Salsa20 Component
Properties Methods Events Config Settings Errors
The Salsa20 component can be used to encrypt and decrypt data with the XSalsa20 and Salsa20 algorithm.
Syntax
nsoftware.IPWorksEncrypt.Salsa20
Remarks
The component implements XSalsa20 as well as Salsa20. The Algorithm property specifies which algorithm to use when encrypting and decryption. In addition the 12 and 8 round variants of Salsa20 are supported.
Data may be encrypted and decrypted in its entirety by calling Encrypt and Decrypt or chunk by chunk by calling EncryptBlock and DecryptBlock.
In all operations a Key and IV must be used. If IV is not set one is automatically generated. KeyPassword may be set in order to automatically generate both a Key and IV when a method is called. The same KeyPassword, or Key and IV pair are used on both sides of the operation data can be encrypted and decrypted.
Encrypt Notes
Encrypt will encrypt the specified data. The following properties are applicable:
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Additional Notes
The Key property must be set to a 256 bit (32 byte) value. This is the only allowed value for ChaCha20. If KeyPassword is set both Key and IV will be automatically generated when Encrypt is called.
The IV must be set to a 192 bit (24 byte) value when Algorithm is set to XSalsa. The IV must be set to a 64 bit (8 byte) value when Algorithm is set to Salsa.
If IV is not set a value will automatically be generated by the component when Encrypt is called.
During encryption the Progress event will fire as data is encrypted.
Encrypt Example
Salsa20 salsa = new Salsa20();
//32 Bytes
salsa.KeyB = new byte[] { 0xBB, 0x76, 0x17, 0xC9, 0x05, 0x73, 0x4A, 0x8D, 0x59, 0x9D, 0x7B, 0x0D, 0x86, 0x2A, 0x03, 0x82, 0x50, 0x6A, 0x70, 0xFB, 0xA8, 0x56, 0x47, 0x1B, 0x1E, 0x68, 0x0B, 0x2B, 0x34, 0x18, 0x0F, 0xE2 };
//24 Bytes
salsa.IVB = new byte[] { 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7, 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7 };
salsa.InputMessage = "hello salsa!";
salsa.Encrypt();
//salsa.OutputMessageB contains the byte[] of the encrypted data. The above code produces the following encrypted bytes.
// { 0x06, 0xF4, 0xD9, 0xB4, 0x67, 0x31, 0x1C, 0x1E, 0x8E, 0xD6, 0xB5, 0x6B }
Encrypt Block Notes
EncryptBlock will encrypt the input data and return the encrypted block. The encrypted block will always be the same length as the decrypted data. The following properties are applicable:
InputBuffer specifies the input data to encrypt.
EncryptBlock Example
Salsa20 salsa = new Salsa20();
//32 Bytes
salsa.KeyB = new byte[] { 0xBB, 0x76, 0x17, 0xC9, 0x05, 0x73, 0x4A, 0x8D, 0x59, 0x9D, 0x7B, 0x0D, 0x86, 0x2A, 0x03, 0x82, 0x50, 0x6A, 0x70, 0xFB, 0xA8, 0x56, 0x47, 0x1B, 0x1E, 0x68, 0x0B, 0x2B, 0x34, 0x18, 0x0F, 0xE2 };
//24 Bytes
salsa.IVB = new byte[] { 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7, 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7 };
byte[] tempEncryptedBlock;
//Encrypt any number of blocks of any size
tempEncryptedBlock = salsa.EncryptBlock(part1);
tempEncryptedBlock = salsa.EncryptBlock(part2);
Decrypt Notes
Decrypt will decrypt the specified data. The following properties are applicable:
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Additional Notes
The Key property must be set to the 256 bit (32 byte) value originally used to encrypt the data. IV must be set to the original IV value used to encrypt the data.
If using a password, KeyPassword must be set to the same KeyPassword used when encrypting the data. This will automatically generate both Key and IV when Decrypt is called.
During decryption the Progress event will fire as data is decrypted.
Decrypt Example
Salsa20 salsa = new Salsa20();
//32 Bytes
salsa.KeyB = new byte[] { 0xBB, 0x76, 0x17, 0xC9, 0x05, 0x73, 0x4A, 0x8D, 0x59, 0x9D, 0x7B, 0x0D, 0x86, 0x2A, 0x03, 0x82, 0x50, 0x6A, 0x70, 0xFB, 0xA8, 0x56, 0x47, 0x1B, 0x1E, 0x68, 0x0B, 0x2B, 0x34, 0x18, 0x0F, 0xE2 };
//24 Bytes
salsa.IVB = new byte[] { 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7, 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7 };
salsa.InputMessageB = new byte[] { 0x06, 0xF4, 0xD9, 0xB4, 0x67, 0x31, 0x1C, 0x1E, 0x8E, 0xD6, 0xB5, 0x6B };
salsa.Decrypt();
Console.WriteLine(salsa.OutputMessage); //outputs "hello salsa!"
Decrypt Block Notes
DecryptBlock will decrypt the input data and return the decrypted block. The decrypted block will always be the same length as the encrypted data. The following properties are applicable:
InputBuffer specifies the input data to decrypt.
DecryptBlock Example
Salsa20 salsa = new Salsa20();
//32 Bytes
salsa.KeyB = new byte[] { 0xBB, 0x76, 0x17, 0xC9, 0x05, 0x73, 0x4A, 0x8D, 0x59, 0x9D, 0x7B, 0x0D, 0x86, 0x2A, 0x03, 0x82, 0x50, 0x6A, 0x70, 0xFB, 0xA8, 0x56, 0x47, 0x1B, 0x1E, 0x68, 0x0B, 0x2B, 0x34, 0x18, 0x0F, 0xE2 };
//24 Bytes
salsa.IVB = new byte[] { 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7, 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7 };
byte[] tempDecryptedBlock;
//Decrypt any number of blocks of any size
tempDecryptedBlock = salsa.DecryptBlock(part1);
tempDecryptedBlock = salsa.DecryptBlock(part2);
Property List
The following is the full list of the properties of the component with short descriptions. Click on the links for further details.
Algorithm | The Salsa20 algorithm. |
InputFile | The file to process. |
InputMessage | The message to process. |
IV | The initialization vector (IV). |
Key | The secret key for the symmetric algorithm. |
KeyPassword | A password to generate the Key and IV . |
OutputFile | The output file when encrypting or decrypting. |
OutputMessage | The output message after processing. |
Overwrite | Indicates whether or not the component should overwrite files. |
UseHex | Whether input or output is hex encoded. |
Method List
The following is the full list of the methods of the component with short descriptions. Click on the links for further details.
Config | Sets or retrieves a configuration setting. |
Decrypt | Decrypts the data. |
DecryptBlock | Decrypts a block and returns the decrypted data. |
Encrypt | Encrypts the data. |
EncryptBlock | Encrypts data and returns the encrypted block. |
Reset | Resets the component. |
SetInputStream | Sets the stream from which the component will read data to encrypt or decrypt. |
SetOutputStream | Sets the stream to which the component will write encrypted or decrypted data. |
Event List
The following is the full list of the events fired by the component with short descriptions. Click on the links for further details.
Error | Fired when information is available about errors during data delivery. |
Progress | Fired as progress is made. |
Config Settings
The following is a list of config settings for the component with short descriptions. Click on the links for further details.
CloseInputStreamAfterProcessing | Determines whether or not the input stream is closed after processing. |
CloseOutputStreamAfterProcessing | Determines whether or not the output stream is closed after processing. |
EncryptedDataEncoding | The encoding of the encrypted input or output data. |
IncludeIV | Whether to prepend the IV to the output data and read the IV from the input data. |
KeyPasswordAlgorithm | The hash algorithm used to derive the Key and IV from the KeyPassword property. |
KeyPasswordIterations | The number of iterations performed when using KeyPassword to derive the Key and IV. |
KeyPasswordSalt | The salt value used in conjunction with the KeyPassword to derive the Key and IV. |
SalsaRounds | The number of rounds to perform. |
BuildInfo | Information about the product's build. |
GUIAvailable | Whether or not a message loop is available for processing events. |
LicenseInfo | Information about the current license. |
MaskSensitiveData | Whether sensitive data is masked in log messages. |
UseFIPSCompliantAPI | Tells the component whether or not to use FIPS certified APIs. |
UseInternalSecurityAPI | Whether or not to use the system security libraries or an internal implementation. |
Algorithm Property (Salsa20 Component)
The Salsa20 algorithm.
Syntax
public Salsa20Algorithms Algorithm { get; set; }
enum Salsa20Algorithms { saSALSA20, saXSALSA20 }
Public Property Algorithm As Salsa20Algorithms
Enum Salsa20Algorithms saSALSA20 saXSALSA20 End Enum
Default Value
1
Remarks
This property specifies the Salsa implementation to use. Possible values are:
- 0 (Salsa20)
- 1 (XSalsa20 - default)
The XSalsa20 algorithm is recommended and generally to be considered more secure. The Salsa20 algorithm is fully supported for implementations that require this. In addition the reduced 12 and 8 round variants of Salsa20 are also supported, please see SalsaRounds for details.
InputFile Property (Salsa20 Component)
The file to process.
Syntax
Default Value
""
Remarks
This property specifies the file to be processed. Set this property to the full or relative path to the file which will be processed.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- SetInputStream
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
InputMessage Property (Salsa20 Component)
The message to process.
Syntax
Default Value
""
Remarks
This property specifies the message to be processed.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- SetInputStream
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
IV Property (Salsa20 Component)
The initialization vector (IV).
Syntax
Default Value
""
Remarks
This property specifies the initialization vector (IV). This is also referred to as the nonce. By default this property is empty and the component will automatically generate a new IV value if KeyPassword or Key is set before Encrypt or EncryptBlock is called.
XSalsa Notes:
When Algorithm is set to XSalsa the length of the IV must be 192 bits in length (24 bytes).
Salsa Notes:
When Algorithm is set to Salsa the length of the IV must be 64 bits in length (8 bytes).
Key Property (Salsa20 Component)
The secret key for the symmetric algorithm.
Syntax
Default Value
""
Remarks
This secret key is used both for encryption and decryption. The secret key should be known only to the sender and the receiver. This key must be 256 bits in length (32 bytes).
If this property is left empty and KeyPassword is specified, a Key value will be generated by the component as necessary.
KeyPassword Property (Salsa20 Component)
A password to generate the Key and IV .
Syntax
Default Value
""
Remarks
When this property is set the component will calculate values for Key and IV using the PKCS5 password digest algorithm. This provides a simpler alternative to creating and managing Key and IV values directly.
OutputFile Property (Salsa20 Component)
The output file when encrypting or decrypting.
Syntax
Default Value
""
Remarks
This property specifies the file to which the output will be written when Encrypt or Decrypt is called. This may be set to an absolute or relative path.
This property is only applicable to Encrypt and Decrypt.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
OutputMessage Property (Salsa20 Component)
The output message after processing.
Syntax
Default Value
""
Remarks
This property will be populated with the output from the operation if OutputFile and SetOutputStream are not set.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
This property is read-only and not available at design time.
Overwrite Property (Salsa20 Component)
Indicates whether or not the component should overwrite files.
Syntax
Default Value
False
Remarks
This property indicates whether or not the component will overwrite OutputFile. If Overwrite is False, an error will be thrown whenever OutputFile exists before an operation. The default value is False.
UseHex Property (Salsa20 Component)
Whether input or output is hex encoded.
Syntax
Default Value
False
Remarks
This property specifies whether the encrypted data is hex encoded.
If set to True, when Encrypt is called the component will perform the encryption as normal and then hex encode the output. OutputMessage or OutputFile will hold hex encoded data.
If set to True, when Decrypt is called the component will expect InputMessage or InputFile to hold hex encoded data. The component will then hex decode the data and perform decryption as normal.
Config Method (Salsa20 Component)
Sets or retrieves a configuration setting.
Syntax
Remarks
Config is a generic method available in every component. It is used to set and retrieve configuration settings for the component.
These settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.
To set a configuration setting named PROPERTY, you must call Config("PROPERTY=VALUE"), where VALUE is the value of the setting expressed as a string. For boolean values, use the strings "True", "False", "0", "1", "Yes", or "No" (case does not matter).
To read (query) the value of a configuration setting, you must call Config("PROPERTY"). The value will be returned as a string.
Decrypt Method (Salsa20 Component)
Decrypts the data.
Syntax
public void Decrypt(); Async Version public async Task Decrypt(); public async Task Decrypt(CancellationToken cancellationToken);
Public Sub Decrypt() Async Version Public Sub Decrypt() As Task Public Sub Decrypt(cancellationToken As CancellationToken) As Task
Remarks
Decrypt will decrypt the specified data. The following properties are applicable:
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Additional Notes
The Key property must be set to the 256 bit (32 byte) value originally used to encrypt the data. IV must be set to the original IV value used to encrypt the data.
If using a password, KeyPassword must be set to the same KeyPassword used when encrypting the data. This will automatically generate both Key and IV when Decrypt is called.
During decryption the Progress event will fire as data is decrypted.
Decrypt Example
Salsa20 salsa = new Salsa20();
//32 Bytes
salsa.KeyB = new byte[] { 0xBB, 0x76, 0x17, 0xC9, 0x05, 0x73, 0x4A, 0x8D, 0x59, 0x9D, 0x7B, 0x0D, 0x86, 0x2A, 0x03, 0x82, 0x50, 0x6A, 0x70, 0xFB, 0xA8, 0x56, 0x47, 0x1B, 0x1E, 0x68, 0x0B, 0x2B, 0x34, 0x18, 0x0F, 0xE2 };
//24 Bytes
salsa.IVB = new byte[] { 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7, 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7 };
salsa.InputMessageB = new byte[] { 0x06, 0xF4, 0xD9, 0xB4, 0x67, 0x31, 0x1C, 0x1E, 0x8E, 0xD6, 0xB5, 0x6B };
salsa.Decrypt();
Console.WriteLine(salsa.OutputMessage); //outputs "hello salsa!"
DecryptBlock Method (Salsa20 Component)
Decrypts a block and returns the decrypted data.
Syntax
Remarks
DecryptBlock will decrypt the input data and return the decrypted block. The decrypted block will always be the same length as the encrypted data. The following properties are applicable:
InputBuffer specifies the input data to decrypt.
DecryptBlock Example
Salsa20 salsa = new Salsa20();
//32 Bytes
salsa.KeyB = new byte[] { 0xBB, 0x76, 0x17, 0xC9, 0x05, 0x73, 0x4A, 0x8D, 0x59, 0x9D, 0x7B, 0x0D, 0x86, 0x2A, 0x03, 0x82, 0x50, 0x6A, 0x70, 0xFB, 0xA8, 0x56, 0x47, 0x1B, 0x1E, 0x68, 0x0B, 0x2B, 0x34, 0x18, 0x0F, 0xE2 };
//24 Bytes
salsa.IVB = new byte[] { 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7, 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7 };
byte[] tempDecryptedBlock;
//Decrypt any number of blocks of any size
tempDecryptedBlock = salsa.DecryptBlock(part1);
tempDecryptedBlock = salsa.DecryptBlock(part2);
Encrypt Method (Salsa20 Component)
Encrypts the data.
Syntax
public void Encrypt(); Async Version public async Task Encrypt(); public async Task Encrypt(CancellationToken cancellationToken);
Public Sub Encrypt() Async Version Public Sub Encrypt() As Task Public Sub Encrypt(cancellationToken As CancellationToken) As Task
Remarks
Encrypt will encrypt the specified data. The following properties are applicable:
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Additional Notes
The Key property must be set to a 256 bit (32 byte) value. This is the only allowed value for ChaCha20. If KeyPassword is set both Key and IV will be automatically generated when Encrypt is called.
The IV must be set to a 192 bit (24 byte) value when Algorithm is set to XSalsa. The IV must be set to a 64 bit (8 byte) value when Algorithm is set to Salsa.
If IV is not set a value will automatically be generated by the component when Encrypt is called.
During encryption the Progress event will fire as data is encrypted.
Encrypt Example
Salsa20 salsa = new Salsa20();
//32 Bytes
salsa.KeyB = new byte[] { 0xBB, 0x76, 0x17, 0xC9, 0x05, 0x73, 0x4A, 0x8D, 0x59, 0x9D, 0x7B, 0x0D, 0x86, 0x2A, 0x03, 0x82, 0x50, 0x6A, 0x70, 0xFB, 0xA8, 0x56, 0x47, 0x1B, 0x1E, 0x68, 0x0B, 0x2B, 0x34, 0x18, 0x0F, 0xE2 };
//24 Bytes
salsa.IVB = new byte[] { 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7, 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7 };
salsa.InputMessage = "hello salsa!";
salsa.Encrypt();
//salsa.OutputMessageB contains the byte[] of the encrypted data. The above code produces the following encrypted bytes.
// { 0x06, 0xF4, 0xD9, 0xB4, 0x67, 0x31, 0x1C, 0x1E, 0x8E, 0xD6, 0xB5, 0x6B }
EncryptBlock Method (Salsa20 Component)
Encrypts data and returns the encrypted block.
Syntax
Remarks
EncryptBlock will encrypt the input data and return the encrypted block. The encrypted block will always be the same length as the decrypted data. The following properties are applicable:
InputBuffer specifies the input data to encrypt.
EncryptBlock Example
Salsa20 salsa = new Salsa20();
//32 Bytes
salsa.KeyB = new byte[] { 0xBB, 0x76, 0x17, 0xC9, 0x05, 0x73, 0x4A, 0x8D, 0x59, 0x9D, 0x7B, 0x0D, 0x86, 0x2A, 0x03, 0x82, 0x50, 0x6A, 0x70, 0xFB, 0xA8, 0x56, 0x47, 0x1B, 0x1E, 0x68, 0x0B, 0x2B, 0x34, 0x18, 0x0F, 0xE2 };
//24 Bytes
salsa.IVB = new byte[] { 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7, 0x0D, 0xE4, 0x43, 0x40, 0x29, 0xAD, 0x70, 0x7D, 0x7B, 0x32, 0xB5, 0xC7 };
byte[] tempEncryptedBlock;
//Encrypt any number of blocks of any size
tempEncryptedBlock = salsa.EncryptBlock(part1);
tempEncryptedBlock = salsa.EncryptBlock(part2);
Reset Method (Salsa20 Component)
Resets the component.
Syntax
public void Reset(); Async Version public async Task Reset(); public async Task Reset(CancellationToken cancellationToken);
Public Sub Reset() Async Version Public Sub Reset() As Task Public Sub Reset(cancellationToken As CancellationToken) As Task
Remarks
When called, the component will reset all of its properties to their default values.
SetInputStream Method (Salsa20 Component)
Sets the stream from which the component will read data to encrypt or decrypt.
Syntax
public void SetInputStream(System.IO.Stream inputStream); Async Version public async Task SetInputStream(System.IO.Stream inputStream); public async Task SetInputStream(System.IO.Stream inputStream, CancellationToken cancellationToken);
Public Sub SetInputStream(ByVal InputStream As System.IO.Stream) Async Version Public Sub SetInputStream(ByVal InputStream As System.IO.Stream) As Task Public Sub SetInputStream(ByVal InputStream As System.IO.Stream, cancellationToken As CancellationToken) As Task
Remarks
This method sets the stream from which the component will read data to encrypt or decrypt.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
- SetInputStream
- InputFile
- InputMessage
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
SetOutputStream Method (Salsa20 Component)
Sets the stream to which the component will write encrypted or decrypted data.
Syntax
public void SetOutputStream(System.IO.Stream outputStream); Async Version public async Task SetOutputStream(System.IO.Stream outputStream); public async Task SetOutputStream(System.IO.Stream outputStream, CancellationToken cancellationToken);
Public Sub SetOutputStream(ByVal OutputStream As System.IO.Stream) Async Version Public Sub SetOutputStream(ByVal OutputStream As System.IO.Stream) As Task Public Sub SetOutputStream(ByVal OutputStream As System.IO.Stream, cancellationToken As CancellationToken) As Task
Remarks
This method sets the stream to which the component will write encrypted or decrypted data.
Input and Output Properties
The component will determine the source and destination of the input and output based on which properties are set.
The order in which the input properties are checked is as follows:
When a valid source is found, the search stops. The order in which the output properties are checked is as follows:
- SetOutputStream
- OutputFile
- OutputMessage: The output data is written to this property if no other destination is specified.
When using streams, you may need to additionally set CloseInputStreamAfterProcessing or CloseOutputStreamAfterProcessing.
Error Event (Salsa20 Component)
Fired when information is available about errors during data delivery.
Syntax
public event OnErrorHandler OnError; public delegate void OnErrorHandler(object sender, Salsa20ErrorEventArgs e); public class Salsa20ErrorEventArgs : EventArgs { public int ErrorCode { get; } public string Description { get; } }
Public Event OnError As OnErrorHandler Public Delegate Sub OnErrorHandler(sender As Object, e As Salsa20ErrorEventArgs) Public Class Salsa20ErrorEventArgs Inherits EventArgs Public ReadOnly Property ErrorCode As Integer Public ReadOnly Property Description As String End Class
Remarks
The Error event is fired in case of exceptional conditions during message processing. Normally the component throws an exception.
The ErrorCode parameter contains an error code, and the Description parameter contains a textual description of the error. For a list of valid error codes and their descriptions, please refer to the Error Codes section.
Progress Event (Salsa20 Component)
Fired as progress is made.
Syntax
public event OnProgressHandler OnProgress; public delegate void OnProgressHandler(object sender, Salsa20ProgressEventArgs e); public class Salsa20ProgressEventArgs : EventArgs { public long BytesProcessed { get; } public int PercentProcessed { get; } }
Public Event OnProgress As OnProgressHandler Public Delegate Sub OnProgressHandler(sender As Object, e As Salsa20ProgressEventArgs) Public Class Salsa20ProgressEventArgs Inherits EventArgs Public ReadOnly Property BytesProcessed As Long Public ReadOnly Property PercentProcessed As Integer End Class
Remarks
This event is fired automatically as data is processed by the component.
The PercentProcessed parameter indicates the current status of the operation.
The BytesProcessed parameter holds the total number of bytes processed so far.
Config Settings (Salsa20 Component)
The component accepts one or more of the following configuration settings. Configuration settings are similar in functionality to properties, but they are rarely used. In order to avoid "polluting" the property namespace of the component, access to these internal properties is provided through the Config method.XSalsa20 Config Settings
Determines whether or not the input stream set by SetInputStream is closed after processing is complete. The default value is True.
Determines whether or not the output stream set by SetOutputStream is closed after processing is complete. The default value is True.
This configuration setting specifies how the encrypted data is encoded (if at all).
When Encrypt is called the component will perform the encryption as normal and then encode the output as specified here. OutputMessage or OutputFile will hold the encoded data.
When Decrypt is called the component will expect InputMessage or InputFile to hold the encoded data as specified here. The component will then decode the data and perform decryption as normal.
Possible values are:
- 0 (none - default)
- 1 (Base64)
- 2 (Hex)
- 3 (Base64URL)
If this config is true, the IV will be automatically prepended to the output data when calling Encrypt. When calling Decrypt and this setting is True, the IV is automatically extracted form the ciphertext. The default value is False.
This configuration setting specifies which hash algorithm will be used when deriving the Key and IV from KeyPassword. The default value is "MD5". Possible values are:
- "SHA1"
- "MD2"
- "MD5" (default)
- "HMAC-SHA1"
- "HMAC-SHA224"
- "HMAC-SHA256"
- "HMAC-SHA384"
- "HMAC-SHA512"
- "HMAC-MD5"
- "HMAC-RIPEMD160"
When using any HMAC algorithm the PBKDF#2 method from RFC 2898 is used. Any other algorithm uses PBKDF#1 from the same RFC.
This configuration setting specifies the number of iterations performed when using KeyPassword to calculate values for Key and IV. When using PBKDF#2 the default number of iterations is 10,000. When using PBKDF#1 the default number is 10.
This configuration setting specifies the hex encoded salt value to be used along with the KeyPassword when calculating values for Key and IV.
This setting specifies the number of rounds to perform. The default value is 20. The component also supports 12 and 8 round variants which offer better performance but reduce overall security. This setting is only applicable when Algorithm is set to saSALSA20. Possible values are:
- 20 (default - recommended)
- 12
- 8
Base Config Settings
When queried, this setting will return a string containing information about the product's build.
In a GUI-based application, long-running blocking operations may cause the application to stop responding to input until the operation returns. The component will attempt to discover whether or not the application has a message loop and, if one is discovered, it will process events in that message loop during any such blocking operation.
In some non-GUI applications, an invalid message loop may be discovered that will result in errant behavior. In these cases, setting GUIAvailable to false will ensure that the component does not attempt to process external events.
When queried, this setting will return a string containing information about the license this instance of a component is using. It will return the following information:
- Product: The product the license is for.
- Product Key: The key the license was generated from.
- License Source: Where the license was found (e.g., RuntimeLicense, License File).
- License Type: The type of license installed (e.g., Royalty Free, Single Server).
- Last Valid Build: The last valid build number for which the license will work.
In certain circumstances it may be beneficial to mask sensitive data, like passwords, in log messages. Set this to true to mask sensitive data. The default is true.
This setting only works on these components: AS3Receiver, AS3Sender, Atom, Client(3DS), FTP, FTPServer, IMAP, OFTPClient, SSHClient, SCP, Server(3DS), Sexec, SFTP, SFTPServer, SSHServer, TCPClient, TCPServer.
When set to true, the component will utilize the underlying operating system's certified APIs. Java editions, regardless of OS, utilize Bouncy Castle Federal Information Processing Standards (FIPS), while all other Windows editions make use of Microsoft security libraries.
FIPS mode can be enabled by setting the UseFIPSCompliantAPI configuration setting to true. This is a static setting that applies to all instances of all components of the toolkit within the process. It is recommended to enable or disable this setting once before the component has been used to establish a connection. Enabling FIPS while an instance of the component is active and connected may result in unexpected behavior.
For more details, please see the FIPS 140-2 Compliance article.
Note: This setting is applicable only on Windows.
Note: Enabling FIPS compliance requires a special license; please contact sales@nsoftware.com for details.
When set to false, the component will use the system security libraries by default to perform cryptographic functions where applicable. In this case, calls to unmanaged code will be made. In certain environments, this is not desirable. To use a completely managed security implementation, set this setting to true.
Setting this configuration setting to true tells the component to use the internal implementation instead of using the system security libraries.
On Windows, this setting is set to false by default. On Linux/macOS, this setting is set to true by default.
If using the .NET Standard Library, this setting will be true on all platforms. The .NET Standard library does not support using the system security libraries.
Note: This setting is static. The value set is applicable to all components used in the application.
When this value is set, the product's system dynamic link library (DLL) is no longer required as a reference, as all unmanaged code is stored in that file.
Trappable Errors (Salsa20 Component)
XSalsa20 Errors
101 | Unsupported algorithm. |
102 | No Key specified. |
103 | No IV specified. |
104 | Cannot read or write file. |
107 | Block size is not valid for this algorithm. |
108 | Key size is not valid for this algorithm. |
111 | OutputFile already exists and Overwrite is False. |
121 | The specified key is invalid. |
123 | IV size is not valid for this algorithm. |
304 | Cannot write file. |
305 | Cannot read file. |
306 | Cannot create file. |
2004 | Invalid padding. This may be an indication that the key is incorrect. |
130 | Invalid number of rounds. The number of rounds used when Algorithm is set to Salsa must be 8, 12, or 20. |