureKeys Component)
The URL where the user (browser) returns after authenticating.
Syntax
__property String OAuthReturnURL = { read=FOAuthReturnURL, write=FSetOAuthReturnURL };
Default Value
""
Remarks
The URL where the user (browser) returns after authenticating. This property is mapped to the redirect_uri parameter when making a request to the authorization server. Typically, this is automatically set by the component when using the embedded web server. If the OAuthWebServerPort or OAuthWebServerHost configuration settings is set, then this property should be set to match. If using the Web client profile, this should be set to the place where the authorization code will be parsed out of the response after the user finishes authorizing.
This property is not available at design time.
Data Type
String
OAuthServerAuthURL Property (AzureKeys Component)
The URL of the authorization server.
Syntax
__property String OAuthServerAuthURL = { read=FOAuthServerAuthURL, write=FSetOAuthServerAuthURL };
Default Value
""
Remarks
The URL of the authorization server.
This property is not available at design time.
Data Type
String
OAuthServerTokenURL Property (AzureKeys Component)
The URL of the token server used to obtain the access token.
Syntax
__property String OAuthServerTokenURL = { read=FOAuthServerTokenURL, write=FSetOAuthServerTokenURL };
Default Value
""
Remarks
The URL of the token server used to obtain the access token.
This property is not available at design time.
Data Type
String
OAuthWebAuthURL Property (AzureKeys Component)
The URL to which the user should be re-directed for authorization.
Syntax
__property String OAuthWebAuthURL = { read=FOAuthWebAuthURL };
Default Value
""
Remarks
The URL to which the user should be re-directed for authorization. This field is used to get the URL that the user should be redirected to when using the Web client profile. See introduction section for more information.
This property is read-only and not available at design time.
Data Type
String
OtherHeaders Property (AzureKeys Component)
Other headers as determined by the user (optional).
Syntax
__property String OtherHeaders = { read=FOtherHeaders, write=FSetOtherHeaders };
Default Value
""
Remarks
This property can be set to a string of headers to be appended to the HTTP request headers created from other properties like ContentType and From.
The headers must follow the format Header: Value as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .
Use this property with caution. If this property contains invalid headers, HTTP requests may fail.
This property is useful for extending the functionality of the component beyond what is provided.
This property is not available at design time.
Data Type
String
OutputData Property (AzureKeys Component)
The output data.
Syntax
__property String OutputData = { read=FOutputData, write=FSetOutputData }; __property DynamicArray<Byte> OutputDataB = { read=FOutputDataB, write=FSetOutputDataB };
Default Value
""
Remarks
This property is populated with the data that was output from a successful cryptographic operation.
Note: For the Verify operation, this property functions as a secondary input property instead (along with InputData); refer to the Verify method for more information.
Input Sources & Output Destinations
The component automatically determines the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
The first valid input source found is used. The order in which the output properties are considered is as follows:
- The OutputFile property
- The OutputData property
This property is not available at design time.
Data Type
Byte Array
OutputFile Property (AzureKeys Component)
The file to which output data should be written.
Syntax
__property String OutputFile = { read=FOutputFile, write=FSetOutputFile };
Default Value
""
Remarks
This property specifies the file to which data output from a successful cryptographic operation should be written.
Note: For the Verify operation, the specified file functions as a secondary input file instead (along with InputFile); refer to the Verify method for more information.
Input Sources & Output Destinations
The component automatically determines the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
The first valid input source found is used. The order in which the output properties are considered is as follows:
- The OutputFile property
- The OutputData property
Data Type
String
Overwrite Property (AzureKeys Component)
Whether the output file should be overwritten if necessary.
Syntax
__property bool Overwrite = { read=FOverwrite, write=FSetOverwrite };
Default Value
false
Remarks
This property controls whether the specified OutputFile should be overwritten if it already exists.
Data Type
Boolean
ParsedHeaderCount Property (AzureKeys Component)
The number of records in the ParsedHeader arrays.
Syntax
__property int ParsedHeaderCount = { read=FParsedHeaderCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at ParsedHeaderCount - 1.This property is read-only and not available at design time.
Data Type
Integer
ParsedHeaderField Property (AzureKeys Component)
This property contains the name of the HTTP header (this is the same case as it is delivered).
Syntax
__property String ParsedHeaderField[int ParsedHeaderIndex] = { read=FParsedHeaderField };
Default Value
""
Remarks
This property contains the name of the HTTP Header (this is the same case as it is delivered).
The ParsedHeaderIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ParsedHeaderCount property.
This property is read-only and not available at design time.
Data Type
String
ParsedHeaderValue Property (AzureKeys Component)
This property contains the header contents.
Syntax
__property String ParsedHeaderValue[int ParsedHeaderIndex] = { read=FParsedHeaderValue };
Default Value
""
Remarks
This property contains the Header contents.
The ParsedHeaderIndex parameter specifies the index of the item in the array. The size of the array is controlled by the ParsedHeaderCount property.
This property is read-only and not available at design time.
Data Type
String
ProxyAuthScheme Property (AzureKeys Component)
The type of authorization to perform when connecting to the proxy.
Syntax
__property TckAzureKeysProxyAuthSchemes ProxyAuthScheme = { read=FProxyAuthScheme, write=FSetProxyAuthScheme };
enum TckAzureKeysProxyAuthSchemes { authBasic=0, authDigest=1, authProprietary=2, authNone=3, authNtlm=4, authNegotiate=5 };
Default Value
authBasic
Remarks
The type of authorization to perform when connecting to the proxy. This is used only when the ProxyUser and ProxyPassword properties are set.
ProxyAuthScheme should be set to authNone (3) when no authentication is expected.
By default, ProxyAuthScheme is authBasic (0), and if the ProxyUser and ProxyPassword properties are set, the component will attempt basic authentication.
If ProxyAuthScheme is set to authDigest (1), digest authentication will be attempted instead.
If ProxyAuthScheme is set to authProprietary (2), then the authorization token will not be generated by the component. Look at the configuration file for the component being used to find more information about manually setting this token.
If ProxyAuthScheme is set to authNtlm (4), NTLM authentication will be used.
For security reasons, setting this property will clear the values of ProxyUser and ProxyPassword.
Data Type
Integer
ProxyAutoDetect Property (AzureKeys Component)
Whether to automatically detect and use proxy system settings, if available.
Syntax
__property bool ProxyAutoDetect = { read=FProxyAutoDetect, write=FSetProxyAutoDetect };
Default Value
False
Remarks
Whether to automatically detect and use proxy system settings, if available. The default value is false.
Data Type
Boolean
ProxyPassword Property (AzureKeys Component)
A password if authentication is to be used for the proxy.
Syntax
__property String ProxyPassword = { read=FProxyPassword, write=FSetProxyPassword };
Default Value
""
Remarks
A password if authentication is to be used for the proxy.
If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.
If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.
Data Type
String
ProxyPort Property (AzureKeys Component)
The Transmission Control Protocol (TCP) port for the proxy Server (default 80).
Syntax
__property int ProxyPort = { read=FProxyPort, write=FSetProxyPort };
Default Value
80
Remarks
The Transmission Control Protocol (TCP) port for the proxy ProxyServer (default 80). See the description of the ProxyServer property for details.
Data Type
Integer
ProxyServer Property (AzureKeys Component)
If a proxy Server is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
Syntax
__property String ProxyServer = { read=FProxyServer, write=FSetProxyServer };
Default Value
""
Remarks
If a proxy ProxyServer is given, then the HTTP request is sent to the proxy instead of the server otherwise specified.
If the ProxyServer property is set to a domain name, a DNS request is initiated. Upon successful termination of the request, the ProxyServer property is set to the corresponding address. If the search is not successful, an error is returned.
Data Type
String
ProxySSL Property (AzureKeys Component)
When to use a Secure Sockets Layer (SSL) for the connection to the proxy.
Syntax
__property TckAzureKeysProxySSLs ProxySSL = { read=FProxySSL, write=FSetProxySSL };
enum TckAzureKeysProxySSLs { psAutomatic=0, psAlways=1, psNever=2, psTunnel=3 };
Default Value
psAutomatic
Remarks
When to use a Secure Sockets Layer (SSL) for the connection to the proxy. The applicable values are as follows:
psAutomatic (0) | Default setting. If the URL is an https URL, the component will use the psTunnel option. If the URL is an http URL, the component will use the psNever option. |
psAlways (1) | The connection is always SSL-enabled. |
psNever (2) | The connection is not SSL-enabled. |
psTunnel (3) | The connection is made through a tunneling (HTTP) proxy. |
Data Type
Integer
ProxyUser Property (AzureKeys Component)
A username if authentication is to be used for the proxy.
Syntax
__property String ProxyUser = { read=FProxyUser, write=FSetProxyUser };
Default Value
""
Remarks
A username if authentication is to be used for the proxy.
If ProxyAuthScheme is set to Basic Authentication, the ProxyUser and ProxyPassword properties are Base64 encoded and the proxy authentication token will be generated in the form Basic [encoded-user-password].
If ProxyAuthScheme is set to Digest Authentication, the ProxyUser and ProxyPassword properties are used to respond to the Digest Authentication challenge from the server.
If ProxyAuthScheme is set to NTLM Authentication, the ProxyUser and ProxyPassword properties are used to authenticate through NTLM negotiation.
Data Type
String
QueryParamCount Property (AzureKeys Component)
The number of records in the QueryParam arrays.
Syntax
__property int QueryParamCount = { read=FQueryParamCount, write=FSetQueryParamCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at QueryParamCount - 1.This property is not available at design time.
Data Type
Integer
QueryParamName Property (AzureKeys Component)
The name of the query parameter.
Syntax
__property String QueryParamName[int QueryParamIndex] = { read=FQueryParamName, write=FSetQueryParamName };
Default Value
""
Remarks
The name of the query parameter.
This property specifies the name of the query parameter.
The QueryParamIndex parameter specifies the index of the item in the array. The size of the array is controlled by the QueryParamCount property.
This property is not available at design time.
Data Type
String
QueryParamValue Property (AzureKeys Component)
The value of the query parameter.
Syntax
__property String QueryParamValue[int QueryParamIndex] = { read=FQueryParamValue, write=FSetQueryParamValue };
Default Value
""
Remarks
The value of the query parameter.
This property specifies the value of the query parameter. The component will automatically URL-encode this value when sending the request.
The QueryParamIndex parameter specifies the index of the item in the array. The size of the array is controlled by the QueryParamCount property.
This property is not available at design time.
Data Type
String
SSLAcceptServerCertEffectiveDate Property (AzureKeys Component)
The date on which this certificate becomes valid.
Syntax
__property String SSLAcceptServerCertEffectiveDate = { read=FSSLAcceptServerCertEffectiveDate };
Default Value
""
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
Data Type
String
SSLAcceptServerCertExpirationDate Property (AzureKeys Component)
The date on which the certificate expires.
Syntax
__property String SSLAcceptServerCertExpirationDate = { read=FSSLAcceptServerCertExpirationDate };
Default Value
""
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
Data Type
String
SSLAcceptServerCertExtendedKeyUsage Property (AzureKeys Component)
A comma-delimited list of extended key usage identifiers.
Syntax
__property String SSLAcceptServerCertExtendedKeyUsage = { read=FSSLAcceptServerCertExtendedKeyUsage };
Default Value
""
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
Data Type
String
SSLAcceptServerCertFingerprint Property (AzureKeys Component)
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
__property String SSLAcceptServerCertFingerprint = { read=FSSLAcceptServerCertFingerprint };
Default Value
""
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
Data Type
String
SSLAcceptServerCertFingerprintSHA1 Property (AzureKeys Component)
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
__property String SSLAcceptServerCertFingerprintSHA1 = { read=FSSLAcceptServerCertFingerprintSHA1 };
Default Value
""
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
Data Type
String
SSLAcceptServerCertFingerprintSHA256 Property (AzureKeys Component)
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
__property String SSLAcceptServerCertFingerprintSHA256 = { read=FSSLAcceptServerCertFingerprintSHA256 };
Default Value
""
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
Data Type
String
SSLAcceptServerCertIssuer Property (AzureKeys Component)
The issuer of the certificate.
Syntax
__property String SSLAcceptServerCertIssuer = { read=FSSLAcceptServerCertIssuer };
Default Value
""
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
Data Type
String
SSLAcceptServerCertPrivateKey Property (AzureKeys Component)
The private key of the certificate (if available).
Syntax
__property String SSLAcceptServerCertPrivateKey = { read=FSSLAcceptServerCertPrivateKey };
Default Value
""
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The SSLAcceptServerCertPrivateKey may be available but not exportable. In this case, SSLAcceptServerCertPrivateKey returns an empty string.
This property is read-only.
Data Type
String
SSLAcceptServerCertPrivateKeyAvailable Property (AzureKeys Component)
Whether a PrivateKey is available for the selected certificate.
Syntax
__property bool SSLAcceptServerCertPrivateKeyAvailable = { read=FSSLAcceptServerCertPrivateKeyAvailable };
Default Value
false
Remarks
Whether a SSLAcceptServerCertPrivateKey is available for the selected certificate. If SSLAcceptServerCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
Data Type
Boolean
SSLAcceptServerCertPrivateKeyContainer Property (AzureKeys Component)
The name of the PrivateKey container for the certificate (if available).
Syntax
__property String SSLAcceptServerCertPrivateKeyContainer = { read=FSSLAcceptServerCertPrivateKeyContainer };
Default Value
""
Remarks
The name of the SSLAcceptServerCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
Data Type
String
SSLAcceptServerCertPublicKey Property (AzureKeys Component)
The public key of the certificate.
Syntax
__property String SSLAcceptServerCertPublicKey = { read=FSSLAcceptServerCertPublicKey };
Default Value
""
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
Data Type
String
SSLAcceptServerCertPublicKeyAlgorithm Property (AzureKeys Component)
The textual description of the certificate's public key algorithm.
Syntax
__property String SSLAcceptServerCertPublicKeyAlgorithm = { read=FSSLAcceptServerCertPublicKeyAlgorithm };
Default Value
""
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
Data Type
String
SSLAcceptServerCertPublicKeyLength Property (AzureKeys Component)
The length of the certificate's public key (in bits).
Syntax
__property int SSLAcceptServerCertPublicKeyLength = { read=FSSLAcceptServerCertPublicKeyLength };
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
Data Type
Integer
SSLAcceptServerCertSerialNumber Property (AzureKeys Component)
The serial number of the certificate encoded as a string.
Syntax
__property String SSLAcceptServerCertSerialNumber = { read=FSSLAcceptServerCertSerialNumber };
Default Value
""
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
Data Type
String
SSLAcceptServerCertSignatureAlgorithm Property (AzureKeys Component)
The text description of the certificate's signature algorithm.
Syntax
__property String SSLAcceptServerCertSignatureAlgorithm = { read=FSSLAcceptServerCertSignatureAlgorithm };
Default Value
""
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
Data Type
String
SSLAcceptServerCertStore Property (AzureKeys Component)
The name of the certificate store for the client certificate.
Syntax
__property String SSLAcceptServerCertStore = { read=FSSLAcceptServerCertStore, write=FSetSSLAcceptServerCertStore }; __property DynamicArray<Byte> SSLAcceptServerCertStoreB = { read=FSSLAcceptServerCertStoreB, write=FSetSSLAcceptServerCertStoreB };
Default Value
"MY"
Remarks
The name of the certificate store for the client certificate.
The SSLAcceptServerCertStoreType property denotes the type of the certificate store specified by SSLAcceptServerCertStore. If the store is password-protected, specify the password in SSLAcceptServerCertStorePassword.
SSLAcceptServerCertStore is used in conjunction with the SSLAcceptServerCertSubject property to specify client certificates. If SSLAcceptServerCertStore has a value, and SSLAcceptServerCertSubject or SSLAcceptServerCertEncoded is set, a search for a certificate is initiated. Please see the SSLAcceptServerCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Byte Array
SSLAcceptServerCertStorePassword Property (AzureKeys Component)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
__property String SSLAcceptServerCertStorePassword = { read=FSSLAcceptServerCertStorePassword, write=FSetSSLAcceptServerCertStorePassword };
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
SSLAcceptServerCertStoreType Property (AzureKeys Component)
The type of certificate store for this certificate.
Syntax
__property TckAzureKeysSSLAcceptServerCertStoreTypes SSLAcceptServerCertStoreType = { read=FSSLAcceptServerCertStoreType, write=FSetSSLAcceptServerCertStoreType };
enum TckAzureKeysSSLAcceptServerCertStoreTypes { cstUser=0, cstMachine=1, cstPFXFile=2, cstPFXBlob=3, cstJKSFile=4, cstJKSBlob=5, cstPEMKeyFile=6, cstPEMKeyBlob=7, cstPublicKeyFile=8, cstPublicKeyBlob=9, cstSSHPublicKeyBlob=10, cstP7BFile=11, cstP7BBlob=12, cstSSHPublicKeyFile=13, cstPPKFile=14, cstPPKBlob=15, cstXMLFile=16, cstXMLBlob=17, cstJWKFile=18, cstJWKBlob=19, cstSecurityKey=20, cstBCFKSFile=21, cstBCFKSBlob=22, cstPKCS11=23, cstAuto=99 };
Default Value
cstUser
Remarks
The type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CERTMGR component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SSLAcceptServerCertStore and set SSLAcceptServerCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
SSLAcceptServerCertSubjectAltNames Property (AzureKeys Component)
Comma-separated lists of alternative subject names for the certificate.
Syntax
__property String SSLAcceptServerCertSubjectAltNames = { read=FSSLAcceptServerCertSubjectAltNames };
Default Value
""
Remarks
Comma-separated lists of alternative subject names for the certificate.
This property is read-only.
Data Type
String
SSLAcceptServerCertThumbprintMD5 Property (AzureKeys Component)
The MD5 hash of the certificate.
Syntax
__property String SSLAcceptServerCertThumbprintMD5 = { read=FSSLAcceptServerCertThumbprintMD5 };
Default Value
""
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
SSLAcceptServerCertThumbprintSHA1 Property (AzureKeys Component)
The SHA-1 hash of the certificate.
Syntax
__property String SSLAcceptServerCertThumbprintSHA1 = { read=FSSLAcceptServerCertThumbprintSHA1 };
Default Value
""
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
SSLAcceptServerCertThumbprintSHA256 Property (AzureKeys Component)
The SHA-256 hash of the certificate.
Syntax
__property String SSLAcceptServerCertThumbprintSHA256 = { read=FSSLAcceptServerCertThumbprintSHA256 };
Default Value
""
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
SSLAcceptServerCertUsage Property (AzureKeys Component)
The text description of UsageFlags .
Syntax
__property String SSLAcceptServerCertUsage = { read=FSSLAcceptServerCertUsage };
Default Value
""
Remarks
The text description of SSLAcceptServerCertUsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
Data Type
String
SSLAcceptServerCertUsageFlags Property (AzureKeys Component)
The flags that show intended use for the certificate.
Syntax
__property int SSLAcceptServerCertUsageFlags = { read=FSSLAcceptServerCertUsageFlags };
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of SSLAcceptServerCertUsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the SSLAcceptServerCertUsage property for a text representation of SSLAcceptServerCertUsageFlags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
Data Type
Integer
SSLAcceptServerCertVersion Property (AzureKeys Component)
The certificate's version number.
Syntax
__property String SSLAcceptServerCertVersion = { read=FSSLAcceptServerCertVersion };
Default Value
""
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
Data Type
String
SSLAcceptServerCertSubject Property (AzureKeys Component)
The subject of the certificate used for client authentication.
Syntax
__property String SSLAcceptServerCertSubject = { read=FSSLAcceptServerCertSubject, write=FSetSSLAcceptServerCertSubject };
Default Value
""
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
SSLAcceptServerCertEncoded Property (AzureKeys Component)
The certificate (PEM/Base64 encoded).
Syntax
__property String SSLAcceptServerCertEncoded = { read=FSSLAcceptServerCertEncoded, write=FSetSSLAcceptServerCertEncoded }; __property DynamicArray<Byte> SSLAcceptServerCertEncodedB = { read=FSSLAcceptServerCertEncodedB, write=FSetSSLAcceptServerCertEncodedB };
Default Value
""
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLAcceptServerCertStore and SSLAcceptServerCertSubject properties also may be used to specify a certificate.
When SSLAcceptServerCertEncoded is set, a search is initiated in the current SSLAcceptServerCertStore for the private key of the certificate. If the key is found, SSLAcceptServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLAcceptServerCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Byte Array
SSLCertEffectiveDate Property (AzureKeys Component)
The date on which this certificate becomes valid.
Syntax
__property String SSLCertEffectiveDate = { read=FSSLCertEffectiveDate };
Default Value
""
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
Data Type
String
SSLCertExpirationDate Property (AzureKeys Component)
The date on which the certificate expires.
Syntax
__property String SSLCertExpirationDate = { read=FSSLCertExpirationDate };
Default Value
""
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
Data Type
String
SSLCertExtendedKeyUsage Property (AzureKeys Component)
A comma-delimited list of extended key usage identifiers.
Syntax
__property String SSLCertExtendedKeyUsage = { read=FSSLCertExtendedKeyUsage };
Default Value
""
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
Data Type
String
SSLCertFingerprint Property (AzureKeys Component)
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
__property String SSLCertFingerprint = { read=FSSLCertFingerprint };
Default Value
""
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
Data Type
String
SSLCertFingerprintSHA1 Property (AzureKeys Component)
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
__property String SSLCertFingerprintSHA1 = { read=FSSLCertFingerprintSHA1 };
Default Value
""
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
Data Type
String
SSLCertFingerprintSHA256 Property (AzureKeys Component)
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
__property String SSLCertFingerprintSHA256 = { read=FSSLCertFingerprintSHA256 };
Default Value
""
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
Data Type
String
SSLCertIssuer Property (AzureKeys Component)
The issuer of the certificate.
Syntax
__property String SSLCertIssuer = { read=FSSLCertIssuer };
Default Value
""
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
Data Type
String
SSLCertPrivateKey Property (AzureKeys Component)
The private key of the certificate (if available).
Syntax
__property String SSLCertPrivateKey = { read=FSSLCertPrivateKey };
Default Value
""
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The SSLCertPrivateKey may be available but not exportable. In this case, SSLCertPrivateKey returns an empty string.
This property is read-only.
Data Type
String
SSLCertPrivateKeyAvailable Property (AzureKeys Component)
Whether a PrivateKey is available for the selected certificate.
Syntax
__property bool SSLCertPrivateKeyAvailable = { read=FSSLCertPrivateKeyAvailable };
Default Value
false
Remarks
Whether a SSLCertPrivateKey is available for the selected certificate. If SSLCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
Data Type
Boolean
SSLCertPrivateKeyContainer Property (AzureKeys Component)
The name of the PrivateKey container for the certificate (if available).
Syntax
__property String SSLCertPrivateKeyContainer = { read=FSSLCertPrivateKeyContainer };
Default Value
""
Remarks
The name of the SSLCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
Data Type
String
SSLCertPublicKey Property (AzureKeys Component)
The public key of the certificate.
Syntax
__property String SSLCertPublicKey = { read=FSSLCertPublicKey };
Default Value
""
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
Data Type
String
SSLCertPublicKeyAlgorithm Property (AzureKeys Component)
The textual description of the certificate's public key algorithm.
Syntax
__property String SSLCertPublicKeyAlgorithm = { read=FSSLCertPublicKeyAlgorithm };
Default Value
""
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
Data Type
String
SSLCertPublicKeyLength Property (AzureKeys Component)
The length of the certificate's public key (in bits).
Syntax
__property int SSLCertPublicKeyLength = { read=FSSLCertPublicKeyLength };
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
Data Type
Integer
SSLCertSerialNumber Property (AzureKeys Component)
The serial number of the certificate encoded as a string.
Syntax
__property String SSLCertSerialNumber = { read=FSSLCertSerialNumber };
Default Value
""
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
Data Type
String
SSLCertSignatureAlgorithm Property (AzureKeys Component)
The text description of the certificate's signature algorithm.
Syntax
__property String SSLCertSignatureAlgorithm = { read=FSSLCertSignatureAlgorithm };
Default Value
""
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
Data Type
String
SSLCertStore Property (AzureKeys Component)
The name of the certificate store for the client certificate.
Syntax
__property String SSLCertStore = { read=FSSLCertStore, write=FSetSSLCertStore }; __property DynamicArray<Byte> SSLCertStoreB = { read=FSSLCertStoreB, write=FSetSSLCertStoreB };
Default Value
"MY"
Remarks
The name of the certificate store for the client certificate.
The SSLCertStoreType property denotes the type of the certificate store specified by SSLCertStore. If the store is password-protected, specify the password in SSLCertStorePassword.
SSLCertStore is used in conjunction with the SSLCertSubject property to specify client certificates. If SSLCertStore has a value, and SSLCertSubject or SSLCertEncoded is set, a search for a certificate is initiated. Please see the SSLCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Data Type
Byte Array
SSLCertStorePassword Property (AzureKeys Component)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
__property String SSLCertStorePassword = { read=FSSLCertStorePassword, write=FSetSSLCertStorePassword };
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Data Type
String
SSLCertStoreType Property (AzureKeys Component)
The type of certificate store for this certificate.
Syntax
__property TckAzureKeysSSLCertStoreTypes SSLCertStoreType = { read=FSSLCertStoreType, write=FSetSSLCertStoreType };
enum TckAzureKeysSSLCertStoreTypes { cstUser=0, cstMachine=1, cstPFXFile=2, cstPFXBlob=3, cstJKSFile=4, cstJKSBlob=5, cstPEMKeyFile=6, cstPEMKeyBlob=7, cstPublicKeyFile=8, cstPublicKeyBlob=9, cstSSHPublicKeyBlob=10, cstP7BFile=11, cstP7BBlob=12, cstSSHPublicKeyFile=13, cstPPKFile=14, cstPPKBlob=15, cstXMLFile=16, cstXMLBlob=17, cstJWKFile=18, cstJWKBlob=19, cstSecurityKey=20, cstBCFKSFile=21, cstBCFKSBlob=22, cstPKCS11=23, cstAuto=99 };
Default Value
cstUser
Remarks
The type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CERTMGR component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SSLCertStore and set SSLCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
Data Type
Integer
SSLCertSubjectAltNames Property (AzureKeys Component)
Comma-separated lists of alternative subject names for the certificate.
Syntax
__property String SSLCertSubjectAltNames = { read=FSSLCertSubjectAltNames };
Default Value
""
Remarks
Comma-separated lists of alternative subject names for the certificate.
This property is read-only.
Data Type
String
SSLCertThumbprintMD5 Property (AzureKeys Component)
The MD5 hash of the certificate.
Syntax
__property String SSLCertThumbprintMD5 = { read=FSSLCertThumbprintMD5 };
Default Value
""
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
SSLCertThumbprintSHA1 Property (AzureKeys Component)
The SHA-1 hash of the certificate.
Syntax
__property String SSLCertThumbprintSHA1 = { read=FSSLCertThumbprintSHA1 };
Default Value
""
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
SSLCertThumbprintSHA256 Property (AzureKeys Component)
The SHA-256 hash of the certificate.
Syntax
__property String SSLCertThumbprintSHA256 = { read=FSSLCertThumbprintSHA256 };
Default Value
""
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
SSLCertUsage Property (AzureKeys Component)
The text description of UsageFlags .
Syntax
__property String SSLCertUsage = { read=FSSLCertUsage };
Default Value
""
Remarks
The text description of SSLCertUsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
Data Type
String
SSLCertUsageFlags Property (AzureKeys Component)
The flags that show intended use for the certificate.
Syntax
__property int SSLCertUsageFlags = { read=FSSLCertUsageFlags };
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of SSLCertUsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the SSLCertUsage property for a text representation of SSLCertUsageFlags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
Data Type
Integer
SSLCertVersion Property (AzureKeys Component)
The certificate's version number.
Syntax
__property String SSLCertVersion = { read=FSSLCertVersion };
Default Value
""
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
Data Type
String
SSLCertSubject Property (AzureKeys Component)
The subject of the certificate used for client authentication.
Syntax
__property String SSLCertSubject = { read=FSSLCertSubject, write=FSetSSLCertSubject };
Default Value
""
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Data Type
String
SSLCertEncoded Property (AzureKeys Component)
The certificate (PEM/Base64 encoded).
Syntax
__property String SSLCertEncoded = { read=FSSLCertEncoded, write=FSetSSLCertEncoded }; __property DynamicArray<Byte> SSLCertEncodedB = { read=FSSLCertEncodedB, write=FSetSSLCertEncodedB };
Default Value
""
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLCertStore and SSLCertSubject properties also may be used to specify a certificate.
When SSLCertEncoded is set, a search is initiated in the current SSLCertStore for the private key of the certificate. If the key is found, SSLCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLCertSubject is set to an empty string.
This property is not available at design time.
Data Type
Byte Array
SSLProvider Property (AzureKeys Component)
The Secure Sockets Layer/Transport Layer Security (SSL/TLS) implementation to use.
Syntax
__property TckAzureKeysSSLProviders SSLProvider = { read=FSSLProvider, write=FSetSSLProvider };
enum TckAzureKeysSSLProviders { sslpAutomatic=0, sslpPlatform=1, sslpInternal=2 };
Default Value
sslpAutomatic
Remarks
This property specifies the SSL/TLS implementation to use. In most cases the default value of 0 (Automatic) is recommended and should not be changed. When set to 0 (Automatic), the component will select whether to use the platform implementation or the internal implementation depending on the operating system as well as the TLS version being used.
Possible values are as follows:
0 (sslpAutomatic - default) | Automatically selects the appropriate implementation. |
1 (sslpPlatform) | Uses the platform/system implementation. |
2 (sslpInternal) | Uses the internal implementation. |
In most cases using the default value (Automatic) is recommended. The component will select a provider depending on the current platform.
When Automatic is selected, the platform implementation is used by default. When TLS 1.3 is enabled via SSLEnabledProtocols, the internal implementation is used.
Data Type
Integer
SSLServerCertEffectiveDate Property (AzureKeys Component)
The date on which this certificate becomes valid.
Syntax
__property String SSLServerCertEffectiveDate = { read=FSSLServerCertEffectiveDate };
Default Value
""
Remarks
The date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
This property is read-only.
Data Type
String
SSLServerCertExpirationDate Property (AzureKeys Component)
The date on which the certificate expires.
Syntax
__property String SSLServerCertExpirationDate = { read=FSSLServerCertExpirationDate };
Default Value
""
Remarks
The date on which the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
This property is read-only.
Data Type
String
SSLServerCertExtendedKeyUsage Property (AzureKeys Component)
A comma-delimited list of extended key usage identifiers.
Syntax
__property String SSLServerCertExtendedKeyUsage = { read=FSSLServerCertExtendedKeyUsage };
Default Value
""
Remarks
A comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
This property is read-only.
Data Type
String
SSLServerCertFingerprint Property (AzureKeys Component)
The hex-encoded, 16-byte MD5 fingerprint of the certificate.
Syntax
__property String SSLServerCertFingerprint = { read=FSSLServerCertFingerprint };
Default Value
""
Remarks
The hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
This property is read-only.
Data Type
String
SSLServerCertFingerprintSHA1 Property (AzureKeys Component)
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate.
Syntax
__property String SSLServerCertFingerprintSHA1 = { read=FSSLServerCertFingerprintSHA1 };
Default Value
""
Remarks
The hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
This property is read-only.
Data Type
String
SSLServerCertFingerprintSHA256 Property (AzureKeys Component)
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate.
Syntax
__property String SSLServerCertFingerprintSHA256 = { read=FSSLServerCertFingerprintSHA256 };
Default Value
""
Remarks
The hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
This property is read-only.
Data Type
String
SSLServerCertIssuer Property (AzureKeys Component)
The issuer of the certificate.
Syntax
__property String SSLServerCertIssuer = { read=FSSLServerCertIssuer };
Default Value
""
Remarks
The issuer of the certificate. This property contains a string representation of the name of the issuing authority for the certificate.
This property is read-only.
Data Type
String
SSLServerCertPrivateKey Property (AzureKeys Component)
The private key of the certificate (if available).
Syntax
__property String SSLServerCertPrivateKey = { read=FSSLServerCertPrivateKey };
Default Value
""
Remarks
The private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The SSLServerCertPrivateKey may be available but not exportable. In this case, SSLServerCertPrivateKey returns an empty string.
This property is read-only.
Data Type
String
SSLServerCertPrivateKeyAvailable Property (AzureKeys Component)
Whether a PrivateKey is available for the selected certificate.
Syntax
__property bool SSLServerCertPrivateKeyAvailable = { read=FSSLServerCertPrivateKeyAvailable };
Default Value
false
Remarks
Whether a SSLServerCertPrivateKey is available for the selected certificate. If SSLServerCertPrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
This property is read-only.
Data Type
Boolean
SSLServerCertPrivateKeyContainer Property (AzureKeys Component)
The name of the PrivateKey container for the certificate (if available).
Syntax
__property String SSLServerCertPrivateKeyContainer = { read=FSSLServerCertPrivateKeyContainer };
Default Value
""
Remarks
The name of the SSLServerCertPrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
This property is read-only.
Data Type
String
SSLServerCertPublicKey Property (AzureKeys Component)
The public key of the certificate.
Syntax
__property String SSLServerCertPublicKey = { read=FSSLServerCertPublicKey };
Default Value
""
Remarks
The public key of the certificate. The key is provided as PEM/Base64-encoded data.
This property is read-only.
Data Type
String
SSLServerCertPublicKeyAlgorithm Property (AzureKeys Component)
The textual description of the certificate's public key algorithm.
Syntax
__property String SSLServerCertPublicKeyAlgorithm = { read=FSSLServerCertPublicKeyAlgorithm };
Default Value
""
Remarks
The textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
This property is read-only.
Data Type
String
SSLServerCertPublicKeyLength Property (AzureKeys Component)
The length of the certificate's public key (in bits).
Syntax
__property int SSLServerCertPublicKeyLength = { read=FSSLServerCertPublicKeyLength };
Default Value
0
Remarks
The length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
This property is read-only.
Data Type
Integer
SSLServerCertSerialNumber Property (AzureKeys Component)
The serial number of the certificate encoded as a string.
Syntax
__property String SSLServerCertSerialNumber = { read=FSSLServerCertSerialNumber };
Default Value
""
Remarks
The serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
This property is read-only.
Data Type
String
SSLServerCertSignatureAlgorithm Property (AzureKeys Component)
The text description of the certificate's signature algorithm.
Syntax
__property String SSLServerCertSignatureAlgorithm = { read=FSSLServerCertSignatureAlgorithm };
Default Value
""
Remarks
The text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
This property is read-only.
Data Type
String
SSLServerCertStore Property (AzureKeys Component)
The name of the certificate store for the client certificate.
Syntax
__property String SSLServerCertStore = { read=FSSLServerCertStore }; __property DynamicArray<Byte> SSLServerCertStoreB = { read=FSSLServerCertStoreB };
Default Value
"MY"
Remarks
The name of the certificate store for the client certificate.
The SSLServerCertStoreType property denotes the type of the certificate store specified by SSLServerCertStore. If the store is password-protected, specify the password in SSLServerCertStorePassword.
SSLServerCertStore is used in conjunction with the SSLServerCertSubject property to specify client certificates. If SSLServerCertStore has a value, and SSLServerCertSubject or SSLServerCertEncoded is set, a search for a certificate is initiated. Please see the SSLServerCertSubject property for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
This property is read-only.
Data Type
Byte Array
SSLServerCertStorePassword Property (AzureKeys Component)
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
Syntax
__property String SSLServerCertStorePassword = { read=FSSLServerCertStorePassword };
Default Value
""
Remarks
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
This property is read-only.
Data Type
String
SSLServerCertStoreType Property (AzureKeys Component)
The type of certificate store for this certificate.
Syntax
__property TckAzureKeysSSLServerCertStoreTypes SSLServerCertStoreType = { read=FSSLServerCertStoreType };
enum TckAzureKeysSSLServerCertStoreTypes { cstUser=0, cstMachine=1, cstPFXFile=2, cstPFXBlob=3, cstJKSFile=4, cstJKSBlob=5, cstPEMKeyFile=6, cstPEMKeyBlob=7, cstPublicKeyFile=8, cstPublicKeyBlob=9, cstSSHPublicKeyBlob=10, cstP7BFile=11, cstP7BBlob=12, cstSSHPublicKeyFile=13, cstPPKFile=14, cstPPKBlob=15, cstXMLFile=16, cstXMLBlob=17, cstJWKFile=18, cstJWKBlob=19, cstSecurityKey=20, cstBCFKSFile=21, cstBCFKSBlob=22, cstPKCS11=23, cstAuto=99 };
Default Value
cstUser
Remarks
The type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This property can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CERTMGR component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the SSLServerCertStore and set SSLServerCertStorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
This property is read-only.
Data Type
Integer
SSLServerCertSubjectAltNames Property (AzureKeys Component)
Comma-separated lists of alternative subject names for the certificate.
Syntax
__property String SSLServerCertSubjectAltNames = { read=FSSLServerCertSubjectAltNames };
Default Value
""
Remarks
Comma-separated lists of alternative subject names for the certificate.
This property is read-only.
Data Type
String
SSLServerCertThumbprintMD5 Property (AzureKeys Component)
The MD5 hash of the certificate.
Syntax
__property String SSLServerCertThumbprintMD5 = { read=FSSLServerCertThumbprintMD5 };
Default Value
""
Remarks
The MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
SSLServerCertThumbprintSHA1 Property (AzureKeys Component)
The SHA-1 hash of the certificate.
Syntax
__property String SSLServerCertThumbprintSHA1 = { read=FSSLServerCertThumbprintSHA1 };
Default Value
""
Remarks
The SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
SSLServerCertThumbprintSHA256 Property (AzureKeys Component)
The SHA-256 hash of the certificate.
Syntax
__property String SSLServerCertThumbprintSHA256 = { read=FSSLServerCertThumbprintSHA256 };
Default Value
""
Remarks
The SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
This property is read-only.
Data Type
String
SSLServerCertUsage Property (AzureKeys Component)
The text description of UsageFlags .
Syntax
__property String SSLServerCertUsage = { read=FSSLServerCertUsage };
Default Value
""
Remarks
The text description of SSLServerCertUsageFlags.
This value will be one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
This property is read-only.
Data Type
String
SSLServerCertUsageFlags Property (AzureKeys Component)
The flags that show intended use for the certificate.
Syntax
__property int SSLServerCertUsageFlags = { read=FSSLServerCertUsageFlags };
Default Value
0
Remarks
The flags that show intended use for the certificate. The value of SSLServerCertUsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the SSLServerCertUsage property for a text representation of SSLServerCertUsageFlags.
This functionality currently is not available when the provider is OpenSSL.
This property is read-only.
Data Type
Integer
SSLServerCertVersion Property (AzureKeys Component)
The certificate's version number.
Syntax
__property String SSLServerCertVersion = { read=FSSLServerCertVersion };
Default Value
""
Remarks
The certificate's version number. The possible values are the strings "V1", "V2", and "V3".
This property is read-only.
Data Type
String
SSLServerCertSubject Property (AzureKeys Component)
The subject of the certificate used for client authentication.
Syntax
__property String SSLServerCertSubject = { read=FSSLServerCertSubject };
Default Value
""
Remarks
The subject of the certificate used for client authentication.
This property must be set after all other certificate properties are set. When this property is set, a search is performed in the current certificate store to locate a certificate with a matching subject.
If a matching certificate is found, the property is set to the full subject of the matching certificate.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
This property is read-only.
Data Type
String
SSLServerCertEncoded Property (AzureKeys Component)
The certificate (PEM/Base64 encoded).
Syntax
__property String SSLServerCertEncoded = { read=FSSLServerCertEncoded }; __property DynamicArray<Byte> SSLServerCertEncodedB = { read=FSSLServerCertEncodedB };
Default Value
""
Remarks
The certificate (PEM/Base64 encoded). This property is used to assign a specific certificate. The SSLServerCertStore and SSLServerCertSubject properties also may be used to specify a certificate.
When SSLServerCertEncoded is set, a search is initiated in the current SSLServerCertStore for the private key of the certificate. If the key is found, SSLServerCertSubject is updated to reflect the full subject of the selected certificate; otherwise, SSLServerCertSubject is set to an empty string.
This property is read-only and not available at design time.
Data Type
Byte Array
TagCount Property (AzureKeys Component)
The number of records in the Tag arrays.
Syntax
__property int TagCount = { read=FTagCount, write=FSetTagCount };
Default Value
0
Remarks
This property controls the size of the following arrays:
The array indices start at 0 and end at TagCount - 1.This property is not available at design time.
Data Type
Integer
TagName Property (AzureKeys Component)
The name of the tag.
Syntax
__property String TagName[int TagIndex] = { read=FTagName, write=FSetTagName };
Default Value
""
Remarks
The name of the tag.
This property specifies the name of the tag.
The TagIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TagCount property.
This property is not available at design time.
Data Type
String
TagValue Property (AzureKeys Component)
The value of the tag.
Syntax
__property String TagValue[int TagIndex] = { read=FTagValue, write=FSetTagValue };
Default Value
""
Remarks
The value of the tag.
This property specifies the value of the tag.
The TagIndex parameter specifies the index of the item in the array. The size of the array is controlled by the TagCount property.
This property is not available at design time.
Data Type
String
Timeout Property (AzureKeys Component)
The timeout for the component.
Syntax
__property int Timeout = { read=FTimeout, write=FSetTimeout };
Default Value
60
Remarks
If the Timeout property is set to 0, all operations will run uninterrupted until successful completion or an error condition is encountered.
If Timeout is set to a positive value, the component will wait for the operation to complete before returning control.
The component will use DoEvents to enter an efficient wait loop during any potential waiting period, making sure that all system events are processed immediately as they arrive. This ensures that the host application does not freeze and remains responsive.
If Timeout expires, and the operation is not yet complete, the component raises an exception.
Note: By default, all timeouts are inactivity timeouts, that is, the timeout period is extended by Timeout seconds when any amount of data is successfully sent or received.
The default value for the Timeout property is 60 seconds.
Data Type
Integer
Vault Property (AzureKeys Component)
Selects a vault for the component to interact with.
Syntax
__property String Vault = { read=FVault, write=FSetVault };
Default Value
""
Remarks
This property specifies the Azure Key Vault vault, by name, that the component should interact with.
Data Type
String
VersionMarker Property (AzureKeys Component)
A marker indicating what page of key versions to return next.
Syntax
__property String VersionMarker = { read=FVersionMarker, write=FSetVersionMarker };
Default Value
""
Remarks
This property will be populated when ListVersions is called if the results are paged and there are more pages. To list all key versions, continue to call ListVersions until this property returns empty string.
Refer to ListVersions for more information.
This property is not available at design time.
Data Type
String
AddQueryParam Method (AzureKeys Component)
Adds a query parameter to the QueryParams properties.
Syntax
void __fastcall AddQueryParam(String Name, String Value);
Remarks
This method is used to add a query parameter to the QueryParams properties. Name specifies the name of the parameter, and Value specifies the value of the parameter.
All specified Values will be URL encoded by the component automatically. Consult the service documentation for details on the available parameters.
AddTag Method (AzureKeys Component)
Adds an item to the Tags properties.
Syntax
void __fastcall AddTag(String Name, String Value);
Remarks
This method adds an item to the Tags properties. Name specifies the name of the item, and Value specifies the value of the item.
Authorize Method (AzureKeys Component)
Get the authorization string required to access the protected resource.
Syntax
void __fastcall Authorize();
Remarks
This method is used to get an access token that is required to access the protected resource. The method will act differently based on what is set in the OAuthClientProfile property and the OAuthGrantType property. This method is not to be used in conjunction with the Authorization property. It should instead be used when setting the OAuth property.
For more information, see the introduction section.
BackupKey Method (AzureKeys Component)
Backs up a key.
Syntax
void __fastcall BackupKey(String KeyName);
Remarks
This method backs up the key specified by KeyName, returning it in a protected form via the the specified OutputFile or the OutputData property.
Note that the protected key cannot be used outside of Azure Key Vault, it must be restored to another vault using the RestoreKey method in order to be used.
Config Method (AzureKeys Component)
Sets or retrieves a configuration setting.
Syntax
String __fastcall Config(String ConfigurationString);
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
CreateKey Method (AzureKeys Component)
Creates a new key.
Syntax
String __fastcall CreateKey(String KeyName, String KeyType, String KeyOps);
Remarks
This method creates a new key with the given KeyName and KeyType. If a key with the specified KeyName already exists, a new version of it is created. The version Id of the newly-created key is returned.
The value passed for KeyName must consist solely of alphanumeric characters and hyphens (-).
The KeyType parameter specifies the type of key that should be created. Each key type has two variants, a software-based one and an HSM-based one. Possible values are shown in the first two columns of the following table:
Software-based | HSM-based | Description |
EC_P256 | EC_HSM_P256 | The NIST P-256 curve (SECP256R1). |
EC_P256K | EC_HSM_P256K | The SECP256K1 curve. |
EC_P384 | EC_HSM_P384 | The NIST P-384 curve (SECP384R1). |
EC_P521 | EC_HSM_P521 | The NIST P-521 curve (SECP521R1). |
RSA_2048 | RSA_HSM_2048 | 2048-bit RSA key. |
RSA_3072 | RSA_HSM_3072 | 3072-bit RSA key. |
RSA_4096 | RSA_HSM_4096 | 4096-bit RSA key. |
The KeyOps parameter specifies which operations the key will be valid for use with. Possible values are as follows; at least one pair of operations must be specified:
- encrypt
- decrypt
- sign
- verify
- wrapKey
- unwrapKey
If there are any items in the Tags properties, they will be applied to the newly-created key. Keys may have up to 15 tags.
The following configuration settings can also be used to send additional values when creating the key, refer to their documentation for more information:
Note: If there is already a soft-deleted key with the specified KeyName in the currently-selected Vault, then a new key cannot be created with the same name. To resolve such a situation, the soft-deleted key would need to be recovered (using RecoverKey) or permanently deleted (using PurgeKey) first.
Decrypt Method (AzureKeys Component)
Decrypts data using a key.
Syntax
void __fastcall Decrypt(String KeyName, String Algorithm);
Remarks
This method decrypts data using the key specified by KeyName and the given Algorithm. The VersionId configuration setting can be used to target a specific key version.
The data to decrypt is taken from the the specified InputFile or the InputData property. The decrypted data is output to the the specified OutputFile or the OutputData property.
The key specified by KeyName must be an RSA key; EC keys cannot be used for encryption/decryption.
The Algorithm parameter specifies which algorithm to use to decrypt the data; it must match the algorithm used to encrypt the data previously. Possible values are:
Algorithm | Description |
RSA1_5 | RSAES-PKCS1-v1_5 |
RSA-OAEP | RSAES OAEP using SHA-1 and MGF1 with SHA-1 |
RSA-OAEP-256 | RSAES OAEP using SHA-256 and MGF1 with SHA-256 |
DeleteKey Method (AzureKeys Component)
Deletes a key.
Syntax
void __fastcall DeleteKey(String KeyName);
Remarks
This method deletes the key specified by KeyName. If there are multiple versions of the key, all of them are deleted.
Note that the key is only soft-deleted; it can be recovered during the retention period using the RecoverKey method, or permanently deleted using the PurgeKey method. The length of the retention period depends on the configuration of the currently-selected Vault, refer to the Azure Key Vault documentation for more information.
DoEvents Method (AzureKeys Component)
This method processes events from the internal message queue.
Syntax
void __fastcall DoEvents();
Remarks
When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.
Encrypt Method (AzureKeys Component)
Encrypts data using a key.
Syntax
void __fastcall Encrypt(String KeyName, String Algorithm);
Remarks
This method encrypts data using the key specified by KeyName and the given Algorithm. The VersionId configuration setting can be used to target a specific key version.
The data to encrypt is taken from the the specified InputFile or the InputData property. The encrypted data is output to the the specified OutputFile or the OutputData property.
The key specified by KeyName must be an RSA key; EC keys cannot be used for encryption/decryption.
The Algorithm parameter specifies which algorithm to use to encrypt the data. The type of key and the selected algorithm together dictate the maximum size of the input data. Refer to the following table for possible values and maximum data sizes:
Algorithm | Description | RSA_2048 | RSA_3072 | RSA_4096 |
RSA1_5 | RSAES-PKCS1-v1_5 | 245 | 373 | 509 |
RSA-OAEP | RSAES OAEP using SHA-1 and MGF1 with SHA-1 | 214 | 342 | 470 |
RSA-OAEP-256 | RSAES OAEP using SHA-256 and MGF1 with SHA-256 | 190 | 318 | 446 |
GetKeyInfo Method (AzureKeys Component)
Gets a key's information and public key.
Syntax
void __fastcall GetKeyInfo(String KeyName);
Remarks
This method gets the information, including the public key, for the key specified by KeyName. The VersionId configuration setting can be used to target a specific key version. Alternatively, the GetDeleted configuration setting can be enabled to get a soft-deleted key's information (but only for the last version).
When the information is returned, the component clears the Keys properties and repopulates it properties with the key's tags. The KeyList event is also fired.
ListKeys Method (AzureKeys Component)
Lists keys in the currently-selected vault.
Syntax
void __fastcall ListKeys();
Remarks
This method lists the keys in the currently-selected Vault. If the GetDeleted configuration setting is enabled, it lists the soft-deleted keys in the vault instead.
Calling this method will fire the KeyList event once for each key, and will also populate the Keys properties. However, note that by default the following properties will not be populated, since the server does not return full information for keys when listing them. The IncludeKeyDetails property can be enabled to have the component attempt to retrieve full information for each key; refer to its documentation for more information.
If there are still more keys available to list when this method returns, the KeyMarker property will be populated. Continue to call this method until KeyMarker is empty to accumulate all pages of results in the Keys properties.
The MaxKeys configuration setting can be used to control the maximum number of results to return at once.
ListVersions Method (AzureKeys Component)
Lists versions of a key.
Syntax
void __fastcall ListVersions(String KeyName);
Remarks
This method lists the versions of the key specified by KeyName.
Calling this method will fire the KeyList event once for each key version, and will also populate the Keys properties. However, note that by default the following properties will not be populated, since the server does not return full information for key versions when listing them. The IncludeKeyDetails property can be enabled to have the component attempt to retrieve full information for each key version; refer to its documentation for more information.
If there are still more key versions available to list when this method returns, the VersionMarker property will be populated. Continue to call this method until VersionMarker is empty to accumulate all pages of results in the Keys properties.
The MaxKeys configuration setting can be used to control the maximum number of results to return at once.
PurgeKey Method (AzureKeys Component)
Permanently deletes a soft-deleted key.
Syntax
void __fastcall PurgeKey(String KeyName);
Remarks
This method permanently deletes the soft-deleted key specified by KeyName.
RecoverKey Method (AzureKeys Component)
Recovers a soft-deleted key.
Syntax
void __fastcall RecoverKey(String KeyName);
Remarks
This method recovers the soft-deleted key specified by KeyName.
Reset Method (AzureKeys Component)
Resets the component to its initial state.
Syntax
void __fastcall Reset();
Remarks
This method resets the component to its initial state.
RestoreKey Method (AzureKeys Component)
Restores a previously backed-up key to the vault.
Syntax
String __fastcall RestoreKey();
Remarks
This method restores a key previously backed up using BackupKey to the currently-selected Vault. The key is restored in its entirety, with all of its versions intact. However, note that the restore will fail if the key's name is already in use. The name of the restored key is returned.
The protected key data to restore is taken from the the specified InputFile or the InputData property.
Note: There are certain restrictions on which vaults a key can be restored to. In particular, a key must be restored to a vault owned by the same Azure subscription that owned its original vault, and must be restored to a vault in the same geolocation as its original vault. Refer to the Azure Key Vault documentation for more information.
SendCustomRequest Method (AzureKeys Component)
Sends a custom request to the server.
Syntax
void __fastcall SendCustomRequest(String HttpMethod, String Path);
Remarks
This method can be used to send arbitrary requests to the server.
Valid values for HttpMethod are:
- GET (default if empty)
- HEAD
- POST
- PUT
- PATCH
- DELETE
Path is optional, and if non-empty must be specified without a leading forward slash (/).
When this method is called, the component does the following:
- Builds a request URL, including query parameters, based on the following:
- The base URL https://{Vault}.vault.azure.net/keys, where {Vault} is Vault.
- The specified Path, if any.
- An api-version query parameter whose value is APIVersion.
- All query parameters from QueryParams.
- Adds an Authorization header with the value specified by Authorization.
- Adds any request headers from OtherHeaders.
- Adds any request body supplied via the specified InputFile or InputData.
- Sends the request to the server.
- Stores the response headers in the ParsedHeaders properties; and the response body in the specified OutputFile or OutputData.
If the response body is JSON data, the XPath, XText, and other X* configuration settings can then be used to navigate and extract information from it.
SetKeyEnabled Method (AzureKeys Component)
Enables or disables a key.
Syntax
void __fastcall SetKeyEnabled(String KeyName, bool Enabled);
Remarks
This method enables or disables the key specified by KeyName.
Sign Method (AzureKeys Component)
Signs a message using a key.
Syntax
void __fastcall Sign(String KeyName, String Algorithm, bool IsDigest);
Remarks
This method signs a message using the key specified by KeyName and the given Algorithm. The VersionId configuration setting can be used to target a specific key version.
The message data to sign is taken from the the specified InputFile or the InputData property. The signature data is output to the the specified OutputFile or the OutputData property.
The Algorithm parameter specifies which algorithm to use to sign the data. Possible values are:
- ES256: ECDSA using P-256 and SHA-256.
- ES256K: ECDSA using P-256K and SHA-256.
- ES384: ECDSA using P-384 and SHA-384.
- ES512: ECDSA using P-521 and SHA-512.
- PS256: RSASSA-PSS using SHA-256 and MGF1 with SHA-256.
- PS384: RSASSA-PSS using SHA-384 and MGF1 with SHA-384.
- PS512: RSASSA-PSS using SHA-512 and MGF1 with SHA-512.
- RS256: RSASSA-PKCS1-v1_5 using SHA-256.
- RS384: RSASSA-PKCS1-v1_5 using SHA-384.
- RS512: RSASSA-PKCS1-v1_5 using SHA-512.
The IsDigest parameter specifies whether the message data is the original message (false) or a message digest (true). When supplying a message digest, keep in mind that the same digest will need to be provided in order to Verify the signature later.
If IsDigest is false, the component will automatically compute an appropriate message digest before the request is made. In such cases, the computed digest is made available via the MessageDigest configuration setting.
UnwrapKey Method (AzureKeys Component)
Unwraps a symmetric key.
Syntax
void __fastcall UnwrapKey(String KeyName, String Algorithm);
Remarks
This method unwraps (i.e., decrypts) a symmetric key using the key specified by KeyName and the given Algorithm.
This method functions exactly the same way as the Decrypt method, except that it requires the keys/unwrapKey permission instead of the keys/decrypt permission. Refer to the Decrypt method's documentation for more information.
UpdateKey Method (AzureKeys Component)
Updates a key's information.
Syntax
void __fastcall UpdateKey(String KeyName, String KeyOps, bool UpdateTags);
Remarks
This method updates the information for the key specified by KeyName. The VersionId configuration setting can be used to target a specific key version.
The KeyOps parameter, if non-empty, must be a comma-separated list of operations that the key is valid for. If empty, the key's current operations list remains unchanged. Possible values are as follows; operations should be specified in pairs:
- encrypt
- decrypt
- sign
- verify
- wrapKey
- unwrapKey
The UpdateTags parameter determines whether the component replaces the key's current tags with the items in the Tags properties (which may be empty). Keys may have up to 15 tags.
The ExpiryDate and NotBeforeDate configuration settings may also be used to send additional values, refer to their documentation for more information.
Verify Method (AzureKeys Component)
Verifies a digital signature using a key.
Syntax
bool __fastcall Verify(String KeyName, String Algorithm, bool IsDigest);
Remarks
This method verifies a digital signature using the key specified by KeyName and the given Algorithm. The VersionId configuration setting can be used to target a specific key version. If the signature is successfully verified, this method returns true, otherwise it returns false.
The message data is taken from the the specified InputFile or the InputData property. The digital signature data is taken from the specified OutputFile or the OutputData property.
The Algorithm parameter specifies which algorithm was used to sign the data. Possible values are:
- ES256: ECDSA using P-256 and SHA-256.
- ES256K: ECDSA using P-256K and SHA-256.
- ES384: ECDSA using P-384 and SHA-384.
- ES512: ECDSA using P-521 and SHA-512.
- PS256: RSASSA-PSS using SHA-256 and MGF1 with SHA-256.
- PS384: RSASSA-PSS using SHA-384 and MGF1 with SHA-384.
- PS512: RSASSA-PSS using SHA-512 and MGF1 with SHA-512.
- RS256: RSASSA-PKCS1-v1_5 using SHA-256.
- RS384: RSASSA-PKCS1-v1_5 using SHA-384.
- RS512: RSASSA-PKCS1-v1_5 using SHA-512.
The IsDigest parameter specifies whether the message data is the original message (false) or a message digest (true). When a message digest is supplied, keep in mind that it must be the exact same digest that was used at signing time, regardless of whether it has been recomputed.
If IsDigest is false, the component will automatically compute an appropriate message digest before the request is made. In such cases, the computed digest is made available via the MessageDigest configuration setting.
WrapKey Method (AzureKeys Component)
Wraps a symmetric key.
Syntax
void __fastcall WrapKey(String KeyName, String Algorithm);
Remarks
This method wraps (i.e., encrypts) a symmetric key using the key specified by KeyName and the given Algorithm. The VersionId configuration setting can be used to target a specific key version.
This method functions exactly the same way as the Encrypt method, except that it requires the keys/wrapKey permission instead of the keys/encrypt permission. Refer to the Encrypt method's documentation for more information.
EndTransfer Event (AzureKeys Component)
This event fires when a document finishes transferring.
Syntax
typedef struct { int Direction; } TckAzureKeysEndTransferEventParams; typedef void __fastcall (__closure *TckAzureKeysEndTransferEvent)(System::TObject* Sender, TckAzureKeysEndTransferEventParams *e); __property TckAzureKeysEndTransferEvent OnEndTransfer = { read=FOnEndTransfer, write=FOnEndTransfer };
Remarks
The EndTransfer event is fired when the document text finishes transferring from the server to the local host.
The Direction parameter shows whether the client (0) or the server (1) is sending the data.
Error Event (AzureKeys Component)
Fired when information is available about errors during data delivery.
Syntax
typedef struct { int ErrorCode; String Description; } TckAzureKeysErrorEventParams; typedef void __fastcall (__closure *TckAzureKeysErrorEvent)(System::TObject* Sender, TckAzureKeysErrorEventParams *e); __property TckAzureKeysErrorEvent OnError = { read=FOnError, write=FOnError };
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the component raises an exception.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Header Event (AzureKeys Component)
Fired every time a header line comes in.
Syntax
typedef struct { String Field; String Value; } TckAzureKeysHeaderEventParams; typedef void __fastcall (__closure *TckAzureKeysHeaderEvent)(System::TObject* Sender, TckAzureKeysHeaderEventParams *e); __property TckAzureKeysHeaderEvent OnHeader = { read=FOnHeader, write=FOnHeader };
Remarks
The Field parameter contains the name of the HTTP header (which is the same as it is delivered). The Value parameter contains the header contents.
If the header line being retrieved is a continuation header line, then the Field parameter contains "" (empty string).
KeyList Event (AzureKeys Component)
Fires once for each key when listing keys.
Syntax
typedef struct { String Name; String VersionId; String KeyType; String KeyOps; bool Enabled; __int64 CreationDate; __int64 UpdateDate; __int64 DeletionDate; __int64 PurgeDate; String PublicKey; } TckAzureKeysKeyListEventParams; typedef void __fastcall (__closure *TckAzureKeysKeyListEvent)(System::TObject* Sender, TckAzureKeysKeyListEventParams *e); __property TckAzureKeysKeyListEvent OnKeyList = { read=FOnKeyList, write=FOnKeyList };
Remarks
This event fires once for each key (or key version) returned when ListKeys, ListVersions, or GetKeyInfo is called. However, note that the KeyOps, KeyType, PublicKey, and (for ListKeys) VersionId parameters are not populated when one of the listing methods is called unless the IncludeKeyDetails property is enabled; refer to its documentation for more information.
Name reflects the name of the key.
VersionId reflects the Id of the key version.
KeyType reflects the key's type. Each key type has two variants, a software-based one and an HSM-based one. Possible values are shown in the first two columns of the following table:
Software-based | HSM-based | Description |
EC_P256 | EC_HSM_P256 | The NIST P-256 curve (SECP256R1). |
EC_P256K | EC_HSM_P256K | The SECP256K1 curve. |
EC_P384 | EC_HSM_P384 | The NIST P-384 curve (SECP384R1). |
EC_P521 | EC_HSM_P521 | The NIST P-521 curve (SECP521R1). |
RSA_2048 | RSA_HSM_2048 | 2048-bit RSA key. |
RSA_3072 | RSA_HSM_3072 | 3072-bit RSA key. |
RSA_4096 | RSA_HSM_4096 | 4096-bit RSA key. |
KeyOps reflects a comma-separated list of operations that the key may be used for. Possible values are:
- encrypt
- decrypt
- sign
- verify
- wrapKey
- unwrapKey
Enabled reflects whether the key is currently enabled.
CreationDate reflects the key's creation date, in seconds since the Unix epoch.
UpdateDate reflects the key's update date, in seconds since the Unix epoch.
DeletionDate reflects the key's deletion date, in seconds since the Unix epoch, or -1 if the key has not been deleted.
PurgeDate reflects the key's purge (i.e., permanent deletion) date, in seconds since the Unix epoch, or -1 if the key has not been deleted.
PublicKey reflects the key's public key, in PEM format.
Log Event (AzureKeys Component)
Fired once for each log message.
Syntax
typedef struct { int LogLevel; String Message; String LogType; } TckAzureKeysLogEventParams; typedef void __fastcall (__closure *TckAzureKeysLogEvent)(System::TObject* Sender, TckAzureKeysLogEventParams *e); __property TckAzureKeysLogEvent OnLog = { read=FOnLog, write=FOnLog };
Remarks
This event is fired once for each log message generated by the component. The verbosity is controlled by the LogLevel setting.
LogLevel indicates the level of message. Possible values are as follows:
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data are logged. |
3 (Debug) | Debug data are logged. |
The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.
The value 2 (Verbose) logs additional information about the request and response.
The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).
Message is the log entry.
LogType identifies the type of log entry. Possible values are as follows:
- "Info"
- "RequestHeaders"
- "ResponseHeaders"
- "RequestBody"
- "ResponseBody"
- "ProxyRequest"
- "ProxyResponse"
- "FirewallRequest"
- "FirewallResponse"
SSLServerAuthentication Event (AzureKeys Component)
Fired after the server presents its certificate to the client.
Syntax
typedef struct { String CertEncoded; DynamicArray<Byte> CertEncodedB; String CertSubject; String CertIssuer; String Status; bool Accept; } TckAzureKeysSSLServerAuthenticationEventParams; typedef void __fastcall (__closure *TckAzureKeysSSLServerAuthenticationEvent)(System::TObject* Sender, TckAzureKeysSSLServerAuthenticationEventParams *e); __property TckAzureKeysSSLServerAuthenticationEvent OnSSLServerAuthentication = { read=FOnSSLServerAuthentication, write=FOnSSLServerAuthentication };
Remarks
During this event, the client can decide whether or not to continue with the connection process. The Accept parameter is a recommendation on whether to continue or close the connection. This is just a suggestion: application software must use its own logic to determine whether or not to continue.
When Accept is False, Status shows why the verification failed (otherwise, Status contains the string OK). If it is decided to continue, you can override and accept the certificate by setting the Accept parameter to True.
SSLStatus Event (AzureKeys Component)
Fired when secure connection progress messages are available.
Syntax
typedef struct { String Message; } TckAzureKeysSSLStatusEventParams; typedef void __fastcall (__closure *TckAzureKeysSSLStatusEvent)(System::TObject* Sender, TckAzureKeysSSLStatusEventParams *e); __property TckAzureKeysSSLStatusEvent OnSSLStatus = { read=FOnSSLStatus, write=FOnSSLStatus };
Remarks
The event is fired for informational and logging purposes only. This event tracks the progress of the connection.
StartTransfer Event (AzureKeys Component)
This event fires when a document starts transferring (after the headers).
Syntax
typedef struct { int Direction; } TckAzureKeysStartTransferEventParams; typedef void __fastcall (__closure *TckAzureKeysStartTransferEvent)(System::TObject* Sender, TckAzureKeysStartTransferEventParams *e); __property TckAzureKeysStartTransferEvent OnStartTransfer = { read=FOnStartTransfer, write=FOnStartTransfer };
Remarks
The StartTransfer event is fired when the document text starts transferring from the server to the local host.
The Direction parameter shows whether the client (0) or the server (1) is sending the data.
TagList Event (AzureKeys Component)
Fires once for each tag returned when a key's information is retrieved.
Syntax
typedef struct { String KeyName; String VersionId; String Name; String Value; } TckAzureKeysTagListEventParams; typedef void __fastcall (__closure *TckAzureKeysTagListEvent)(System::TObject* Sender, TckAzureKeysTagListEventParams *e); __property TckAzureKeysTagListEvent OnTagList = { read=FOnTagList, write=FOnTagList };
Remarks
This event fires once for each tag returned when GetKeyInfo is called.
KeyName reflects the name of the key.
VersionId reflects the Id of the key version.
Name reflects the name of the tag.
Value reflects the value of the tag.
Transfer Event (AzureKeys Component)
Fired while a document transfers (delivers document).
Syntax
typedef struct { int Direction; __int64 BytesTransferred; int PercentDone; String Text; DynamicArray<Byte> TextB; } TckAzureKeysTransferEventParams; typedef void __fastcall (__closure *TckAzureKeysTransferEvent)(System::TObject* Sender, TckAzureKeysTransferEventParams *e); __property TckAzureKeysTransferEvent OnTransfer = { read=FOnTransfer, write=FOnTransfer };
Remarks
The Text parameter contains the portion of the document text being received. It is empty if data are being posted to the server.
The BytesTransferred parameter contains the number of bytes transferred in this Direction since the beginning of the document text (excluding HTTP response headers).
The Direction parameter shows whether the client (0) or the server (1) is sending the data.
The PercentDone parameter shows the progress of the transfer in the corresponding direction. If PercentDone can not be calculated the value will be -1.
Note: Events are not re-entrant. Performing time-consuming operations within this event will prevent it from firing again in a timely manner and may affect overall performance.
Config Settings (AzureKeys Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.AzureKeys Config Settings
By default, this setting is enabled, allowing all pages of results to be accumulated in the appropriate collection properties.
By default, this setting is enabled, and keys are created in an enabled state.
A key can only be used for the Decrypt, Verify, and UnwrapKey operations after its expiry date.
By default, this setting is set to -1, and no expiry date is sent.
By default, this setting is disabled, and the component requests information about active keys.
If this setting is -1 (default), the server's default (25) is used. Otherwise, the setting must be set to a value greater than or equal to 1.
A key can only be used for the Decrypt, Verify, and UnwrapKey operations prior to its "not before" date.
By default, this setting is set to -1, and no "not before" date is sent.
- Decrypt
- Encrypt
- GetKeyInfo (unless GetDeleted is enabled, in which case this setting is ignored)
- Sign
- UnwrapKey
- UpdateKey
- Verify
- WrapKey
The current element is specified through the XPath configuration setting. This configuration setting is read-only.
The current element is specified through the XPath configuration setting. This configuration setting is read-only.
The current element is specified through the XPath configuration setting. This configuration setting is read-only.
The current element is specified through the XPath configuration setting. This configuration setting is read-only.
The current element is specified through the XPath configuration setting. This configuration setting is read-only.
When XPath is set to a valid path, XElement points to the name of the element, with XText, XParent, XSubTree, XChildCount, XChildName[i], and XChildXText[i] providing other properties of the element.
XPath syntax is available for both XML and JSON documents. An XPath is a series of one or more element accessors separated by the / character, for example, /A/B/C/D. An XPath can be absolute (i.e., it starts with /), or it can be relative to the current XPath location.
The following are possible values for an element accessor, which operates relative to the current location specified by the XPath accessors, which proceed it in the overall XPath string:
Accessor | Description |
name | The first element with a particular name. Can be *. |
[i] | The i-th element. |
name[i] | The i-th element with a particular name. |
[last()] | The last element. |
[last()-i] | The element i before the last element. |
name[@attrname="attrvalue"] | The first element with a particular name that contains the specified attribute-value pair.
Supports single and double quotes. (XML Only) |
. | The current element. |
.. | The parent element. |
For example, assume the following XML and JSON responses.
XML:
<firstlevel> <one>value</one> <two> <item>first</item> <item>second</item> </two> <three>value three</three> </firstlevel>
JSON:
{ "firstlevel": { "one": "value", "two": ["first", "second"], "three": "value three" } }
The following are examples of valid XPaths for these responses:
Description | XML XPath | JSON XPath |
Document root | / | /json |
Specific element | /firstlevel/one | /json/firstlevel/one |
i-th child | /firstlevel/two/item[2] | /json/firstlevel/two/[2] |
This list is not exhaustive, but it provides a general idea of the possibilities.
The current element is specified through the XPath configuration setting. This configuration setting is read-only.
The current element is specified in the XPath configuration setting. This configuration setting is read-only.
OAuth Config Settings
Bearer (default) | When the access token returned by the server is a Bearer type, the authorization string returned by Authorize will be in the format "Bearer access_token". This can be supplied as the value of the HTTP Authorization header. |
For example, when using the Authorization Code grant type, the OAuthRefreshToken property should be set to a valid refresh token. When using the Client Credential grant type however, the component does not need any additional properties set as it can already get a new access token without user interaction.
If set to true (default) the redirect_uri will be sent in all cases. If set to false the redirect_uri will only be sent if it has a value.
To parse the payload for specific claims, see OAuthJWTXPath.
The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.
The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.
The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.
The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.
The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.
XPath syntax is available for the payload of JWT based access tokens if available. An XPath is a series of one or more element accessors separated by the / character, for example: /A/B/C/D.
The following are possible values for an element accessor, which operates relative to the current location specified by the XPath accessors which proceed it in the overall XPath string:
Accessor | Description |
name | The first element with a particular name. Can be *. |
[i] | The i-th element. |
name[i] | The i-th element with a particular name. |
[last()] | The last element. |
[last()-i] | The element i before the last element. |
Description | JSON XPath |
Document root | /json |
Specific element | /json/element_one |
Username Claim (Microsoft Specific) | /json/preferred_username |
Registered Application Name Claim (Microsoft Specific) | /json/app_displayname |
This is not an exhaustive list by any means, but should provide a general idea of the possibilities. To get the text of the specified element, see OAuthJWTXText.
The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.
The current element is specified in the OAuthJWTXPath configuration setting. This configuration setting is read-only.
component.Config("OAuthParamCount=2");
component.Config("OAuthParamName[0]=myvar");
component.Config("OAuthParamValue[0]=myvalue");
component.Config("OAuthParamName[1]=testname");
component.Config("OAuthParamValue[1]=testvalue");
Additionally, this will also be updated to hold the parameters returned in the response.
for (int i = 0; i < int.Parse(component.Config("OAuthParamCount")); i++)
{
string name = component.Config("OAuthParamName[" + i + "]");
string value = component.Config("OAuthParamValue[" + i + "]");
}
- 1 (Plain)
- 2 (S256/SHA256 - default)
.NET
Gmail gmail = new Gmail();
gmail.Config("OAuthTransferredRequest=on");
gmail.Authorize();
Console.WriteLine(gmail.Config("OAuthTransferredRequest"));
C++
Gmail gmail;
gmail.Config("OAuthTransferredRequest=on");
gmail.Authorize();
printf("%s\r\n", gmail.Config("OAuthTransferredRequest"));
This setting can also be set to activate or deactivate the web server. Under normal circumstances, this would not be required as the component will automatically start and stop the web server when Authorize is called. In certain cases, it is required to start the webserver before calling Authorize. For example, if the OAuthReturnURL needs to be set to a relay server, then you will need to start the web server manually. Another example would be when the OAuthReUseWebServer is set to true, the server will not be automatically stopped, and this configuration setting must be set to "false" to stop the embedded web server.
The OAuthWebServerCertStoreType property specifies the type of the certificate store specified by OAuthWebServerCertStore. If the store is password protected, specify the password in OAuthWebServerCertStorePassword.
OAuthWebServerCertStore is used in conjunction with the OAuthWebServerCertSubject property in order to specify the certificate to be used during SSL.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
Note: This is required when OAuthWebServerSSLEnabled is set to true.
Note: This is only applicable when OAuthWebServerSSLEnabled is set to true.
0 | User - This is the default for Windows. This specifies that the certificate store is a certificate store owned by the current user. Note: This store type is not available in Java. |
1 | Machine - For Windows, this specifies that the certificate store is a machine store. Note: This store type is not available in Java. |
2 | PFXFile - The certificate store is the name of a PFX (PKCS12) file containing certificates. |
3 | PFXBlob - The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS12) format. |
4 | JKSFile - The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: This store type is available only in Java. |
5 | JKSBlob - The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: This store type is available only in Java. |
6 | PEMKeyFile - The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 | PEMKeyBlob - The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
14 | PPKFile - The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 | PPKBlob - The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 | XMLFile - The certificate store is the name of a file that contains a certificate in XML format. |
17 | XMLBlob - The certificate store is a string that contains a certificate in XML format. |
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Note: This is required when OAuthWebServerSSLEnabled is set to true.
The default value is localhost.
HTTP Config Settings
When True, the component adds an Accept-Encoding header to the outgoing request. The value for this header can be controlled by the AcceptEncoding configuration setting. The default value for this header is "gzip, deflate".
The default value is True.
If set to True (default), the component will automatically use HTTP/1.1 if the server does not support HTTP/2. If set to False, the component raises an exception if the server does not support HTTP/2.
The default value is True.
This property is provided so that the HTTP component can be extended with other security schemes in addition to the authorization schemes already implemented by the component.
The AuthScheme property defines the authentication scheme used. In the case of HTTP Basic Authentication (default), every time User and Password are set, they are Base64 encoded, and the result is put in the Authorization property in the form "Basic [encoded-user-password]".
The default value is False.
If this property is set to 2 (Same Scheme), the new URL is retrieved automatically only if the URL Scheme is the same; otherwise, the component raises an exception.
Note: Following the HTTP specification, unless this option is set to 1 (Always), automatic redirects will be performed only for GET or HEAD requests. Other methods potentially could change the conditions of the initial request and create security vulnerabilities.
Furthermore, if either the new URL server or port are different from the existing one, User and Password are also reset to empty, unless this property is set to 1 (Always), in which case the same credentials are used to connect to the new server.
A Redirect event is fired for every URL the product is redirected to. In the case of automatic redirections, the Redirect event is a good place to set properties related to the new connection (e.g., new authentication parameters).
The default value is 0 (Never). In this case, redirects are never followed, and the component raises an exception instead.
Following are the valid options:
- 0 - Never
- 1 - Always
- 2 - Same Scheme
- "1.0"
- "1.1" (default)
- "2.0"
- "3.0"
When using HTTP/2 ("2.0"), additional restrictions apply. Please see the following notes for details.
HTTP/2 Notes
When using HTTP/2, a secure Secure Sockets Layer/Transport Layer Security (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/2 will result in an error.
If the server does not support HTTP/2, the component will automatically use HTTP/1.1 instead. This is done to provide compatibility without the need for any additional settings. To see which version was used, check NegotiatedHTTPVersion after calling a method. The AllowHTTPFallback setting controls whether this behavior is allowed (default) or disallowed.
HTTP/3 Notes
HTTP/3 is supported only in .NET and Java.
When using HTTP/3, a secure (TLS/SSL) connection is required. Attempting to use a plaintext URL with HTTP/3 will result in an error.
The format of the date value for IfModifiedSince is detailed in the HTTP specs. For example:
Sat, 29 Oct 2017 19:43:31 GMT.
The default value for KeepAlive is false.
0 (None) | No events are logged. |
1 (Info - default) | Informational events are logged. |
2 (Verbose) | Detailed data are logged. |
3 (Debug) | Debug data are logged. |
The value 1 (Info) logs basic information, including the URL, HTTP version, and status details.
The value 2 (Verbose) logs additional information about the request and response.
The value 3 (Debug) logs the headers and body for both the request and response, as well as additional debug information (if any).
The headers must follow the format "header: value" as described in the HTTP specifications. Header lines should be separated by CRLF ("\r\n") .
Use this configuration setting with caution. If this configuration setting contains invalid headers, HTTP requests may fail.
This configuration setting is useful for extending the functionality of the component beyond what is provided.
.NET
Http http = new Http();
http.Config("TransferredRequest=on");
http.PostData = "body";
http.Post("http://someserver.com");
Console.WriteLine(http.Config("TransferredRequest"));
C++
HTTP http;
http.Config("TransferredRequest=on");
http.SetPostData("body", 5);
http.Post("http://someserver.com");
printf("%s\r\n", http.Config("TransferredRequest"));
Note: Some servers (such as the ASP.NET Development Server) may not support chunked encoding.
The default value is False and the hostname will always be used exactly as specified. Note: The CodePage setting must be set to a value capable of interpreting the specified host name. For instance, to specify UTF-8, set CodePage to 65001.
When True (default), the component will check for the existence of a Proxy auto-config URL, and if found, will determine the appropriate proxy to use.
Override the default with the name and version of your software.
TCPClient Config Settings
If the FirewallHost setting is set to a Domain Name, a DNS request is initiated. Upon successful termination of the request, the FirewallHost setting is set to the corresponding address. If the search is not successful, an error is returned.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This configuration setting is provided for use by components that do not directly expose Firewall properties.
0 | No firewall (default setting). |
1 | Connect through a tunneling proxy. FirewallPort is set to 80. |
2 | Connect through a SOCKS4 Proxy. FirewallPort is set to 1080. |
3 | Connect through a SOCKS5 Proxy. FirewallPort is set to 1080. |
10 | Connect through a SOCKS4A Proxy. FirewallPort is set to 1080. |
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This setting is provided for use by components that do not directly expose Firewall properties.
Note: This value is not applicable in macOS.
In the case that Linger is True (default), two scenarios determine how long the connection will linger. In the first, if LingerTime is 0 (default), the system will attempt to send pending data for a connection until the default IP timeout expires.
In the second scenario, if LingerTime is a positive value, the system will attempt to send pending data until the specified LingerTime is reached. If this attempt fails, then the system will reset the connection.
The default behavior (which is also the default mode for stream sockets) might result in a long delay in closing the connection. Although the component returns control immediately, the system could hold system resources until all pending data are sent (even after your application closes).
Setting this property to False forces an immediate disconnection. If you know that the other side has received all the data you sent (e.g., by a client acknowledgment), setting this property to False might be the appropriate course of action.
In multihomed hosts (machines with more than one IP interface), setting LocalHost to the value of an interface will make the component initiate connections (or accept in the case of server components) only through that interface.
If the component is connected, the LocalHost setting shows the IP address of the interface through which the connection is made in internet dotted format (aaa.bbb.ccc.ddd). In most cases, this is the address of the local host, except for multihomed hosts (machines with more than one IP interface).
Setting this to 0 (default) enables the system to choose a port at random. The chosen port will be shown by LocalPort after the connection is established.
LocalPort cannot be changed once a connection is made. Any attempt to set this when a connection is active will generate an error.
This configuration setting is useful when trying to connect to services that require a trusted port on the client side. An example is the remote shell (rsh) service in UNIX systems.
If an EOL string is found in the input stream before MaxLineLength bytes are received, the DataIn event is fired with the EOL parameter set to True, and the buffer is reset.
If no EOL is found, and MaxLineLength bytes are accumulated in the buffer, the DataIn event is fired with the EOL parameter set to False, and the buffer is reset.
The minimum value for MaxLineLength is 256 bytes. The default value is 2048 bytes.
www.google.com;www.nsoftware.com
Note: This value is not applicable in Java.
By default, this configuration setting is set to False.
0 | IPv4 only |
1 | IPv6 only |
2 | IPv6 with IPv4 fallback |
SSL Config Settings
When enabled, SSL packet logs are output using the SSLStatus event, which will fire each time an SSL packet is sent or received.
Enabling this configuration setting has no effect if SSLProvider is set to Platform.
The path set by this property should point to a directory containing CA certificates in PEM format. The files each contain one CA certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA certificate with the same name hash value exist, the extension must be different (e.g., 9d66eef0.0, 9d66eef0.1). OpenSSL recommends the use of the c_rehash utility to create the necessary links. Please refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The file set by this property should contain a list of CA certificates in PEM format. The file can contain several CA certificates identified by the following sequences:
-----BEGIN CERTIFICATE-----
... (CA certificate in base64 encoding) ...
-----END CERTIFICATE-----
Before, between, and after the certificate text is allowed, which can be used, for example, for descriptions of the certificates. Refer to the OpenSSL man page SSL_CTX_load_verify_locations(3) for details.
The format of this string is described in the OpenSSL man page ciphers(1) section "CIPHER LIST FORMAT". Please refer to it for details. The default string "DEFAULT" is determined at compile time and is normally equivalent to "ALL:!ADH:RC4+RSA:+SSLv2:@STRENGTH".
By default, OpenSSL uses the device file "/dev/urandom" to seed the PRNG, and setting OpenSSLPrngSeedData is not required. If set, the string specified is used to seed the PRNG.
If set to True, the component will reuse the context if and only if the following criteria are met:
- The target host name is the same.
- The system cache entry has not expired (default timeout is 10 hours).
- The application process that calls the function is the same.
- The logon session is the same.
- The instance of the component is the same.
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When set to 0 (default), the CRL check will not be performed by the component. When set to 1, it will attempt to perform the CRL check, but it will continue without an error if the server's certificate does not support CRL. When set to 2, it will perform the CRL check and will throw an error if CRL is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
When set to 0 (default), the component will not perform an OCSP check. When set to 1, it will attempt to perform the OCSP check, but it will continue without an error if the server's certificate does not support OCSP. When set to 2, it will perform the OCSP check and will throw an error if OCSP is not supported.
This configuration setting is supported only in the Java, C#, and C++ editions. In the C++ edition, it is supported only on Windows operating systems.
Note: This configuration setting contains the minimum cipher strength requested from the security library. The actual cipher strength used for the connection is shown by the SSLStatus event.
Use this configuration setting with caution. Requesting a lower cipher strength than necessary could potentially cause serious security vulnerabilities in your application.
When the provider is OpenSSL, SSLCipherStrength is currently not supported. This functionality is instead made available through the OpenSSLCipherList configuration setting.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert ... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert ... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
By default, the enabled cipher suites will include all available ciphers ("*").
The special value "*" means that the component will pick all of the supported cipher suites. If SSLEnabledCipherSuites is set to any other value, only the specified cipher suites will be considered.
Multiple cipher suites are separated by semicolons.
Example values when SSLProvider is set to Platform include the following:
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=CALG_AES_256");
obj.config("SSLEnabledCipherSuites=CALG_AES_256;CALG_3DES");
Possible values when SSLProvider is set to Platform include the following:
- CALG_3DES
- CALG_3DES_112
- CALG_AES
- CALG_AES_128
- CALG_AES_192
- CALG_AES_256
- CALG_AGREEDKEY_ANY
- CALG_CYLINK_MEK
- CALG_DES
- CALG_DESX
- CALG_DH_EPHEM
- CALG_DH_SF
- CALG_DSS_SIGN
- CALG_ECDH
- CALG_ECDH_EPHEM
- CALG_ECDSA
- CALG_ECMQV
- CALG_HASH_REPLACE_OWF
- CALG_HUGHES_MD5
- CALG_HMAC
- CALG_KEA_KEYX
- CALG_MAC
- CALG_MD2
- CALG_MD4
- CALG_MD5
- CALG_NO_SIGN
- CALG_OID_INFO_CNG_ONLY
- CALG_OID_INFO_PARAMETERS
- CALG_PCT1_MASTER
- CALG_RC2
- CALG_RC4
- CALG_RC5
- CALG_RSA_KEYX
- CALG_RSA_SIGN
- CALG_SCHANNEL_ENC_KEY
- CALG_SCHANNEL_MAC_KEY
- CALG_SCHANNEL_MASTER_HASH
- CALG_SEAL
- CALG_SHA
- CALG_SHA1
- CALG_SHA_256
- CALG_SHA_384
- CALG_SHA_512
- CALG_SKIPJACK
- CALG_SSL2_MASTER
- CALG_SSL3_MASTER
- CALG_SSL3_SHAMD5
- CALG_TEK
- CALG_TLS1_MASTER
- CALG_TLS1PRF
obj.config("SSLEnabledCipherSuites=*");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA");
obj.config("SSLEnabledCipherSuites=TLS_DHE_DSS_WITH_AES_128_CBC_SHA;TLS_ECDH_RSA_WITH_AES_128_CBC_SHA");
Possible values when SSLProvider is set to Internal include the following:
- TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_256_GCM_SHA384
- TLS_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_256_GCM_SHA384
- TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_DHE_DSS_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
- TLS_DHE_RSA_WITH_AES_256_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
- TLS_DHE_DSS_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
- TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_RSA_WITH_AES_128_CBC_SHA
- TLS_DHE_DSS_WITH_AES_128_CBC_SHA
- TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
- TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_WITH_DES_CBC_SHA
- TLS_DHE_RSA_WITH_DES_CBC_SHA
- TLS_DHE_DSS_WITH_DES_CBC_SHA
- TLS_RSA_WITH_RC4_128_MD5
- TLS_RSA_WITH_RC4_128_SHA
When TLS 1.3 is negotiated (see SSLEnabledProtocols), only the following cipher suites are supported:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
- TLS_AES_128_GCM_SHA256
SSLEnabledCipherSuites is used together with SSLCipherStrength.
Not all supported protocols are enabled by default. The default value is 4032 for client components, and 3072 for server components. To specify a combination of enabled protocol versions set this config to the binary OR of one or more of the following values:
TLS1.3 | 12288 (Hex 3000) |
TLS1.2 | 3072 (Hex C00) (Default - Client and Server) |
TLS1.1 | 768 (Hex 300) (Default - Client) |
TLS1 | 192 (Hex C0) (Default - Client) |
SSL3 | 48 (Hex 30) |
SSL2 | 12 (Hex 0C) |
Note that only TLS 1.2 is enabled for server components that accept incoming connections. This adheres to industry standards to ensure a secure connection. Client components enable TLS 1.0, TLS 1.1, and TLS 1.2 by default and will negotiate the highest mutually supported version when connecting to a server, which should be TLS 1.2 in most cases.
SSLEnabledProtocols: Transport Layer Security (TLS) 1.3 Notes:
By default when TLS 1.3 is enabled, the component will use the internal TLS implementation when the SSLProvider is set to Automatic for all editions.
In editions that are designed to run on Windows, SSLProvider can be set to Platform to use the platform implementation instead of the internal implementation. When configured in this manner, please note that the platform provider is supported only on Windows 11/Windows Server 2022 and up. The default internal provider is available on all platforms and is not restricted to any specific OS version.
If set to 1 (Platform provider), please be aware of the following notes:
- The platform provider is available only on Windows 11/Windows Server 2022 and up.
- SSLEnabledCipherSuites and other similar SSL configuration settings are not supported.
- If SSLEnabledProtocols includes both TLS 1.3 and TLS 1.2, these restrictions are still applicable even if TLS 1.2 is negotiated. Enabling TLS 1.3 with the platform provider changes the implementation used for all TLS versions.
SSLEnabledProtocols: SSL2 and SSL3 Notes:
SSL 2.0 and 3.0 are not supported by the component when the SSLProvider is set to internal. To use SSL 2.0 or SSL 3.0, the platform security API must have the protocols enabled and SSLProvider needs to be set to platform.
This configuration setting is applicable only when SSLProvider is set to Internal.
If set to True, all certificates returned by the server will be present in the Encoded parameter of the SSLServerAuthentication event. This includes the leaf certificate, any intermediate certificate, and the root certificate.
When set, the component will save the session secrets in the same format as the SSLKEYLOGFILE environment variable functionality used by most major browsers and tools, such as Chrome, Firefox, and cURL. This file can then be used in tools such as Wireshark to decrypt TLS traffic for debugging purposes. When writing to this file, the component will only append, it will not overwrite previous values.
Note: This configuration setting is applicable only when SSLProvider is set to Internal.
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipher[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedCipherSuite[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchange[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedKeyExchangeStrength[connId]");
Note: For server components (e.g., TCPServer), this is a per-connection configuration setting accessed by passing the ConnectionId. For example:
server.Config("SSLNegotiatedVersion[connId]");
0x00000001 | Ignore time validity status of certificate. |
0x00000002 | Ignore time validity status of CTL. |
0x00000004 | Ignore non-nested certificate times. |
0x00000010 | Allow unknown certificate authority. |
0x00000020 | Ignore wrong certificate usage. |
0x00000100 | Ignore unknown certificate revocation status. |
0x00000200 | Ignore unknown CTL signer revocation status. |
0x00000400 | Ignore unknown certificate authority revocation status. |
0x00000800 | Ignore unknown root revocation status. |
0x00008000 | Allow test root certificate. |
0x00004000 | Trust test root certificate. |
0x80000000 | Ignore non-matching CN (certificate CN non-matching server name). |
This functionality is currently not available when the provider is OpenSSL.
The value of this configuration setting is a newline-separated (CR/LF) list of certificates. For instance:
-----BEGIN CERTIFICATE----- MIIEKzCCAxOgAwIBAgIRANTET4LIkxdH6P+CFIiHvTowDQYJKoZIhvcNAQELBQAw ... Intermediate Cert... eWHV5OW1K53o/atv59sOiW5K3crjFhsBOd5Q+cJJnU+SWinPKtANXMht+EDvYY2w F0I1XhM+pKj7FjDr+XNj -----END CERTIFICATE----- \r \n -----BEGIN CERTIFICATE----- MIIEFjCCAv6gAwIBAgIQetu1SMxpnENAnnOz1P+PtTANBgkqhkiG9w0BAQUFADBp ... Root Cert... d8q23djXZbVYiIfE9ebr4g3152BlVCHZ2GyPdjhIuLeH21VbT/dyEHHA -----END CERTIFICATE-----
When specified the component will verify that the server certificate signature algorithm is among the values specified in this configuration setting. If the server certificate signature algorithm is unsupported, the component raises an exception.
The format of this value is a comma-separated list of hash-signature combinations. For instance:
component.SSLProvider = TCPClientSSLProviders.sslpInternal;
component.Config("SSLEnabledProtocols=3072"); //TLS 1.2
component.Config("TLS12SignatureAlgorithms=sha256-rsa,sha256-dsa,sha1-rsa,sha1-dsa");
The default value for this configuration setting is sha512-ecdsa,sha512-rsa,sha512-dsa,sha384-ecdsa,sha384-rsa,sha384-dsa,sha256-ecdsa,sha256-rsa,sha256-dsa,sha224-ecdsa,sha224-rsa,sha224-dsa,sha1-ecdsa,sha1-rsa,sha1-dsa.
To not restrict the server's certificate signature algorithm, specify an empty string as the value for this configuration setting, which will cause the signature_algorithms TLS 1.2 extension to not be sent.
The default value is ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1.
When using TLS 1.2 and SSLProvider is set to Internal, the values refer to the supported groups for ECC. The following values are supported:
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
The default value is set to balance common supported groups and the computational resources required to generate key shares. As a result, only some groups are included by default in this configuration setting.
Note: All supported groups can always be used during the handshake even if not listed here, but if a group is used that is not present in this list, it will incur an additional roundtrip and time to generate the key share for that group.
In most cases, this configuration setting does not need to be modified. This should be modified only if there is a specific reason to do so.
The default value is ecdhe_x25519,ecdhe_secp256r1,ecdhe_secp384r1,ffdhe_2048,ffdhe_3072
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448"
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1"
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096"
- "ffdhe_6144"
- "ffdhe_8192"
- "ed25519" (default)
- "ed448" (default)
- "ecdsa_secp256r1_sha256" (default)
- "ecdsa_secp384r1_sha384" (default)
- "ecdsa_secp521r1_sha512" (default)
- "rsa_pkcs1_sha256" (default)
- "rsa_pkcs1_sha384" (default)
- "rsa_pkcs1_sha512" (default)
- "rsa_pss_sha256" (default)
- "rsa_pss_sha384" (default)
- "rsa_pss_sha512" (default)
The default value is ecdhe_x25519,ecdhe_x448,ecdhe_secp256r1,ecdhe_secp384r1,ecdhe_secp521r1,ffdhe_2048,ffdhe_3072,ffdhe_4096,ffdhe_6144,ffdhe_8192
The values are ordered from most preferred to least preferred. The following values are supported:
- "ecdhe_x25519" (default)
- "ecdhe_x448" (default)
- "ecdhe_secp256r1" (default)
- "ecdhe_secp384r1" (default)
- "ecdhe_secp521r1" (default)
- "ffdhe_2048" (default)
- "ffdhe_3072" (default)
- "ffdhe_4096" (default)
- "ffdhe_6144" (default)
- "ffdhe_8192" (default)
Socket Config Settings
Note: This option is not valid for User Datagram Protocol (UDP) ports.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the InBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Some TCP/IP implementations do not support variable buffer sizes. If that is the case, when the component is activated the OutBufferSize reverts to its defined size. The same happens if you attempt to make it too large or too small.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all components of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.
This setting is set to false by default on all platforms.
Trappable Errors (AzureKeys Component)
Common Errors
600 | A server error occurred, and/or the component was unable to process the server's response. Please refer to the error message for more information. |
601 | An unsupported operation or action was attempted. |
602 | The RawRequest or RawResponse configuration setting was queried without first setting the TransferredRequest configuration setting to ON. |
603 | The login credentials specified were invalid. Please refer to the error message for more information. |
604 | An invalid remote resource identifier (i.e., a name, path, Id, etc.) was specified. |
605 | An invalid index was specified. |
606 | An operation failed because the specified OutputFile already exists and Overwrite is false. |
607 | An exception occurred while working with the specified InputFile or OutputFile (or the current value of one of those properties is invalid). Please refer to the error message for more information. |
608 | An exception occurred while working with the specified input or output stream. Please refer to the error message for more information. |
The component may also return one of the following error codes, which are inherited from other components.
HTTP Errors
118 | Firewall error. The error description contains the detailed message. |
143 | Busy executing current method. |
151 | HTTP protocol error. The error message has the server response. |
152 | No server specified in URL. |
153 | Specified URLScheme is invalid. |
155 | Range operation is not supported by server. |
156 | Invalid cookie index (out of range). |
301 | Interrupted. |
302 | Cannot open AttachedFile. |
The component may also return one of the following error codes, which are inherited from other components.
TCPClient Errors
100 | You cannot change the RemotePort at this time. A connection is in progress. |
101 | You cannot change the RemoteHost (Server) at this time. A connection is in progress. |
102 | The RemoteHost address is invalid (0.0.0.0). |
104 | Already connected. If you want to reconnect, close the current connection first. |
106 | You cannot change the LocalPort at this time. A connection is in progress. |
107 | You cannot change the LocalHost at this time. A connection is in progress. |
112 | You cannot change MaxLineLength at this time. A connection is in progress. |
116 | RemotePort cannot be zero. Please specify a valid service port number. |
117 | You cannot change the UseConnection option while the component is active. |
135 | Operation would block. |
201 | Timeout. |
211 | Action impossible in control's present state. |
212 | Action impossible while not connected. |
213 | Action impossible while listening. |
301 | Timeout. |
302 | Could not open file. |
434 | Unable to convert string to selected CodePage. |
1105 | Already connecting. If you want to reconnect, close the current connection first. |
1117 | You need to connect first. |
1119 | You cannot change the LocalHost at this time. A connection is in progress. |
1120 | Connection dropped by remote host. |
SSL Errors
270 | Cannot load specified security library. |
271 | Cannot open certificate store. |
272 | Cannot find specified certificate. |
273 | Cannot acquire security credentials. |
274 | Cannot find certificate chain. |
275 | Cannot verify certificate chain. |
276 | Error during handshake. |
280 | Error verifying certificate. |
281 | Could not find client certificate. |
282 | Could not find server certificate. |
283 | Error encrypting data. |
284 | Error decrypting data. |
TCP/IP Errors
10004 | [10004] Interrupted system call. |
10009 | [10009] Bad file number. |
10013 | [10013] Access denied. |
10014 | [10014] Bad address. |
10022 | [10022] Invalid argument. |
10024 | [10024] Too many open files. |
10035 | [10035] Operation would block. |
10036 | [10036] Operation now in progress. |
10037 | [10037] Operation already in progress. |
10038 | [10038] Socket operation on nonsocket. |
10039 | [10039] Destination address required. |
10040 | [10040] Message is too long. |
10041 | [10041] Protocol wrong type for socket. |
10042 | [10042] Bad protocol option. |
10043 | [10043] Protocol is not supported. |
10044 | [10044] Socket type is not supported. |
10045 | [10045] Operation is not supported on socket. |
10046 | [10046] Protocol family is not supported. |
10047 | [10047] Address family is not supported by protocol family. |
10048 | [10048] Address already in use. |
10049 | [10049] Cannot assign requested address. |
10050 | [10050] Network is down. |
10051 | [10051] Network is unreachable. |
10052 | [10052] Net dropped connection or reset. |
10053 | [10053] Software caused connection abort. |
10054 | [10054] Connection reset by peer. |
10055 | [10055] No buffer space available. |
10056 | [10056] Socket is already connected. |
10057 | [10057] Socket is not connected. |
10058 | [10058] Cannot send after socket shutdown. |
10059 | [10059] Too many references, cannot splice. |
10060 | [10060] Connection timed out. |
10061 | [10061] Connection refused. |
10062 | [10062] Too many levels of symbolic links. |
10063 | [10063] File name is too long. |
10064 | [10064] Host is down. |
10065 | [10065] No route to host. |
10066 | [10066] Directory is not empty |
10067 | [10067] Too many processes. |
10068 | [10068] Too many users. |
10069 | [10069] Disc Quota Exceeded. |
10070 | [10070] Stale NFS file handle. |
10071 | [10071] Too many levels of remote in path. |
10091 | [10091] Network subsystem is unavailable. |
10092 | [10092] WINSOCK DLL Version out of range. |
10093 | [10093] Winsock is not loaded yet. |
11001 | [11001] Host not found. |
11002 | [11002] Nonauthoritative 'Host not found' (try again or check DNS setup). |
11003 | [11003] Nonrecoverable errors: FORMERR, REFUSED, NOTIMP. |
11004 | [11004] Valid name, no data record (check DNS setup). |