IDEA Component
Properties Methods Events Config Settings Errors
Encrypt/decrypt data with the International Data Encryption Algorithm (IDEA) block cipher.
Syntax
nsoftware.IPWorksEncrypt.Idea
Remarks
The IDEA component is used to encrypt and decrypt data with the International Data Encryption Algorithm (IDEA) block cipher.
To begin simply specify the data you wish to encrypt or decrypt.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Before encrypting you must have a valid Key and IV. There are a few options available to you in regards to key management. The easiest option is to simply set KeyPassword. When KeyPassword is set the component will automatically create a Key and IV using the PKCS5 password digest algorithm. This means there is only one value you need to keep track of.
If you wish to have more control over the Key and IV values you may specify the properties yourself. If IV is left empty, one will be created for you when you call Encrypt or Decrypt.
A simple example:
Component.InputFile = "C:\MyFile.txt";
Component.OutputFile = "C:\Encrypted.txt";
Component.KeyPassword = "password";
Component.Encrypt();
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
CipherMode | The cipher mode of operation. |
InputFile | The file to process. |
InputMessage | The message to process. |
IV | The initialization vector (IV). |
Key | The secret key for the symmetric algorithm. |
KeyPassword | A password to generate the Key and IV . |
OutputFile | The output file when encrypting or decrypting. |
OutputMessage | The output message after processing. |
Overwrite | Indicates whether or not the component should overwrite files. |
PaddingMode | The padding mode. |
UseHex | Whether input or output is hex encoded. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Decrypt | Decrypts the data. |
DecryptBlock | Decrypts a block and returns the decrypted data. |
Encrypt | Encrypts the data. |
EncryptBlock | Encrypts data and returns the encrypted block. |
Reset | Resets the component |
SetInputStream | Sets the stream from which the component will read data to encrypt or decrypt. |
SetOutputStream | Sets the stream to which the component will write encrypted or decrypted data. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Error | Fired when information is available about errors during data delivery. |
Progress | Fired as progress is made. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
BlockSize | The block size, in bits, of the cryptographic operation. |
CloseInputStreamAfterProcessing | Determines whether or not the input stream is closed after processing. |
CloseOutputStreamAfterProcessing | Determines whether or not the output stream is closed after processing. |
EncryptedDataEncoding | The encoding of the encrypted input or output data. |
IncludeIV | Whether to prepend the IV to the output data and read the IV from the input data. |
KeyPasswordAlgorithm | The hash algorithm used to derive the Key and IV from the KeyPassword property. |
KeyPasswordIterations | The number of iterations performed when using KeyPassword to derive the Key and IV. |
KeyPasswordSalt | The salt value used in conjunction with the KeyPassword to derive the Key and IV. |
KeySize | The size, in bits, of secret key for the symmetric algorithm. |
BuildInfo | Information about the product's build. |
GUIAvailable | Whether or not a message loop is available for processing events. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
CipherMode Property (IDEA Component)
The cipher mode of operation.
Syntax
public IdeaCipherModes CipherMode { get; set; }
enum IdeaCipherModes { cmCBC, cmECB, cmOFB, cmCFB, cmCTS, cm8OFB, cm8CFB }
Public Property CipherMode As IdeaCipherModes
Enum IdeaCipherModes cmCBC cmECB cmOFB cmCFB cmCTS cm8OFB cm8CFB End Enum
Default Value
0
Remarks
The cipher mode of operation.
Possible values are:
0 (cmCBC - default) | The Cipher Block Chaining (CBC) is a mode of operation for a block cipher, one in which a sequence of bits is encrypted as a single unit or block with a cipher key applied to the entire block. |
1 (cmECB) | The Electronic Codebook (ECB) mode encrypts each block separately. Important: It is not recommend to use this model when encrypting more than one block because it may introduce security risks. |
2 (cmOFB) | The Output Feedback (n-bit, NOFB) mode makes a block cipher into a synchronous stream cipher. It has some similarities to CFB mode in that it permits encryption of differing block sizes, but has the key difference that the output of the encryption block function is the feedback (instead of the ciphertext). |
3 (cmCFB) | The Cipher Feedback (CFB) mode processes a small amount of incremental text into ciphertext, rather than processing a whole block at one time. |
4 (cmCTS) | The Cipher Text Stealing (CTS) mode handles any length of plain text and produces cipher text whose length matches the plain text length. This mode behaves like the CBC mode for all but the last two blocks of the plain text. |
5 (cm8OFB) | 8-bit Output Feedback (OFB) cipher mode. |
7 (cm8CFB) | 8-bit Cipher Feedback (CFB) cipher mode. |
InputFile Property (IDEA Component)
The file to process.
Syntax
Default Value
""
Remarks
This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- SetInputStream
- InputFile
- InputMessage
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
InputMessage Property (IDEA Component)
The message to process.
Syntax
Default Value
""
Remarks
This property specifies the message to be processed.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- SetInputStream
- InputFile
- InputMessage
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
IV Property (IDEA Component)
The initialization vector (IV).
Syntax
Default Value
""
Remarks
This property specifies the initialization vector (IV). By default this property is empty and the component will automatically generate a new IV value if KeyPassword or Key is set before Encrypt or EncryptBlock is called. The size of the IV property must be equal to the BlockSize divided by 8.
Key Property (IDEA Component)
The secret key for the symmetric algorithm.
Syntax
Default Value
""
Remarks
This secret key is used both for encryption and decryption. The secret key should be known only to the sender and the receiver. The legal key size varies depending on the algorithm.
If this property is left empty and KeyPassword is specified, a Key value will be generated by the component as necessary.
Legal Key and Block Sizes (in bits)
AES | Rijndael | CAST | DES | IDEA | RC2 | RC4 | TripleDES | Blowfish | Twofish | TEA | |
Minimum Key Size | 128 | 128 | 112 | 64 | 128 | 112 | 112 | 128 | 112 | 128 | 128 |
Maximum Key Size | 256 | 256 | 128 | 64 | 128 | 128 | 2048 | 192 | 448 | 256 | 128 |
Key Size Step | 64 | 64 | 8 | 0 | 0 | 8 | 8 | 64 | 1 | 8 | 0 |
Block Size | 128 | 128/192/256 | 64 | 64 | 64 | 64 | N/A | 64 | 64 | 128 | 64* |
Note: When using TEA if Algorithm is set to XXTEA valid block sizes are 64 + n * 32. Where n is any positive integer.
The default KeySize is the Maximum Key Size.
KeyPassword Property (IDEA Component)
A password to generate the Key and IV .
Syntax
Default Value
""
Remarks
When this property is set the component will calculate values for Key and IV using the PKCS5 password digest algorithm. This provides a simpler alternative to creating and managing Key and IV values directly.
The size of the Key generated is dependent on the value of KeySize.
OutputFile Property (IDEA Component)
The output file when encrypting or decrypting.
Syntax
Default Value
""
Remarks
This property specifies the file to which the output will be written when Encrypt or Decrypt is called. This may be set to an absolute or relative path.
This property is only applicable to Encrypt and Decrypt.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
OutputMessage Property (IDEA Component)
The output message after processing.
Syntax
Default Value
""
Remarks
This property will be populated with the output from the operation if OutputFile and SetOutputStream are not set.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
This property is read-only and not available at design time.
Overwrite Property (IDEA Component)
Indicates whether or not the component should overwrite files.
Syntax
Default Value
False
Remarks
This property indicates whether or not the component will overwrite OutputFile. If Overwrite is False, an error will be thrown whenever OutputFile exists before an operation. The default value is False.
PaddingMode Property (IDEA Component)
The padding mode.
Syntax
public IdeaPaddingModes PaddingMode { get; set; }
enum IdeaPaddingModes { pmPKCS7, pmZeros, pmNone, pmANSIX923, pmISO10126 }
Public Property PaddingMode As IdeaPaddingModes
Enum IdeaPaddingModes pmPKCS7 pmZeros pmNone pmANSIX923 pmISO10126 End Enum
Default Value
0
Remarks
PaddingMode is used to pad the final input block to guarantee that it is the correct size required for the selected CipherMode. If the input size is a multiple of the cipher's BlockSize, an extra block of padding will be appended to the input. This enables the decrypting agent to know with certainty how many bytes of padding are included. Each mode pads the data differently. Possible values are:
0 (pmPKCS7 - default) | The data is padded with a series of bytes that are each equal to the number of bytes used.
For instance, in the example below the data must be padded with 3 additional bytes, so each byte value will be 3.
Raw Data: AA AA AA AA AA PKCS7 Padded Data: AA AA AA AA AA 03 03 03 |
1 (pmZeros) | The data is padded with null bytes. |
2 (pmNone) | No padding will be performed. |
3 (pmANSIX923) | The ANSIX923 padding string consists of a sequence of bytes filled with zeros before the length.
For instance, in the example below the data must be padded with 3 additional bytes, so last byte value will be 3.
Raw Data: AA AA AA AA AA ANSIX923 padding Data: AA AA AA AA AA 00 00 03 |
4 (pmISO10126) | The ISO10126 padding string consists of random data before the length.
For instance, in the example below the data must be padded with 3 additional bytes, so last byte value will be 3.
Raw Data: AA AA AA AA AA ISO10126 padding Data: AA AA AA AA AA F8 EF 03 |
When calling Decrypt the PaddingMode must match the value used when the data was encrypted.
Note: When using a value of 2 (pmNone), unless the length of input is an exact multiple of the cipher's input BlockSize, the final block of plaintext may be lost.
UseHex Property (IDEA Component)
Whether input or output is hex encoded.
Syntax
Default Value
False
Remarks
This property specifies whether the encrypted data is hex encoded.
If set to True, when Encrypt is called the component will perform the encryption as normal and then hex encode the output. OutputMessage or OutputFile will hold hex encoded data.
If set to True, when Decrypt is called the component will expect InputMessage or InputFile to hold hex encoded data. The component will then hex decode the data and perform decryption as normal.
Config Method (IDEA Component)
Sets or retrieves a configuration setting.
Syntax
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Decrypt Method (IDEA Component)
Decrypts the data.
Syntax
public void Decrypt(); Async Version public async Task Decrypt(); public async Task Decrypt(CancellationToken cancellationToken);
Public Sub Decrypt() Async Version Public Sub Decrypt() As Task Public Sub Decrypt(cancellationToken As CancellationToken) As Task
Remarks
This method will decrypt the specified data. The following properties are applicable:
- IV (required)
- Key (required)
- CipherMode
- PaddingMode
Note that CipherMode must be set to the same value used during encryption or the results may be unexpected. If the CipherMode value does not match the value used during encryption the operation may succeed but the decrypted data may not be correct.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
DecryptBlock Method (IDEA Component)
Decrypts a block and returns the decrypted data.
Syntax
public byte[] DecryptBlock(byte[] inputBuffer, bool lastBlock); Async Version public async Task<byte[]> DecryptBlock(byte[] inputBuffer, bool lastBlock); public async Task<byte[]> DecryptBlock(byte[] inputBuffer, bool lastBlock, CancellationToken cancellationToken);
Public Function DecryptBlock(ByVal InputBuffer As String, ByVal LastBlock As Boolean) As String Async Version Public Function DecryptBlock(ByVal InputBuffer As String, ByVal LastBlock As Boolean) As Task(Of String) Public Function DecryptBlock(ByVal InputBuffer As String, ByVal LastBlock As Boolean, cancellationToken As CancellationToken) As Task(Of String)
Remarks
This method will decrypt the specified block and return the decrypted data.
InputBuffer specifies the encrypted block to decrypt.
LastBlock indicates whether the block is the last block.
Encrypt Method (IDEA Component)
Encrypts the data.
Syntax
public void Encrypt(); Async Version public async Task Encrypt(); public async Task Encrypt(CancellationToken cancellationToken);
Public Sub Encrypt() Async Version Public Sub Encrypt() As Task Public Sub Encrypt(cancellationToken As CancellationToken) As Task
Remarks
This method will encrypt the specified data. The following properties are applicable:
- IV (required)
- Key (required)
- PaddingMode
- CipherMode
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
EncryptBlock Method (IDEA Component)
Encrypts data and returns the encrypted block.
Syntax
public byte[] EncryptBlock(byte[] inputBuffer, bool lastBlock); Async Version public async Task<byte[]> EncryptBlock(byte[] inputBuffer, bool lastBlock); public async Task<byte[]> EncryptBlock(byte[] inputBuffer, bool lastBlock, CancellationToken cancellationToken);
Public Function EncryptBlock(ByVal InputBuffer As String, ByVal LastBlock As Boolean) As String Async Version Public Function EncryptBlock(ByVal InputBuffer As String, ByVal LastBlock As Boolean) As Task(Of String) Public Function EncryptBlock(ByVal InputBuffer As String, ByVal LastBlock As Boolean, cancellationToken As CancellationToken) As Task(Of String)
Remarks
This method will encrypt the input data and return the encrypted block.
InputBuffer specifies the input data to encrypt.
LastBlock specifies whether the block is the last block.
Reset Method (IDEA Component)
Resets the component
Syntax
public void Reset(); Async Version public async Task Reset(); public async Task Reset(CancellationToken cancellationToken);
Public Sub Reset() Async Version Public Sub Reset() As Task Public Sub Reset(cancellationToken As CancellationToken) As Task
Remarks
When called, the component will reset all of its properties to their default values.
SetInputStream Method (IDEA Component)
Sets the stream from which the component will read data to encrypt or decrypt.
Syntax
public void SetInputStream(System.IO.Stream inputStream); Async Version public async Task SetInputStream(System.IO.Stream inputStream); public async Task SetInputStream(System.IO.Stream inputStream, CancellationToken cancellationToken);
Public Sub SetInputStream(ByVal InputStream As System.IO.Stream) Async Version Public Sub SetInputStream(ByVal InputStream As System.IO.Stream) As Task Public Sub SetInputStream(ByVal InputStream As System.IO.Stream, cancellationToken As CancellationToken) As Task
Remarks
This method sets the stream from which the component will read data to encrypt or decrypt.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- SetInputStream
- InputFile
- InputMessage
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
SetOutputStream Method (IDEA Component)
Sets the stream to which the component will write encrypted or decrypted data.
Syntax
public void SetOutputStream(System.IO.Stream outputStream); Async Version public async Task SetOutputStream(System.IO.Stream outputStream); public async Task SetOutputStream(System.IO.Stream outputStream, CancellationToken cancellationToken);
Public Sub SetOutputStream(ByVal OutputStream As System.IO.Stream) Async Version Public Sub SetOutputStream(ByVal OutputStream As System.IO.Stream) As Task Public Sub SetOutputStream(ByVal OutputStream As System.IO.Stream, cancellationToken As CancellationToken) As Task
Remarks
This method sets the stream to which the component will write encrypted or decrypted data.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Error Event (IDEA Component)
Fired when information is available about errors during data delivery.
Syntax
public event OnErrorHandler OnError; public delegate void OnErrorHandler(object sender, IdeaErrorEventArgs e); public class IdeaErrorEventArgs : EventArgs { public int ErrorCode { get; } public string Description { get; } }
Public Event OnError As OnErrorHandler Public Delegate Sub OnErrorHandler(sender As Object, e As IdeaErrorEventArgs) Public Class IdeaErrorEventArgs Inherits EventArgs Public ReadOnly Property ErrorCode As Integer Public ReadOnly Property Description As String End Class
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the component throws an exception.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Progress Event (IDEA Component)
Fired as progress is made.
Syntax
public event OnProgressHandler OnProgress; public delegate void OnProgressHandler(object sender, IdeaProgressEventArgs e); public class IdeaProgressEventArgs : EventArgs { public long BytesProcessed { get; } public int PercentProcessed { get; } }
Public Event OnProgress As OnProgressHandler Public Delegate Sub OnProgressHandler(sender As Object, e As IdeaProgressEventArgs) Public Class IdeaProgressEventArgs Inherits EventArgs Public ReadOnly Property BytesProcessed As Long Public ReadOnly Property PercentProcessed As Integer End Class
Remarks
This event is fired automatically as data is processed by the component.
The PercentProcessed parameter indicates the current status of the operation.
The BytesProcessed parameter holds the total number of bytes processed so far.
Config Settings (IDEA Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.IDEA Config Settings
The following algorithms have a fixed block size: AES, CAST, DES, IDEA, RC2, TripleDES, Blowfish, and Twofish.
When Encrypt is called the component will perform the encryption as normal and then encode the output as specified here. OutputMessage or OutputFile will hold the encoded data.
When Decrypt is called the component will expect InputMessage or InputFile to hold the encoded data as specified here. The component will then decode the data and perform decryption as normal.
Possible values are:
- 0 (none - default)
- 1 (Base64)
- 2 (Hex)
- 3 (Base64URL)
- "SHA1"
- "MD2"
- "MD5" (default)
- "HMAC-SHA1"
- "HMAC-SHA224"
- "HMAC-SHA256"
- "HMAC-SHA384"
- "HMAC-SHA512"
- "HMAC-MD5"
- "HMAC-RIPEMD160"
When using any HMAC algorithm the PBKDF#2 method from RFC 2898 is used. Any other algorithm uses PBKDF#1 from the same RFC.
This setting is only applicable when KeyPassword is specified.
Note that when using the EzCrypt component, KeySize should be set after setting the Algorithm property.
Base Config Settings
In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the component does not attempt to process external events.
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
If using the .NET Standard Library, this setting will be true on all platforms. The .NET Standard library does not support using the system security libraries.
Note: This setting is static. The value set is applicable to all components used in the application.
When this value is set, the product's system dynamic link library (DLL) is no longer required as a reference, as all unmanaged code is stored in that file.
Trappable Errors (IDEA Component)
IDEA Errors
101 Unsupported algorithm. | |
102 No Key specified. | |
103 No IV specified. | |
104 Cannot read or write file. | |
107 Block size is not valid for this algorithm. | |
108 Key size is not valid for this algorithm. | |
111 OutputFile already exists and Overwrite is False. | |
121 The specified key is invalid. | |
123 IV size is not valid for this algorithm. | |
304 Cannot write file. | |
305 Cannot read file. | |
306 Cannot create file. | |
2004 Invalid padding. This may be an indication that the key is incorrect. |