XMLEncrypt Component

Properties   Methods   Events   Config Settings   Errors  

The XMLEncrypt component is used to encrypt and decrypt XML.

Syntax

nsoftware.IPWorksEncrypt.Xmlencrypt

Remarks

The XMLEncrypt component provides a simple API for encrypting and decrypting XML. The Encrypt method will encrypt the XML document, or a specific element. Multiple elements may be encrypted at one time by setting EncryptedDataDetails. The Decrypt method will decrypt the XML document.

The component supports encrypting and decrypting with a shared SymmetricKey, and also using asymmetric encryption to encrypt the SymmetricKey (session key) via the RecipientCert and Certificate properties.

Encrypt

To begin first specify a XML document by calling SetInputStream or setting InputFile, or InputXML.

The EncryptedDataDetails property specify the XML element to encrypt. By default the entire XML document is encrypted.

The SymmetricKey property specifies the key which will be used to encrypt the data.

If the RecipientCert property is set, then the SymmetricKey will be encrypted and included in the encrypted data. This allows for the recipient to decrypt the key, with their certificate. Encrypting the symmetric key is also referred to as using a session key. The benefit of using certificate to encrypt and decrypt a session key (SymmetricKey) is that knowledge of the key value is not needed ahead of time to process the encrypted data. Note that if specified, RecipientCert MUST have a RSA key, not a DSA key.

If the RecipientCert property is not set, then the recipient must know the value of SymmetricKey before decrypting the XML. The KeyName setting may be set to provide a key identifier to the recipient.

Optionally set EncryptingAlgorithm, and then call Encrypt to encrypt the XML.

The following properties are applicable when calling this method:

Input and Output Properties

The component will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Decrypt

To begin first specify a XML document by calling SetInputStream or setting InputFile, or InputXML.

The SymmetricKey property specifies the key used to decrypt the data. This may be set before calling Decrypt or inside the EncryptedDataInfo event. The EncryptedDataInfo event fires once for each encrypted element when Decrypt is called.

If the data was encrypted using an session key, set the Certificate property to the certificate with private key before calling Decrypt. The certificate will be used to decrypt the encrypted session key. In this case the SymmetricKey property is ignored.

The following properties are applicable when calling this method:

Input and Output Properties

The component will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Property List


The following is the full list of the properties of the component with short descriptions. Click on the links for further details.

CertificateThe certificate used for decryption.
EncryptedDataDetailsA collection of encrypted data details.
EncryptingAlgorithmThen encryption algorithm used when encrypting.
InputFileThe XML file to process.
InputXMLThe XML to process.
OutputFileThe output file.
OutputXMLThe output XML after processing.
OverwriteIndicates whether or not the component should overwrite files.
RecipientCertThe certificate used for encryption.
SymmetricKeyThe symmetric key used to encrypt and decrypt the XML.
UseOAEPWhether to use Optimal Asymmetric Encryption Padding (OAEP).

Method List


The following is the full list of the methods of the component with short descriptions. Click on the links for further details.

ConfigSets or retrieves a configuration setting.
DecryptDecrypts the XML.
DoEventsProcesses events from the internal message queue.
EncryptEncrypts the XML.
ResetResets the component.
SetInputStreamSets the stream from which the component will read data to encrypt or decrypt.
SetOutputStreamThe stream to which the component will write the encrypted or decrypted XML.

Event List


The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.

EncryptedDataInfoFired once for each encrypted element when Decrypt is called.
ErrorInformation about errors during data delivery.
ProgressFired as progress is made.
StatusProvides information about the current operation.

Config Settings


The following is a list of config settings for the component with short descriptions. Click on the links for further details.

EncryptedKeyXPathThe XPath of the EncryptedKey element.
KeyNameThe name of the key used to encrypt the XML.
LogLevelSpecifies the level of detail that is logged.
OAEPMGF1HashAlgorithmThe MGF1 hash algorithm used with OAEP.
OAEPParamsThe hex encoded OAEP parameters.
OAEPRSAHashAlgorithmThe RSA hash algorithm used with OAEP.
OAEPRSAHashAlgorithmThe RSA hash algorithm used when encrypting a key.
ReadFromProgressEventWhether to read input data from inside the progress event.
WriteToProgressEventWhether to write output data so it is accessible from inside the progress event.
BuildInfoInformation about the product's build.
GUIAvailableTells the component whether or not a message loop is available for processing events.
LicenseInfoInformation about the current license.
MaskSensitiveWhether sensitive data is masked in log messages.
UseInternalSecurityAPITells the component whether or not to use the system security libraries or an internal implementation.

Certificate Property (XMLEncrypt Component)

The certificate used for decryption.

Syntax

public Certificate Certificate { get; set; }
Public Property Certificate As Certificate

Remarks

This property specifies a certificate with private key.

If the encrypted XML contains an encrypted key this property specifies the certificate with private key to be used to decrypt the key. This is applicable when calling Decrypt.

Please refer to the Certificate type for a complete list of fields.

EncryptedDataDetails Property (XMLEncrypt Component)

A collection of encrypted data details.

Syntax

public XMLEncryptedDataDetailList EncryptedDataDetails { get; }
Public Property EncryptedDataDetails As XMLEncryptedDataDetailList

Remarks

This property holds a collection of details about the XML elements to be encrypted. This may be populated before calling Encrypt. If this is not populated, then the entire XML document will be encrypted.

This property is not available at design time.

Please refer to the XMLEncryptedDataDetail type for a complete list of fields.

EncryptingAlgorithm Property (XMLEncrypt Component)

Then encryption algorithm used when encrypting.

Syntax

public string EncryptingAlgorithm { get; set; }
Public Property EncryptingAlgorithm As String

Default Value

"3DES"

Remarks

This property specifies the encryption algorithm to use when encrypting. Possible values are:

  • "3DES" (default)
  • "DES"
  • "AES128"
  • "AES192"
  • "AES256"

InputFile Property (XMLEncrypt Component)

The XML file to process.

Syntax

public string InputFile { get; set; }
Public Property InputFile As String

Default Value

""

Remarks

This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.

Input and Output Properties

The component will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

This property is not available at design time.

InputXML Property (XMLEncrypt Component)

The XML to process.

Syntax

public string InputXML { get; set; }
Public Property InputXML As String

Default Value

""

Remarks

This property specifies the XML to be processed.

Input and Output Properties

The component will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

This property is not available at design time.

OutputFile Property (XMLEncrypt Component)

The output file.

Syntax

public string OutputFile { get; set; }
Public Property OutputFile As String

Default Value

""

Remarks

This property specifies the file to which the output will be written. This may be set to an absolute or relative path.

Input and Output Properties

The component will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

This property is not available at design time.

OutputXML Property (XMLEncrypt Component)

The output XML after processing.

Syntax

public string OutputXML { get; set; }
Public Property OutputXML As String

Default Value

""

Remarks

This property will be populated with the output from the operation if OutputFile and SetOutputStream are not set.

Input and Output Properties

The component will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

This property is not available at design time.

Overwrite Property (XMLEncrypt Component)

Indicates whether or not the component should overwrite files.

Syntax

public bool Overwrite { get; set; }
Public Property Overwrite As Boolean

Default Value

False

Remarks

This property indicates whether or not the component will overwrite OutputFile. If Overwrite is False, an error will be thrown whenever OutputFile exists before an operation. The default value is False.

RecipientCert Property (XMLEncrypt Component)

The certificate used for encryption.

Syntax

public Certificate RecipientCert { get; set; }
Public Property RecipientCert As Certificate

Remarks

This property specifies a certificate for encryption.

If specified, the SymmetricKey will be encrypted and included as an encrypted key in the XML. This is applicable when calling Encrypt.

Please refer to the Certificate type for a complete list of fields.

SymmetricKey Property (XMLEncrypt Component)

The symmetric key used to encrypt and decrypt the XML.

Syntax

public string SymmetricKey { get; set; }
public byte[] SymmetricKeyB { get; set; }
Public Property SymmetricKey As String
Public Property SymmetricKeyB As Byte()

Default Value

""

Remarks

This property specifies the symmetric key used to encrypt and decrypt the XML.

Encrypt Notes

When calling Encrypt if the RecipientCert property is set, then the SymmetricKey will be encrypted and included in the XML as an encrypted key. Using asymmetric encryption to encrypt the SymmetricKey allows for secure transmission of the key. This is also referred to as using a session key, as no prior knowledge of the SymmetricKey is required by the recipient.

If the RecipientCert property is set and SymmetricKey is left empty, then a SymmetricKey value will automatically be generated by the component when Encrypt is called.

When calling Encrypt if the RecipientCert property is are not set, then the SymmetricKey value must be known by the recipient before the message can be decrypted.

Decrypt Notes

When calling Decrypt if the data contains an encrypted key the component will attempt to use the certificate specified by the Certificate property to decrypt the encrypted key and this property is ignored.

When calling Decrypt if the data does not contain an encrypted key then SymmetricKey must be set either before calling Decrypt, or within the EncryptedDataInfo event.

Legal Key and Block Sizes (in bits)

AES DES 3DES
Minimum Key Size 128 64 128
Maximum Key Size 256 64 192
Key Size Step 64 0 64
Block Size 128 64 64

This property is not available at design time.

UseOAEP Property (XMLEncrypt Component)

Whether to use Optimal Asymmetric Encryption Padding (OAEP).

Syntax

public bool UseOAEP { get; set; }
Public Property UseOAEP As Boolean

Default Value

False

Remarks

This setting specifies whether to use Optimal Asymmetric Encryption Padding (OAEP) when encrypting the SymmetricKey with the certificate specified by RecipientCert. It is only applicable when calling Encrypt and RecipientCert is specified.

By default this value is False and the component will use PKCS1.

Config Method (XMLEncrypt Component)

Sets or retrieves a configuration setting.

Syntax

public string Config(string configurationString);

Async Version
public async Task<string> Config(string configurationString);
public async Task<string> Config(string configurationString, CancellationToken cancellationToken);
Public Function Config(ByVal ConfigurationString As String) As String

Async Version
Public Function Config(ByVal ConfigurationString As String) As Task(Of String)
Public Function Config(ByVal ConfigurationString As String, cancellationToken As CancellationToken) As Task(Of String)

Remarks

Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.

These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).

To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.

Decrypt Method (XMLEncrypt Component)

Decrypts the XML.

Syntax

public void Decrypt();

Async Version
public async Task Decrypt();
public async Task Decrypt(CancellationToken cancellationToken);
Public Sub Decrypt()

Async Version
Public Sub Decrypt() As Task
Public Sub Decrypt(cancellationToken As CancellationToken) As Task

Remarks

This method decrypts the specified XML.

To begin first specify a XML document by calling SetInputStream or setting InputFile, or InputXML.

The SymmetricKey property specifies the key used to decrypt the data. This may be set before calling Decrypt or inside the EncryptedDataInfo event. The EncryptedDataInfo event fires once for each encrypted element when Decrypt is called.

If the data was encrypted using an session key, set the Certificate property to the certificate with private key before calling Decrypt. The certificate will be used to decrypt the encrypted session key. In this case the SymmetricKey property is ignored.

The following properties are applicable when calling this method:

Input and Output Properties

The component will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

DoEvents Method (XMLEncrypt Component)

Processes events from the internal message queue.

Syntax

public void DoEvents();

Async Version
public async Task DoEvents();
public async Task DoEvents(CancellationToken cancellationToken);
Public Sub DoEvents()

Async Version
Public Sub DoEvents() As Task
Public Sub DoEvents(cancellationToken As CancellationToken) As Task

Remarks

When DoEvents is called, the component processes any available events. If no events are available, it waits for a preset period of time, and then returns.

Encrypt Method (XMLEncrypt Component)

Encrypts the XML.

Syntax

public void Encrypt();

Async Version
public async Task Encrypt();
public async Task Encrypt(CancellationToken cancellationToken);
Public Sub Encrypt()

Async Version
Public Sub Encrypt() As Task
Public Sub Encrypt(cancellationToken As CancellationToken) As Task

Remarks

This method encrypts the specified XML.

To begin first specify a XML document by calling SetInputStream or setting InputFile, or InputXML.

The EncryptedDataDetails property specify the XML element to encrypt. By default the entire XML document is encrypted.

The SymmetricKey property specifies the key which will be used to encrypt the data.

If the RecipientCert property is set, then the SymmetricKey will be encrypted and included in the encrypted data. This allows for the recipient to decrypt the key, with their certificate. Encrypting the symmetric key is also referred to as using a session key. The benefit of using certificate to encrypt and decrypt a session key (SymmetricKey) is that knowledge of the key value is not needed ahead of time to process the encrypted data. Note that if specified, RecipientCert MUST have a RSA key, not a DSA key.

If the RecipientCert property is not set, then the recipient must know the value of SymmetricKey before decrypting the XML. The KeyName setting may be set to provide a key identifier to the recipient.

Optionally set EncryptingAlgorithm, and then call Encrypt to encrypt the XML.

The following properties are applicable when calling this method:

Input and Output Properties

The component will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

Reset Method (XMLEncrypt Component)

Resets the component.

Syntax

public void Reset();

Async Version
public async Task Reset();
public async Task Reset(CancellationToken cancellationToken);
Public Sub Reset()

Async Version
Public Sub Reset() As Task
Public Sub Reset(cancellationToken As CancellationToken) As Task

Remarks

When called, the component will reset all of its properties to their default values.

SetInputStream Method (XMLEncrypt Component)

Sets the stream from which the component will read data to encrypt or decrypt.

Syntax

public void SetInputStream(System.IO.Stream inputStream);

Async Version
public async Task SetInputStream(System.IO.Stream inputStream);
public async Task SetInputStream(System.IO.Stream inputStream, CancellationToken cancellationToken);
Public Sub SetInputStream(ByVal InputStream As System.IO.Stream)

Async Version
Public Sub SetInputStream(ByVal InputStream As System.IO.Stream) As Task
Public Sub SetInputStream(ByVal InputStream As System.IO.Stream, cancellationToken As CancellationToken) As Task

Remarks

This method sets the stream from which the component will read data to encrypt or decrypt. If an input stream is set before calling Encrypt or Decrypt, the data is read from the input stream instead of from the InputFile or InputXML properties.

The content of the stream will be read from the current position all the way to the end and no bytes will be skipped.

Input and Output Properties

The component will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:

SetOutputStream Method (XMLEncrypt Component)

The stream to which the component will write the encrypted or decrypted XML.

Syntax

public void SetOutputStream(System.IO.Stream outputStream);

Async Version
public async Task SetOutputStream(System.IO.Stream outputStream);
public async Task SetOutputStream(System.IO.Stream outputStream, CancellationToken cancellationToken);
Public Sub SetOutputStream(ByVal OutputStream As System.IO.Stream)

Async Version
Public Sub SetOutputStream(ByVal OutputStream As System.IO.Stream) As Task
Public Sub SetOutputStream(ByVal OutputStream As System.IO.Stream, cancellationToken As CancellationToken) As Task

Remarks

This method sets the stream to which the component will write the encrypted or decrypted XML. If an output stream is set before calling Encrypt or Decrypt, the component will write the data to the output stream instead of populating OutputXML or writing to OutputFile.

Input and Output Properties

The component will determine the source and destination of the input and output based on which properties are set.

The order in which the input properties are checked is as follows:

When a valid source is found the search stops. The order in which the output properties are checked is as follows:
  • SetOutputStream
  • OutputFile
  • OutputXML: The output data is written to this property if no other destination is specified.

EncryptedDataInfo Event (XMLEncrypt Component)

Fired once for each encrypted element when Decrypt is called.

Syntax

public event OnEncryptedDataInfoHandler OnEncryptedDataInfo;

public delegate void OnEncryptedDataInfoHandler(object sender, XmlencryptEncryptedDataInfoEventArgs e);

public class XmlencryptEncryptedDataInfoEventArgs : EventArgs {
  public string EncryptedDataId { get; }
  public int Scope { get; }
  public string MIMEType { get; }
}
Public Event OnEncryptedDataInfo As OnEncryptedDataInfoHandler

Public Delegate Sub OnEncryptedDataInfoHandler(sender As Object, e As XmlencryptEncryptedDataInfoEventArgs)

Public Class XmlencryptEncryptedDataInfoEventArgs Inherits EventArgs
  Public ReadOnly Property EncryptedDataId As String
  Public ReadOnly Property Scope As Integer
  Public ReadOnly Property MIMEType As String
End Class

Remarks

This event fires once for each encrypted element in the XML document when Decrypt is called. The parameters of this event provide information about the encrypted data. Additionally, the KeyName setting may be queried to identify the encryption key. SymmetricKey may be set from within this event.

EncryptedDataId is the Id of the encrypted data (if any).

Scope indicates the scope of the encrypted data. This defines whether the entire XML element was encrypted, or only the content. Possible values are:

0Element
1Content

MIMEType holds the MIME type of the encrypted data (if any). For example: "image/png".

Error Event (XMLEncrypt Component)

Information about errors during data delivery.

Syntax

public event OnErrorHandler OnError;

public delegate void OnErrorHandler(object sender, XmlencryptErrorEventArgs e);

public class XmlencryptErrorEventArgs : EventArgs {
  public int ErrorCode { get; }
  public string Description { get; }
}
Public Event OnError As OnErrorHandler

Public Delegate Sub OnErrorHandler(sender As Object, e As XmlencryptErrorEventArgs)

Public Class XmlencryptErrorEventArgs Inherits EventArgs
  Public ReadOnly Property ErrorCode As Integer
  Public ReadOnly Property Description As String
End Class

Remarks

The Error event is fired in case of exceptional conditions during message processing. Normally the component throws an exception.

ErrorCode contains an error code and Description contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.

Progress Event (XMLEncrypt Component)

Fired as progress is made.

Syntax

public event OnProgressHandler OnProgress;

public delegate void OnProgressHandler(object sender, XmlencryptProgressEventArgs e);

public class XmlencryptProgressEventArgs : EventArgs {
  public long BytesProcessed { get; }
  public int PercentProcessed { get; }
  public int Operation { get; }
  public bool IsEOF { get; set; }
}
Public Event OnProgress As OnProgressHandler

Public Delegate Sub OnProgressHandler(sender As Object, e As XmlencryptProgressEventArgs)

Public Class XmlencryptProgressEventArgs Inherits EventArgs
  Public ReadOnly Property BytesProcessed As Long
  Public ReadOnly Property PercentProcessed As Integer
  Public ReadOnly Property Operation As Integer
  Public Property IsEOF As Boolean
End Class

Remarks

This event is fired automatically as data is processed by the component.

The PercentProcessed parameter indicates the current status of the operation.

The BytesProcessed parameter holds the total number of bytes processed so far.

The Operation parameter is only applicable when either ReadFromProgressEvent or WriteToProgressEvent is set to True. This parameter defines whether a Read or Write operation is required. If the configuration settings are not set this parameter will always return 0. Possible values are:

0None
1Read
2Write

The IsEOF parameter is only applicable when either ReadFromProgressEvent or WriteToProgressEvent is set to True. This parameter defines whether the Read or Write operation is complete. When the Operation is Read (1) this parameter must be set to indicate that all data has been supplied to the component. When the Operation is Write (2) this value may be queried to determine when all data has been processed.

Status Event (XMLEncrypt Component)

Provides information about the current operation.

Syntax

public event OnStatusHandler OnStatus;

public delegate void OnStatusHandler(object sender, XmlencryptStatusEventArgs e);

public class XmlencryptStatusEventArgs : EventArgs {
  public string Message { get; }
}
Public Event OnStatus As OnStatusHandler

Public Delegate Sub OnStatusHandler(sender As Object, e As XmlencryptStatusEventArgs)

Public Class XmlencryptStatusEventArgs Inherits EventArgs
  Public ReadOnly Property Message As String
End Class

Remarks

The event is fired for informational and logging purposes only. It may be used to track the progress of an operation.

The level of detail is controlled by the LogLevel setting.

Certificate Type

This is the digital certificate being used.

Remarks

This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.

Fields

EffectiveDate
string (read-only)

Default Value: ""

This is the date on which this certificate becomes valid. Before this date, it is not valid. The following example illustrates the format of an encoded date:

23-Jan-2000 15:00:00.

Encoded
string

Default Value: ""

This is the certificate (PEM/base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

EncodedB
byte []

Default Value: ""

This is the certificate (PEM/base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.

When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.

ExpirationDate
string (read-only)

Default Value: ""

This is the date the certificate expires. After this date, the certificate will no longer be valid. The following example illustrates the format of an encoded date:

23-Jan-2001 15:00:00.

ExtendedKeyUsage
string

Default Value: ""

This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).

Fingerprint
string (read-only)

Default Value: ""

This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02

FingerprintSHA1
string (read-only)

Default Value: ""

This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84

FingerprintSHA256
string (read-only)

Default Value: ""

This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.

The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53

Issuer
string (read-only)

Default Value: ""

This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.

PrivateKey
string (read-only)

Default Value: ""

This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.

Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.

PrivateKeyAvailable
bool (read-only)

Default Value: False

This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).

PrivateKeyContainer
string (read-only)

Default Value: ""

This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.

PublicKey
string (read-only)

Default Value: ""

This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.

PublicKeyAlgorithm
string

Default Value: ""

This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.

PublicKeyLength
int (read-only)

Default Value: 0

This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.

SerialNumber
string (read-only)

Default Value: ""

This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.

SignatureAlgorithm
string (read-only)

Default Value: ""

The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.

Store
string

Default Value: "MY"

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

StoreB
byte []

Default Value: "MY"

This is the name of the certificate store for the client certificate.

The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.

Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.

Designations of certificate stores are platform-dependent.

The following are designations of the most common User and Machine certificate stores in Windows:

MYA certificate store holding personal certificates with their associated private keys.
CACertifying authority certificates.
ROOTRoot certificates.

When the certificate store type is PFXFile, this property must be set to the name of the file. When the type is PFXBlob, the property must be set to the binary contents of a PFX file (i.e. PKCS12 certificate store).

StorePassword
string

Default Value: ""

If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.

StoreType
CertStoreTypes

Default Value: 0

This is the type of certificate store for this certificate.

The component supports both public and private keys in a variety of formats. When the cstAuto value is used the component will automatically determine the type. This field can take one of the following values:

0 (cstUser - default)For Windows, this specifies that the certificate store is a certificate store owned by the current user. Note: this store type is not available in Java.
1 (cstMachine)For Windows, this specifies that the certificate store is a machine store. Note: this store type is not available in Java.
2 (cstPFXFile)The certificate store is the name of a PFX (PKCS12) file containing certificates.
3 (cstPFXBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in PFX (PKCS12) format.
4 (cstJKSFile)The certificate store is the name of a Java Key Store (JKS) file containing certificates. Note: this store type is only available in Java.
5 (cstJKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in Java Key Store (JKS) format. Note: this store type is only available in Java.
6 (cstPEMKeyFile)The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate.
7 (cstPEMKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a private key and an optional certificate.
8 (cstPublicKeyFile)The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate.
9 (cstPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains a PEM- or DER-encoded public key certificate.
10 (cstSSHPublicKeyBlob)The certificate store is a string (binary or base64-encoded) that contains an SSH-style public key.
11 (cstP7BFile)The certificate store is the name of a PKCS7 file containing certificates.
12 (cstP7BBlob)The certificate store is a string (binary) representing a certificate store in PKCS7 format.
13 (cstSSHPublicKeyFile)The certificate store is the name of a file that contains an SSH-style public key.
14 (cstPPKFile)The certificate store is the name of a file that contains a PPK (PuTTY Private Key).
15 (cstPPKBlob)The certificate store is a string (binary) that contains a PPK (PuTTY Private Key).
16 (cstXMLFile)The certificate store is the name of a file that contains a certificate in XML format.
17 (cstXMLBlob)The certificate store is a string that contains a certificate in XML format.
18 (cstJWKFile)The certificate store is the name of a file that contains a JWK (JSON Web Key).
19 (cstJWKBlob)The certificate store is a string that contains a JWK (JSON Web Key).
21 (cstBCFKSFile)The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store). Note: this store type is only available in Java and .NET.
22 (cstBCFKSBlob)The certificate store is a string (binary or base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format. Note: this store type is only available in Java and .NET.
23 (cstPKCS11)The certificate is present on a physical security key accessible via a PKCS11 interface.

To use a security key the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS11 dll. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use.

When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN.

Code Example: SSH Authentication with Security Key certmgr.CertStoreType = CertStoreTypes.cstPKCS11; certmgr.OnCertList += (s, e) => { secKeyBlob = e.CertEncoded; }; certmgr.CertStore = @"C:\Program Files\OpenSC Project\OpenSC\pkcs11\opensc-pkcs11.dll"; certmgr.CertStorePassword = "123456"; //PIN certmgr.ListStoreCertificates(); sftp.SSHCert = new Certificate(CertStoreTypes.cstPKCS11, secKeyBlob, "123456", "*"); sftp.SSHUser = "test"; sftp.SSHLogon("myhost", 22);

99 (cstAuto)The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically.

Subject
string

Default Value: ""

This is the subject of the certificate used for client authentication.

This field will be populated with the full subject of the loaded certificate. When loading a certificate the subject is used to locate the certificate in the store.

If an exact match is not found, the store is searched for subjects containing the value of the property.

If a match is still not found, the property is set to an empty string, and no certificate is selected.

The special value "*" picks a random certificate in the certificate store.

The certificate subject is a comma separated list of distinguished name fields and values. For instance "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are displayed below.

FieldMeaning
CNCommon Name. This is commonly a host name like www.server.com.
OOrganization
OUOrganizational Unit
LLocality
SState
CCountry
EEmail Address

If a field value contains a comma it must be quoted.

SubjectAltNames
string (read-only)

Default Value: ""

This field contains comma-separated lists of alternative subject names for the certificate.

ThumbprintMD5
string (read-only)

Default Value: ""

This field contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA1
string (read-only)

Default Value: ""

This field contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

ThumbprintSHA256
string (read-only)

Default Value: ""

This field contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.

Usage
string

Default Value: ""

This field contains the text description of UsageFlags.

This value will be of one or more of the following strings and will be separated by commas:

  • Digital Signatures
  • Key Authentication
  • Key Encryption
  • Data Encryption
  • Key Agreement
  • Certificate Signing
  • Key Signing

If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.

UsageFlags
int

Default Value: 0

This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:

0x80Digital Signatures
0x40Key Authentication (Non-Repudiation)
0x20Key Encryption
0x10Data Encryption
0x08Key Agreement
0x04Certificate Signing
0x02Key Signing

Please see the Usage field for a text representation of UsageFlags.

This functionality currently is not available when the provider is OpenSSL.

Version
string (read-only)

Default Value: ""

This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".

Constructors

public Certificate();
Public Certificate()

Creates a Certificate instance whose properties can be set. This is useful for use with CERTMGR when generating new certificates.

public Certificate(string certificateFile);
Public Certificate(ByVal CertificateFile As String)

Opens CertificateFile and reads out the contents as an X509 public key.

public Certificate(byte[] certificateData);
Public Certificate(ByVal CertificateData As Byte())

Parses CertificateData as an X509 public key.

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. ConfigurationString is a newline separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CyrptoAPI option. The default value is True (the key is persisted). "Thumbprint" - a MD5, SHA1, or SHA256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to cstUser, cstMachine, cstPublicKeyFile, and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, string store, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Encoded As Byte())

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X509 certificate and search the opened store for a corresponding private key.

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, string subject, string configurationString);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. StoreBlob is a string (binary- or base64-encoded) containing the certificate data. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X509 certificate's subject Distinguished Name (DN).

public Certificate(CertStoreTypes certStoreType, byte[] storeBlob, string storePassword, byte[] encoded);
Public Certificate(ByVal CertStoreType As CertStoreTypes, ByVal StoreBlob As Byte(), ByVal StorePassword As String, ByVal Encoded As Byte())

CertStoreType identifies the type of certificate store to use. See StoreType for descriptions of the different certificate stores. Store is a string (binary- or base64-encoded) containing the certificate store. StorePassword is the password used to protect the store. After the store has been successfully opened, the component will load Encoded as an X509 certificate and search the opened store for a corresponding private key.

XMLEncryptedDataDetail Type

This type defines details about the data to be encrypted.

Remarks

This type defines details about the data to be encrypted. The element to encrypt is defined by XMLElement.

Fields

Id
string

Default Value: ""

This field is an optional identifier for the encrypted data.

MIMEType
string

Default Value: ""

This field specifies the MIME type of the encrypted data. For example: "image/png". This field is optional.

Scope
Scopes

Default Value: 0

This field specifies the scope of the encryption. When calling Encrypt the entire XML element specified by XMLElement may be encrypted, or only the content may be encrypted. This setting controls the scope of the encryption. Possible values are:

0 (sElement - default) The entire XML element is encrypted.
1 (sContent) Only the content of the XML element is encrypted.

XMLElement
string

Default Value: "/"

This field specifies the XPath to the element which will be encrypted. For instance:

/root/myElement XPath syntax
/root/[1] XPath syntax using an index
/root/ns:myElement XPath syntax where the element has a namespace
myElement Just the element name
@id=myid Attribute selector: This will select an element with an attribute "id" whose value is "myid".
/root/myElement[1]/ns:name2[@attr=attrValue] XPath syntax using an index and attribute selector

Constructors

public XMLEncryptedDataDetail(string id, string XMLElement, int scope, string MIMEType);
Public XMLEncryptedDataDetail(ByVal Id As String, ByVal XMLElement As String, ByVal Scope As Integer, ByVal MIMEType As String)

Config Settings (XMLEncrypt Component)

The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.

XMLEnc Config Settings

EncryptedKeyXPath:   The XPath of the EncryptedKey element.

This setting specifies the XPath where the EncryptedKey element will be written. In most cases this does not need to be changed. By default it is included in the EncryptedData element.

KeyName:   The name of the key used to encrypt the XML.

This setting optionally holds the key name which may be useful to the recipient to help identify the key used to encrypt the data. This may be set before calling Encrypt. When calling Decrypt this may be queried inside the EncryptedDataInfo event.

Note that this value is only informative, it does not affect processing.

LogLevel:   Specifies the level of detail that is logged.

This setting controls the level of detail that is logged through the Status event. Possible values are:

0 (None)No events are logged.
1 (Info - default)Informational events are logged.
2 (Verbose)Detailed data is logged.
3 (Debug)Debug data is logged.
OAEPMGF1HashAlgorithm:   The MGF1 hash algorithm used with OAEP.

This configuration setting specifies the MGF1 hash algorithm used when UseOAEP is set to True. The default value is SHA256. Possible values are as follows:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"
  • "RIPEMD160"
  • "MD2"
  • "MD5"
  • "MD5SHA1"

Note: This setting is not applicable when UseFIPSCompliantAPI is set to true or when the private key of the signing certificate is not exportable since the underlying system implementation does not support separate OAEPRSAHashAlgorithm and OAEPMGF1HashAlgorithm values. In this case the OAEPRSAHashAlgorithm is also used for MGF1.

OAEPParams:   The hex encoded OAEP parameters.

This configuration setting optionally specifies Optimal Asymmetric Encryption Padding (OAEP) parameters to be used when UseOAEP is set to True. The specified value should be hex encoded.

OAEPRSAHashAlgorithm:   The RSA hash algorithm used with OAEP.

This configuration setting specifies that RSA hash algorithm used when UseOAEP is set to True. The default value is SHA256. Possible values are as follows:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"
  • "RIPEMD160"
  • "MD2"
  • "MD5"
  • "MD5SHA1"
The RSA hash algorithm used when encrypting a key.

When encryption is enabled, this algorithm specifies the RSA hash algorithm used for the encryption key. This may differ from the hash algorithm used to sign the message content. Possible values are:

  • "SHA1" (default)
  • "SHA224"
  • "SHA256"
  • "SHA384"
  • "SHA512"
OAEPRSAHashAlgorithm:   The RSA hash algorithm used with OAEP.

This configuration setting specifies that RSA hash algorithm used when UseOAEP is set to True. The default value is SHA256. Possible values are as follows:

  • "SHA1"
  • "SHA224"
  • "SHA256" (default)
  • "SHA384"
  • "SHA512"
  • "RIPEMD160"
  • "MD2"
  • "MD5"
  • "MD5SHA1"
The RSA hash algorithm used when encrypting a key.

When encryption is enabled, this algorithm specifies the RSA hash algorithm used for the encryption key. This may differ from the hash algorithm used to sign the message content. Possible values are:

  • "SHA1" (default)
  • "SHA224"
  • "SHA256"
  • "SHA384"
  • "SHA512"
ReadFromProgressEvent:   Whether to read input data from inside the progress event.

When set to True this setting allows input data to be specified from within the Progress event. The component will repeatedly fire the Progress event to ask for data. Inside the event set InputXML when the Operation parameter of the event is 1 (Read). When all data has been provided set the IsEOF parameter of the event to True. This allows input data to be chunked and provided piece by piece. The default value is False.

WriteToProgressEvent:   Whether to write output data so it is accessible from inside the progress event.

When set to True this setting allows output data to be obtained from within the Progress event. The component will repeatedly fire the Progress event to provide output data. Inside the event check OutputXML when the Operation parameter of the event is 2 (Write). The IsEOF parameter should be checked inside the event to determine when all output data has been provided. This allows output data to be chunked and obtained piece by piece. The default value is False.

Base Config Settings

BuildInfo:   Information about the product's build.

When queried, this setting will return a string containing information about the product's build.

GUIAvailable:   Tells the component whether or not a message loop is available for processing events.

In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The component will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.

In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the component does not attempt to process external events.

LicenseInfo:   Information about the current license.

When queried, this setting will return a string containing information about the license this instance of a component is using. It will return the following information:

  • Product: The product the license is for.
  • Product Key: The key the license was generated from.
  • License Source: Where the license was found (e.g., RuntimeLicense, License File).
  • License Type: The type of license installed (e.g., Royalty Free, Single Server).
  • Last Valid Build: The last valid build number for which the license will work.
MaskSensitive:   Whether sensitive data is masked in log messages.

In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.

This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.

UseInternalSecurityAPI:   Tells the component whether or not to use the system security libraries or an internal implementation.

When set to false, the component will use the system security libraries by default to perform cryptographic functions where applicable. In this case, calls to unmanaged code will be made. In certain environments this is not desirable. To use a completely managed security implementation set this setting to true.

Setting this setting to true tells the component to use the internal implementation instead of using the system security libraries.

On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.

If using the .NET Standard Library, this setting will be true on all platforms. The .NET Standard library does not support using the system security libraries.

Note: This setting is static. The value set is applicable to all components used in the application.

When this value is set the product's system DLL is no longer required as a reference, as all unmanaged code is stored in that file.

Trappable Errors (XMLEncrypt Component)

XMLEnc Errors

607   Failed to write output.
609   Could not find encrypted data.
610   Invalid encrypted data.
611   Failed parsing certificate data.
612   SymmetricKey or RecipientCert must be set.

XML Errors

101   Invalid attribute index.
102   No attributes available.
103   Invalid namespace index.
104   No namespaces available.
105   Invalid element index.
106   No elements available.
107   Attribute does not exist.
201   Unbalanced element tag.
202   Unknown element prefix (can't find namespace).
203   Unknown attribute prefix (can't find namespace).
204   Invalid XML markup.
205   Invalid end state for parser.
206   Document contains unbalanced elements.
207   Invalid XPath.
208   No such child.
209   Top element does not match start of path.
210   DOM tree unavailable (set BuildDOM to true and reparse).
302   Can't open file.
401   Invalid XML would be generated.
402   An invalid XML name has been specified.