DSA Component
Properties Methods Events Config Settings Errors
The DSA (Digital Signature Algorithm) component enables users to generate DSA hash signatures.
Syntax
nsoftware.IPWorksEncrypt.DSA
Remarks
The DSA (Digital Signature Algorithm) component enables users to generate DSA hash signatures.
To begin you must either specify an existing key or create a new key. Existing private keys may be specified by setting Key. To create a new key call CreateKey. Alternatively an existing certificate may be specified by setting Certificate
Signing
To sign data first set Key or Certificate. Select the input file by setting SetInputStream, InputFile, or InputMessage. Next call Sign. The Sign method will automatically compute the hash, and then sign the hash with the specified key.
Send the public key (see CreateKey for details), file, and HashSignature to the recipient.
To sign a hash without recomputing the hash simply set HashValue to the pre-computed hash value before calling Sign.
Signature Verification
To verify a signature specify the input data using InputFile or InputMessage. Set SignerKey or SignerCert. Next set HashSignature and call VerifySignature. The VerifySignature method will return True if the signature was successfully verified.
To verify a hash signature without recomputing the hash simply set HashValue to the pre-computed hash value before calling VerifySignature.
Hash Notes
The component will determine whether or not to recompute the hash based on the properties that are set. If a file is specified by SetInputStream, InputFile, or InputMessage, the hash will be recomputed when calling Sign or VerifySignature. If the HashValue property is set, the component will only sign the hash or verify the hash signature. Setting SetInputStream, InputFile, or InputMessage clears the HashValue property. Setting the HashValue property clears the input file selection.
DSA Key Notes
A DSA key is made up of a number of individual parameters. When calling CreateKey the Key property is populated with a new private and public key.
After calling Sign the public key must be sent to the recipient along with HashSignature so they may perform signature verification. Likewise you must obtain the public key along with HashSignature in order to perform signature verification.
The public key consists of the following parameters:
The component also includes the PublicKey field which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both signature creation and verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in PublicKey in which case the individual parameters must be sent.
The private key consists of the following parameters:
The component also include the PrivateKey field which holds the PEM formatted private key for ease of use. This is helpful for storing the private key more easily..Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
Certificate | The certificate used for signing. |
HashAlgorithm | The hash algorithm used for hash computation. |
HashSignature | The hash signature. |
HashValue | The hash value of the data. |
InputFile | The file to process. |
InputMessage | The message to process. |
Key | The DSA key. |
SignerCert | The certificate used for signature verification. |
SignerKey | The public key used to verify the signature. |
UseHex | Whether HashValue and HashSignature are hex encoded. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
CreateKey | Creates a new key. |
Reset | Resets the component. |
SetInputStream | Sets the stream from which the component will read data to encrypt or decrypt. |
Sign | Creates a hash signature. |
VerifySignature | Verifies the signature for the specified data. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Error | Fired when information is available about errors during data delivery. |
Progress | Fired as progress is made. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
CloseInputStreamAfterProcessing | Determines whether or not the input stream is closed after processing. |
HashSignatureFormat | The format of the HashSignature. |
KeyFormat | How the public and private key are formatted. |
KeySize | The size, in bits, of the secret key. |
BuildInfo | Information about the product's build. |
GUIAvailable | Whether or not a message loop is available for processing events. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
UseFIPSCompliantAPI | Tells the component whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
Certificate Property (DSA Component)
The certificate used for signing.
Syntax
public Certificate Certificate { get; set; }
Public Property Certificate As Certificate
Remarks
This property specifies a certificate with private key.
This may be set instead of Key. This allows a Certificate object to be used instead of a DSAKey object. This certificate is used when calling Sign. The specified certificate must have a private key.
If both this property and Key are specified, Key will be used and this property will be ignored.
Please refer to the Certificate type for a complete list of fields.HashAlgorithm Property (DSA Component)
The hash algorithm used for hash computation.
Syntax
public DSAHashAlgorithms HashAlgorithm { get; set; }
enum DSAHashAlgorithms { dhaSHA1, dhaSHA224, dhaSHA256, dhaSHA384, dhaSHA512, dhaRIPEMD160 }
Public Property HashAlgorithm As DsaHashAlgorithms
Enum DSAHashAlgorithms dhaSHA1 dhaSHA224 dhaSHA256 dhaSHA384 dhaSHA512 dhaRIPEMD160 End Enum
Default Value
2
Remarks
This property specifies the hash algorithm used for hash computation. This is only applicable when calling Sign or VerifySignature and HashValue is computed. Possible values are:
0 (dhaSHA1) | SHA-1 |
1 (dhaSHA224) | SHA-224 |
2 (dhaSHA256 - default) | SHA-256 |
3 (dhaSHA384) | SHA-384 |
4 (dhaSHA512) | SHA-512 |
5 (dhaRIPEMD160) | RIPEMD-160 |
HashSignature Property (DSA Component)
The hash signature.
Syntax
Default Value
""
Remarks
This property holds the computed hash signature. This is populated after calling Sign. This must be set before calling VerifySignature.
HashValue Property (DSA Component)
The hash value of the data.
Syntax
Default Value
""
Remarks
This property holds the computed hash value for the specified data. This is populated when calling Sign or VerifySignature when an input file is specified by setting SetInputStream, InputFile, or InputMessage.
If you know the hash value prior to using the component you may specify the pre-computed hash value here.
Hash Notes
The component will determine whether or not to recompute the hash based on the properties that are set. If a file is specified by SetInputStream, InputFile, or InputMessage, the hash will be recomputed when calling Sign or VerifySignature. If the HashValue property is set, the component will only sign the hash or verify the hash signature. Setting SetInputStream, InputFile, or InputMessage clears the HashValue property. Setting the HashValue property clears the input file selection.
InputFile Property (DSA Component)
The file to process.
Syntax
Default Value
""
Remarks
This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- SetInputStream
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
InputMessage Property (DSA Component)
The message to process.
Syntax
Default Value
""
Remarks
This property specifies the message to be processed.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- SetInputStream
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Key Property (DSA Component)
The DSA key.
Syntax
Remarks
This property specifies the DSA key used to create a signature. This property must be set before calling Sign. Alternatively, a certificate may be specified by setting Certificate
DSA Key Notes
A DSA key is made up of a number of individual parameters. When calling CreateKey the Key property is populated with a new private and public key.
After calling Sign the public key must be sent to the recipient along with HashSignature so they may perform signature verification. Likewise you must obtain the public key along with HashSignature in order to perform signature verification.
The public key consists of the following parameters:
The component also includes the PublicKey field which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both signature creation and verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in PublicKey in which case the individual parameters must be sent.
The private key consists of the following parameters:
The component also include the PrivateKey field which holds the PEM formatted private key for ease of use. This is helpful for storing the private key more easily. Please refer to the DSAKey type for a complete list of fields.SignerCert Property (DSA Component)
The certificate used for signature verification.
Syntax
public Certificate SignerCert { get; set; }
Public Property SignerCert As Certificate
Remarks
This property specifies a certificate for signature verification.
This may be set instead of SignerKey. This allows a Certificate object to be used instead of a DSAKey object. This certificate is used when calling VerifySignature.
If both this property and SignerKey are specified, SignerKey will be used and this property will be ignored.
Please refer to the Certificate type for a complete list of fields.SignerKey Property (DSA Component)
The public key used to verify the signature.
Syntax
Remarks
This property specifies the public key used to verify the signature. This public key corresponds to the private key used when creating the signature. This must be set before calling VerifySignature. Alternatively, a certificate may be specified by setting SignerCert
DSA Key Notes
A DSA key is made up of a number of individual parameters. When calling CreateKey the Key property is populated with a new private and public key.
After calling Sign the public key must be sent to the recipient along with HashSignature so they may perform signature verification. Likewise you must obtain the public key along with HashSignature in order to perform signature verification.
The public key consists of the following parameters:
The component also includes the PublicKey field which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both signature creation and verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in PublicKey in which case the individual parameters must be sent.
The private key consists of the following parameters:
The component also include the PrivateKey field which holds the PEM formatted private key for ease of use. This is helpful for storing the private key more easily. Please refer to the DSAKey type for a complete list of fields.UseHex Property (DSA Component)
Whether HashValue and HashSignature are hex encoded.
Syntax
Default Value
False
Remarks
This property specifies whether HashValue and HashSignature are hex encoded.
If set to True, when Sign is called the component will compute the hash for the specified file and populate HashValue with the hex encoded hash value. It will then create the hash signature and populate HashSignature with the hex encoded hash signature value. If HashValue is specified directly, it must be a hex encoded value.
If set to True, when VerifySignature is called the component will compute the hash value for the specified file and populate HashValue with the hex encoded hash value. It will then hex decode HashSignature and verify the signature. HashSignature must hold a hex encoded value. If HashValue is specified directly, it must be a hex encoded value.
Config Method (DSA Component)
Sets or retrieves a configuration setting.
Syntax
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
CreateKey Method (DSA Component)
Creates a new key.
Syntax
public void CreateKey(); Async Version public async Task CreateKey(); public async Task CreateKey(CancellationToken cancellationToken);
Public Sub CreateKey() Async Version Public Sub CreateKey() As Task Public Sub CreateKey(cancellationToken As CancellationToken) As Task
Remarks
This method creates a new public and private key.
DSA Key Notes
A DSA key is made up of a number of individual parameters. When calling CreateKey the Key property is populated with a new private and public key.
After calling Sign the public key must be sent to the recipient along with HashSignature so they may perform signature verification. Likewise you must obtain the public key along with HashSignature in order to perform signature verification.
The public key consists of the following parameters:
The component also includes the PublicKey field which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both signature creation and verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in PublicKey in which case the individual parameters must be sent.
The private key consists of the following parameters:
The component also include the PrivateKey field which holds the PEM formatted private key for ease of use. This is helpful for storing the private key more easily.Reset Method (DSA Component)
Resets the component.
Syntax
public void Reset(); Async Version public async Task Reset(); public async Task Reset(CancellationToken cancellationToken);
Public Sub Reset() Async Version Public Sub Reset() As Task Public Sub Reset(cancellationToken As CancellationToken) As Task
Remarks
When called, the component will reset all of its properties to their default values.
SetInputStream Method (DSA Component)
Sets the stream from which the component will read data to encrypt or decrypt.
Syntax
public void SetInputStream(System.IO.Stream inputStream); Async Version public async Task SetInputStream(System.IO.Stream inputStream); public async Task SetInputStream(System.IO.Stream inputStream, CancellationToken cancellationToken);
Public Sub SetInputStream(ByVal InputStream As System.IO.Stream) Async Version Public Sub SetInputStream(ByVal InputStream As System.IO.Stream) As Task Public Sub SetInputStream(ByVal InputStream As System.IO.Stream, cancellationToken As CancellationToken) As Task
Remarks
This method sets the stream from which the component will read data to encrypt or decrypt.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- SetInputStream
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Sign Method (DSA Component)
Creates a hash signature.
Syntax
public void Sign(); Async Version public async Task Sign(); public async Task Sign(CancellationToken cancellationToken);
Public Sub Sign() Async Version Public Sub Sign() As Task Public Sub Sign(cancellationToken As CancellationToken) As Task
Remarks
This method will create a hash signature.
Before calling this method specify the input file by setting SetInputStream, InputFile, or InputMessage.
A key is required to create the hash signature. You may create a new key by calling CreateKey, or specify an existing key pair in Key. Alternatively, a certificate may be specified by setting Certificate. When this method is called the component will compute the hash for the specified file and populate HashValue. It will then create the hash signature using the specified Key and populate HashSignature.
To create the hash signature without first computing the hash simply specify HashValue before calling this method.
The Progress event will fire with updates for the hash computation progress only. The hash signature creation process is quick and does not require progress updates.
VerifySignature Method (DSA Component)
Verifies the signature for the specified data.
Syntax
public bool VerifySignature(); Async Version public async Task<bool> VerifySignature(); public async Task<bool> VerifySignature(CancellationToken cancellationToken);
Public Function VerifySignature() As Boolean Async Version Public Function VerifySignature() As Task(Of Boolean) Public Function VerifySignature(cancellationToken As CancellationToken) As Task(Of Boolean)
Remarks
This method will verify a hash signature.
Before calling this method specify the input file by setting SetInputStream, InputFile, or InputMessage.
A public key and the hash signature are required to perform the signature verification. Specify the public key in SignerKey. Alternatively, a certificate may be specified by setting SignerCert. Specify the hash signature in HashSignature.
When this method is called the component will compute the hash for the specified file and populate HashValue. It will verify the signature using the specified SignerKey and HashSignature.
To verify the hash signature without first computing the hash simply specify HashValue before calling this method.
The Progress event will fire with updates for the hash computation progress only. The hash signature verification process is quick and does not require progress updates.
Error Event (DSA Component)
Fired when information is available about errors during data delivery.
Syntax
public event OnErrorHandler OnError; public delegate void OnErrorHandler(object sender, DSAErrorEventArgs e); public class DSAErrorEventArgs : EventArgs { public int ErrorCode { get; } public string Description { get; } }
Public Event OnError As OnErrorHandler Public Delegate Sub OnErrorHandler(sender As Object, e As DSAErrorEventArgs) Public Class DSAErrorEventArgs Inherits EventArgs Public ReadOnly Property ErrorCode As Integer Public ReadOnly Property Description As String End Class
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the component throws an exception.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Progress Event (DSA Component)
Fired as progress is made.
Syntax
public event OnProgressHandler OnProgress; public delegate void OnProgressHandler(object sender, DSAProgressEventArgs e); public class DSAProgressEventArgs : EventArgs { public long BytesProcessed { get; } public int PercentProcessed { get; } }
Public Event OnProgress As OnProgressHandler Public Delegate Sub OnProgressHandler(sender As Object, e As DSAProgressEventArgs) Public Class DSAProgressEventArgs Inherits EventArgs Public ReadOnly Property BytesProcessed As Long Public ReadOnly Property PercentProcessed As Integer End Class
Remarks
This event is fired automatically as data is processed by the component.
The PercentProcessed parameter indicates the current status of the operation.
The BytesProcessed parameter holds the total number of bytes processed so far.
Certificate Type
This is the digital certificate being used.
Remarks
This type describes the current digital certificate. The certificate may be a public or private key. The fields are used to identify or select certificates.
Fields
EffectiveDate
string (read-only)
Default: ""
This is the date on which this certificate becomes valid. Before this date, it is not valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2000 15:00:00.
ExpirationDate
string (read-only)
Default: ""
This is the date the certificate expires. After this date, the certificate will no longer be valid. The date is localized to the system's time zone. The following example illustrates the format of an encoded date:
23-Jan-2001 15:00:00.
ExtendedKeyUsage
string (read-only)
Default: ""
This is a comma-delimited list of extended key usage identifiers. These are the same as ASN.1 object identifiers (OIDs).
Fingerprint
string (read-only)
Default: ""
This is the hex-encoded, 16-byte MD5 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: bc:2a:72:af:fe:58:17:43:7a:5f:ba:5a:7c:90:f7:02
FingerprintSHA1
string (read-only)
Default: ""
This is the hex-encoded, 20-byte SHA-1 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 30:7b:fa:38:65:83:ff:da:b4:4e:07:3f:17:b8:a4:ed:80:be:ff:84
FingerprintSHA256
string (read-only)
Default: ""
This is the hex-encoded, 32-byte SHA-256 fingerprint of the certificate. This property is primarily used for keys which do not have a corresponding X.509 public certificate, such as PEM keys that only contain a private key. It is commonly used for SSH keys.
The following example illustrates the format: 6a:80:5c:33:a9:43:ea:b0:96:12:8a:64:96:30:ef:4a:8a:96:86:ce:f4:c7:be:10:24:8e:2b:60:9e:f3:59:53
Issuer
string (read-only)
Default: ""
This is the issuer of the certificate. This field contains a string representation of the name of the issuing authority for the certificate.
PrivateKey
string (read-only)
Default: ""
This is the private key of the certificate (if available). The key is provided as PEM/Base64-encoded data.
Note: The PrivateKey may be available but not exportable. In this case, PrivateKey returns an empty string.
PrivateKeyAvailable
bool (read-only)
Default: False
This field shows whether a PrivateKey is available for the selected certificate. If PrivateKeyAvailable is True, the certificate may be used for authentication purposes (e.g., server authentication).
PrivateKeyContainer
string (read-only)
Default: ""
This is the name of the PrivateKey container for the certificate (if available). This functionality is available only on Windows platforms.
PublicKey
string (read-only)
Default: ""
This is the public key of the certificate. The key is provided as PEM/Base64-encoded data.
PublicKeyAlgorithm
string (read-only)
Default: ""
This field contains the textual description of the certificate's public key algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_DH") or an object identifier (OID) string representing the algorithm.
PublicKeyLength
int (read-only)
Default: 0
This is the length of the certificate's public key (in bits). Common values are 512, 1024, and 2048.
SerialNumber
string (read-only)
Default: ""
This is the serial number of the certificate encoded as a string. The number is encoded as a series of hexadecimal digits, with each pair representing a byte of the serial number.
SignatureAlgorithm
string (read-only)
Default: ""
The field contains the text description of the certificate's signature algorithm. The property contains either the name of the algorithm (e.g., "RSA" or "RSA_MD5RSA") or an object identifier (OID) string representing the algorithm.
Store
string
Default: "MY"
This is the name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StoreB
byte []
Default: "MY"
This is the name of the certificate store for the client certificate.
The StoreType field denotes the type of the certificate store specified by Store. If the store is password protected, specify the password in StorePassword.
Store is used in conjunction with the Subject field to specify client certificates. If Store has a value, and Subject or Encoded is set, a search for a certificate is initiated. Please see the Subject field for details.
Designations of certificate stores are platform dependent.
The following designations are the most common User and Machine certificate stores in Windows:
MY | A certificate store holding personal certificates with their associated private keys. |
CA | Certifying authority certificates. |
ROOT | Root certificates. |
When the certificate store type is cstPFXFile, this property must be set to the name of the file. When the type is cstPFXBlob, the property must be set to the binary contents of a PFX file (i.e., PKCS#12 certificate store).
StorePassword
string
Default: ""
If the type of certificate store requires a password, this property is used to specify the password needed to open the certificate store.
StoreType
CertStoreTypes
Default: 0
This is the type of certificate store for this certificate.
The component supports both public and private keys in a variety of formats. When the cstAuto value is used, the component will automatically determine the type. This field can take one of the following values:
0 (cstUser - default) | For Windows, this specifies that the certificate store is a certificate store owned by the current user.
Note: This store type is not available in Java. |
1 (cstMachine) | For Windows, this specifies that the certificate store is a machine store.
Note: This store type is not available in Java. |
2 (cstPFXFile) | The certificate store is the name of a PFX (PKCS#12) file containing certificates. |
3 (cstPFXBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in PFX (PKCS#12) format. |
4 (cstJKSFile) | The certificate store is the name of a Java Key Store (JKS) file containing certificates.
Note: This store type is only available in Java. |
5 (cstJKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in Java Key Store (JKS) format.
Note: This store type is only available in Java. |
6 (cstPEMKeyFile) | The certificate store is the name of a PEM-encoded file that contains a private key and an optional certificate. |
7 (cstPEMKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a private key and an optional certificate. |
8 (cstPublicKeyFile) | The certificate store is the name of a file that contains a PEM- or DER-encoded public key certificate. |
9 (cstPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains a PEM- or DER-encoded public key certificate. |
10 (cstSSHPublicKeyBlob) | The certificate store is a string (binary or Base64-encoded) that contains an SSH-style public key. |
11 (cstP7BFile) | The certificate store is the name of a PKCS#7 file containing certificates. |
12 (cstP7BBlob) | The certificate store is a string (binary) representing a certificate store in PKCS#7 format. |
13 (cstSSHPublicKeyFile) | The certificate store is the name of a file that contains an SSH-style public key. |
14 (cstPPKFile) | The certificate store is the name of a file that contains a PPK (PuTTY Private Key). |
15 (cstPPKBlob) | The certificate store is a string (binary) that contains a PPK (PuTTY Private Key). |
16 (cstXMLFile) | The certificate store is the name of a file that contains a certificate in XML format. |
17 (cstXMLBlob) | The certificate store is a string that contains a certificate in XML format. |
18 (cstJWKFile) | The certificate store is the name of a file that contains a JWK (JSON Web Key). |
19 (cstJWKBlob) | The certificate store is a string that contains a JWK (JSON Web Key). |
21 (cstBCFKSFile) | The certificate store is the name of a file that contains a BCFKS (Bouncy Castle FIPS Key Store).
Note: This store type is only available in Java and .NET. |
22 (cstBCFKSBlob) | The certificate store is a string (binary or Base64-encoded) representing a certificate store in BCFKS (Bouncy Castle FIPS Key Store) format.
Note: This store type is only available in Java and .NET. |
23 (cstPKCS11) | The certificate is present on a physical security key accessible via a PKCS#11 interface.
To use a security key, the necessary data must first be collected using the CertMgr component. The ListStoreCertificates method may be called after setting CertStoreType to cstPKCS11, CertStorePassword to the PIN, and CertStore to the full path of the PKCS#11 DLL. The certificate information returned in the CertList event's CertEncoded parameter may be saved for later use. When using a certificate, pass the previously saved security key information as the Store and set StorePassword to the PIN. Code Example. SSH Authentication with Security Key:
|
99 (cstAuto) | The store type is automatically detected from the input data. This setting may be used with both public and private keys and can detect any of the supported formats automatically. |
SubjectAltNames
string (read-only)
Default: ""
This field contains comma-separated lists of alternative subject names for the certificate.
ThumbprintMD5
string (read-only)
Default: ""
This field contains the MD5 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA1
string (read-only)
Default: ""
This field contains the SHA-1 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
ThumbprintSHA256
string (read-only)
Default: ""
This field contains the SHA-256 hash of the certificate. It is primarily used for X.509 certificates. If the hash does not already exist, it is automatically computed.
Usage
string (read-only)
Default: ""
This field contains the text description of UsageFlags.
This value will be of one or more of the following strings and will be separated by commas:
- Digital Signature
- Non-Repudiation
- Key Encipherment
- Data Encipherment
- Key Agreement
- Certificate Signing
- CRL Signing
- Encipher Only
If the provider is OpenSSL, the value is a comma-separated list of X.509 certificate extension names.
UsageFlags
int (read-only)
Default: 0
This field contains the flags that show intended use for the certificate. The value of UsageFlags is a combination of the following flags:
0x80 | Digital Signature |
0x40 | Non-Repudiation |
0x20 | Key Encipherment |
0x10 | Data Encipherment |
0x08 | Key Agreement |
0x04 | Certificate Signing |
0x02 | CRL Signing |
0x01 | Encipher Only |
Please see the Usage field for a text representation of UsageFlags.
This functionality currently is not available when the provider is OpenSSL.
Version
string (read-only)
Default: ""
This field contains the certificate's version number. The possible values are the strings "V1", "V2", and "V3".
Subject
string
Default: ""
This is the subject of the certificate used for client authentication.
This field will be populated with the full subject of the loaded certificate. When loading a certificate, the subject is used to locate the certificate in the store.
If an exact match is not found, the store is searched for subjects containing the value of the property.
If a match is still not found, the property is set to an empty string, and no certificate is selected.
The special value "*" picks a random certificate in the certificate store.
The certificate subject is a comma-separated list of distinguished name fields and values. For instance, "CN=www.server.com, OU=test, C=US, E=support@nsoftware.com". Common fields and their meanings are as follows:
Field | Meaning |
CN | Common Name. This is commonly a hostname like www.server.com. |
O | Organization |
OU | Organizational Unit |
L | Locality |
S | State |
C | Country |
E | Email Address |
If a field value contains a comma, it must be quoted.
Encoded
string
Default: ""
This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
EncodedB
byte []
Default: ""
This is the certificate (PEM/Base64 encoded). This field is used to assign a specific certificate. The Store and Subject fields also may be used to specify a certificate.
When Encoded is set, a search is initiated in the current Store for the private key of the certificate. If the key is found, Subject is updated to reflect the full subject of the selected certificate; otherwise, Subject is set to an empty string.
Constructors
public Certificate();
Public Certificate()
Creates a instance whose properties can be set. This is useful for use with when generating new certificates.
public Certificate(string certificateFile);
Public Certificate(ByVal CertificateFile As String)
Opens CertificateFile and reads out the contents as an X.509 public key.
public Certificate(byte[] encoded);
Public Certificate(ByVal Encoded As Byte())
Parses Encoded as an X.509 public key.
public Certificate(CertStoreTypes storeType, string store, string storePassword, string subject);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public Certificate(CertStoreTypes storeType, string store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.
ConfigurationString is a newline separated list of name-value pairs that may be used to modify the default behavior. Possible values include "PersistPFXKey", which shows whether or not the PFX key is persisted after performing operations with the private key. This correlates to the PKCS12_NO_PERSIST_KEY CryptoAPI option. The default value is True (the key is persisted). "Thumbprint" - an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load. When specified, this value is used to select the certificate in the store. This is applicable to the cstUser , cstMachine , cstPublicKeyFile , and cstPFXFile store types. "UseInternalSecurityAPI" shows whether the platform (default) or the internal security API is used when performing certificate-related operations.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public Certificate(CertStoreTypes storeType, string store, string storePassword, byte[] encoded);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As String, ByVal StorePassword As String, ByVal Encoded As Byte())
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a file containing the certificate store. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.
public Certificate(CertStoreTypes storeType, byte[] store, string storePassword, string subject);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As Byte(), ByVal StorePassword As String, ByVal Subject As String)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public Certificate(CertStoreTypes storeType, byte[] store, string storePassword, string subject, string configurationString);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As Byte(), ByVal StorePassword As String, ByVal Subject As String, ByVal ConfigurationString As String)
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will attempt to find the certificate identified by Subject . This can be either a complete or a substring match of the X.509 certificate's subject Distinguished Name (DN). The Subject parameter can also take an MD5, SHA-1, or SHA-256 thumbprint of the certificate to load in a "Thumbprint=value" format.
public Certificate(CertStoreTypes storeType, byte[] store, string storePassword, byte[] encoded);
Public Certificate(ByVal StoreType As CertStoreTypes, ByVal Store As Byte(), ByVal StorePassword As String, ByVal Encoded As Byte())
StoreType identifies the type of certificate store to use. See for descriptions of the different certificate stores. Store is a byte array containing the certificate data. StorePassword is the password used to protect the store.
After the store has been successfully opened, the component will load Encoded as an X.509 certificate and search the opened store for a corresponding private key.
DSAKey Type
Contains the parameters for the DSA algorithm.
Remarks
This type is made up of fields that represent the private and public key parameters used by the DSA algorithm.
DSA Key Notes
A DSA key is made up of a number of individual parameters. When calling CreateKey the Key property is populated with a new private and public key.
After calling Sign the public key must be sent to the recipient along with HashSignature so they may perform signature verification. Likewise you must obtain the public key along with HashSignature in order to perform signature verification.
The public key consists of the following parameters:
The component also includes the PublicKey field which holds the PEM formatted public key for ease of use. This is helpful if you are in control of both signature creation and verification process. When sending the public key to a recipient note that not all implementations will support using the PEM formatted value in PublicKey in which case the individual parameters must be sent.
The private key consists of the following parameters:
The component also include the PrivateKey field which holds the PEM formatted private key for ease of use. This is helpful for storing the private key more easily.Fields
G
string
Default: ""
Represents the G parameter for the DSA algorithm.
GB
byte []
Default: ""
Represents the G parameter for the DSA algorithm.
P
string
Default: ""
Represents the P parameter for the DSA algorithm.
PB
byte []
Default: ""
Represents the P parameter for the DSA algorithm.
PrivateKey
string
Default: ""
This field is a PEM formatted private key. The purpose of this field is to allow easier management of the private key parameters by using only a single value.
PublicKey
string
Default: ""
This field is a PEM formatted public key. The purpose of this field is to allow easier management of the public key parameters by using only a single value.
Q
string
Default: ""
Represents the Q parameter for the DSA algorithm.
QB
byte []
Default: ""
Represents the Q parameter for the DSA algorithm.
X
string
Default: ""
Represents the X parameter for the DSA algorithm.
XB
byte []
Default: ""
Represents the X parameter for the DSA algorithm.
Y
string
Default: ""
Represents the Y parameter for the DSA algorithm.
YB
byte []
Default: ""
Represents the Y parameter for the DSA algorithm.
Constructors
The default constructor creates a new DSAKey instance but does not assign a public or private key.
The public key constructor assigns an existing public key.
The private key constructor assigns an existing private key.
Config Settings (DSA Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.DSA Config Settings
0 (Concatenated - default) | Compatible with Windows/.NET |
1 (ASN) | Compatible with OpenSSL/Mac/iOS |
- 0 (PEM - PKCS#1)
- 1 (XML)
- 2 (PEM - PKCS#8 - default)
Base Config Settings
In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the component does not attempt to process external events.
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all components of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
If using the .NET Standard Library, this setting will be true on all platforms. The .NET Standard library does not support using the system security libraries.
Note: This setting is static. The value set is applicable to all components used in the application.
When this value is set, the product's system dynamic link library (DLL) is no longer required as a reference, as all unmanaged code is stored in that file.
Trappable Errors (DSA Component)
DSA Errors
102 | No Key specified. |
104 | Cannot read or write file. |
105 | Key parameters incorrect. |
106 | Cannot create hash. |
113 | Input data or HashValue must be specified. |
121 | Invalid certificate. |
124 | HashSignature must be specified. |
304 | Cannot write file. |
305 | Cannot read file. |