ECC Class
Properties Methods Events Config Settings Errors
The ECC (Elliptic Curve Cryptography) class implements ECDSA, EdDSA, ECDH, and ECIES operations.
Syntax
class ipworksencrypt.ECC
Remarks
The ECC (Elliptic Curve Cryptography) class implements ECDSA (Elliptic Curve Digital Signature Algorithm), EdDSA (Edwards-curve Digital Signature Algorithm), and ECDH (Elliptic Curve Diffie Hellman), and ECIES (Elliptic Curve Integrated Encryption Scheme) operations. The class supports the following common operations:
- create_key allows key creation using algorithms such as secp256r1, secp384r1, secp521r1, X25519, X448, Ed25519, Ed448, and more.
- compute_secret computes a shared secret between two parties using a public and private key (ECDH).
- sign and verify_signature provides a way to digitally sign data and verify signatures (ECDSA and EdDSA).
- encrypt and decrypt encrypt and decrypt data using a public and private key (ECIES).
The class is very flexible and offers many properties and configuration settings to configure the class. The sections below detail the use of the class for each of the major operations listed above.
Key Creation and Management
create_key creates a new public and private key.
When this method is called key is populated with the generated key. The key_public_key and key_private_key property hold the PEM formatted public and private key for ease of use. This is helpful for storing or transporting keys more easily.
The KeyAlgorithm parameter specifies the algorithm for which the key is intended to be used. Possible values are:
NIST, Koblitz, and Brainpool Curve Notes
Keys for use with NIST curves (secp256r1, secp384r1, secp521r1), Koblitz curves (secp160k1, secp192k1, secp224k1, secp256k1), and Brainpool curves are made up of a number of individual parameters.
The public key consists of the following parameters:
The private key consists of one value:
Curve25519 and Curve448 Notes
Keys for use with Curve25519 or Curve448 are made up of a private key and public key field.
key_x_pk holds the public key.
key_x_sk holds the private key.
Create Key Example (secp256r1 - PEM)
//Create a key using secp256r1
Ecc ecc = new Ecc();
ecc.CreateKey("secp256r1");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
string privKey = ecc.Key.PrivateKey; //PEM formatted key
string pubKey = ecc.Key.PublicKey; //PEM formatted key
//Load the saved key
ecc.Reset();
ecc.Key.PublicKey = pubKey;
ecc.Key.PrivateKey = privKey;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
Create Key Example (secp256r1 - Raw Key Params)
//Create a key using secp256r1 and store/load the key using the individual params
Ecc ecc = new Ecc();
ecc.CreateKey("secp256r1");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
byte[] K = ecc.Key.KB; //Private key param
byte[] Rx = ecc.Key.RxB; //Public key param
byte[] Ry = ecc.Key.RyB; //Public key param
//Load the saved key
ecc.Reset();
ecc.Key.Algorithm = ECAlgorithms.eaSecp256r1; //This MUST be set manually when using key params directly
ecc.Key.KB = K;
ecc.Key.RxB = Rx;
ecc.Key.RyB = Ry;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
Create Key Example (Ed25519 - PEM)
//Create a key using Ed25519
Ecc ecc = new Ecc();
ecc.CreateKey("Ed25519");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
string privKey = ecc.Key.PrivateKey; //PEM formatted key
string pubKey = ecc.Key.PublicKey; //PEM formatted key
//Load the saved key
ecc.Reset();
ecc.Key.PublicKey = pubKey;
ecc.Key.PrivateKey = privKey;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
Create Key Example (Ed25519 - Raw Key Params)
//Create a key using Ed25519 and store/load the key using the individual params
Ecc ecc = new Ecc();
ecc.CreateKey("Ed25519");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
byte[] XPk = ecc.Key.XPkB; //Public key data
byte[] XSk = ecc.Key.XSkB; //Secret key data
//Load the saved key
ecc.Reset();
ecc.Key.Algorithm = ECAlgorithms.eaEd25519; //This MUST be set manually when using key params directly
ecc.Key.XPkB = XPk;
ecc.Key.XSkB = XSk;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
Compute Secret (ECDH)
This method computes a shared secret using Elliptic Curve Diffie Hellman (ECDH).
When this method is called the class will use the public key specified by recipient_key_public_key and the private key specified by key to compute a shared secret, or secret agreement. The compute_secret_kdf property specifies the Hash or HMAC algorithm that is applied to the raw secret. The resulting value is held by shared_secret. The following properties are applicable when calling this method:
- key (required)
- recipient_key_public_key (required)
- compute_secret_kdf (optional)
See compute_secret_kdf for details on advanced settings that may be applicable for the chosen algorithm.
Keys created with the Ed25519 and Ed448 algorithms are not supported when calling this method.
Compute Secret Example
//Create a key for Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("X25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Create a key for Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("X25519");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Note: the public keys must be exchanged between parties by some mechanism
//Create the shared secret on Party 1
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv; //Private key of this party
ecc1.RecipientKey.PublicKey = ecc2_pub; //Public key of other party
ecc1.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage
ecc1.ComputeSecret();
Console.WriteLine(ecc1.SharedSecret);
//Create the shared secret on Party 2
ecc2.Reset();
ecc2.Key.PrivateKey = ecc2_priv; //Private key of this party
ecc2.RecipientKey.PublicKey = ecc1_pub; //Public key of other party
ecc2.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage
ecc2.ComputeSecret();
Console.WriteLine(ecc2.SharedSecret); //This will match the shared secret created by ecc1.
Signing (ECDSA and EdDSA)
sign will create a hash signature using ECDSA or EdDSA. The class will use the key specified by key to has the input data and sign the resulting hash.
key must contain a private key created with a valid ECDSA or EdDSA algorithm. key_algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for signing are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
- Ed25519 and Ed448
See create_key for details about key creation and algorithms.
When this method is called data will be read from the input_file or input_message.
The hash to be signed will be computed using the specified hash_algorithm. The computed hash is stored in the hash_value property. The signed hash is stored in the hash_signature property.
To sign as hash without first computing it set hash_value to a previously computed hash for the input data. Note: hash_value is not applicable when signing with a PureEdDSA algorithm such as "Ed25519" or "Ed448".
The on_progress event will fire with updates for the hash computation progress only. The hash signature creation process is quick and does not require progress updates.
After calling sign the public key must be sent to the recipient along with hash_signature and original input data so the other party may perform signature verification.
The following properties are applicable when calling this method:
- key (required)
- hash_algorithm (applicable to ECDSA only)
- hash_ed_dsa (applicable to EdDSA only)
- hash_value (not applicable to PureEdDSA)
- use_hex
The following properties are populated after calling this method:
EdDSA Notes
When the key_algorithm is Ed25519 or Ed448 the following additional parameters are applicable:
EdDSA keys can be used with a PureEdDSA algorithm (Ed25519/Ed448) or as HashEdDSA (Ed25519ph, Ed448ph) algorithm. This is controlled by the hash_ed_dsa property. By default the class uses the PureEdDSA algorithm.
The PureEdDSA algorithm requires two passes over the input data but provides collision resilience. The collision resilience of PureEdDSA means even if it is feasible to compute collisions for the hash function, the algorithm is still secure. When using PureEdDSA hash_value is not applicable.
When using a HashEdDSA algorithm the input is pre-hashed and supports a single pass over the data during the signing operation. To enable HashEdDSA set hash_ed_dsa to True.
To specify context data when using Ed25519 or Ed448 set EdDSAContext.
Sign And Verify Example (ECDSA)
//Create an ECDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("secp256r1");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to part 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - PureEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to part 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - HashEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.HashEdDSA = true; //Use "ed25519ph"
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to part 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.HashEdDSA = true;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Verifying (ECDSA and EdDSA)
verify_signature will verify a hash signature and return True if successful or False otherwise.
Before calling this method specify the input file by setting input_file or input_message.
A public key and the hash signature are required to perform the signature verification. Specify the public key in signer_key. Specify the hash signature in hash_signature.
When this method is called the class will compute the hash for the specified file and populate hash_value. It will verify the signature using the specified signer_key and hash_signature.
To verify the hash signature without first computing the hash simply specify hash_value before calling this method. Note: hash_value is not applicable when the message was signed with a PureEdDSA algorithm such as Ed25519 or Ed448.
The on_progress event will fire with updates for the hash computation progress only. The hash signature verification process is quick and does not require progress updates.
The following properties are applicable when calling this method:
- hash_signature (required)
- signer_key (required)
- EdDSAContext (applicable to EdDSA only)
- hash_algorithm (applicable to ECDSA only)
- hash_ed_dsa (applicable to EdDSA only)
- hash_value (not applicable to PureEdDSA)
- use_hex
Sign And Verify Example (ECDSA)
//Create an ECDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("secp256r1");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to part 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - PureEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to part 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - HashEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.HashEdDSA = true; //Use "ed25519ph"
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to part 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.HashEdDSA = true;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Encrypting (ECIES)
encrypt encrypts the specified data with the ECDSA public key specified in recipient_key.
Encryption is performed using ECIES which requires an ECDSA key. recipient_key must contain an ECDSA key. algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
See create_key for details about key creation and algorithms.
When this method is called the class will encrypt the specified data using ECIES and the encrypted data will be output. To hex encode the output set use_hex to True.
The following properties are applicable when calling this method:
- encryption_algorithm
- hmac_algorithm
- HMACOptionalInfo
- HMACKeySize
- iv
- kdf
- kdf_hash_algorithm
- KDFOptionalInfo
- use_hex
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Encrypt and Decrypt Example
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (AES with IV)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
//Use an IV (16 bytes for AES) - In a real environment this should be random
byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc1.IVB = IV;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message and the IV to Party 2
//Decrypt the message using the private key for Party 2 and the IV
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc2.IVB = IV;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (XOR Encryption Algorithm)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (KDF Options)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.KDF = "KDF1"; //Use KDF1
ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.KDF = "KDF1";
ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f");
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Decrypting (ECIES)
decrypt decrypts the specified data with the ECDSA private key specified in key.
Decryption is performed using ECIES which requires an ECDSA key. key must contain an ECDSA key. key_algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
See create_key for details about key creation and algorithms.
When this method is called the class will decrypt the specified data using ECIES and the decrypted data will be output. If the input data was originally hex encoded, set use_hex to True.
The following properties are applicable when calling this method:
- encryption_algorithm
- hmac_algorithm
- HMACOptionalInfo
- HMACKeySize
- iv
- kdf
- kdf_hash_algorithm
- KDFOptionalInfo
- use_hex
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Encrypt and Decrypt Example
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (AES with IV)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
//Use an IV (16 bytes for AES) - In a real environment this should be random
byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc1.IVB = IV;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message and the IV to Party 2
//Decrypt the message using the private key for Party 2 and the IV
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc2.IVB = IV;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (XOR Encryption Algorithm)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (KDF Options)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.KDF = "KDF1"; //Use KDF1
ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.KDF = "KDF1";
ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f");
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Property List
The following is the full list of the properties of the class with short descriptions. Click on the links for further details.
compute_secret_kdf | The key derivation function. |
encryption_algorithm | The encryption algorithm to use. |
hash_algorithm | The hash algorithm used for hash computation. |
hash_ed_dsa | Whether to use HashEdDSA when signing with an Ed25519 or Ed448 key. |
hash_signature | The hash signature. |
hash_value | The hash value of the data. |
hmac_algorithm | The HMAC algorithm to use during encryption. |
input_file | The file to process. |
input_message | The message to process. |
iv | The initialization vector (IV) used when encrypting. |
kdf | The key derivation function used during encryption and decryption. |
kdf_hash_algorithm | The KDF hash algorithm to use when encrypting and decrypting. |
key_algorithm | This property holds the algorithm associated with the key. |
keyk | Represent the private key (K) parameter. |
key_private_key | This property is a PEM formatted private key. |
key_public_key | This property is a PEM formatted public key. |
key_rx | Represents the public key's Rx parameter. |
key_ry | Represents the public key's Ry parameter. |
key_x_pk | Holds the public key data. |
key_x_sk | Holds the private key data. |
output_file | The output file when encrypting or decrypting. |
output_message | The output message when encrypting or decrypting. |
overwrite | Indicates whether or not the class should overwrite files. |
recipient_key_algorithm | This property holds the algorithm associated with the key. |
recipient_key_public_key | This property is a PEM formatted public key. |
recipient_key_rx | Represents the public key's Rx parameter. |
recipient_key_ry | Represents the public key's Ry parameter. |
recipient_key_x_pk | Holds the public key data. |
shared_secret | The computed shared secret. |
signer_key_algorithm | This property holds the algorithm associated with the key. |
signer_key_public_key | This property is a PEM formatted public key. |
signer_key_rx | Represents the public key's Rx parameter. |
signer_key_ry | Represents the public key's Ry parameter. |
signer_key_x_pk | Holds the public key data. |
use_hex | Whether binary values are hex encoded. |
Method List
The following is the full list of the methods of the class with short descriptions. Click on the links for further details.
compute_secret | Computes a shared secret. |
config | Sets or retrieves a configuration setting. |
create_key | Creates a new key. |
decrypt | Decrypted the specified data. |
encrypt | Encrypts the specified data. |
reset | Resets the class. |
sign | Creates a hash signature using ECDSA or EdDSA. |
verify_signature | Verifies the signature for the specified data. |
Event List
The following is the full list of the events fired by the class with short descriptions. Click on the links for further details.
on_error | Fired when information is available about errors during data delivery. |
on_progress | Fired as progress is made. |
Config Settings
The following is a list of config settings for the class with short descriptions. Click on the links for further details.
AppendSecret | An optional string to append to the secret agreement. |
CNGECDHKey | The CNG ECDH key. |
CNGECDSAKey | The CNG ECDSA key. |
ConcatAlgorithmId | Specifies the AlgorithmId subfield of the OtherInfo field. |
ConcatHashAlgorithm | The hash algorithm to use when ComputeSecretKDF is Concat. |
ConcatPartyUInfo | Specifies the PartyUInfo subfield of the OtherInfo field. |
ConcatPartyVInfo | Specifies the PartyVInfo subfield of the OtherInfo field. |
ConcatSuppPrivInfo | Specifies the SuppPrivInfo subfield of the OtherInfo field. |
ConcatSuppPubInfo | Specifies the SuppPubInfo subfield of the OtherInfo field. |
ECDSASignatureFormat | The format of the HashSignature when using ECDSA keys. |
EdDSAContext | A hex encoded string holding the bytes of the context when signing or verifying with Ed25519ctx. |
EncryptionKeySize | The encryption key size. |
HMACKey | A key to use when generating a Hash-based Message Authentication Code (HMAC). |
HMACKeySize | Specifies the HMAC key size to be used during encryption. |
HMACOptionalInfo | Optional data to be used during encryption and decryption during the HMAC step. |
KDFOptionalInfo | Optional data to be used during encryption and decryption during the key derivation step. |
PrependSecret | An optional string to prepend to the secret agreement. |
StrictKeyValidation | Whether to validate provided public keys based on private keys. |
TLSLabel | The TLS PRF label. |
TLSSeed | The TLS PRF Seed. |
BuildInfo | Information about the product's build. |
CodePage | The system code page used for Unicode to Multibyte translations. |
LicenseInfo | Information about the current license. |
MaskSensitive | Whether sensitive data is masked in log messages. |
ProcessIdleEvents | Whether the class uses its internal event loop to process events when the main thread is idle. |
SelectWaitMillis | The length of time in milliseconds the class will wait when DoEvents is called if there are no events to process. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
compute_secret_kdf Property
The key derivation function.
Syntax
def get_compute_secret_kdf() -> int: ... def set_compute_secret_kdf(value: int) -> None: ...
compute_secret_kdf = property(get_compute_secret_kdf, set_compute_secret_kdf)
Default Value
1
Remarks
This property specifies the key derivation function (KDF) and algorithm to use when calling compute_secret.
Possible values are:
0 (ekdSHA1) | SHA-1 |
1 (ekdSHA256 - default) | SHA-256 |
2 (ekdSHA384) | SHA-384 |
3 (ekdSHA512) | SHA-512 |
4 (ekdMD2) | MD2 |
5 (ekdMD4) | MD4 |
6 (ekdMD5) | MD5 |
7 (ekdHMACSHA1) | HMAC-SHA1 |
8 (ekdHMACSHA256) | HMAC-SHA256 |
9 (ekdHMACSHA384) | HMAC-SHA384 |
10 (ekdHMACSHA512) | HMAC-SHA512 |
11 (ekdHMACMD5) | HMAC-MD5 |
12 (ekdTLS) | TLS |
13 (ekdConcat) | Concat |
HMAC Notes
If an HMAC algorithm is selected HMACKey may optionally be set to specify the key.
TLS Notes
When set to TLS, TLSSeed and TLSLabel are required. In addition PrependSecret and AppendSecret are not applicable.
Concat Notes
If Concat is selected the following configuration settings are applicable:
- ConcatAlgorithmId (required)
- ConcatPartyUInfo (required)
- ConcatPartyVInfo (required)
- ConcatSuppPubInfo
- ConcatSuppPrivInfo
- ConcatHashAlgorithm
encryption_algorithm Property
The encryption algorithm to use.
Syntax
def get_encryption_algorithm() -> int: ... def set_encryption_algorithm(value: int) -> None: ...
encryption_algorithm = property(get_encryption_algorithm, set_encryption_algorithm)
Default Value
0
Remarks
This setting specifies the encryption algorithm to use when encrypt is called. This must also be set before calling decrypt to match the algorithm used during the initial encryption.
Possible values are:
- 0 (iesAES - default)
- 1 (iesTripleDES)
- 2 (iesXOR)
AES Notes
When encryption_algorithm is set to iesAES AES CBC with a default key size of 256 bits is used. To specify a different key size set EncryptionKeySize.hash_algorithm Property
The hash algorithm used for hash computation.
Syntax
def get_hash_algorithm() -> int: ... def set_hash_algorithm(value: int) -> None: ...
hash_algorithm = property(get_hash_algorithm, set_hash_algorithm)
Default Value
2
Remarks
This property specifies the hash algorithm used for hash computation. This is only applicable when calling sign or verify_signature and key_algorithm specifies a ECDSA key (NIST, Koblitz, or Brainpool curve). Possible values are:
0 (ehaSHA1) | SHA-1 |
1 (ehaSHA224) | SHA-224 |
2 (ehaSHA256 - default) | SHA-256 |
3 (ehaSHA384) | SHA-384 |
4 (ehaSHA512) | SHA-512 |
5 (ehaMD2) | MD2 |
6 (ehaMD4) | MD4 |
7 (ehaMD5) | MD5 |
8 (ehaMD5SHA1) | MD5SHA-1 |
9 (ehaRIPEMD160) | RIPEMD-160 |
When key_algorithm specified an EdDSA key this setting is not applicable, as the hash algorithm is defined by the specification as SHA-512 for Ed25519 and SHAKE-256 for Ed448.
hash_ed_dsa Property
Whether to use HashEdDSA when signing with an Ed25519 or Ed448 key.
Syntax
def get_hash_ed_dsa() -> bool: ... def set_hash_ed_dsa(value: bool) -> None: ...
hash_ed_dsa = property(get_hash_ed_dsa, set_hash_ed_dsa)
Default Value
FALSE
Remarks
This setting specifies whether to use the HashEdDSA algorithm when signing and verifying with Ed25519 or Ed448 keys.
If set to True the class will use the HashEdDSA algorithm (Ed25519ph or Ed448ph) when signing and verifying. When using a HashEdDSA algorithm the input is pre-hashed and supports a single pass over the data during the signing operation.
If set to False (Default) the class will use the PureEdDSA algorithm (Ed25519 or Ed448) when signing. The PureEdDSA requires two passes over the input data but provides collision resilience. The collision resilience of PureEdDSA means even if it is feasible to compute collisions for the hash function, the algorithm is still secure.
This property is only applicable when calling sign and key_algorithm is set to Ed25519 or Ed448.
If this property is set before calling sign it must be set before calling verify_signature.
hash_signature Property
The hash signature.
Syntax
def get_hash_signature() -> bytes: ... def set_hash_signature(value: bytes) -> None: ...
hash_signature = property(get_hash_signature, set_hash_signature)
Default Value
""
Remarks
This property holds the computed hash signature. This is populated after calling sign. This must be set before calling verify_signature.
hash_value Property
The hash value of the data.
Syntax
def get_hash_value() -> bytes: ... def set_hash_value(value: bytes) -> None: ...
hash_value = property(get_hash_value, set_hash_value)
Default Value
""
Remarks
This property holds the computed hash value for the specified data. This is populated when calling sign or verify_signature when an input file is specified by setting input_file or input_message.
Pre-existing hash values may be set to this property before calling sign or verify_signature. If you know the hash value prior to using the class you may specify the pre-computed hash value here.
This setting is not applicable to PureEdDSA algorithms. If key_algorithm is Ed25519 or Ed448 and hash_ed_dsa is False (default), the PureEdDSA algorithm is use and hash_value is not applicable.
Hash Notes
The class will determine whether or not to recompute the hash based on the properties that are set. If a file is specified by input_file or input_message the hash will be recomputed when calling sign or verify_signature. If the hash_value property is set the class will only sign the hash or verify the hash signature. Setting input_file or input_message clears the hash_value property. Setting the hash_value property clears the input file selection.
hmac_algorithm Property
The HMAC algorithm to use during encryption.
Syntax
def get_hmac_algorithm() -> int: ... def set_hmac_algorithm(value: int) -> None: ...
hmac_algorithm = property(get_hmac_algorithm, set_hmac_algorithm)
Default Value
2
Remarks
This property specifies the HMAC algorithm to use when encrypting. The HMAC algorithm is used when encrypt and decrypt are called to protect and verify data. Possible values are:
- 0 (iesHMACSHA1)
- 1 (iesHMACSHA224)
- 2 (iesHMACSHA256 - Default)
- 3 (iesHMACSHA384)
- 4 (iesHMACSHA512)
- 5 (iesHMACRIPEMD160)
This property is only applicable when calling encrypt or decrypt.
input_file Property
The file to process.
Syntax
def get_input_file() -> str: ... def set_input_file(value: str) -> None: ...
input_file = property(get_input_file, set_input_file)
Default Value
""
Remarks
This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- input_file
- input_message
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
input_message Property
The message to process.
Syntax
def get_input_message() -> bytes: ... def set_input_message(value: bytes) -> None: ...
input_message = property(get_input_message, set_input_message)
Default Value
""
Remarks
This property specifies the message to be processed.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- input_file
- input_message
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
iv Property
The initialization vector (IV) used when encrypting.
Syntax
def get_iv() -> bytes: ... def set_iv(value: bytes) -> None: ...
iv = property(get_iv, set_iv)
Default Value
""
Remarks
This property optionally specifies an IV to be used when calling encrypt or decrypt. If specified the iv is used by encryption_algorithm during encryption.
If not specified the class will create an IV filled with null bytes (zeros). Since the encryption key is only used once the use of null bytes in the IV is considered acceptable and is a standard practice.
The length of the IV should be as follows:
encryption_algorithm | IV Length (in bytes) |
AES | 16 |
3DES | 8 |
This setting is not applicable when encryption_algorithm is set to XOR.
kdf Property
The key derivation function used during encryption and decryption.
Syntax
def get_kdf() -> str: ... def set_kdf(value: str) -> None: ...
kdf = property(get_kdf, set_kdf)
Default Value
"KDF2"
Remarks
This property specifies the key derivation function (KDF) to use when encrypting and decrypting. Possible values are:
- "KDF1"
- "KDF2" (Default)
This property is only applicable when calling encrypt or decrypt.
kdf_hash_algorithm Property
The KDF hash algorithm to use when encrypting and decrypting.
Syntax
def get_kdf_hash_algorithm() -> int: ... def set_kdf_hash_algorithm(value: int) -> None: ...
kdf_hash_algorithm = property(get_kdf_hash_algorithm, set_kdf_hash_algorithm)
Default Value
2
Remarks
This property specifies the hash algorithm to use in when deriving a key using the specified kdf. Possible values are:
- 0 (iesSHA1)
- 1 (iesSHA224)
- 2 (iesSHA256)
- 3 (iesSHA384)
- 4 (iesSHA512)
This property is only applicable when calling encrypt or decrypt.
key_algorithm Property
This property holds the algorithm associated with the key.
Syntax
def get_key_algorithm() -> int: ... def set_key_algorithm(value: int) -> None: ...
key_algorithm = property(get_key_algorithm, set_key_algorithm)
Default Value
0
Remarks
This property holds the algorithm associated with the key. Possible values are:
- 0 (eaSecp256r1)
- 1 (eaSecp384r1)
- 2 (eaSecp521r1)
- 3 (eaEd25519)
- 4 (eaEd448)
- 5 (eaX25519)
- 6 (eaX448)
- 7 (eaSecp160k1)
- 8 (eaSecp192k1)
- 9 (eaSecp224k1)
- 10 (eaSecp256k1)
- 11 (eaBrainpoolP160r1)
- 12 (eaBrainpoolP192r1)
- 13 (eaBrainpoolP224r1)
- 14 (eaBrainpoolP256r1)
- 15 (eaBrainpoolP320r1)
- 16 (eaBrainpoolP384r1)
- 17 (eaBrainpoolP512r1)
- 18 (eaBrainpoolP160t1)
- 19 (eaBrainpoolP192t1)
- 20 (eaBrainpoolP224t1)
- 21 (eaBrainpoolP256t1)
- 22 (eaBrainpoolP320t1)
- 23 (eaBrainpoolP384t1)
- 24 (eaBrainpoolP512t1)
When assigning a key using the PEM formatted key_private_key and key_public_key the key_algorithm property will be automatically updated with the key algorithm.
When assigning a key using the raw key parameters (keyk, key_rx, and key_ry for NIST or key_x_pk, and key_x_sk for Curve25519/Curve448) the key_algorithm property must be set manually to the key algorithm.
The following table summarizes the supported operations for keys created with each algorithm:
KeyAlgorithm | Supported Operations |
secp256r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp384r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp521r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
X25519 | ECDH (compute_secret) |
X448 | ECDH (compute_secret) |
Ed25519 | EdDSA (sign and verify_signature) |
Ed448 | EdDSA (sign and verify_signature) |
secp160k1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp192k1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp224k1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp256k1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP160r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP192r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP224r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP256r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP320r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP384r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP512r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP160t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP192t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP224t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP256t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP320t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP384t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP512t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
keyk Property
Represent the private key (K) parameter.
Syntax
def get_keyk() -> bytes: ... def set_keyk(value: bytes) -> None: ...
keyk = property(get_keyk, set_keyk)
Default Value
""
Remarks
Represent the private key (K) parameter.
Note: This value is only applicable when using an NIST, Koblitz, or Brainpool curve.
key_private_key Property
This property is a PEM formatted private key.
Syntax
def get_key_private_key() -> str: ... def set_key_private_key(value: str) -> None: ...
key_private_key = property(get_key_private_key, set_key_private_key)
Default Value
""
Remarks
This property is a PEM formatted private key. The purpose of this property is to allow easier management of the private key parameters by using only a single value.
key_public_key Property
This property is a PEM formatted public key.
Syntax
def get_key_public_key() -> str: ... def set_key_public_key(value: str) -> None: ...
key_public_key = property(get_key_public_key, set_key_public_key)
Default Value
""
Remarks
This property is a PEM formatted public key. The purpose of this property is to allow easier management of the public key parameters by using only a single value.
key_rx Property
Represents the public key's Rx parameter.
Syntax
def get_key_rx() -> bytes: ... def set_key_rx(value: bytes) -> None: ...
key_rx = property(get_key_rx, set_key_rx)
Default Value
""
Remarks
Represents the public key's Rx parameter.
Note: This value is only applicable when using an NIST, Koblitz, or Brainpool curve.
key_ry Property
Represents the public key's Ry parameter.
Syntax
def get_key_ry() -> bytes: ... def set_key_ry(value: bytes) -> None: ...
key_ry = property(get_key_ry, set_key_ry)
Default Value
""
Remarks
Represents the public key's Ry parameter.
Note: This value is only applicable when using an NIST, Koblitz, or Brainpool curve.
key_x_pk Property
Holds the public key data.
Syntax
def get_key_x_pk() -> bytes: ... def set_key_x_pk(value: bytes) -> None: ...
key_x_pk = property(get_key_x_pk, set_key_x_pk)
Default Value
""
Remarks
Holds the public key data.
Note: This value is only applicable when using Curve25519 or Curve448.
key_x_sk Property
Holds the private key data.
Syntax
def get_key_x_sk() -> bytes: ... def set_key_x_sk(value: bytes) -> None: ...
key_x_sk = property(get_key_x_sk, set_key_x_sk)
Default Value
""
Remarks
Holds the private key data.
Note: This value is only applicable when using Curve25519 or Curve448.
output_file Property
The output file when encrypting or decrypting.
Syntax
def get_output_file() -> str: ... def set_output_file(value: str) -> None: ...
output_file = property(get_output_file, set_output_file)
Default Value
""
Remarks
This property specifies the file to which the output will be written when encrypt or decrypt is called. This may be set to an absolute or relative path.
This property is only applicable to encrypt and decrypt.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
output_message Property
The output message when encrypting or decrypting.
Syntax
def get_output_message() -> bytes: ...
output_message = property(get_output_message, None)
Default Value
""
Remarks
This property will be populated with the output after calling encrypt or decrypt if output_file is not set.
This property is only applicable to encrypt and decrypt.
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
This property is read-only.
overwrite Property
Indicates whether or not the class should overwrite files.
Syntax
def get_overwrite() -> bool: ... def set_overwrite(value: bool) -> None: ...
overwrite = property(get_overwrite, set_overwrite)
Default Value
FALSE
Remarks
This property indicates whether or not the class will overwrite output_file. If overwrite is False, an error will be thrown whenever output_file exists before an operation. The default value is False.
recipient_key_algorithm Property
This property holds the algorithm associated with the key.
Syntax
def get_recipient_key_algorithm() -> int: ... def set_recipient_key_algorithm(value: int) -> None: ...
recipient_key_algorithm = property(get_recipient_key_algorithm, set_recipient_key_algorithm)
Default Value
0
Remarks
This property holds the algorithm associated with the key. Possible values are:
- 0 (eaSecp256r1)
- 1 (eaSecp384r1)
- 2 (eaSecp521r1)
- 3 (eaEd25519)
- 4 (eaEd448)
- 5 (eaX25519)
- 6 (eaX448)
- 7 (eaSecp160k1)
- 8 (eaSecp192k1)
- 9 (eaSecp224k1)
- 10 (eaSecp256k1)
- 11 (eaBrainpoolP160r1)
- 12 (eaBrainpoolP192r1)
- 13 (eaBrainpoolP224r1)
- 14 (eaBrainpoolP256r1)
- 15 (eaBrainpoolP320r1)
- 16 (eaBrainpoolP384r1)
- 17 (eaBrainpoolP512r1)
- 18 (eaBrainpoolP160t1)
- 19 (eaBrainpoolP192t1)
- 20 (eaBrainpoolP224t1)
- 21 (eaBrainpoolP256t1)
- 22 (eaBrainpoolP320t1)
- 23 (eaBrainpoolP384t1)
- 24 (eaBrainpoolP512t1)
When assigning a key using the PEM formatted recipient_key_private_key and recipient_key_public_key the recipient_key_algorithm property will be automatically updated with the key algorithm.
When assigning a key using the raw key parameters (recipient_keyk, recipient_key_rx, and recipient_key_ry for NIST or recipient_key_x_pk, and recipient_key_x_sk for Curve25519/Curve448) the recipient_key_algorithm property must be set manually to the key algorithm.
The following table summarizes the supported operations for keys created with each algorithm:
KeyAlgorithm | Supported Operations |
secp256r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp384r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp521r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
X25519 | ECDH (compute_secret) |
X448 | ECDH (compute_secret) |
Ed25519 | EdDSA (sign and verify_signature) |
Ed448 | EdDSA (sign and verify_signature) |
secp160k1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp192k1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp224k1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp256k1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP160r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP192r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP224r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP256r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP320r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP384r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP512r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP160t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP192t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP224t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP256t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP320t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP384t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP512t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
recipient_key_public_key Property
This property is a PEM formatted public key.
Syntax
def get_recipient_key_public_key() -> str: ... def set_recipient_key_public_key(value: str) -> None: ...
recipient_key_public_key = property(get_recipient_key_public_key, set_recipient_key_public_key)
Default Value
""
Remarks
This property is a PEM formatted public key. The purpose of this property is to allow easier management of the public key parameters by using only a single value.
recipient_key_rx Property
Represents the public key's Rx parameter.
Syntax
def get_recipient_key_rx() -> bytes: ... def set_recipient_key_rx(value: bytes) -> None: ...
recipient_key_rx = property(get_recipient_key_rx, set_recipient_key_rx)
Default Value
""
Remarks
Represents the public key's Rx parameter.
Note: This value is only applicable when using an NIST, Koblitz, or Brainpool curve.
recipient_key_ry Property
Represents the public key's Ry parameter.
Syntax
def get_recipient_key_ry() -> bytes: ... def set_recipient_key_ry(value: bytes) -> None: ...
recipient_key_ry = property(get_recipient_key_ry, set_recipient_key_ry)
Default Value
""
Remarks
Represents the public key's Ry parameter.
Note: This value is only applicable when using an NIST, Koblitz, or Brainpool curve.
recipient_key_x_pk Property
Holds the public key data.
Syntax
def get_recipient_key_x_pk() -> bytes: ... def set_recipient_key_x_pk(value: bytes) -> None: ...
recipient_key_x_pk = property(get_recipient_key_x_pk, set_recipient_key_x_pk)
Default Value
""
Remarks
Holds the public key data.
Note: This value is only applicable when using Curve25519 or Curve448.
shared_secret Property
The computed shared secret.
Syntax
def get_shared_secret() -> bytes: ...
shared_secret = property(get_shared_secret, None)
Default Value
""
Remarks
This property holds the shared secret computed by compute_secret.
This property is read-only.
signer_key_algorithm Property
This property holds the algorithm associated with the key.
Syntax
def get_signer_key_algorithm() -> int: ... def set_signer_key_algorithm(value: int) -> None: ...
signer_key_algorithm = property(get_signer_key_algorithm, set_signer_key_algorithm)
Default Value
0
Remarks
This property holds the algorithm associated with the key. Possible values are:
- 0 (eaSecp256r1)
- 1 (eaSecp384r1)
- 2 (eaSecp521r1)
- 3 (eaEd25519)
- 4 (eaEd448)
- 5 (eaX25519)
- 6 (eaX448)
- 7 (eaSecp160k1)
- 8 (eaSecp192k1)
- 9 (eaSecp224k1)
- 10 (eaSecp256k1)
- 11 (eaBrainpoolP160r1)
- 12 (eaBrainpoolP192r1)
- 13 (eaBrainpoolP224r1)
- 14 (eaBrainpoolP256r1)
- 15 (eaBrainpoolP320r1)
- 16 (eaBrainpoolP384r1)
- 17 (eaBrainpoolP512r1)
- 18 (eaBrainpoolP160t1)
- 19 (eaBrainpoolP192t1)
- 20 (eaBrainpoolP224t1)
- 21 (eaBrainpoolP256t1)
- 22 (eaBrainpoolP320t1)
- 23 (eaBrainpoolP384t1)
- 24 (eaBrainpoolP512t1)
When assigning a key using the PEM formatted signer_key_private_key and signer_key_public_key the signer_key_algorithm property will be automatically updated with the key algorithm.
When assigning a key using the raw key parameters (signer_keyk, signer_key_rx, and signer_key_ry for NIST or signer_key_x_pk, and signer_key_x_sk for Curve25519/Curve448) the signer_key_algorithm property must be set manually to the key algorithm.
The following table summarizes the supported operations for keys created with each algorithm:
KeyAlgorithm | Supported Operations |
secp256r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp384r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp521r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
X25519 | ECDH (compute_secret) |
X448 | ECDH (compute_secret) |
Ed25519 | EdDSA (sign and verify_signature) |
Ed448 | EdDSA (sign and verify_signature) |
secp160k1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp192k1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp224k1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
secp256k1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP160r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP192r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP224r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP256r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP320r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP384r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP512r1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP160t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP192t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP224t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP256t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP320t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP384t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
brainpoolP512t1 | ECDH/ECIES/ECDSA (compute_secret, encrypt, decrypt, sign, and verify_signature) |
signer_key_public_key Property
This property is a PEM formatted public key.
Syntax
def get_signer_key_public_key() -> str: ... def set_signer_key_public_key(value: str) -> None: ...
signer_key_public_key = property(get_signer_key_public_key, set_signer_key_public_key)
Default Value
""
Remarks
This property is a PEM formatted public key. The purpose of this property is to allow easier management of the public key parameters by using only a single value.
signer_key_rx Property
Represents the public key's Rx parameter.
Syntax
def get_signer_key_rx() -> bytes: ... def set_signer_key_rx(value: bytes) -> None: ...
signer_key_rx = property(get_signer_key_rx, set_signer_key_rx)
Default Value
""
Remarks
Represents the public key's Rx parameter.
Note: This value is only applicable when using an NIST, Koblitz, or Brainpool curve.
signer_key_ry Property
Represents the public key's Ry parameter.
Syntax
def get_signer_key_ry() -> bytes: ... def set_signer_key_ry(value: bytes) -> None: ...
signer_key_ry = property(get_signer_key_ry, set_signer_key_ry)
Default Value
""
Remarks
Represents the public key's Ry parameter.
Note: This value is only applicable when using an NIST, Koblitz, or Brainpool curve.
signer_key_x_pk Property
Holds the public key data.
Syntax
def get_signer_key_x_pk() -> bytes: ... def set_signer_key_x_pk(value: bytes) -> None: ...
signer_key_x_pk = property(get_signer_key_x_pk, set_signer_key_x_pk)
Default Value
""
Remarks
Holds the public key data.
Note: This value is only applicable when using Curve25519 or Curve448.
use_hex Property
Whether binary values are hex encoded.
Syntax
def get_use_hex() -> bool: ... def set_use_hex(value: bool) -> None: ...
use_hex = property(get_use_hex, set_use_hex)
Default Value
FALSE
Remarks
This setting specifies whether various calculated values are hex encoded. If set to False (Default) all data is provided as-is with no encoding.
If set to True certain properties are hex encoded when populated for ease of display, transport, and storage.
Compute Secret Notes
This property specifies whether shared_secret is hex encoded when compute_secret is called.
Sign and Verify Notes
This property specifies whether hash_value and hash_signature are hex encoded.
If set to True, when sign is called the class will compute the hash for the specified file and populate hash_value with the hex encoded hash value. It will then create the hash signature and populate hash_signature with the hex encoded hash signature value. If hash_value is specified directly it must be a hex encoded value.
If set to True, when verify_signature is called the class will compute the hash value for the specified file and populate hash_value with the hex encoded hash value. It will then hex decode hash_signature and verify the signature. hash_signature must hold a hex encoded value. If hash_value is specified directly it must be a hex encoded value.
Encrypt and Decrypt Notes
If set to True, when encrypt is called the class will perform the encryption as normal and then hex encode the output. output_message or output_file will hold hex encoded data.
If set to True, when decrypt is called the class will expect input_message or input_file to hold hex encoded data. The class will then hex decode the data and perform decryption as normal.
compute_secret Method
Computes a shared secret.
Syntax
def compute_secret() -> None: ...
Remarks
This method computes a shared secret using Elliptic Curve Diffie Hellman (ECDH).
When this method is called the class will use the public key specified by recipient_key_public_key and the private key specified by key to compute a shared secret, or secret agreement. The compute_secret_kdf property specifies the Hash or HMAC algorithm that is applied to the raw secret. The resulting value is held by shared_secret. The following properties are applicable when calling this method:
- key (required)
- recipient_key_public_key (required)
- compute_secret_kdf (optional)
See compute_secret_kdf for details on advanced settings that may be applicable for the chosen algorithm.
Keys created with the Ed25519 and Ed448 algorithms are not supported when calling this method.
Compute Secret Example
//Create a key for Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("X25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Create a key for Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("X25519");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Note: the public keys must be exchanged between parties by some mechanism
//Create the shared secret on Party 1
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv; //Private key of this party
ecc1.RecipientKey.PublicKey = ecc2_pub; //Public key of other party
ecc1.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage
ecc1.ComputeSecret();
Console.WriteLine(ecc1.SharedSecret);
//Create the shared secret on Party 2
ecc2.Reset();
ecc2.Key.PrivateKey = ecc2_priv; //Private key of this party
ecc2.RecipientKey.PublicKey = ecc1_pub; //Public key of other party
ecc2.UseHex = true; //Hex encodes the shared secret bytes for easier display/storage
ecc2.ComputeSecret();
Console.WriteLine(ecc2.SharedSecret); //This will match the shared secret created by ecc1.
config Method
Sets or retrieves a configuration setting.
Syntax
def config(configuration_string: str) -> str: ...
Remarks
config is a generic method available in every class. It is used to set and retrieve configuration settings for the class.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
create_key Method
Creates a new key.
Syntax
def create_key(key_algorithm: str) -> None: ...
Remarks
create_key creates a new public and private key.
When this method is called key is populated with the generated key. The key_public_key and key_private_key property hold the PEM formatted public and private key for ease of use. This is helpful for storing or transporting keys more easily.
The KeyAlgorithm parameter specifies the algorithm for which the key is intended to be used. Possible values are:
NIST, Koblitz, and Brainpool Curve Notes
Keys for use with NIST curves (secp256r1, secp384r1, secp521r1), Koblitz curves (secp160k1, secp192k1, secp224k1, secp256k1), and Brainpool curves are made up of a number of individual parameters.
The public key consists of the following parameters:
The private key consists of one value:
Curve25519 and Curve448 Notes
Keys for use with Curve25519 or Curve448 are made up of a private key and public key field.
key_x_pk holds the public key.
key_x_sk holds the private key.
Create Key Example (secp256r1 - PEM)
//Create a key using secp256r1
Ecc ecc = new Ecc();
ecc.CreateKey("secp256r1");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
string privKey = ecc.Key.PrivateKey; //PEM formatted key
string pubKey = ecc.Key.PublicKey; //PEM formatted key
//Load the saved key
ecc.Reset();
ecc.Key.PublicKey = pubKey;
ecc.Key.PrivateKey = privKey;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
Create Key Example (secp256r1 - Raw Key Params)
//Create a key using secp256r1 and store/load the key using the individual params
Ecc ecc = new Ecc();
ecc.CreateKey("secp256r1");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
byte[] K = ecc.Key.KB; //Private key param
byte[] Rx = ecc.Key.RxB; //Public key param
byte[] Ry = ecc.Key.RyB; //Public key param
//Load the saved key
ecc.Reset();
ecc.Key.Algorithm = ECAlgorithms.eaSecp256r1; //This MUST be set manually when using key params directly
ecc.Key.KB = K;
ecc.Key.RxB = Rx;
ecc.Key.RyB = Ry;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaSecp256r1"
Create Key Example (Ed25519 - PEM)
//Create a key using Ed25519
Ecc ecc = new Ecc();
ecc.CreateKey("Ed25519");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
string privKey = ecc.Key.PrivateKey; //PEM formatted key
string pubKey = ecc.Key.PublicKey; //PEM formatted key
//Load the saved key
ecc.Reset();
ecc.Key.PublicKey = pubKey;
ecc.Key.PrivateKey = privKey;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
Create Key Example (Ed25519 - Raw Key Params)
//Create a key using Ed25519 and store/load the key using the individual params
Ecc ecc = new Ecc();
ecc.CreateKey("Ed25519");
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
byte[] XPk = ecc.Key.XPkB; //Public key data
byte[] XSk = ecc.Key.XSkB; //Secret key data
//Load the saved key
ecc.Reset();
ecc.Key.Algorithm = ECAlgorithms.eaEd25519; //This MUST be set manually when using key params directly
ecc.Key.XPkB = XPk;
ecc.Key.XSkB = XSk;
Console.WriteLine(ecc.Key.Algorithm); //outputs enum value "eaEd25519"
decrypt Method
Decrypted the specified data.
Syntax
def decrypt() -> None: ...
Remarks
decrypt decrypts the specified data with the ECDSA private key specified in key.
Decryption is performed using ECIES which requires an ECDSA key. key must contain an ECDSA key. key_algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
See create_key for details about key creation and algorithms.
When this method is called the class will decrypt the specified data using ECIES and the decrypted data will be output. If the input data was originally hex encoded, set use_hex to True.
The following properties are applicable when calling this method:
- encryption_algorithm
- hmac_algorithm
- HMACOptionalInfo
- HMACKeySize
- iv
- kdf
- kdf_hash_algorithm
- KDFOptionalInfo
- use_hex
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Encrypt and Decrypt Example
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (AES with IV)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
//Use an IV (16 bytes for AES) - In a real environment this should be random
byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc1.IVB = IV;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message and the IV to Party 2
//Decrypt the message using the private key for Party 2 and the IV
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc2.IVB = IV;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (XOR Encryption Algorithm)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (KDF Options)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.KDF = "KDF1"; //Use KDF1
ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.KDF = "KDF1";
ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f");
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
encrypt Method
Encrypts the specified data.
Syntax
def encrypt() -> None: ...
Remarks
encrypt encrypts the specified data with the ECDSA public key specified in recipient_key.
Encryption is performed using ECIES which requires an ECDSA key. recipient_key must contain an ECDSA key. algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for encryption are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
See create_key for details about key creation and algorithms.
When this method is called the class will encrypt the specified data using ECIES and the encrypted data will be output. To hex encode the output set use_hex to True.
The following properties are applicable when calling this method:
- encryption_algorithm
- hmac_algorithm
- HMACOptionalInfo
- HMACKeySize
- iv
- kdf
- kdf_hash_algorithm
- KDFOptionalInfo
- use_hex
Input and Output Properties
The class will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found the search stops. The order in which the output properties are checked is as follows:
- output_file
- output_message: The output data is written to this property if no other destination is specified.
Encrypt and Decrypt Example
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (AES with IV)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
//Use an IV (16 bytes for AES) - In a real environment this should be random
byte[] IV = new byte[] { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc1.IVB = IV;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message and the IV to Party 2
//Decrypt the message using the private key for Party 2 and the IV
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesAES;
ecc2.IVB = IV;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (XOR Encryption Algorithm)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.EncryptionAlgorithm = EccEncryptionAlgorithms.iesXOR;
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
Encrypt and Decrypt Example (KDF Options)
//Create an ECDSA key on Party 2
Ecc ecc2 = new Ecc();
ecc2.CreateKey("secp256r1");
string ecc2_priv = ecc2.Key.PrivateKey;
string ecc2_pub = ecc2.Key.PublicKey;
//Transmit public key to Party 1
//Encrypt the message on Party 1 using public key from Party 2
Ecc ecc1 = new Ecc();
ecc1.KDF = "KDF1"; //Use KDF1
ecc1.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc1.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f"); //Hex encoded string
ecc1.InputMessage = "hello ecc";
ecc1.RecipientKey.PublicKey = ecc2_pub;
ecc1.UseHex = true;
ecc1.Encrypt();
string encryptedMessage = ecc1.OutputMessage;
//Transmit the encrypted message to Party 2
//Decrypt the message using the private key for Party 2
ecc2.KDF = "KDF1";
ecc2.KDFHashAlgorithm = EccKDFHashAlgorithms.iesSHA1;
ecc2.Config("KDFOptionalInfo=202122232425262728292a2b2c2d2e2f");
ecc2.Key.PrivateKey = ecc2_priv;
ecc2.InputMessage = encryptedMessage;
ecc2.UseHex = true;
ecc2.Decrypt();
Console.WriteLine(ecc2.OutputMessage);
reset Method
Resets the class.
Syntax
def reset() -> None: ...
Remarks
When called, the class will reset all of its properties to their default values.
sign Method
Creates a hash signature using ECDSA or EdDSA.
Syntax
def sign() -> None: ...
Remarks
sign will create a hash signature using ECDSA or EdDSA. The class will use the key specified by key to has the input data and sign the resulting hash.
key must contain a private key created with a valid ECDSA or EdDSA algorithm. key_algorithm is used to determine the eligibility of the key for this operation. Supported algorithms for signing are:
- NIST Curves (secp256r1, secp384r1, secp521r1)
- Koblitz Curves (secp160k1, secp192k1, secp224k1, secp256k1)
- Brainpool Curves
- Ed25519 and Ed448
See create_key for details about key creation and algorithms.
When this method is called data will be read from the input_file or input_message.
The hash to be signed will be computed using the specified hash_algorithm. The computed hash is stored in the hash_value property. The signed hash is stored in the hash_signature property.
To sign as hash without first computing it set hash_value to a previously computed hash for the input data. Note: hash_value is not applicable when signing with a PureEdDSA algorithm such as "Ed25519" or "Ed448".
The on_progress event will fire with updates for the hash computation progress only. The hash signature creation process is quick and does not require progress updates.
After calling sign the public key must be sent to the recipient along with hash_signature and original input data so the other party may perform signature verification.
The following properties are applicable when calling this method:
- key (required)
- hash_algorithm (applicable to ECDSA only)
- hash_ed_dsa (applicable to EdDSA only)
- hash_value (not applicable to PureEdDSA)
- use_hex
The following properties are populated after calling this method:
EdDSA Notes
When the key_algorithm is Ed25519 or Ed448 the following additional parameters are applicable:
EdDSA keys can be used with a PureEdDSA algorithm (Ed25519/Ed448) or as HashEdDSA (Ed25519ph, Ed448ph) algorithm. This is controlled by the hash_ed_dsa property. By default the class uses the PureEdDSA algorithm.
The PureEdDSA algorithm requires two passes over the input data but provides collision resilience. The collision resilience of PureEdDSA means even if it is feasible to compute collisions for the hash function, the algorithm is still secure. When using PureEdDSA hash_value is not applicable.
When using a HashEdDSA algorithm the input is pre-hashed and supports a single pass over the data during the signing operation. To enable HashEdDSA set hash_ed_dsa to True.
To specify context data when using Ed25519 or Ed448 set EdDSAContext.
Sign And Verify Example (ECDSA)
//Create an ECDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("secp256r1");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to part 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - PureEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to part 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - HashEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.HashEdDSA = true; //Use "ed25519ph"
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to part 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.HashEdDSA = true;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
verify_signature Method
Verifies the signature for the specified data.
Syntax
def verify_signature() -> bool: ...
Remarks
verify_signature will verify a hash signature and return True if successful or False otherwise.
Before calling this method specify the input file by setting input_file or input_message.
A public key and the hash signature are required to perform the signature verification. Specify the public key in signer_key. Specify the hash signature in hash_signature.
When this method is called the class will compute the hash for the specified file and populate hash_value. It will verify the signature using the specified signer_key and hash_signature.
To verify the hash signature without first computing the hash simply specify hash_value before calling this method. Note: hash_value is not applicable when the message was signed with a PureEdDSA algorithm such as Ed25519 or Ed448.
The on_progress event will fire with updates for the hash computation progress only. The hash signature verification process is quick and does not require progress updates.
The following properties are applicable when calling this method:
- hash_signature (required)
- signer_key (required)
- EdDSAContext (applicable to EdDSA only)
- hash_algorithm (applicable to ECDSA only)
- hash_ed_dsa (applicable to EdDSA only)
- hash_value (not applicable to PureEdDSA)
- use_hex
Sign And Verify Example (ECDSA)
//Create an ECDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("secp256r1");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to part 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - PureEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to part 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
Sign And Verify Example (EdDSA - HashEdDSA)
//Create an EdDSA key on Party 1
Ecc ecc1 = new Ecc();
ecc1.CreateKey("ed25519");
string ecc1_priv = ecc1.Key.PrivateKey;
string ecc1_pub = ecc1.Key.PublicKey;
//Sign the data on Party 1
string originalData = "hello ecc";
ecc1.Reset();
ecc1.Key.PrivateKey = ecc1_priv;
ecc1.InputMessage = originalData;
ecc1.UseHex = true; //Hex encode the hash signature for ease of use.
ecc1.HashEdDSA = true; //Use "ed25519ph"
ecc1.Sign();
string hashSignature = ecc1.HashSignature;
//Transmit the hash signature, public key, and original data to part 2
//Verify the data on Party 2
Ecc ecc2 = new Ecc();
ecc2.SignerKey.PublicKey = ecc1_pub;
ecc2.InputMessage = originalData;
ecc2.HashSignature = hashSignature;
ecc2.HashEdDSA = true;
ecc2.UseHex = true; //Decode the hex encoded hash signature
bool isVerified = ecc2.VerifySignature();
on_error Event
Fired when information is available about errors during data delivery.
Syntax
class ECCErrorEventParams(object): @property def error_code() -> int: ... @property def description() -> str: ... # In class ECC: @property def on_error() -> Callable[[ECCErrorEventParams], None]: ... @on_error.setter def on_error(event_hook: Callable[[ECCErrorEventParams], None]) -> None: ...
Remarks
The on_error event is fired in case of exceptional conditions during message processing. Normally the class fails with an error.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
on_progress Event
Fired as progress is made.
Syntax
class ECCProgressEventParams(object): @property def bytes_processed() -> int: ... @property def percent_processed() -> int: ... # In class ECC: @property def on_progress() -> Callable[[ECCProgressEventParams], None]: ... @on_progress.setter def on_progress(event_hook: Callable[[ECCProgressEventParams], None]) -> None: ...
Remarks
This event is fired automatically as data is processed by the class.
The PercentProcessed parameter indicates the current status of the operation.
The BytesProcessed parameter holds the total number of bytes processed so far.
ECC Config Settings
The class accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the class, access to these internal properties is provided through the config method.ECC Config Settings
Note: This is not applicable when compute_secret_kdf is set to 12 (ekdTLS).
This setting is required when compute_secret_kdf is set to ekdConcat. This setting is only applicable when calling compute_secret.
- SHA1
- SHA224
- SHA256 (default)
- SHA384
- SHA512
- RIPEMD160
This setting is required when compute_secret_kdf is set to ekdConcat. This setting is only applicable when calling compute_secret.
This setting is required when compute_secret_kdf is set to ekdConcat. This setting is only applicable when calling compute_secret.
This setting is optional when compute_secret_kdf is set to ekdConcat. This setting is only applicable when calling compute_secret.
This setting is optional when compute_secret_kdf is set to ekdConcat. This setting is only applicable when calling compute_secret.
- 0 (Concatenated - default)
- 1 (ASN)
Note: This setting is only applicable when key_algorithm is set to an NIST, Koblitz, or Brainpool curve.
This setting is only applicable when key_algorithm is set to Ed25519 or Ed448. When this setting is specified and the key_algorithm is Ed25519 and hash_ed_dsa is False the class will automatically use Ed25519ctx.
If this value is specified before calling sign, it must also be set prior to calling verify_signature.
- 128
- 192
- 256 (default)
This is only applicable when calling compute_secret.
This setting is only applicable when calling encrypt or decrypt.
The value specified in this setting must a hex string.
If specified this must be set before calling both encrypt and decrypt.
The value specified in this setting must a hex string.
If specified this must be set before calling both encrypt and decrypt.
Note: This is not applicable when compute_secret_kdf is set to 12 (ekdTLS).
When using keys with the algorithm Ed25519, Ed448, X25519, or X448 the class will calculate the public key based on the provided private key and compare it to the provided public key to ensure they match.
When using keys with an NIST, Koblitz, or Brainpool curve, the class will perform calculations to verify the public key is a point on the curve. The class will also calculate the public key based on the provided private key and compare it to the provided public key to ensure they match.
The default value is False and the class will use the public and private keys as provided without any additional checks.
Base Config Settings
The following is a list of valid code page identifiers:
Identifier | Name |
037 | IBM EBCDIC - U.S./Canada |
437 | OEM - United States |
500 | IBM EBCDIC - International |
708 | Arabic - ASMO 708 |
709 | Arabic - ASMO 449+, BCON V4 |
710 | Arabic - Transparent Arabic |
720 | Arabic - Transparent ASMO |
737 | OEM - Greek (formerly 437G) |
775 | OEM - Baltic |
850 | OEM - Multilingual Latin I |
852 | OEM - Latin II |
855 | OEM - Cyrillic (primarily Russian) |
857 | OEM - Turkish |
858 | OEM - Multilingual Latin I + Euro symbol |
860 | OEM - Portuguese |
861 | OEM - Icelandic |
862 | OEM - Hebrew |
863 | OEM - Canadian-French |
864 | OEM - Arabic |
865 | OEM - Nordic |
866 | OEM - Russian |
869 | OEM - Modern Greek |
870 | IBM EBCDIC - Multilingual/ROECE (Latin-2) |
874 | ANSI/OEM - Thai (same as 28605, ISO 8859-15) |
875 | IBM EBCDIC - Modern Greek |
932 | ANSI/OEM - Japanese, Shift-JIS |
936 | ANSI/OEM - Simplified Chinese (PRC, Singapore) |
949 | ANSI/OEM - Korean (Unified Hangul Code) |
950 | ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC) |
1026 | IBM EBCDIC - Turkish (Latin-5) |
1047 | IBM EBCDIC - Latin 1/Open System |
1140 | IBM EBCDIC - U.S./Canada (037 + Euro symbol) |
1141 | IBM EBCDIC - Germany (20273 + Euro symbol) |
1142 | IBM EBCDIC - Denmark/Norway (20277 + Euro symbol) |
1143 | IBM EBCDIC - Finland/Sweden (20278 + Euro symbol) |
1144 | IBM EBCDIC - Italy (20280 + Euro symbol) |
1145 | IBM EBCDIC - Latin America/Spain (20284 + Euro symbol) |
1146 | IBM EBCDIC - United Kingdom (20285 + Euro symbol) |
1147 | IBM EBCDIC - France (20297 + Euro symbol) |
1148 | IBM EBCDIC - International (500 + Euro symbol) |
1149 | IBM EBCDIC - Icelandic (20871 + Euro symbol) |
1200 | Unicode UCS-2 Little-Endian (BMP of ISO 10646) |
1201 | Unicode UCS-2 Big-Endian |
1250 | ANSI - Central European |
1251 | ANSI - Cyrillic |
1252 | ANSI - Latin I |
1253 | ANSI - Greek |
1254 | ANSI - Turkish |
1255 | ANSI - Hebrew |
1256 | ANSI - Arabic |
1257 | ANSI - Baltic |
1258 | ANSI/OEM - Vietnamese |
1361 | Korean (Johab) |
10000 | MAC - Roman |
10001 | MAC - Japanese |
10002 | MAC - Traditional Chinese (Big5) |
10003 | MAC - Korean |
10004 | MAC - Arabic |
10005 | MAC - Hebrew |
10006 | MAC - Greek I |
10007 | MAC - Cyrillic |
10008 | MAC - Simplified Chinese (GB 2312) |
10010 | MAC - Romania |
10017 | MAC - Ukraine |
10021 | MAC - Thai |
10029 | MAC - Latin II |
10079 | MAC - Icelandic |
10081 | MAC - Turkish |
10082 | MAC - Croatia |
12000 | Unicode UCS-4 Little-Endian |
12001 | Unicode UCS-4 Big-Endian |
20000 | CNS - Taiwan |
20001 | TCA - Taiwan |
20002 | Eten - Taiwan |
20003 | IBM5550 - Taiwan |
20004 | TeleText - Taiwan |
20005 | Wang - Taiwan |
20105 | IA5 IRV International Alphabet No. 5 (7-bit) |
20106 | IA5 German (7-bit) |
20107 | IA5 Swedish (7-bit) |
20108 | IA5 Norwegian (7-bit) |
20127 | US-ASCII (7-bit) |
20261 | T.61 |
20269 | ISO 6937 Non-Spacing Accent |
20273 | IBM EBCDIC - Germany |
20277 | IBM EBCDIC - Denmark/Norway |
20278 | IBM EBCDIC - Finland/Sweden |
20280 | IBM EBCDIC - Italy |
20284 | IBM EBCDIC - Latin America/Spain |
20285 | IBM EBCDIC - United Kingdom |
20290 | IBM EBCDIC - Japanese Katakana Extended |
20297 | IBM EBCDIC - France |
20420 | IBM EBCDIC - Arabic |
20423 | IBM EBCDIC - Greek |
20424 | IBM EBCDIC - Hebrew |
20833 | IBM EBCDIC - Korean Extended |
20838 | IBM EBCDIC - Thai |
20866 | Russian - KOI8-R |
20871 | IBM EBCDIC - Icelandic |
20880 | IBM EBCDIC - Cyrillic (Russian) |
20905 | IBM EBCDIC - Turkish |
20924 | IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol) |
20932 | JIS X 0208-1990 & 0121-1990 |
20936 | Simplified Chinese (GB2312) |
21025 | IBM EBCDIC - Cyrillic (Serbian, Bulgarian) |
21027 | Extended Alpha Lowercase |
21866 | Ukrainian (KOI8-U) |
28591 | ISO 8859-1 Latin I |
28592 | ISO 8859-2 Central Europe |
28593 | ISO 8859-3 Latin 3 |
28594 | ISO 8859-4 Baltic |
28595 | ISO 8859-5 Cyrillic |
28596 | ISO 8859-6 Arabic |
28597 | ISO 8859-7 Greek |
28598 | ISO 8859-8 Hebrew |
28599 | ISO 8859-9 Latin 5 |
28605 | ISO 8859-15 Latin 9 |
29001 | Europa 3 |
38598 | ISO 8859-8 Hebrew |
50220 | ISO 2022 Japanese with no halfwidth Katakana |
50221 | ISO 2022 Japanese with halfwidth Katakana |
50222 | ISO 2022 Japanese JIS X 0201-1989 |
50225 | ISO 2022 Korean |
50227 | ISO 2022 Simplified Chinese |
50229 | ISO 2022 Traditional Chinese |
50930 | Japanese (Katakana) Extended |
50931 | US/Canada and Japanese |
50933 | Korean Extended and Korean |
50935 | Simplified Chinese Extended and Simplified Chinese |
50936 | Simplified Chinese |
50937 | US/Canada and Traditional Chinese |
50939 | Japanese (Latin) Extended and Japanese |
51932 | EUC - Japanese |
51936 | EUC - Simplified Chinese |
51949 | EUC - Korean |
51950 | EUC - Traditional Chinese |
52936 | HZ-GB2312 Simplified Chinese |
54936 | Windows XP: GB18030 Simplified Chinese (4 Byte) |
57002 | ISCII Devanagari |
57003 | ISCII Bengali |
57004 | ISCII Tamil |
57005 | ISCII Telugu |
57006 | ISCII Assamese |
57007 | ISCII Oriya |
57008 | ISCII Kannada |
57009 | ISCII Malayalam |
57010 | ISCII Gujarati |
57011 | ISCII Punjabi |
65000 | Unicode UTF-7 |
65001 | Unicode UTF-8 |
Identifier | Name |
1 | ASCII |
2 | NEXTSTEP |
3 | JapaneseEUC |
4 | UTF8 |
5 | ISOLatin1 |
6 | Symbol |
7 | NonLossyASCII |
8 | ShiftJIS |
9 | ISOLatin2 |
10 | Unicode |
11 | WindowsCP1251 |
12 | WindowsCP1252 |
13 | WindowsCP1253 |
14 | WindowsCP1254 |
15 | WindowsCP1250 |
21 | ISO2022JP |
30 | MacOSRoman |
10 | UTF16String |
0x90000100 | UTF16BigEndian |
0x94000100 | UTF16LittleEndian |
0x8c000100 | UTF32String |
0x98000100 | UTF32BigEndian |
0x9c000100 | UTF32LittleEndian |
65536 | Proprietary |
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these classes: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
Setting this configuration setting to True tells the class to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to False by default. On Linux/macOS, this setting is set to True by default.
To use the system security libraries for Linux, OpenSSL support must be enabled. For more information on how to enable OpenSSL, please refer to the OpenSSL Notes section.
ECC Errors
ECC Errors
102 No Key specified. | |
104 Cannot read or write file. | |
111 OutputFile already exists and Overwrite is False. | |
120 Invalid curve. | |
124 HashSignature must be specified. | |
304 Cannot write file. | |
305 Cannot read file. | |
306 Cannot create file. | |
1401 Specified ECC parameters are invalid. | |
1402 Missing hash value. | |
1403 Public key must be specified. | |
1404 Key must be specified. | |
1405 HashSignature must be specified. | |
1406 Invalid key size. | |
1407 Invalid TLS seed. TLSSeed must be 64 bytes long. | |
1408 Invalid TLS label. | |
1409 Unsupported key format. | |
1410 Unsupported curve. |